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The Kelvin-Helmholtz instability in an ionized plasma is studied with a focus on the magnetic field

generation via the Biermann battery (baroclinic) mechanism. The problem is solved by using direct

numerical simulations of two counter-directed flows in 2D geometry. The simulations demonstrate the

formation of eddies and their further interaction and merging resulting in a large single vortex. In

contrast to general belief, it is found that the instability generated magnetic field may exhibit

significantly different structures from the vorticity field, despite the mathematically identical equations

controlling the magnetic field and vorticity evolution. At later stages of the nonlinear instability

development, the magnetic field may keep growing even after the hydrodynamic vortex strength has

reached its maximum and started decaying due to dissipation. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4891340]

INTRODUCTION

The Kelvin-Helmholtz (KH) instability is one of the

most important, fundamental, and powerful phenomenon in

fluid mechanics and plasma physics. The instability develops

at the interface between two fluids (gases, plasmas), when

one component is gliding along the other.1 The most impor-

tant outcome of the KH instability in nature is the generation

of turbulence via cascades of interacting vortices. Various

examples of the KH instability may be encountered in geo-

physical and astrophysical flows, from ocean surface waves

exited by wind, turbulent jets, and wakes up to large-scales

instabilities in the interstellar medium, accretion discs, and

supernova remnants.2–4 In quantum gases, the KH instability

may produce quantum turbulence of a qualitatively new type

at the interface of two immiscible Bose-Einstein conden-

sates.5,6 In combustion, powerful KH instability arises at the

late stages of deflagration-to-detonation transition making

the flow of burning gases strongly turbulent and facilitating

generation of strong shocks.7 Presently, there is also growing

interest in the KH instability in the context of inertial con-

finement fusion (ICF).8–12 Initially, the interest in the KH

instability in laser plasmas has been fueled by research fo-

cusing on the Rayleigh-Taylor (RT) instability, which has

been one of the most actively explored problems within the

ICF applications for decades. At the nonlinear stage of the

RT instability, light fluid (pushing or supporting a heavy

one) forms bubbles rising “up,” with spikes of heavy matter

falling “down” in a real or effective gravitational field.13–16

The relative motion of light and heavy components results in

a secondary KH instability with subsequent generation of

turbulence and possible mixing of the two substances. The

well-known mushroom structure of the RT bubbles is, in

fact, the outcome of the secondary KH instability.

However, lately, a large number of papers have

addressed the ICF related KH instability for its own sake

without direct relation to the RT instability.8–12,17 A good

deal of experiments have been designed and performed on

the Omega Laser Facility focusing on the KH instability,

e.g., at the foam-aluminum interface in a layered target with

two different substances set in motion by counter-

propagating shock waves.12 The other option was inducing

the KH instability by a shock refracted at an interface sepa-

rating two substances of noticeably different density.9–11 The

purpose of these experiments was typically to study genera-

tion of vortices and turbulence at the KH unstable interface.

There has also been much interest in the RT and KH hydro-

dynamic instabilities as sources of magnetic field in plasmas.

Several mechanisms of magnetic field generation in plasmas

have been proposed, including thermo-electric and baroclinic

effects and the ponderomotive force from an inhomogeneous

laser beam.18–21

Under extreme ICF conditions, plasma motion is

expected to produce an ultra-high magnetic field, which may

alter the plasma flow dynamics as well as influence back-

ground magnetic and electric fields. The earliest measure-

ments of the magnetic field produced by laser plasma flows

were made already in seventies, detecting kilogauss field

strength.18,22 Modern powerful laser setups stimulate the ex-

perimental activity in this area during the last few years.

Recent experiments on the RT instability at the OMEGA

laser facility demonstrated generation of the magnetic field

with values up to 1 MGauss.23–25 In order to obtain thorough

knowledge of the KH instability phenomenon, a special

setup has been designed and built within the OMEGA facili-

ties.8 Unfortunately, so far, experiments on the laser-driven

KH instability have been performed without direct measure-

ments of the instability-generated magnetic field.8–12,17

Much work has also been done on numerical simulations

of both the RT and KH instabilities, taking into account the

resulting magnetic field generation.26–30 First numerical

studies considered the Biermann battery mechanism within
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the astrophysical problems, searching for the origin of the

protogalactic magnetic field.26 In the context of the ICF, the

numerical simulations27–29 have investigated the magnetic

field generation by the RT instability at an inert 2D interface,

which is, however, a too oversimplified model as compared

to the RT unstable laser ablation flow in the ICF.

Simulations of the KH instability in laser plasma have also

been performed, but they did not take into account the mag-

netic field generation.11 Only recently, magnetic field gener-

ation by the KH instability has been considered,30 although

the study has been performed within the kinetic, not

magneto-hydrodynamic (MHD) approach, for the specifi-

cally astrophysical cold-fluid KH perturbations and electron-

ion shear flows. Thus, the study of magnetic field generation

by the KH instability within the MHD approach has been

required; the purpose of the present work is to compensate

for the gap in the studies.

The purpose of the present paper is to investigate gener-

ation and evolution of the magnetic field arising from the

KH instability due to the Biermann battery (baroclinic) effect

in the characteristic MHD geometry of two counter-directed

flows of conducting plasmas. The problem geometry is a nat-

ural setup for the KH studies similar to the Omega Laser fa-

cility experiments.8–12 Analytical treatment of the full set of

MHD equations is extremely difficult due to the nonlinear

terms, although linear stability analysis may provide neces-

sary estimates for further experiments and computer studies.

By contrast, direct numerical simulations (DNS) are a much

more powerful tool, which provides a complete picture of

the plasma dynamics. For this work, we have performed nu-

merical simulations of the magnetic KH instability using the

PENCIL CODE. 31,32 First of all, we show that the KH instabil-

ity does generate magnetic field due to a baroclinic term in

the induction equation. We observe and discuss the dynamics

of the generated magnetic field and the vorticity field in the

flow. In contrast to previous studies of the RT instability

with magnetic field generation,27–29 we show that the mag-

netic field and vorticity behavior in the flow may be qualita-

tively different. In particular, the magnetic field may yield

complex structures influenced by secondary KH instabilities

at smaller scales. Our simulations show that the magnetic

field continues to grow even after the hydrodynamic vortex

has been developed and started decaying due to non-zero

plasma viscosity. The results obtained demonstrate that the

relation between vorticity and the magnetic field in the MHD

instabilities is not as straightforward, as it was believed pre-

viously, and indicate wide prospects for future research,

including both experimental, theoretical and numerical

approaches.

THE BASIC PLASMA MODEL EQUATIONS AND THE
NUMERICAL METHOD

To study magnetic field generation owing to the KH

instability, we solve the compressible MHD equations for a

visco-resistive plasma that is fully ionized. The magnetic

field is resolved in terms of the magnetic vector potential

B¼r�A, thus ensuring zero divergence of B. The govern-

ing equations of plasma dynamics are

Dlnq
Dt
¼ �r � u; (1)

Du

Dt
¼ � 1

q
rpþ 1

q
J� Bþ 1

q
r � 2�qS; (2)

@A

@t
¼ u� B� gl0Jþ b

1

q
rp; (3)

Ds

Dt
¼ 1

qT
r � KrTð Þ þ 1

qT
gl0J2 þ 1

T
2�S2; (4)

where D/Dt¼ @/@tþu �r is the advective time derivative, q
is the plasma density, u is the velocity, p stands for the

pressure,

s ¼ cPln
p1=c

q

 !
(5)

is specific entropy, J ¼ l�1
0 r� B is the current density, �

and g are the kinematic viscosity and magnetic diffusivity,

respectively, K is the thermal conductivity, S is the strain

tensor,

Sij ¼
1

2

@ui

@xj
þ @uj

@xi
� 2

3
dijr � u

� �
; (6)

b¼mp/e is the proton mass to charge ratio, and T is tempera-

ture. The ideal gas equation complements Eqs. (1)–(4), so

that the pressure is given by p ¼ qc2
s=c, where c¼ cP/cV¼ 5/

3 is the ratio of specific heats at constant pressure and vol-

ume, respectively, the sound speed is a function of density

and entropy determined for a polytropic gas as

c2
s ¼ c2

s0 exp ½cs=cp þ ðc� 1Þlnðq=q0Þ�; (7)

and cs0 and q0 are normalization constants. The last term in

the induction equation (3) is identical to the baroclinic term

in the vorticity equation, see Eq. (12) below, which repre-

sents the Biermann battery mechanism of magnetic field gen-

eration. The Hall term has been omitted as it is important

only in the case of extremely large magnetic fields, which

are more probable for the RT instability rather than the KH

instability. Moreover, even Mega Gauss field strength may

not be enough for any significant influence of the Hall term

as demonstrated in Ref. 28.

The set of Eqs. (1)–(6) has been solved with the help of

the PENCIL CODE,31,32 based on sixth-order finite difference

spatial derivative approximations and a third order Runge-

Kutta scheme for time stepping. The code is primarily used

to solve 3D problems, such as turbulent solar dynamo evolu-

tion in Cartesian or spherical coordinates. In addition, for ef-

ficient massive calculations, the code is parallelized in all

directions using the message passing interface library. The

time step is computed automatically depending on the advec-

tion speed, the viscosity as well as the magnetic and thermal

diffusivities. No numerical viscosity is used other than the

explicit one which dominates over that from the diffusive

and dispersive discretization errors associated with the nu-

merical scheme.38 If the resolution is insufficient for given

viscosity, energy will not dissipate at the smallest scales, and
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the code will “crash,” signaling then the demand for better

resolution.

The upper and lower walls are assumed to be impenetra-

ble stress-free boundaries (i.e., hypothetic walls with slip

boundary conditions) with a perfect conductor conditions for

the magnetic vector potential

uy ¼ 0; @ux=@y ¼ 0;
Ay ¼ 0; @Ax=@y ¼ 0:

(8)

In the other directions, we use periodic boundary conditions.

In all the simulations presented below, we use 11522

meshpoints.

The KH instability is essentially a 2D phenomenon, so

that its main features may well be studied in two dimensions.

Taking into account 3D geometry, one has to face turbulent

mixing in the transverse direction to the initial flow plane.

This may conceal important physical properties of the KH

instability and makes it computationally expensive and

harder to investigate. Moreover, considering magnetic fields

in 3D, there is inevitably magnetic dynamo action, which

affects the evolution of the magnetic field.33 In a 2D flow,

magnetic fields originate from the Biermann battery only,

while the MHD dynamo (the first term of the rhs of Eq. (3))

does not operate in this case. The Ohmic term describes the

decay of magnetic field due to magnetic diffusivity.

In our studies, we use a single fluid description with two

layers of slightly different density. Conceptually, the KH

instability requires only an interface with velocity shear,

while density does not have to be necessarily different for

the two layers. The linear stability analysis for infinitesimal

perturbations y¼ y0þ f(x, t) with f ðx; tÞ / expðrtþ ikxÞ for

the inviscid case predicts the KH instability growth rate as34

r ¼ 2
ffiffiffiffi
H
p

1þH
kU0 �

H� 1

Hþ 1
kU0i; (9)

where H ¼ qmax=qmin > 1 is the density ratio of the two

layers, k is the perturbation wavenumber, and the plasma in

the two layers moves initially with velocities ux¼6U0. The

dispersion relation (9) includes both real and imaginary

parts, although the former term is much larger than the latter

one in our simulations (see below), Im[r]/Re[r]� 0.02. As

we can see, the largest growth rate corresponds to the case of

equal densities of the two layers, H¼ 1, which however,

eliminates the magnetic field generation in incompressible

KH flow. The Biermann battery term generates magnetic

field when direction of the pressure and density gradients are

different. In compressible flows, the density gradient may

arise through plasma compression and scales as rq �
rp=c2

s being proportional to the Mach number square, /
Ma2. Within this paper, we are interested in the almost

incompressible case Ma� 1; compressibility effects will be

discussed in further works. Then in the case of uniform ini-

tial density in slightly compressible flows, the Biermann bat-

tery effects become as weak as Ma2� 1. For this reason, in

the present work, we use slightly nonuniform density in the

two counter-flowing layers, H¼ 1.02, thus ensuring a power-

ful KH instability and a finite density gradient at the inter-

face. A higher density ratio leads to larger gradients and a

stronger effect of the Biermann battery, even though it

reduces the KH instability strength. In addition, we solve the

entropy equation, Eq. (4), which may also be considered as

an equation for temperature; it is responsible for the oblique-

ness between pressure and density gradients. Then, the initial

structure of the transitional region between two counter-

flowing plasma layers is specified as

ux=cs0 ¼ 0:01tanhðy=dÞ ¼ lnq=q0 ¼ �s=cP; (10)

where d is the interface thickness. The transverse velocity

component is set to zero initially together with all compo-

nents of the magnetic field, B. The initial entropy distribution

is computed in a way to have constant pressure in the whole

domain, so that initial temperature is inversely proportional

to the density. In order to trigger the instability, we add ve-

locity perturbations to the initial flow, Eq. (10). We use two

types of initial perturbations: either the white noise or sinu-

soidal perturbations for y component of the velocity field.

Parameters set

The MHD description of the KH instability involves a

number of parameters controlling the magnetic and velocity

fields evolution. The whole parameter set in dimensionless

form with the typical values used in our simulations is listed

below

Ma ¼ U0=cs ¼ 0:01;

Re ¼ U0L=� � 103;

ReM ¼ U0L=g ¼ Re;

Pr ¼ �=j ¼ 1;

H ¼ 1:02;

(11)

which are the Mach, Prandtl, and Reynolds numbers, the

density ratio, and the magnetic Reynold’s number, respec-

tively. Here, j¼K/qcP is the thermal diffusivity. From the

hydrodynamic point of view, the main KH instability param-

eters are the Mach and Reynolds numbers. The Mach num-

ber quantifies the compressibility effect; it also characterizes

the time scale of the process relative to the acoustic time

scale. In this paper, we use a rather small value of the Mach

number, representing an almost incompressible flow. The

Reynold’s number determines the smallest length scale ac-

cessible and is also a limiting factor from a numerical point

of view because, at high Reynold’s numbers, the flow

becomes turbulent and requires subtle resolution. In order to

have reliable results for a turbulent flow, one has to resolve

the Kolmogorov length scale, which increases dramatically

the numerical resources demanded for the study. The Prandtl

number characterizes the relative role of viscous and thermal

effects of the flow. For the sake of numerical stability, the

Prandtl number is always set to unity in our simulations. The

density ratio of the two layers determines the growth rate of

the perturbations in the linear stage. In the RT experiments,

the density ratio may reach several hundreds for ICF condi-

tions, posing an obstacle for numerical simulations. At the

same time, the density ratio was quite moderate for the KH

experiments at the OMEGA laser facility being comparable
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to unity.8–12 In this paper, we also use moderate values of

this factor slightly above unity, so we can use density for vis-

ualizing the hydrodynamic process.

In a magnetized plasma, the magnetic Reynolds number

is also of key importance, as it characterizes decay of the

magnetic field due to finite plasma conductivity. For the sake

of numerical stability we keep the magnetic Reynolds num-

ber equal to the flow Reynolds number. Typical value of the

flow Reynolds number for the ICF plasma, as well as for the

KH instability experiments varies within 104–106,8,27 how-

ever, in simulations the Reynolds number is always limited

by the numerical resolution. The magnetic Reynolds number

was estimated as ReM� 103 for the ICF conditions,27 which

we use in our simulations. The case of equal magnetic and

viscous Reynolds numbers is also the most representative

from the fundamental point of view for the studies of the bar-

oclinic magnetic field generation, since it makes the equa-

tions for the magnetic field and vorticity evolution

mathematically identical, see Eqs. (12) and (13) below. As a

matter of fact, for plasma density q¼ 0.1 g cm�3 and temper-

ature T¼ 0.6 keV, the kinematic viscosity and the magnetic

diffusivity become the same. Such plasma parameters can be

met between the ablation surface, where T� 10 K and ReM

� Re and the critical surface, where T� 10 keV and

ReM>Re.

The scaled hydrodynamic parameters listed above may

influence the magnetic field generation in a critical way. For

example, flow compressibility is expected to affect the mag-

netic field evolution. The density gradient plays a governing

role for the magnitude of the generated magnetic field, so

that the density ratio becomes an important parameter for

proper quantitative estimates. Detailed investigation of how

the compressibility and the density ratio effect the instability

evolution and generation of magnetic field requires separate

thorough study which is beyond the scope of the present

work.

In this paper, we focus on the most universal features of

the magnetic field generation and its further evolution due to

the KH instability. For this reason, we keep all the parame-

ters fixed for all the simulations, using a moderate value for

the Reynolds number, Re� 103, to avoid a strongly turbulent

flow. However, the chosen value for the Reynolds number is

not too low either, so as to avoid fast viscous damping of the

KH instability.

RESULTS

In our simulations, several stages in the KH instability

development may be distinguished. At the linear stage, all

perturbed values grow exponentially in time in agreement

with the dispersion relation Eq. (9) including the sinusoidally

shaped interface between the layers. As the perturbation am-

plitude grows, the nonlinear effects become important and a

number of smaller vortices are formed, see the upper panel

of Fig. 1. The small vortices interact with each other, which

leads to vortex coalescence, until they merge into a single

vortex of the largest possible size allowed by the system ge-

ometry. In order to observe such interacting vortices, we

have performed a simulation with Re¼ 2 � 103; the

corresponding sequences of density and vorticity are demon-

strated in Fig. 1. After that, the large-scale vortex starts

decaying due to viscosity if no external forcing is applied to

support the vorticity. We can also observe a minor drift of

the vortex core due to non-zero Im[r] in Eq. (9). In the case

of high Reynold’s numbers, the third stage may turn into tur-

bulent mixing of the flows leading to isotropic turbulence as

the final outcome of the KH instability. In this paper, we

consider the whole process of the instability development,

though paying particular attention to the relatively early

stages with no turbulence generation. In all the simulations

presented below, we use a smaller Reynolds number

(Re¼ 103), in order to avoid possible flow turbulization and

to ensure proper resolution. Here, we point out that the vor-

tex coalescence, although common for the nonlinear KH

instability studies, has not been observed in the Omega laser

facility experiments,9–12 because of minor interaction of the

FIG. 1. Density (left panel) and vorticity (right panel) evolutions for the

white noise simulation with Re¼ 2000 for time instants t¼ 2s0; 3s0; 4.5s0;

7.5s0; 12s0.
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KH-generated vortices due to strong density difference

between the plastic and the foam used in the set-up. The

strongly nonlinear vortices observed in Refs. 9–12 had the

same characteristic wavelength �400 lm as the initial per-

turbations. The experimental data showed the complete evo-

lution of distinct eddies from vortex formation to apparent

turbulent break-up in the span of about 75 ns similar to the

first panel of our Fig. 1. No further interaction of the KH-

vortices has been observed, which may be partly explained

by the limited time of the KH instability development and

other complications of the experiments.9–12

Focusing on the magnetic field generation, we naturally

expect the magnetic field to have a similar structure as the

flow vorticity similar to the RT-related studies.27–29

Analytically, the evolution of vorticity and the magnetic field

are described by equations of the same mathematic form; by

taking curl of Eqs. (2) and (3), one ends up with

@B

@t
¼ r� u� Bð Þ � b

rq
q2
�rpþ gr2B; (12)

@x

@t
¼ r� u� xð Þ þ rq

q2
�rpþ �r2x; (13)

so that the equations Eqs. (12) and (13) become identical for

Re¼Rem. Based on this similarity, one might be tempted to

deduce a simple relation between the magnetic field and the

flow vorticity as B¼bx. In fact, such a relation has been

demonstrated theoretically and numerically in the simulations

of the RT instability in magnetized plasma.26–29 However, as

has been warned already by Kulsrud,26 the simple relation

B¼ bx holds only assuming identical (e.g., zero) initial con-

ditions for both the magnetic and vorticity fields.

By contrast, in our simulations, the generated magnetic

field has significantly different structure as compared to the

vorticity, see Figs. 2–4 and 8. This difference stems primar-

ily from different initial conditions for these two quantities

in our simulations; the different initial conditions are

expected to be rather common for the KH plasma experi-

ments.9–12 At the initial time instant, we take zero magnetic

field everywhere in the domain, while vorticity has inevita-

bly a certain non-zero distribution due to the initial velocity

profile forming the two counter-flows; see Fig. 2. As a result

of this difference in the initial conditions, the magnetic field

evolution is mostly governed by the second term on the right

hand side of Eq. (12), while the first term can be neglected.

In the case of the vorticity equation, Eq. (13), the situation is

the opposite with the first term dominating over the baro-

clinic one, which may be demonstrated by linearizing Eqs.

(12) and (13). For the sake of simplicity, we consider the

case of incompressible inviscid/non-resistive plasma flow;

then, Eqs. (12) and (13) are rewritten as

@Bz

@t
¼ �Ux

@Bz

@x
� b

q0
2

@q0

@y

@p

@x
; (14)

@xz

@t
¼ �Ux

@xz

@x
þ @

2Ux

@2y
uy þ

1

q0
2

@q0

@y

@p

@x
; (15)

where Ux and q0 stand for initial distribution of velocity and

density, respectively, see Eq. (10). The latter involves small,

but finite, width d of the interface between the two compo-

nents, and we take d� 10�3 at the relatively early instability

stages. The linearized form, Eqs. (14) and (15), reveals the

difference between the magnetic field and vorticity equa-

tions, which has not been obvious in their original form, Eqs.

(12) and (13). Different terms of Eqs. (14) and (15) can be

estimated with respect to the orders of the small dimension-

less width d of the transitional region as

@Bz

@t
¼ O 1ð ÞBz þ O 1=dð Þp; (16)

@xz

@t
¼ O 1ð Þxz þ O 1=d2

� �
uy þ O 1=dð Þp: (17)

Thus, the magnetic field evolves mostly due to the Biermann

battery term (second term in Eq. (16)), while the convective

term may be neglected. On the other hand, the convective

constituent in the vorticity equation has two terms; the sec-

ond term stems from the initial vorticity distribution and

dominates for the vorticity evolution. The order of magni-

tude analysis, Eqs. (16) and (17), of the magnetic field and

vorticity equations, Eqs. (12) and (13), clarifies the evolution

difference in these two key characteristics of the MHD KH

instability.

We use two types of initial perturbations corresponding

either to sinusoidal modes or white noise.

Single-mode large scale perturbations

Initial conditions in the form of single-mode large scale

perturbations allow accurate investigation and thorough

FIG. 2. Vorticity field (left), vertical velocity component uy (middle), and magnetic field (right) at initial moment (upper panel) and at the linear stage, at

t¼ 3s0 for a single mode simulation.
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understanding of the KH instability at the relatively early

stages. The initial transverse velocity perturbation represents

a mode of a largest possible wavelength allowed by the prob-

lem geometry with the amplitude exponentially decaying to

the outer walls

uy ¼ ~uy sin ðkxÞ exp ð�jyj=wÞ;

where k¼ k0¼ 2p/D is the perturbation wavenumber, D is

the length of the domain, and w is the interface width. The

instability development at the linear stage is demonstrated in

Fig. 2 together with the generated magnetic field. The large

wavelength of the perturbation mode leads to the slowest

growth rate of the instability, so that after three turnover

times, t¼ 3s0, with s0¼ L0/U0, the perturbations may be still

FIG. 3. Density, vorticity, magnetic field, and the Biermann battery term at t¼ 5s0, 6s0, 7s0, respectively (left to right).

FIG. 4. Distribution of vorticity (left), magnetic field (middle), and baroclinic term (right) in the very later stage of the KH instability, t¼ 20s0.
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treated as linear. The vorticity distribution is modified due to

the interface bending, with the vorticity pattern already

much wider than the original interface. During the linear

instability stage, two regions of the opposite magnetic field

direction have been formed near the humps/troughs of the

distorted interface. Figure 2 demonstrates clearly that the

generated magnetic field structure is quite different from the

vorticity field. It should be noted that the color maps for vor-

ticity and magnetic field are also different: Initially, the vor-

ticity is almost zero in the whole domain (shown as red),

while in the middle region, it reaches a certain negative

value, depicted in dark blue. The z component of the mag-

netic field takes negative (blue) and positive (red) values

with zero background shown by green; this coloring is also

used for all other figures.

Figure 3 presents the distributions of density, vorticity,

the generated magnetic field, and the Biermann battery term

at three time instants at the strongly nonlinear stage of the

instability development, with wave breaking and formation of

a single large vortex characteristic for the KH instability. At

this stage, the two fluids start mixing, which produces addi-

tional regions of high density gradients and leads to a specific

spiral structure of the magnetic field. The baroclinic term

structure in Fig. 3 is also swirling, but it demonstrates an inter-

esting tendency as compared to the magnetic field spiral. Both

structures are quite similar at the relatively early stages, e.g.,

at t/s0¼ 5, for which the last term in Eq. (12) is dominating

and governs the magnetic field evolution. Still, the structures

become different somewhat later, e.g., at t/s0¼ 6; 7, with the

baroclinic term spiral breaking up into “islands” of opposite

sign because of the interface of high density gradients rolling-

up into an eddy. The spiral of the magnetic field, however,

remains continuous keeping the initial signs due to convective

term in Eq. (12), which results in the swirling magnetic field

structure presented in Fig. 3 for t/s0¼ 6; 7. Still, the baroclinic

term remains dominating in the magnetic field generation. To

make sure that the spiral waves do not stem from poor resolu-

tion, additional simulations with higher resolution have been

performed. These runs suggest that the spiral structures origi-

nate from physical effects, e.g., the interference of several

magnetic field sources located in different places or a second-

ary instability leading to spiral patterns as one can find in non-

linear physics.35–37

At a much later stage illustrated in Figs. 4 and 5, the KH

instability pattern exhibits a well-developed single vortex,

which corresponds to circular distribution of the flow vortic-

ity and decays slowly due to viscosity. The elongated vortex

shape in Fig. 4 is a result of the initial flow influence, which

stretches the vortex in line with the flow. At that stage, the

magnetic field structure is quite different from both the vor-

ticity and the baroclinic term structures; the magnetic field

pattern demonstrates a complex interplay of the field genera-

tion by the Biermann battery term and convective transfer by

FIG. 5. Distributions of density (left)

and pressure (right) corresponding to

the previous picture.

FIG. 6. Time evolution of the scaled averaged quantities representing mag-

netic field, baroclinic term, and velocity uy.

FIG. 7. Relative role of each of the terms of the vorticity equation, Eq. (13),

and the induction equation, Eq. (12), shown by means of the RMS values.
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the flow. The magnetic field pattern with a region of negative

magnetic field dominating in the vortex center in Fig. 4 is

not properly understood yet and demands further investiga-

tion well beyond the scope of the present paper. The baro-

clinic term in Fig. 4 originates in the spatial distributions of

density and pressure in the flow, Fig. 5, which demonstrate a

mixing layer of an almost homogeneous density inside the

vortex. Still, the upper and lower parts of the domain are

filled with unmixed components providing noticeable density

gradients on the outer sides of the vortex core. The pressure

distribution in the vortex is governed by the hydrodynamical

contribution, as the flow remains isobaric in total. There is a

certain pressure minimum in the vortex core due to flow

compressibility, and the pressure variations do not exceed

the �Ma2 estimate.

Another interesting feature, which is observed in all the

simulations, is that the magnetic field strength keeps growing

during the whole process, as shown in Fig. 6, even when the

vortex strength started decaying. This specific magnetic field

behavior results from the Biermann battery term structure,

i.e., due to different directions of the density and pressure

gradients in the flow. As shown in Fig. 4, at the late stages of

the KH instability, the Biermann battery term acquires a pe-

culiar structure with small, but finite magnitude, which

remains almost constant and supports the continuous mag-

netic field growth. In Fig. 6, we also plot the time evolution

of the averaged values for the baroclinic term and velocity

uy. In order to present all the values in one plot, velocity and

baroclinic terms have been scaled to their maximal values;

the magnetic field is scaled by bhxzi. Here, hxzi is the mean

vorticity at the end of the run at t¼ 20s0. Within such a scal-

ing, the value hBzi=bhxzi would be unity, provided that xz

was created solely by the baroclinic term, which, however, is

not the case for the present study. Remarkably that, even

though most of the contribution to xz comes from the shear

flow, this ratio still reaches values of about 0.1. During the

relatively early stage of the instability development, t/s0< 5,

all quantities grow exponentially in a similar way, and the

non-zero Biermann battery term due to sharp density gra-

dients is coupled to the velocity perturbations. As the KH

instability develops, the vortex velocity reaches it maximal

value at t� 6s0 and starts decaying afterwards. The baro-

clinic term shows similar behavior, although it decays to

some small finite level. This value is a few orders of magni-

tude smaller than the initial vorticity, so that its contribution

to vorticity production is minor and cannot overcome the

viscous decay. The baroclinic term is, however, large enough

to sustain the noticeable magnetic field growth, as shown in

Fig. 6.

In Fig. 7, we compare the RMS (root-mean-square)

averaged values of every term in the vorticity and induction

equations, Eqs. (11) and (12). We point out that the respec-

tive terms represent derivatives of different orders and hence

their relative strength depends quite strongly on the problem

length scale and the Reynolds number. The dissipative terms

involve the third order derivatives, which make them domi-

nating at the smallest length scales at moderate values of the

Reynolds number as shown in Fig. 7. Nevertheless, the con-

vective term of the vorticity equation exceeds the baroclinic

term by more than an order of magnitude in Fig. 7, which

agrees with our previous estimates, Eqs. (16) and (17). On

the contrary, the Biermann battery term dominates over the

convective term in the induction equation, which, again, sup-

ports our order-of-magnitude analysis.

Several-mode small-scale perturbations

The single large-scale mode simulations presented

above demonstrate basic features of the plasma KH instabil-

ity including the baroclinic magnetic field generation, but

they do not involve vortex interaction. To study the evolu-

tion and interaction of multiple vortices in the KH instability,

we have performed several simulation runs with larger wave-

numbers of initial perturbations, k/k0¼ 2, 3, 4. According to

the dispersion relation, Eq. (9), small vortices with larger

wavenumbers grow faster at the linear stage than a single

vortex of the largest possible size. At the relatively early

stages of the instability development, the growth of individ-

ual vortices resembles the evolution of a single vortex

described in “Single-mode large scale perturbations” section,

although at a shorter time, �(Uk)�1, with faster magnetic

field generation. The early stages of vortex formation are

depicted in Fig. 8 for the magnetic field and vorticity distri-

butions. The vortices can be seen both in magnetic field and

vorticity, although the magnetic field represents the vortex

locations more clearly, while vorticity has a very smooth

profile. For relatively short wavelength perturbations with

k/k0¼ 4, the perturbation vorticity pattern at t¼ 3s0 is still

obscured by the original vorticity of the transitional layer,

but the magnetic field structure is clearly seen.

Although this paper is devoted mostly to the nonlinear

KH instability stage and to the magnetic field generation, it

FIG. 8. Magnetic field (upper panel) and vorticity (lower panel) at time instant t¼ 3s0 for initial perturbation of k¼ 2k0; 3k0; 4k0.
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is interesting to check the linear growth rate obtained

numerically and compare it to the theoretical predictions. It

appears that the instability growth rates obtained in our simu-

lations for different wavenumbers are considerably less than

those predicted by Eq. (9), which, however, has been derived

for the simplified case of an infinitely thin interface between

the moving plasma layers. Calculating the instability growth

rate for the present geometry more accurately, by adopting

almost constant density in the whole domain, and the veloc-

ity distribution in the form

Ux ¼
U0; y > d
U0y=d; �d < y < d
�U; y < �d;

8<
:

we find the dispersion relation as

r ¼ U0k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ 1

kd
� 1� exp �4kdð Þ

4k2d2

s
: (18)

In the case of small d, this expression can be reduced to

r¼ kU0(1� 4kd/3), which demonstrates stabilization of the

KH instability due to finite transition width in the velocity

profile. In Fig. 9, we have plotted the growth rate for differ-

ent widths d together with our simulation results. The plots

exhibit a reduction of the instability growth rate due to the fi-

nite width of the transitional layer leading to complete stabi-

lization for sufficiently short perturbation wavelengths. The

numerical simulation points lay noticeably lower than the

classical expression (presented by the dashed line).

However, they show fair agreement with the more accurate

dispersion relation for d¼ 4.5 � 10�3, which is comparable

with the width value at the early stage in our simulations.

In order to get a better insight into length scale depend-

ence, we remind that the interface width is mostly deter-

mined by the thermal conduction. As the later is a transport

process of diffusion nature, so the interface width increases

with time as d �
ffiffi
t
p

and requires respective corrections to

the interface width employed in Eq. (18). Figure 10 presents

evolution of the maximal vertical velocity during early stage

of the KH instability obtained in the numerical simulations

and taken from the analytical theory with corrections to the

interface width. The solid lines represent numerical results

from our simulation for different wavenumbers; the dashed

lines stand for Eq. (18), where d ¼ d0

ffiffi
t
p

. In spite of the sim-

plified theoretical model, we do observe very good agree-

ment of our numerical results with the analytical estimates.

More accurate analysis should include smooth transition in

velocity profile together with a certain density profile.

At the later stage of the process, we observe the interac-

tion of vortices as illustrated in Fig. 1, which may be

regarded as a transient in the evolution from multiple small-

scale vortices to a single large vortex of a maximal possible

size. These smaller vortices at the KH-unstable interface rep-

resent a mixing layer rather than separately spinning eddies;

this effect becomes obvious for perturbations of high wave-

numbers. Merging of vortices takes place in a mixing layer

in a smooth manner; we demonstrate it by showing the den-

sity and vorticity for the case k¼ 2k0 in Fig. 11. At the final

stage of a single vortex, all the quantities have similar struc-

tures to those depicted in Figs. 4 and 5.

White noise perturbation

Finally, we consider the KH instability evolution and

the magnetic field generation for the white noise perturba-

tions at the interface between two counter-flowing plasma

FIG. 9. Dispersion relation for different width of velocity profile, dashed

line corresponds to classical expression r¼ kU0, dots represent numerical

results, dash-dotted line stands for white noise case.

FIG. 10. Evolution of maximal value of normal to interface velocity for different wavenumbers from our DNS (solid lines); analytical predictions due to Eq.

(18) together with d ¼ d0

ffiffi
t
p

are shown as dashed lines.
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layers. In that case, the initial vortex size is not prescribed,

even for the early instability stage, and the system is allowed

to choose its own characteristic wavelength. In the theoreti-

cal case of an infinitely thin interface between the plasma

flows, the dispersion relation Eq. (9) does not imply any sup-

pression in the high wavenumber range,34 which implies fast

perturbation growth of the wavelength as small as possible.

In the present simulations, however, the interface has a finite

thickness, and the dispersion relation has to be corrected as

Eq. (18) with the maximal growth rate expected for perturba-

tions of kd� 1, with the respective size of magnetic field per-

turbations comparable to the interface width d at the early

KH instability stage. In agreement with these expectations,

Fig. 12 shows characteristic size of the magnetic field spots

about d for t/s0¼ 1; regions of different sign of the magnetic

field indicate the location and number of vortices. At later

instability stages, the vortices coalesce and the magnetic

field spots start merging and form eventually a spiral struc-

ture of the largest possible size. In Fig. 12, we observe four

vortices at t/s0¼ 1 and only two at t/s0¼ 4. Starting from

t/s0¼ 4, the instability evolution resembles the case with

k¼ 2k0, described in “Several-mode small-scale

perturbations” section, although it evolves somewhat faster.

In the simulation run with k¼ 2k0, two eddies merge into a

single vortex after about ten turnover times, �10s0, while in

the white noise run, the two eddies merge into a single one

after in a time of �5s0.

The scaled average magnetic field evolution for different

perturbation modes is summarized in Fig. 13. Roughly

speaking, the magnetic field evolution may be divided into

two parts, where the first one corresponds to the exponential

growth during the earlier stages of the instability, and the

second part represents an almost linear growth at the later

stages of the process (mind the logarithmic scales). In agree-

ment with the linear dispersion relation, Eq. (9), the mag-

netic field grows faster for larger wavenumbers of the initial

perturbations. Remarkably, the white noise case demon-

strates relatively weaker growth at the early KH instability

stages, because the linear instability is quite short for the

white noise case involving short wavelength perturbations.

In particular, Figure 12 demonstrates several small eddies

for the white noise case already at t¼ s0, but an eddy is an

essentially nonlinear phenomenon. The interaction of small

vortices produces a wide mixing layer in relatively short

time; after that, the instability continues developing, but with

a reduced growth rate, as follows from the above analysis.

The magnetic field evolution depicted in Fig. 13 has sev-

eral interesting features. For all cases, except k¼ k0, there is

a certain plateau in the magnetic field growth. The plateau

corresponds to the period when the mixing layer is formed

and, hence, the evolution of the instability slows down and

the baroclinic term decreases. In addition, each curve has

one or several pronounced peaks, e.g., at t¼ 5s0 and 10s0 for

the white noise case. These peaks correspond to the smaller

vortices merging into bigger ones. Qualitatively, it may be

understood as an increase of the two fluid mixing, giving

birth to additional slices of different densities. This process

FIG. 11. Density (upper panel) and vorticity (lower panel) evolutions during

merging of two eddies for k¼ 2k0, time moments correspond to t/s0¼ 4, 10,

and 15.

FIG. 12. Magnetic field evolution in the simulation with the white noise ini-

tial perturbation at time instants t¼ s0 (top), t¼ 2s0 (middle), and t¼ 4s0

(bottom).

FIG. 13. Magnetic field evolution versus time for different initial perturba-

tions in logarithmic scale.
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produces additional areas with non-zero baroclinic term and

results in the magnetic field generation at increased rate.

CONCLUSIONS

In this paper, we have investigated the KH instability in

fully ionized plasmas focusing on the magnetic field genera-

tion through the Biermann battery (baroclinic) effects. As

compared to the magnetic dynamo, the KH instability leads

to magnetic field growth from zero, with no initial seeding.

In contrast to the related works on the RT instability with the

battery term,28,29 we have demonstrated that the instability

generated magnetic field and vorticity structures may be

quite different, even though they obey similar equations,

Eqs. (12) and (13), which become mathematically identical

for the Reynolds number equal the magnetic Reynolds num-

ber, Re¼Rem. The distinction between the magnetic field

and vorticity structures in our simulations originates from

intrinsically different initial conditions for these two values,

which are supposed to be rather common for the KH plasma

experiments.8–12 Another important finding of the present

work is that the magnetic field continues to grow even after

the largest vortex has been formed and started decaying. It

should be mentioned too that in the present simulations, we

take the flow parameters resulting in a relatively weak gener-

ated magnetic field, so that it does not affect the hydrody-

namic flow. Our results demonstrate that the relation

between vorticity and the magnetic field in the MHD insta-

bilities is not as straightforward, as it was believed previ-

ously, and indicate wide prospects for future research.
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