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Abstract 
As a result of social awareness of air emission due to the use of fossil fuels, the utilization of the 
natural wind power resources becomes an important option to avoid the dependence on fossil re-
sources in industrial activities. For example, the maritime industry, which is responsible for more 
than 90% of the world trade transport, has already started to look for solutions to use wind power 
as auxiliary propulsion for ships. The practical installation of the wind facilities often requires 
large amount of investment, while uncertainties for the corresponding energy gains are large. 
Therefore a reliable model to describe the variability of wind speeds is needed to estimate the 
expected available wind power, coefficient of the variation of the power and other statistics of in-
terest, e.g. expected length of the wind conditions favorable for the wind-energy harvesting. In this 
paper, wind speeds are modeled by means of a spatio-temporal transformed Gaussian field. Its 
dependence structure is localized by introduction of time and space dependent parameters in the 
field. The model has the advantage of having a relatively small number of parameters. These pa-
rameters have natural physical interpretation and are statistically fitted to represent variability of 
observed wind speeds in ERA Interim reanalysis data set. 
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1. Introduction 
In the literature typically cumulative distribution function (CDF) of wind speed W, say, is understood as the 
long-term CDF of the wind speeds at some location or region. The distribution can be interpreted as variability 
of W at a randomly taken time during a year. Weibull distribution gives often a good fit. Limiting time span to, 
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for example, January month affects the W CDF simply because, as it is the case for many geophysical quantities, 
the variability of W depends on seasons. To avoid ambiguity when discussing the distribution of W, time span 
and region over which the observations of W are gathered need to be clearly specified. By shrinking the time 
span to a single moment t and geographical region to a location p, one obtains (in the limit) the distribution of 

( ),W tp . This is used as the distribution of W in this paper. Obviously the long-term CDF can be retrieved from 
the “local” ( ),W tp  distributions by means of an average of the local distributions, viz for a fixed location p 

( ) ( )( )1 , d ,
s S

s
W w W t w t

S
+

≤ = ≤∫  p                             (1) 

where S can be a month, a season or a year. Similarly the long-term CDF over a region A, say, is proportional to 
( )( ), d d

s S

A s
W t w t

+
≤∫ ∫ p p . 

In order to identify the distributions at all positions p and times t, vast amount of data are needed. Here the 
reconstruction of W from numerical ocean-atmosphere models based on large-scale meteorological data, called 
also reanalysis, is utilized to fit a model. The reanalysis does not represent actual measurements of quantities but 
extrapolations to the grid locations based on simulations from complex dynamical models. It is defined on regu-
lar grids in time and space, and hence convenient to use. In this paper, the ERA Interim data [1] produced by 
European Centre for Medium-Range Weather Forecasts is used to fit the model. However the model can also be 
fitted to other data sets, e.g. to satellites wind measurements which has also good spatial coverage, see [2]. 

Modeling spatial and temporal dependence of wind speed is a very complex problem. Models proposed in the 
literature are reviewed in [3]. Here we propose to use the transformed Gaussian model, which assumes that there 
exists a deterministic function ( )G w , possibly dependent on location p, such that ( ) ( )( ), ,X t G W t=p p  is 
Gaussian. The ( ),X tp  field is defined by the mean ( ),m tp  and covariance structure  

( ) ( )( )1 1 2 2, , ,ov X t X t p p . Obviously for a given transformation G and many years of hind-cast, one could es-
timate the covariance for any pair ( )1 1, tp , ( )2 2, tp , see, e.g. [4] [5]. However such an approach is limited to 
relatively small grids in space. Employing the empirical covariances in time and space would result in huge ma-
trices, which limit the applicability of such empirical approach. Consequently, a simple parametric model that 
catches only some aspects of the wind speed variability, important for a particular application, is of practical in-
terest. The minimal requirements on the model are that it should provide a correct estimates of long-term distri-
butions of the wind speeds, accurate predictions of average durations of the extreme winds conditions and relia-
ble estimates of CDFs of top speeds during storms encountered by a vessel. In order to demonstrate the capabil-
ity of the proposed model for such minimal requirements, this paper is organized as follows: 

In Section 2, a general construction of non-stationary model for wind speed variability in time and space is 
presented. Section 3 presents probabilistic model for the velocity of storms movements. Then statistical proper-
ties of some storms characteristics are described in Section 4. The physical interpretations of the introduced pa-
rameters are also given in this section and in Appendix 1. In Section 5, on board measured wind speeds are used 
to validate the proposed model, where the long term CDFs of encountered wind speeds and persistence statistics 
are used. Total forty routes are used, see Figure 1. The time when routes were sailed are well spread over a year. 
Finally in Section 6, means to simulate the encountered wind speeds are briefly reviewed. Paper closes with 
three appendixes containing somewhat more technical matters. 

2. Transformed Gaussian Model and Long-Term CDFs 
In this section we shall introduce the transformed Gaussian model for the variability of wind speeds. In particu-
lar the transformation G making the transformed wind speed data ( )X G W=  normally distributed will be 
presented. Seasonal model for the mean and variance of X is given and assumed normality of X validated. 

The wind speed ( ),W tp  is the ten minutes average of the wind speed measured at position p, defined in de-
grees of longitude and latitude, while t is the time of the year. We will use the transformation ( ) aG w w= , 
where a is a fixed constant that depends on the location p, viz  

( ) ( ) ( ), , aX t W t= pp p                                    (2) 

The parameter a is nonnegative with convention that the case 0a =  corresponds to the logarithm. We as-
sume that ( ),X tp  is normally distributed. 

Mean and variance of ( ),X tp , denoted by ( ),m tp , ( )2 , tσ p , respectively, depend both on position and  
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Figure 1. The considered routes in the validation process. 

 
time. The temporal variability of mean and variance is approximated by seasonal components with trends de-
fined as follows  

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3, cos 2π sin 2π ,m t m m t m t m t= + + +p p p p p                   (3) 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )2
0 1 2 3ln , cos 2π sin 2π .t b b t b t b tσ = + + +p p p p p                  (4) 

Here t has units years. This type of model has been used in the literature, see e.g. classical paper [6]. 
Remark 1 For a fixed position p, the parameters a and mi in Equation (3) are fitted simultaneously in such a 

way that the distance between yearly long-term empirical CDF of ( ) ( ), ,aW t m t−p p  and a Gaussian distribu-
tion is minimized. 

More precisely for a wind data at fixed position p and parameter ( )0,1a∈  we evaluate ( ) ( )ax t w t=  and 
fit regression Equation (3). Then the residual ( ) ( ) ( )t x t m t= −  is evaluated and its empirical CDF estimated. 
Next a distance between the empirical CDF and the Gaussian CDF (fitted to ( )t ) is evaluated. Finally the 
parameter a* that minimizes the distance is the estimate of a. 

A table of a and mi values as function of the location p is created. As additional parameters of the model will 
be estimated new columns with parameters estimates will be added to the table. For example, having estimated 
a and mi the variance ( )2 , tσ p , defined in Equation (4), is fitted using an additional assumption that properties 
of the wind speed changes slowly in time. Then the parameters bi are saved in the table. More details of model 
estimations are given in Appendix 3.  

Validation of Gaussianity of ( )X tp,  
Ten years of data ( ),W tp  were used to estimate parameters a, mi and bi in Equation (3), (4) in North Atlantic 
on a grid of 0.75 degree. Figure 2 presents the estimates of parameter a. At offshore locations a values vary 
around 0.8 while close to shore or inlands locations a can be much smaller. Note that small values of a indicate 
larger departures of the observed wind speeds distribution from the Gaussian one. 

Usefulness of the proposed model relies on the accuracy of the approximation of ( ),X tp  CDF by Gaussian 
distribution. The Gaussianity of the process ( ) ( ),X t X t= p  has been validated for the Northern Atlantic. An 
example of conducted validations is shown in Figure 3. In the figure the left plot shows ten years of W process 
limited to two weeks in the middle of February, at locations ( )20,60− , ( )10,40− , ( )40,50− , ( )20,45− , 
plotted on the normal probability paper. (It is assumed that the winds are stationary for such short period of 
time.) In the right plot of the figure the transformed data ( )X G W=  is plotted on normal probability paper. 
One can see that X CDFs are well approximated by the Gaussian distributions. 

In the right plots of Figure 4, the standard deviation ( ), tσ p , defined in Equation (3), is presented for Febru-
ary and August, respectively. One can see that the standard deviation changes considerably with the geographi-
cal location but is less dependent on season. We turn next to presentation of variability of the parameter  
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Figure 2. Values of parameter a in the transformation Equa-
tion (2). 

 

   
Figure 3. Left: Ten years of wind speeds W (t) with t limited to February at the four locations. (−20, 60), (−10, 40), (−40, 
50), (−20, 45) plotted on normal probability paper. Right: Transformed wind speeds X (t) limited to February at the four lo-
cations plotted on normal probability paper. The values of parameter a in transformation Equation (2) are a = 0.850, 0.675, 
0.875, 0.875, respectively. 
 
( ),m tp , i.e. the mean of ( ),X tp  defined in Equation (2). However since units of m are not physical we choo- 

se to show the variability of the median speed  

( ) ( ) ( )1, , at m tµ = pp p                                   (5) 

instead. The values of the median for February and August are presented in two left plots of Figure 4. As ex-
pected, wind speeds are higher in winter than in summer. 

Finally we check whether the regressions Equations (3) and (4) used to model seasonal variability of m and 
2σ  leads to accurate estimates of the long-term CDF of W at position p. Employing Gaussianity assumption of 

X CDF the theoretical long-term CDF of wind speeds at a fixed position p, defined in Equation (1), is given by  

( )
( ) ( )

( )
,1 d ,

,

a
s S

s

w m t
W w t

S tσ
+  −

≤ = Φ  
 

∫
p p

p
                         (6) 

where ( )xΦ  is the CDF of a standard Gaussian (normal) variable. In Figure 5, the yearly probabilities for 
wind speeds ( )W w>  computed using Equation (6) at four locations in North Atlantic are compared with the 
empirical estimates. (The locations are marked by crosses in Figure 2) One can see that the agreement between 
the estimates is excellent. 
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Figure 4. Left top—Median wind speed µ [m/s], defined in Equation (5), in February; Left bottom—Median wind speed in 
August; Right top—Standard deviation of X, computed by means of Equation (4) in February; Right bottom—The standard 
deviation in August. 
 

 
Figure 5. Comparisons of estimates of the long-term probability ( )W w>  for yearly wind speeds variability Equation 
(1) at four locations defined in degrees of longitude and latitude: (−20, 60), (−10, 40), (−40, 50) and (−20, 45). The solid 
line is the probability computed using Equation (6) with S = 1 year. Somewhat more irregular lines are the estimated proba-
bilities based on ten years of hind-cast data. 
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3. Velocity of a Wind Storm 
A storm occurring at time t is a region where ( ),W t u≥p , e.g. u = 15 m/s. The border of a storm is a u-level 
contour ( ){ }: ,W t u=p p . The border changes as storms move, grow or fall. In a classical paper [7] Longuet- 
Higgins has introduced velocities to study movements of random surfaces. There are several definitions of ve-
locities proposed in the literature, see [8]. Here we will use velocity in a fixed direction θ, say. The direction θ 
will be called the main azimuth of a storm. It will be defined in Remark 2, see also Example 1. As customary we 
use the convention that the direction south to north has azimuth θ = 0 while azimuth α = 90˚ for the direction 
west to east. 

Following [8] the velocities in the direction θ and θ − 90˚ are given by  

90
90

, ,t tW W
W Wθ θ

θ θ
−

−

= − = −V V �

�

                               (7) 

where Wt is the time derivative of the wind speed, Wθ  and 
90

W
θ − �  are the directional derivatives having azi-

muths θ, θ − 90˚, respectively. These are evaluated at a position p on the u-level contour. Note that time t is 
fixed. 

The general assumption of this paper is that parameter a does not depend on time and changes much slower in 
space than the wind speed W varies, see Figure 2. Hence the gradient ( ), ,x y tW W W W∇ =  can be approximated 
as follows,  

( ) 1 11 ,aW a X X−∇ ≈ ∇                                   (8) 

where X∇  is the gradient of X-field. Hence velocities defined in Equation (7) can be approximated by  

90
90

, .t tX X
X Xθ θ

θ θ
−

−

= − = −V V �

�

                              (9) 

For a homogeneous Gaussian field the velocities have median values equal to  

( ) ( )( )
( )

( ) ( )( )
( )

90
90

90

, , ,, , ,
, ,

tt ov X t X tov X t X t
ar X ar X

θ θ
θ θ

θ θ

−

−

−

= − = −v v
�

�

�


 

p pp p
            (10) 

see [8] for proof. The speeds in directions θ and θ − 90˚ will be denoted by vθ , 
90

v
θ − � , respectively. The azi-

muth θ is chosen in such a way that the directional derivatives Xθ , 
90

X
θ − �  are uncorrelated, see Remark 2 for 

some discussions about the choice of θ. 
Remark 2 The angle θ depends on properties of the covariance matrix Σ of the gradient ( ),X t∇ p . Means to 

estimate the matrix Σ are given in Appendix 3. For several reasons, see [9] for detailed discussion, it is conve-
nient to rotate the coordinate system so that the partial derivatives Xx and Xy become uncorrelated. 

Let Aθ be the rotation by angle θ around the t-axis matrix making covariance between Xx and Xy zero. Then let 
denote by θΣ  the covariance matrix of the X∇  in the rotated coordinates viz.  

T ,A Aθ θ θΣ = Σ                                     (11) 

where TAθ  is the transpose of Aθ . Now the ( )ar Xθ  is the the element having index 11 in the matrix θΣ  
while ( ) ( )( ), , ,tov X t X tθ p p  has index 13. Using the elements the median velocity θv  in Equation (10) can 
be computed once the matrix θΣ  has been evaluated. 

Example 1 Let consider the following field  

( ) 1 1 1 2 2 2, , cos 2π 2π cos 2πt x tX x y t R R
T L T

σ φ σ φ   = − + + +   
   

                (12) 

where 1R , 2R  and 1φ , 2φ  are independent variables having Rayleigh, uniform CDF, respectively, and hence 
X is a sum of two independent Gaussian fields. The first component is a harmonic wave moving along the x-axis 
with velocity L/T while the second term can be interpreted as colored noise. 

Obviously Xx is independent of Xy and hence θ = 90˚, see Remark 2. Further  

( ) ( )( ) ( ) ( ) ( ) ( )( )2 2
1 90

, , , 2π , , , , 0t tov X t X t LT ov X t X tθ θ
σ

−
= − =



 p p p p  
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while ( ) ( )2 2 2
12πar X Lθ σ=  and hence the median velocities Equation (10) are given by  

( ) ( )90
,0 , 0,0 .L Tθ θ −

= =v v �  

In this simple example the median velocities agree with the velocity of the harmonic wave moving along the 
x-axis.  

In Figure 6, variability of the median velocities θv  and 
90θ −

v �  in Equation (10) is compared. In the top 
plots seasonal variability of θv  is illustrated by showing differences between the velocities in February and 
August. The maximal mean speed in the top plots is about 45 km/h while minimal is zero. Similar comparison 
for the velocity 

90θ −
v �  is given in the bottom plots, where the maximal speed is about 19 km/h. Generally one 

can say that the storms move faster in winter than in summer, and the angle θ also changes between the seasons. 
For example, in the North Atlantic the storms move basically in average from west to east while in the summer 
months the direction is opposite in latitude of around 20 degrees. 

4. Statistics of Encountered Wind Speeds 
Main subject of the paper is development of a simple model describing variability of wind speeds time series 
encountered by a vessel or at a fixed location. In this section we will define the model and give means to esti-
mate the long-term CDF of encountered winds; expected duration and strength of an encountered storm. 

A ship route is a sequence of positions pi, say, a ship intends to follow. We assume that a ship will follow 
straight lines between the positions having azimuth iα , say. A voyage starts at time s and will last for S days. 
Initial position ( )sp , azimuths ( )tα  and ship speeds ( )shv t , [ ],t s s S∈ + , define its position ( )tp  at any 
time t during a voyage. Then the encountered wind speeds are given by  

( ) ( )( ), , .eW t W t t s t s S= ≤ ≤ +p                            (13) 

A ship sailing along a route ( )( ) ( ) ( )( ), , ,t t x t y t t=p , [ ],t s s S∈ + , has velocity  
 

 
Figure 6. Top—Estimates of the median velocities, km/h, the windy field moves in direction 
θ in February and August. The color corresponds to speed. The highest speed (orange) is 45.1 
km/h while the lowest (blue) is 0 km/h. Bottom—Comparisons of the median velocities vθ − 90˚ 
in February and August. The highest speed is 18.6 km/h. 
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( ) ( ) ( )( ) ( ) ( ) ( )( ), sin ,cos ,sh sht x t y t v t t tα α= =v � �                      (14) 

where ( )shv t  is the ship speed at time t. (Recall that the x axis has azimuth 90˚ while the y-axis has azimuth 
0˚.) In the following we will use the transformed Gaussian field Equation (2) to model the encountered wind 
speeds ( )eW t , viz  

( ) ( )( ) ( )( ) ( ) ( )1 1, .
a t a te eW t X t t X t= =

p
p                          (15) 

The process ( )eX t  is Gaussian with mean ( ) ( )( ),m t m t t= p  and variance ( ) ( )( )2 2 ,t t tσ σ= p , respec-
tively. 

The long-term CDF of encountered wind speeds is defined by  

( ) ( )( )1 d , 0.
s Se e
s

W w W t w t w
S

+
≤ = ≤ ≥∫                         (16) 

The CDF given in Equation (16) could be be estimated by fitting an appropriate distribution to available data. 
(Weibull distribution is often used.) Alternative approach is to compute the theoretical CDF, viz.  

( )
( ) ( )

( )
1 d .

a t
s Se
s

w m t
W w t

S tσ
+  −

≤ = Φ 
 
 

∫                          (17) 

4.1. Distributions of Storm Characteristics 
Similarly as in Section 3 we will say that a ship encounters stormy conditions at time t if wind speed ( )eW t  
exceeds some fixed level u. (In the examples we will use u = 15 m/s.) Similarly, it encounters windy weather 
conditions at time t if wind speed is above the median, i.e. ( ) ( )( ),eW t t tµ> p . In Figure 7 wind speeds en-
countered along a route in October are presented. The upper intervals mark times in storms while the lower in-
tervals show the periods of windy weather encountered by a vessel. The thin line, shown in the lower plot, illu-
strates variability of the encountered median wind speed. 

The region of stormy conditions consists of time intervals when the wind speed is constantly above threshold 
u. The intervals will be called storms. Then let Nu denote the number of encountered storms. For example,  
 

 
Figure 7. Illustration of the definition of stormy, windy weather regions. 
Top—A route taken in October; Bottom—Solid thick line shows the on- 
board measured wind speeds. The thin solid line presents variability of the 
median wind speed along the route. The intervals plotted at level 15 m/s 
represent times when ship encounters the stormy weather while intervals 
plotted at level zero marks the encountered windy weather regions. 
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3uN =  in Figure 7. The durations of storms are denoted by st
iT , while the highest wind speed during a storm 

by st
iA , 0, , ui N= � . The probability distributions of the characteristics will be defined next. In order to effi-

ciently write down the formulas for the CDFs we need some additional notation introduced next. 
Let the number of encountered storms for which event (statement) A is true be denoted by ( )uN A . For ex-

ample, ( )st
uN A w>  is the number of encountered storms for which wind speeds exceed a threshold w, while 

( )st
uN T t>  is the number of storms that last longer than t. Obviously ( )0st

u uN N T= > , since all 0st
iT > , is 

the number of upcrossings of level u by the encountered wind speeds. The empirical probability that a storm last 
longer than t hours can now be written as follows  

( ) ( )st
uemp st

u

N T t
T t

N

>
> =  

Next the theoretical, based on model, probability of event A, e.g. stA T t= >“ ” , will be defined by  

( ) ( )
[ ] ( ) ( )

[ ]
, e.g. .

st
uuu u st

u u

N T tN A
A T t

N N

 >    = > = 
EE

E E
                  (18) 

The proposed model Equation (15) will be validated by comparing the empirical distribution of storms 
strength Ast and the average durations of storms with theoretically computed ( )u stA w>  and stT  E . More 
complex storms statistics could also be used to validate the model but it would require a dedicated numerical 
software, see e.g. [10] and references therein, to evaluate ( )uN A  E . Hence it will not be used here. In the fol-
lowing only a simple bound  

( ) [ ]
[ ]

, ,wst

u

N
A w w u

N
> ≤ ≥

E
E

                              (19) 

introduced in [11], and the expectations  

( )
[ ]

( )
[ ]

, ,
e e

st cl

u u

W u W u
T S T S

N N
> ≤

   = =   
 

E E
E E

                      (20) 

will be used for validation purposes. In Equation (20), Tcl denotes time period when wind speed is uninterrup-
tedly below the threshold u, i.e. a time period between storms. The Equation (20) will be proved in Appendix 2. 

In order to evaluate Equation (19) and Equation (20), the formula for [ ]wNE  is needed. The expected num-
ber of upcrossings of level w by We can be computed using the generalized Rice’s formula [12], viz.  

[ ] ( ) ( ) ( ),0
, d d ,e e

s S
w W t W ts

N zf z w z t
+ +∞

= ∫ ∫ 

E                             (21) 

see also [13]. Here ( )eW t  is the time derivative of ( )eW t . 
Remark 3 Consider a stationary Gaussian process X with mean m and variance 2σ . Let Nw be the number 

of upcrossings of level w by X in time interval of length S then classical result of Rice [12] gives  

[ ] ( )( ) ( )( )2 20 exp 2 .
2πw

SN ar X w m σ
σ

= − −E                      (22) 

Consequently the average distance between upcrossing of the mean level m by X is  

[ ]
( )( )

2π
0

T
ar X

σ
=


E                                (23) 

4.2. Evaluation of [ ]wNE  
From definition of the encountered wind speed process We it follows that the number of upcrossings of the level 
w by ( )eW t  in the interval [ ],s s S+  is equal to the number of upcrossings of the level ( )a tw  by ( )eX t . 
Since we are primarily interested in modeling wind fields in offshore locations we assume that the field is ho-
mogeneous in a region with radius of about 100 km and stationary for a period of couple of weeks. (The as-
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sumptions are likely to fail in close to coast or inland locations.) Under the assumption ( ) 0m t =�  and ( )eX t  
and ( )eX t�  are independent. Consequently the integral in Equation (21) can be written in a more explicit way, 
viz.  

[ ]
( )( )

( )

( ) ( )( )
( )

2

221 e d .
2π

a tw m te
s S t

w s

ar X t
N t

t
σ

σ

−
−

+
= ∫


E                         (24) 

In the following we shall use an additional parameter ( )e tτ  defined by  

( ) ( )
( )( )

πe

e

t
t

ar X t

σ
τ =


                                 (25) 

and write Equation (24) in an alternative form  

[ ] ( )

( ) ( )( )
( )

2

221 e d .
2

a tw m t

s S t
w es

N t
t

σ

τ

−
−

+
= ∫E                              (26) 

Note that if Xe is stationary, then [ ] 2e Tτ =E , seen Equation (23). Hence eτ  is the average time period that 
windy conditions last for. Properties and means to evaluate ( )e tτ  using physically interpretable parameters are 
discussed in Appendix 1. 

5. Validation of the Model 
The proposed model is validated by investigating the accuracy of the theoretically computed distributions with 
the empirical distributions estimated from data. Firstly at fixed positions p the theoretical statistics of the storm 
characteristics Ast, Tst and Tcl will be compared with estimates of the statistics derived using ten years of hind- 
cast data. Secondly, the long-term wind speed distributions encountered by vessels are compared with the theo-
retically computed distributions using the model and the estimates derived from the hind-cast. The expected 
number of encountered upcrossing will also be used in the validations. However statistics of encountered storm 
characteristics will not be used in the validation process. This is because the wind speeds measured on-board 
ships are biased by captains’ decisions to avoid sailing in heavy storms, reported also in [14]. Some validations 
of the model at inland locations was presented in [15]. 

5.1. Distributions of Storm Characteristics Ast, Tst and Tcl at a Fixed Position 
Consider a buoy at position p then ( ) ( ),eX t X t= p . The parameter eτ , see Equation (25), is then given by  

( ) ( )
( )( )

π .
,

e

t

t
t

ar X t

σ
τ =

 p
                               (27) 

In Figure 8 values of the parameter eτ  evaluated using Equation (27) for February and August are presented. 
In offshore locations eτ  is less than two days, which is much shorter than the stationarity period assumed to be 
about 3 weeks. Hence the parameter ( )e tτ  is the expected time period the wind speeds exceeds the median 
and that ( )e tτ  is approximately constant for about a month. 

The values eτ , presented in Figure 8, will be first used to validate the approximation of probability that a 
storm observed at position p will have wind speeds exceeding a level w > u = 15 m/s, i.e. formula Equation (19). 
Next by combining formulas Equation (20) with Equation (16) and Equation (24) the expected duration of a 
storm will be computed and then compared with the observed average durations. The expected duration of cal-
mer weather, i.e. time intervals when winds speeds are constantly below the threshold u, will be computed in a 
similar way and then used in the validation 

The probabilities ( )u stA w>  and expectations stT  E , clT  E  are computed for a period 1S =  year 
and positions p marked by crosses in Figure 2. The results presented in Figure 9 and Table 1 show very good 
agreement between the observed storm characteristics at the four locations and the theoretically computed cha-
racteristics. 
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Figure 8. Comparison of spatial variability of ( )e sτ , defined in Equation 
(25) for a buoy. (Top) February, (Bottom) August. 

 

 
Figure 9. Probabilities ( )u stA w> , u = 15 [m/s], that wind in a storm ex-
ceeds level w during one year at four locations having longitudes and lati-
tudes; (−20, 60), (−10, 40), (−40, 50) and (−20, 45). The solid lines are 
probabilities computed using Equation (19) and Equation (25) with a, ( )e tτ  
and ( )tσ  estimated at the locations. The irregular lines are the estimated 
probabilities using ten years of hind-cast data. 

 
Table 1. Long-term (one year) expected storm/calm durations in days. 

Position 
u = 15 m/s u = 18 m/s 

stT  E  stT  
clT  E  clT  

stT  E  stT  
clT  E  clT  

(−20, 60) 0.6 0.5 4.4 4.2 0.5 0.4 13. 11 

(−10, 40) 0.3 0.4 56 69 0.3 0.3 514 525 

(−40, 50) 0.6 0.5 4.4 4.2 0.5 0.4 12 11 

(−20, 45) 0.6 0.5 11 13 0.4 0.4 46 57 
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5.2. Validation-Wind Speeds Encountered by Vessels 
Measurements of the wind speed over ground, i.e. ten minutes averages, recorded each ten minutes on-board 
some ships, are used to validate the proposed model. Since the data are recorded much denser than the hind-cast 
we have removed high frequencies from the signals (periods above 1.5 hour were removed using FFT). The data 
used in this study is limited to the North Atlantic and western region of Mediterranean Sea. The accuracy of the 
theoretically computed long-term distribution of encountered wind speed will be investigated. 

First a single voyage operated in late August, shown in the top left plot of Figure 10, is considered. In right 
top plot of the figure, the measured wind speeds, shown as solid line, are compared with the estimated wind 
speeds using hind-cast, dashed dotted line. One can see that the two signals are reasonably close. 

In the left bottom plot of Figure 10, ten thin lines show the empirical long term probabilities ( )eW w>  
computed for hind-cased based estimates of wind-speeds that would be encountered if the ship were sailing the 
same route every year. One of the estimates is not visible since it is very close to the ( )eW w>  estimated 
using the on-board measured wind speed, the thick solid line. The ten estimates show large variability between 
years. The regular solid line is the theoretically computed ( )eW w> . It is close to the average of the ten esti-
mates derived from the hind-cast (not shown in the figure). We conclude that for the considered route the theo-
retical long-term distribution of wind describes well long-term variability of winds along the route. Similar con-
clusions can be drawn from Figure 11 left plot were the combined long-term distributions for all 40 voyages are  
 

 
Figure 10. Top left—A route sailed from Europe to America in late August. Top right— 
Wind speeds measured on-board a vessel (solid irregular line) compared with their estimates 
derived from the hind-cast data (dashed dotted line); Bottom left—Comparisons of estimates 
of the long-term probability ( )eW w> , plotted on the logarithmic scale, for the voyage. 
The thick smooth line is the probability computed by using Equation (6). The less smooth 
thick line is the probability estimated using the on-board measured wind speeds. The thin 
irregular lines are the probabilities estimated from the hind-cast data for ten different years; 
Bottom right—Comparisons of the estimates of [ ]wNE , plotted on the logarithmic scale, for 
the voyage. The thick smooth line is [ ]wNE  computed by using Equation (21). The thick 
irregular line is the Nw evaluated from the on-board measured wind speeds. The dashed dot-
ted line is the estimate of [ ]wNE  using hind-cast derived wind speeds for the route sailed in 
ten years. 
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Figure 11. Left—Comparisons of the estimates of the long-term probability ( )eW w>  for 
the forty voyages. The solid smooth line is the probability computed using Equation (6). The 
dashed-doted line is the estimate of ( )eW w>  using ten years of hind-cast while the ir-
regular line is the estimate of the wind speeds encountered by vessels. Right—Comparisons 
of the estimates of [ ]wNE  for the forty voyages. The solid smooth line is the [ ]wNE  com-

puted using Equation (21). The dashed dotted line is an estimate of [ ]wNE  using ten years 
hind-cast while the irregular line is the on-board observed Nw. 

 
shown. Based on the results presented in Figure 10 and Figure 11, we conclude that the theoretical long term 
distribution of wind speeds encountered by a sailing vessels agrees well with the distribution derived using hind- 
cast; and secondly that the routing systems used in planning a route is successful in selecting routes with calmer 
wind conditions than average one. 

In Figure 10, bottom right plot, and in Figure 11, right plot, estimates of [ ]wNE  based on hind-cast (dashed 
dotted line) and the observed Nw (the solid irregular line) are compared with the theoretical [ ]wNE  computed 
using Equation (24) for routes shown in Figure 1 and Figure 10 top left plot. One can see that the lines are close 
except for the high wind speeds. The observed crossings of high wind speeds (solid irregular line) are fewer than 
theoretically predicted. This we attribute to use of routing programs that successfully choose calmer roots than 
the average one. This claim is also supported by studies of the estimate of [ ]wNE  derived from 10 years of 
hind-cast, shown as the dashed line. One can see that these estimates are higher than on-board observed Nw for 
wind speeds above 12 m/s. 

6. Simulation of the Encountered Wind Speeds 
Common experience says that wind speeds vary in different time scales, e.g. diurnal patten due to different tem-
peratures at day and night; frequency of depressions and anti-cyclones which usually occur with periods of 
about 4 days and annual pattern. To follow the claim the transformed observed wind speed field ( ),x tp  is de-
composed into four parts which contain periods above 40 days, between 40 and 5 days, between 5 and 1 day and 
the noise. For each field variances 2

iσ  and the covariance matrices of the gradient vector iΣ  were estimated, 
i.e. the transformed Gaussian model fitted. 

Now for any voyage one can compute parameters ( )e
i tτ , then independently simulate the encountered four 

components along a ship route. Adding the components gives simulation of ( )eX t  and finally transformation  

( ) ( ) ( )
1

e e a tW t X t=  gives simulated wind speeds that could be encountered along a route.  
More precisely, for a ship route ( )( ),t tp , s t s S≤ ≤ + , one finds parameters ( )a t , ( )m t , ( )i tσ  and 
( )e

i tτ , 1, , 4i = 
, then ( )eX t  is simulated by  
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( ) ( ) ( ) ( ) ( ) ( )
4

1
d .

i

e
i it

i
X t m t t f t s B sτσ

+∞

−∞
=

= + −∑ ∫                        (28) 

Here iB  are independent Brownian motions while the kernels 
i

fτ  are given by  

( ) ( )
2

1 4 212 π exp π .tf tτ ττ

  = −     
 

The process ( )eX t  is Gaussian with mean ( )m t  and the covariance function given by  

( ) ( )( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )( )22 2 24 π

2 2
1

2
, e .i it s s ti ie e

i i
i i i

t s
ov X t X s t s

t s
τ ττ τ

σ σ
τ τ

− − +

=

=
+∑              (29) 

Obviously the integrals in Equation (28) have to be computed numerically. This is carried out using the fol-
lowing approximation  

( ) ( ) ( ) ( ) ( )d ,
i ii j ijt t

j
f t s B s f t s dsZτ τ

+∞

−∞
− ≈ −∑∫                        (30) 

where Zij, 1, , 4i = � , are independent zero mean variance one Gaussian random variables, while 1j jds s s+= − . 
Here sj forms an equidistant grid covering the domain of the kernel 

i
fτ . (In the case when wind speeds are si-

mulated on very dense grid then it is recommended to slightly smooth the parameters ( )a t , ( )i tσ  and 
( )e

i tτ .) 
The proposed model gives means for efficient simulation of wind speeds along any ship routes. The parame-

ters ( )a t , ( )m t , ( )2
i tσ  and ( )e

i tτ  are specified by means of Equation (28) and Equation (30). Alterna-
tively one can simulate ( )eX t  using covariances defined in Equation (29) and some of many methods to si-
mulate Gaussian vectors. The algorithm based on Equation (30) is preferable when densely sampled wind 
speeds along a long ship route are needed. For example, for a route defined in Figure 12 top plot that was sailed 
for 400 hours giving 2400 recorded wind speeds, it took less than 100 seconds on laptop to simulate 100 wind 
speed profiles along the route. Five of the simulated profiles of ( )eW t  are presented as thin solid lines in  
 

 
Figure 12. Top—A route sailed in Northern Atlantic in April; Middle—The 
expected length of encountered windy weather period ( )e tτ ; Bottom—Wind 
speeds measured on-board a vessel (solid thick line) hind-cast prediction 
(dashed dotted line) and five simulations of the wind speeds by means of 
Equation (15) and Equation (28) (thin solid lines). 



I. Rychlik, W. Mao 
 

 
851 

Figure 12 bottom plot. The measured wind speeds are presented as the solid thick line while dashed dotted line 
is the hind-cast based estimate of the speeds. 

Note that parameters 2σ  and eτ  are simply computable from the parameters 2
iσ , e

iτ  alone. Hence the 
theoretical long-term distributions and statistics of storm characteristics can be computed by means of methods 
discussed in previous sections. 

7. Conclusion 
A statistical model for the wind speed field variability in time and over large geographical region has been pro-
posed. The model was fitted to ERA Interim reanalyzed data. Validation tests show very good match between 
the distributions estimated from the data and the theoretical computed one from the model. The model was also 
used to estimate risk of encountering extreme winds and the theoretical estimates agree well with the empirical 
one. Realistic wind profiles can be simulated using the model. 
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Appendix 1: Computation of ( )( )ear X t  

The parameter ( )e tτ  was defined in Equation (25), viz. ( ) ( ) ( )( )πe et t ar X tτ σ= � . In order to evaluate 

( )( )ear X t�  one needs to introduce a time dependent gradient vector ( ) ( ) ( )( ), , ,x y tX t X X X p t t∇ =  and the 
vector of derivatives  

( ) ( )( ), ,1 .x t y t=v                                        (31) 

Obviously ( ) ( ) ( )( ),sh t x t y t=v    and ( ) ( ) ( )eX t t X t= ⋅∇v , where ∙ is the scalar product. Hence  

( )( ) ( ) ( ) ( )T ,ear X t t t t= Σv v                                 (32) 

where ( )tΣ  is the covariance matrix of the gradient vector ( )X t∇ . The matrix Σ  has to be estimated in the 
region of interest. In Appendix 3 a sketch of the estimation procedure is given. In the following we shall give an 
alternative formula for ( )( )ear X t�  which employs a physically interpretable parameters which could be use-
ful for comparison of suitability of a trade for use of wind sails or other means to harvest wind energy. 

Parameter ( )e tτ  as a Function of Wind, Ship Velocities and Geometrical Sizes of Windy 
Regions 
The variance ( )( )ear X t�  is independent of the choice of coordinate system. Here we will use the rotated 
coordinate system by azimuth θ  called in Section 3 main azimuth of a storm. The matrix Σ  in the rotated 
coordinate system will be denoted by ( )tθΣ  and has the following diagonal elements  

( )( ) ( )( ) ( )( )200 020 00290
, , , , , ,tar X t ar X t ar X tθ θ

σ σ σ
−

= = =  p p p


             (33) 

and following off-diagonal elements  

( ) ( )( ) ( ) ( )( )110 101 011 90
0, , , , , , , , .t tX t X t X t X tθ θ

σ σ σ
−

= = = p p p p


             (34) 

The ships velocity ( ) ( ) ( ) ( )( )sin ,cossh sht v t t tα α=v  is in the rotated coordinates given by  

( ) ( ) ( )( ) ( ) ( )( )( )sin ,cos .sh sht v t t t tθ α θ α θ= − −v  

Obviously ( )( ) ( ) ( ) ( )
T

,1 ,1e sh shar X t t t tθ θ θ   = Σ   v v  and after some algebra  

( )( ) ( ) ( )22 2 2200 020
200 020 00290 90

002 002

1 ,e e ear X t v v v vθ θθ θ

σ σ
σ σ σ

σ σ− −

 
= + + − − 

 
 

              (35) 

where the encountered velocity, e.g. the difference between the ship velocity and the wind field velocity is, in 
the rotated coordinates, given by  

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )( )90 90
, sin , cos .e e sh sp

tv v v v t t t v t v t t tθ θθ θ
α θ α θ

− −
= − − − −

 

          (36) 

In order to interpret components in Equation (35), we need to introduce some additional parameters that de-
scribe average size of windy weather regions and some irregularity factors. 

Recall that windy weather conditions region at time t is the region consists all p where wind speeds exceeds 
the median ( ), tµ p . Now we shall introduce parameters related to average size of windy region in directions θ 
and θ − 90˚. The parameters will be denoted by Lθ  and 

90
L
θ − � , respectively. The third parameter T is the av-

erage period the windy weather last lasts at a fixed position p. The parameters are defined by  

90
200 020 002

π , π , π ,L L Tθ θ

σ σ σ
σ σ σ−

= = =�                       (37) 

see Equation (22) and Remark 3. Obviously the values of parameters are slowly changing functions of position 
and time and that why we call them local sizes of windy regions. However if the field ( ),X tp  were homoge-
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neous and stationary then the parameters would be equal to the average length between upcrossings and down-
crossing of the median by wind speed W in direction θ, θ + 90˚ and in time, see [9] for details. 

Now by multiplying both sides of the Equation (35) by ( )22π  and dividing by 2σ , we obtain that  

( )
( ) ( ) ( ) ( )22 2 2 2

2 90 90 90

1 1 1 ,e e

e
v L v L Tθ θ θθ θ θ

α α
τ

− − −
= + + ⋅ − −

  

 

where  
2 2

2 2101 011
90

200 002 020 002

,θ θ

σ σ
α α

σ σ σ σ−
= =



                             (38) 

are useful irregularity factors. Roughly, smaller values of the factors higher risks of extreme storms, see [9] for 
more details. Further, if 2 2

90
1θ θ

α α
−

+ =


 then the surface X drifts, viz  

( ) ( ), ,0 .drX t X t= − vp p  

If p has rotated coordinates then drv  in rotated coordinates is equal to ( )90
,e ev vθ θ − 

. Finally   

( )
( ) ( ) ( ) ( )22 2 2 2

90 90 90

1 .
1 1

e

e e
t

v L v L Tθ θ θθ θ θ

τ
α α

− − −

=
+ + ⋅ − −

  

                 (39) 

For a homogeneous wind field ev Lθ θ  is the reciprocal of the average time spend in windy weather region 
when sailing with azimuth θ, similar interpretation can be given to 

90 90
ev L
θ θ− −� �  while T is the average time the 

windy weather is observed by a ship at rest or a buoy. These parameters can be estimated from the on-board 
measured signals or given subjective values based on experience. Usefulness of Equation (39) and Equation (24) 
lies in possibility of predicting risks for encountering extreme storms using easily available parameters which 
have clear physical meaning. 

Appendix 2: Proof of Equation (20) 
Let assume that ( )eW s  is a smooth process. Using Fubinni’s theorem  

( )
[ ]

( )
[ ]

00
dd

.
stst

uust

u u

N T t tN T t t
T

N N

+∞+∞  > >       = = 
∫∫ EE

E
E E

 

Since ( ) ( ){ }0
d de

s Tst
u W t us

N T t t t
+∞ +

≥
> =∫ ∫ 1 , where ( )A x1  is the indicator function of the set A taking value 1 

if x A∈  and zero otherwise. Again by Fubini’s theorem  

( ){ } ( )( )d de

s T s T e
W t us s

t P W t u t
+ +

≥

  = >  ∫ ∫E 1  

and hence  

( )
[ ]

.
e

st

u

P W u
T T

N

>
  = E

E
 

Appendix 3: Estimation of Parameters 
The parameters of the model have been fitted for the North Atlantic. Here the ERA Interim data has been used, 
although in future work we plan to also use data from satellite based sensors. A moment’s method and regres-
sion fit were employed to estimate the parameters. In this section we give a short description of the applied es-
timation procedure. In the following the measured wind speeds at a location will be denoted by ( )w t . 

Step 1: For a fixed geographical location and 0 1a< <  the transformed wind speed ( )aw t  is computed and 
the mean Equation (3) fitted using LS regression. Empirical cumulative distribution function (CDF) and Gaus-
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sian (CDF) are fitted to the residual ( ) ( )aw t m t− . Parameter a* minimizing the distance between the two dis-
tributions is selected as an estimate of a. The corresponding mean ( )*m t  is an estimate of ( )m t . Further the  

residual ( ) ( ) ( )*ax t w t m t
∗

= −  is evaluated and then used to estimate parameters ( )2
i tσ  in the following steps. 

Step 2: Estimation of signals ( )ix t , 1, , 4i = � . The signal x1 is estimated as follows; first one filters out 
from ( )x t  (see Step 1) the harmonics with periods shorter than 40 days. The resulting signal is an observation 
of ( )1x t . The signal ( )2x t  is derived by filtering out harmonics with periods below 5 days from the signal
( ) ( )1x t x t− . The signal ( )3x t  is derived by filtering out harmonics with periods below 1 day from the signal
( ) ( )1x t x t− − ( )2x t . Finally, ( ) ( ) ( ) ( ) ( )4 1 2 3x t x t x t x t x t= − − − . 
Step 3: For a signal ( )ix t  the parameters ( )2

i tσ  are estimated as follows. For a sequence of times tj, as-
suming stationarity of ( )ix s  for s in a neighborhood of 10 days around tj, estimates of ( )2

i jtσ  are found. 
Then ( )2

i tσ  are estimated by fitting seasonal components, similar to Equation (3), to sequences of observa-  

tions ( )( )2
,j i jt tσ . 

Step 4: Estimation of ( ),i tΣ p , i.e. the covariance matrix of the gradient vector evaluated at ( ), tp . The co-
variance matrix is defined by six covariances between the partial derivatives of Xi. The functions are changing 
slowly with season but spatial variability can be high, particularly at coastal and inland locations. Consequently 
we fit six seasonal components to the covariances for each of positions p on a grid with mesh 0.75 degree. The 
components are estimated in a similar way as discussed in Step 3. 
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