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Göteborg, Sweden 2014



On Cooperative Control of Automated Driving Systems from a Stability

and Safety Perspective

Roozbeh Kianfar

ISBN 978-91-7597-101-8

c© Roozbeh Kianfar, 2014.

Doktorsavhandlingar vid Chalmers tekniska högskola
Ny serie nr 3782

ISSN 0346-718X

Department of Signals and Systems

Chalmers University of Technology
SE–412 96 Göteborg
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Abstract

Over the last few decades, congested traffic network have become a serious
problem in many countries. Congestions result in time losses, increase of fuel

consumption and also raise the risk of accidents. Intelligent transportation
systems may contribute to mitigate such problems. Advancement together

with the reduction in cost of embedded computing, on-board vehicle sensors
and wireless communication paved the way for introduction of automated

driving systems. Vehicle platooning is an example of an automated driving

systems which can be implemented to improve the traffic situation.
To enable vehicle platooning with short inter-vehicles distances a con-

trol strategy is required that can guarantee passenger safety, comfort and
stability of the platoon, so called string stability. While string stability

is naturally defined in the frequency domain, stating safety and comfort
requirements and vehicle limitations is more convenient as time domain

specifications. Hence, fulfilling all the requirements and specifications si-
multaneously is not a trivial task.

This thesis deals with the development of distributed model-based con-
trol strategies for a vehicle platoon. The aim of the control strategy is to

enable platooning with a short inter-vehicle distance while fulfilling string
stability criterion and maintaining safety and comfort. To achieve this, two

approaches are proposed, i) translating string stability criterion into time
domain requirement and ii) combining frequency domain control design

techniques with Model Predictive control framework into a single control

problem. Particular attention is given to ease the proposed methods for
real time implementations. The control design is decoupled into longitu-

dinal and lateral motion control and the methods presented can guarantee
string stability and constraint satisfaction in both motion directions. Fur-

thermore, a safety verification method based on reachability analysis tech-
nique and invariant set theory is proposed for safety analysis of automated

driving systems for a given controller. The findings in this thesis are verified
through simulations and field experiments.

Keywords: Intelligent Transportation, Platooning, String Stability, Dis-

tributed Control, Reachability Analysis.
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Introductory chapters





Chapter 1

Overview

The increase of number of vehicles in daily traffic as well as the transporta-
tion growth lead to traffic flow problems, like congestions. Over the last

few decades congested traffic network have become a serious problem for
the society. Congestions result in time losses, increase the air pollution by

increasing the CO2 level, increase the fuel consumption and increase the
possibility of fatal accidents. According to the European Union Road Fed-

eration 2010, the tonne-kilometer on the EU-27 road network has grown
by 45.5% over the period 1995-2008, at a rate of 2.9% per year. Similarly,

the passenger-kilometer has grown by 21.4%, at a rate of 1.5% per year. In
2008, this growth led to shares of 72.5% and 72.4% of the total inland EU-27

transportation of goods and passengers, respectively, to take place on the
road network. In a separate report from the European Union Commission

it is stated that 40000 people die in road accidents every year. This report
also states that road accidents are the main cause of death for people under

the age of 45 in Europe. Considering congestions problem and the problems

associated to that, motivates questioning whether the existing road network
has, at the current growth rate, the capacity to meet the future demands for

safe road transportation of both goods and passengers. The non-stopping
demand for more transportation, requires developing more road and road

infrastructure. However, in mega-cities which are mainly subjected to con-
gestions problem, developing the road network is not a feasible solution

anymore. Fortunately, thanks to advances in vehicular, communication and
information technologies traffic congestion can be alleviated, by enabling

cooperation among vehicles to better exploit the usage of existing roads
capacity.

Intelligent Transportation Systems (ITS) in a wide sense refers to ad-

vances in the infrastructure unit, roadside units and also intelligent vehicle,
see Figure 1.1. Automated driving is an example of intelligent transporta-

tion system, which consists of hardware and software mechanisms enabling

1



Chapter 1. Overview

Figure 1.1: Intelligent transportation system (ITS), courtesy of the U.S.

Department of Transportation

automated driving of multiple vehicles (vehicle platoons).

1.1 Platooning state of the art

Driver’s reaction is subjected to error and time delay, i.e. it takes some
time until the driver reacts to changes in the environment. In addition even

for a driver with full attention is not trivial to find the optimal maneuver
in terms of safety and fuel consumption. Driver’s reactions usually is made

based on her limited perception of the environment, e.g. eye sight and

sounds. Consequently delay in the reaction and limitation in the informa-
tion that a driver has access to result in a non-optimal decision made by the

driver. This can have a great impact on the traffic flow, which can result
in collisions or other undesired phenomena in traffic. Automated driving

or in particular vehicle platooning can instead, help to mitigate congestions
problem and increase passengers’ safety. In a vehicle platoon, a chain of

vehicles follow each other in an automated way. The first vehicle in the
platoon is called the leader and the rest of vehicles are called followers. In

the simplest case, every vehicle in the platoon measures its position with
respect to its preceding vehicle using on-board sensors e.g. radar, lidar or

camera and maintain a safe distance to its preceding vehicle by controlling
its velocity. While in a more advanced version vehicles are also equipped

with wireless communication which allows sharing critical information re-
garding the dynamics vehicles states or/and the road ahead. An example

of platooning in a real scenario can be seen in Figure 1.2.

2



1.1. Platooning state of the art

(a) (b)

Figure 1.2: (a) Vehicle platooning PATH at California 1997 (courtesy of

California PATH), (b) Vehicle platooning GCDC, Helmond the Netherlands
2011

The idea of platooning can be traced back to the eighties when the Cal-

ifornia Partner for Advanced Transportation System (PATH) was estab-
lished to develop and investigate the impact of vehicle-highway cooperation

and communication systems [1]. Since then, this idea has been further stud-
ied and developed by many researchers, see e.g. [2–5]. Vehicle platooning

has also been studied through a few real world experiments. One of the first

real world experiment was carried out at PATH California where a longi-
tudinal vehicle platoon of four vehicles was tested in 1994. Later in 1998 a

vehicle platooning with eight fully automated vehicle was tested. In similar
project entitled KONVOI, longitudinal and lateral controller developed and

tried on a platoon of five trucks [6]. Advances in vehicular technology and
communication systems led to further study the benefit of vehicle platoon-

ing. SARTRE, a European Commission Co-Funded established to further
study the feasibility of implementing vehicle platooning in public motor-

ways [7]. In 2011 Grand Cooperative Driving Challenge (GCDC) teams
from industry and academia competed in both urban and highway driving

scenario [8]. Further details on the history of vehicle platooning can be
found in [9]. The main advantages of platooning are:

• increased traffic throughput : automated driving or platooning can re-

duce the inter-vehicle distance between vehicles which results in a bet-
ter usage of road capacity. The result of a recent study, [10], shows

that the highway capacity can be increased up to 43% if all the vehi-
cles in the highway enable platooning using on-board sensors (camera

and radar). The same study shows that this figure can boost up to
273% providing that the vehicles also use wireless communications.

• reduced fuel consumption: by reducing the inter-vehicle distance be-

tween the vehicle the aerodynamic drag is also decreased. Reduction

3



Chapter 1. Overview

in the aerodynamic drag result in reduction of the fuel consumption.

The result of a studies, [11, 12], show that the fuel consumption can
be reduced up to 7% for a vehicle platoon with only two trucks. In

addition to decreasing the inter-vehicle distance, platooning can also
contributes to reduction in fuel consumption by avoiding unnecessary

acceleration and deceleration.

• reduced air pollution: apparently reducing the fuel consumption leads
to reduction of air pollutant as well.

• increased safety : human reaction is naturally subjected to delay and

the delay depends on the cognitive status of the driver. Statistics

shows that human error is the main source of accident in almost 90%
of the car accident . Hence, platooning can also mitigate accidents by

enabling a safe inter-vehicle distance between the vehicles.

• increased comfort : driving a car can be as unpleasant as it is some-
times enjoyable. Every driver waste a significant amount of time while

driving in a congested road. Platooning provides the opportunity to
the driver to be relaxed or even let the driver to spend the time on

more desirable task, e.g. reading news, surfing.

1.2 Enable platooning

To drive with a short inter-vehicle distance and without jeopardizing the
safety demands a delicate engineering design. To accomplish platooning,

interactions between three modules, i.e. communication, sensing and con-

trol, are required. Thanks to advances in wireless communication, vehi-
cles can send/receive information to/from other vehicles, i.e. vehicle-to-

vehicle (V2V) communication and also the infrastructure, i.e. vehicle-to-
infrastructure (V2I) communication. The communication messages can be

transmitted in real-time, fail-safe and reliable way based on the communi-
cation standard protocol, IEEE.11p. Wireless communication can be used

to enhance the sensing module. In other words, wireless communication can
provide additional useful information to the control modules which goes be-

yond the information that can be measured using on-board sensors. The
sensing module consists of on-board sensors and positioning devices such

as GPS and compass. On-board sensors, e.g. radar, camera and lidar
which can provide information about the adjacent vehicles. With the use

of advanced GPS technology, position of all the vehicles in the platoon is
available to the rest of platoon with a centimetre position accuracy. The

information delivered by the communication module (V2V or V2I) and the

4



1.2. Enable platooning

measured information from the sensing module are fused to obtain a good

estimate of desired quantities. Then, the fused information are sent to the
control module which is responsible for decision making. The control unit is

responsible for maintaining a desired safe distance to the preceding vehicle.
The control action is sent to the vehicle actuators which are i) powertrain

and brake in case of longitudinal control and ii) steering wheel in case of
lateral control. An overall system architecture of an automated vehicle in a

platoon is depicted in Figure 1.3.

1.2.1 Challenges in control problem

Driving in a close distance put a high demand on the controller. The con-
troller should be able to guarantee safety and comfort of the passengers

while respecting the limitations in the actuators. Furthermore when vehi-
cles moves as a chain (vehicle platoon) not only the stability of individual

vehicle should be considered in the control design but also the stability of
the whole platoon together plays a key role on the overall performance of

the platoon. The platoon stability is referred as string stability and defined
as the capability of a platoon in attenuating disturbances in position error,

velocity error and acceleration as the disturbances propagate towards the
tail of the platoon [13–16]. The concept of string stability will be discussed

further in detail in Chapter 4. String instability can introduce shock waves

in traffic flow which may result in collisions. However, string stability can-
not solely guarantee the safety, comfort and performance. For example in a

heterogeneous vehicle platoon (platoon with non-identical vehicles or/and
control structure), suppression of a desired signals, e.g. acceleration does

not guarantee the suppression in spacing error. Hence, as the inter-vehicle
distance reduces safety becomes a critical issue to consider. In this thesis

two approaches are proposed to guarantee safety of string stable controllers.
In Papers 1-4, a constraint optimal control framework is used to explicitly

account for safety, comfort and other desired specifications directly in the
design stage. Considering different sources of uncertainty in an automated

driving system, e.g. delay in communication, measurement noise and un-
certainty in the actuator model, the need for a verification method becomes

vital. In paper 5, a posteriori model-based verification method based on
set theory is proposed to verify if a string stable controller guarantee safety,

comfort and other specifications.
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Chapter 1. Overview

Figure 1.3: System architecture

1.3 Thesis contributions

The aim of this thesis is i) to develop a distributed/decentralized control
strategy which can enforce string stability of a vehicle platoon in longitu-

dinal and lateral direction and simultaneously accounts for different con-
straints arising from specifications and limitations in the control problem.

The main challenge lies in the fact that combining frequency specification
(string stability) and time domain specification (safety, actuator limita-

tions, etc.) into a single control problem is not trivial, ii) to propose a

safety verification method which can be used to safety verification of a
given automated/cooperative controller in presence of model uncertainty,

measurement noise and delays. The main contributions of the thesis are as
follows,

• presenting results on the development of controllers both in longitu-
dinal and lateral direction to enable vehicle platooning. The novelty

with control design lies in combing string stability, safety, comfort and
actuator limitations into a single control design.

• three approaches to achieve string stability and constraint satisfac-

tion are proposed, i) translation of string stability definition from fre-
quency domain into time domain, Papers 1 and 3 ii) using a control

matching technique to match the behaviour of an MPC controller to a
string stable frequency domain-based designed controller, Paper 2 iii)

to use an MPC-based ad-hoc controller which can correct the control

6
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command of a desired string stable controller when the constraints are

active Paper 4.

• a linear control strategy for the combined longitudinal and lateral con-

trol is proposed which enable vehicle platooning within a designated
lane. By scheduling over the longitudinal velocity, the nonlinear model

is divided to an LTI and LPV systems describing longitudinal and lat-
eral dynamics, respectively, details are given in Paper 4.

• to avoid extensive simulation and expensive experiments, a mathe-
matical framework based on the reachability analysis and set theory

is proposed to safety verification of automated driving system. The
method is in particular useful for the cases that controller cannot ex-

plicitly guarantee the fulfilment of specifications and requirements,
e.g. safety. Such method is presented in Paper 5

• the proposed verification method is applied to study the impact of

providing additional information e.g. acceleration of preceding vehicle
to the controller on the inter-vehicle spacing error. The method is

also extended to account for model mismatch, measurement noise and
delays.

• the results presented in Papers 1, 2, 4 and 5 of this thesis are experi-
mentally validated using prototype vehicles.

1.4 Thesis outline

This thesis consists of two parts. Part I, provides context and a brief back-

ground for the second part. Part II includes five papers which serve as the
core for the thesis. Part I comprises seven chapters. Chapter 1 provides an

introduction to platooning which helps the reader to become familiar with
the concept of automated driving. In Chapter 2 an overview of advanced

driver assistance systems with emphasize on autonomous and cooperative
systems is given. Chapter 3 gives a brief background on vehicle modeling.

In Chapter 4, important properties of a vehicle platoon, i.e. cooperation
topology and string stability are introduced. A brief survey on the vari-

ous definition of string stability is presented as well. Chapter 5 gives an

overview of mathematical tools used in this thesis. A summary of the ap-
pended papers is in Chapter 6. At the end, Chapter 7 finalizes Part I with

concluding remarks and future works.
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Chapter 2

Advanced driver assistance
systems

Over the last two decades advances in the vehicular technology, communica-
tion and control systems have led to introduction of several advanced func-

tionalities by the automotive industry, e.g. Anti Blocking System (ABS),
Vehicle Stability Control (VSC) and Lane Departure Warning (LDW), Fig-

ure 2.1. Such systems are usually referred as Advanced Driver Assistance
Systems (ADAS) by the automotive industry. The primary objectives of

ADAS are to assist the driver either when the safety is endangered or when

the driver demands more comfort. However, recent research and rapid de-
velopment of sensing technology and embedded computing have made it

possible to have automated vehicles with a level of autonomy which goes
far beyond the capability of standard ADAS systems.

(a) (b)

Figure 2.1: (a) Lane departure warning system (b) Camera mounted on the

back of mirror.
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Chapter 2. Advanced driver assistance systems

2.1 Fully autonomous driving

The dream of having fully autonomous vehicles has been initiated a few

decades ago. However, this dream did not come true until almost ten years
ago when the first DARPA Grand Challenge (2004) was held in the Mojave

Desert in the US. In that challenge several teams from leading universities

and companies competed against each other. The idea was to develop fully
autonomous vehicles which could travel a certain route in the desert without

any interaction with humans. Even though none of the teams managed to
finish the competition in that event, the first serious attempt for having

fully autonomous vehicle was made. In DARPA Grand Challenge (2007,
Urban Challenge) several teams competed over a course of 96 km in urban

area. Vehicles were supposed to obey all traffic rules while avoiding collision
with any possible obstacles, [17].

One of the successful team which participated in DARPA is the Google

driverless car, [18]. In Figure 2.2 the Google car is shown. The vehicle is
equipped with a laser scanner on the roof which is rotating and provides a

map of the objects surrounding the vehicle. Furthermore, the vehicle is also
equipped with three radars, camera, orientation sensor and etc.

However, having such fully autonomous vehicles in every day transporta-
tion systems, that can operate in all traffic situations seems a bit unrealistic

at the moment. The main reason is the high cost of having so many expen-
sive sensory systems on normal vehicles. Furthermore, safety verification of

such autonomous vehicles requires tremendous amounts of work.

2.2 Automated driving (vehicle platooning)

Automated driving or in particular vehicle platooning can be considered
as an intermediate step to fill the gap between manual driving and fully

autonomous driving. In vehicle platooning, vehicles can operate fully or
semi-autonomously in some part of the route, e.g. highways and return the

control back to the driver when needed. The idea is to exploit the already
available sensing module and actuators in production to have a cost efficient

product.

2.2.1 Longitudinal vehicle automation

A well known example of a semi-autonomous system is adaptive cruise con-

trol (ACC), which was launched in 1995’s by the car maker Mitsubishi.
ACC is an enhanced version of cruise control (CC). In an ACC system, the

relative distance and velocity between two adjacent vehicles are measured

10



2.2. Automated driving (vehicle platooning)

(a) (b)

Figure 2.2: (a) Google first prototype vehicle (b) Google autonomous car.

using a radar or lidar, Figure 2.3(a). Then, based on these measurements,

the control unit maintains a safe distance between vehicles by controlling
the accelerator and brake pedal. ACC has a hierarchical control architec-

ture, meaning that, the controller consists of an upper and a lower level as
depicted in Figure 2.4. The upper level controller is responsible to deter-

mine the desired acceleration while the lower level controller is responsible
to provide the commanded acceleration.

(a) (b)

Figure 2.3: (a) A radar based ACC system (b) Lane keeping system.

Impact of ACC and CACC on traffic efficiency

The ACC systems proved to have a positive impact not only on the safety

and comfort but also on the traffic throughput as well. However, the normal
ACC system suffer from the inability of enabling a string stable platoon.

Furthermore, due to the rather large time gap that is usually chosen for ACC

11
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Upper Level

  Controller

Lower Level

  Controller

Actuator Command

Desired

Acceleration

Fault

Messages

Figure 2.4: Hierarchical structure of ACC

systems, the effect on the traffic throughput is not significant. Hence, rapid

advances in fast and reliable wireless communication, resulted in the intro-
duction of a new system, the so-called Cooperative Adaptive Cruise Control

(CACC). CACC can be seen as an add-on to ACC, which exploits wireless
communication. Through wireless communication vehicles can exchange in-

formation such as maximum braking capability, intended acceleration and
commanded control signal. Furthermore, wireless communication can pro-

vide information about the status and topography of the road ahead, which
can have a great impact on the fuel economy of heavy duty vehicles, [12]. By

providing additional information to the controller, wireless communication

can contribute in maintaining the stability of the platoon as well [19]. The
overall information provided by communication can be exploited to enhance

controller which is responsible for decision making.

ACC and CACC may be used to enable platooning, [19, 20]. In Grand
Cooperative Driving Challenge (GCDC) 2011, nine international teams

competed against each other. The competition scenarios were made such
that the performance of CACC systems proposed by different teams were

evaluated in both urban and highway scenario, [21]. GCDC was one of the
first event in which the efficiency of CACC was evaluated in a heterogeneous

environment. Furthermore, over the last decade, the impact of (semi) au-
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2.2. Automated driving (vehicle platooning)

tonomous systems such as ACC and CACC on the traffic throughput and

also their capability in alleviating congestion problem studied by several re-
searchers, [22–24]. The results in [24] reveal that CACC systems can lead to

drastic improvement in the traffic efficiency. The study in [24] is limited to
passenger cars and is not considering any overtaking maneuver. However, it

indicates that the traffic flow can increase from 2100 vehicle/hour/lane on
a 100% manual highway to 2900 vehicle/hour/lane on a 20% manual, 20%

ACC and 60% CACC equipped highway.

2.2.2 Lateral vehicle automation

Lane keeping system (LKS) is another functionality in high-end vehicles,

which can be used to enable automated driving systems. An LKS auto-

matically control the steering wheel in order to keep the vehicle within the
lane markings and also makes the steering wheel turn in order to negoti-

ate a curve. In an LKS, the lateral displacement of the vehicle w.r.t. the
road center line is measured and is compensated by adjusting the steer-

ing wheel angle. To measure the lateral displacement either magnetometer
sensors (look-down approach) or vision sensors (look-ahead approach) are

used. The LKS based on magnetometer sensors was developed and demon-
strated in 1996 by researcher at PATH, [25]. Later, car manufacturer, e.g.,

Nissan, Ford and Volvo started to develop LKS which are able to measure
the lateral offset at a distance ahead of vehicles using vision sensors, see

Figure 2.3(b). By combining the already existing ACC system with LKS,
automation within a lane can be enabled. Volvo is going to launch a new

system on their Volvo XC90 model called ACC+steer assist, which can be
considered as a further step towards vehicle automation Figure 2.5, [26].

2.2.3 Challenges in vehicle automation

As stated, CACC shows a good potential to improve traffic flow by reduc-

ing the inter-vehicle distance between vehicles and also contributing in the
stability of the platoon. However, we should note that reducing the inter-

vehicle distance can introduce undesired effects, e.g. jeopardizing safety
and string instability. Even though, most of the aforementioned studies

indicate a good potential to improve traffic flow using CACC, there are still
challenges such as string stability, robustness and safety verification to be

addressed.
One solution to enable vehicle automation in the lateral direction is to

use lane keeping systems, however, in a vehicle platoon with short inter-
vehicle distance or in a snowy day, the road lane markings may not be

visible by the vision sensors which can cause problems. An alternative
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approach to LKS is a vehicle following approach, which each vehicle follows

the predecessor vehicle rather than the lane markings. However, a poor
design for such solution may result in instability of vehicle platoon in the

lateral direction.

Figure 2.5: ACC+ steer assist function Volvo XC90.
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Chapter 3

Vehicle dynamics modeling

In this chapter, the basics of vehicle dynamics are presented. The aim of
this chapter is to provide a basic understanding of vehicle dynamics and

the modeling assumptions that are used in this thesis. From a control per-

spective it is more desirable to work with linear models as long as they are
good approximations of the real process. First, the longitudinal motion of

a vehicle is modeled. Then, the model is extended to capture the lateral
vehicle dynamics. Finally, fundamental limitations of the vehicle capabil-

ities which, mainly arise from the tire friction is discussed. For further
information on vehicle dynamics the reader is referred to [27, 28].

3.1 Longitudinal dynamics

The longitudinal motion of a vehicle can be modeled as a point mass using

a force balance (Newton’s second law).

mv̇x = Fxf + Fxr − Fd − Froll − Fg, (3.1)

where m and vx are the mass and velocity of the vehicle, respectively. Fxf
and Fxr, Fd, Froll and Fg are the longitudinal tire forces at the front and

rear tires, the aerodynamic drag, the rolling resistance and gravity forces,

respectively. Figure 3.1 illustrates the forces acting on the vehicle. The
longitudinal tire forces depend on i) the so-called slip ratio, ii) the normal

load and iii) the friction coefficient between the tires and the road. The
slip ratio is defined as,

κ = −
vxw − ωrw

vxw
, (3.2)

where vxw, ω and rω are the longitudinal velocity at the axle of the wheel,
rotational velocity of the wheel and effective tire radius, respectively, ac-

cording to Figure 3.2. The typical characteristic of longitudinal tire force
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Chapter 3. Vehicle dynamics modeling

Figure 3.1: Vehicle model

(a) (b)

Figure 3.2: Tire modeling notation
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3.1. Longitudinal dynamics

versus the slip ratio is depicted in Figure 3.3(a). As can be seen in the

figure, for small slip ratio, the longitudinal tire force is proportional to the
slip ratio,

Fxf ' Cκf
κf , (3.3)

Fxr ' Cκr
κr, (3.4)

where Cκf
and Cκr

are the longitudinal tire stiffness for the front and rear

tire, respectively. However, for larger slip ratio the relation between longi-
tudinal tire force and slip ratio becomes nonlinear, which requires a more

sophisticated model, for further information of tire characteristic the reader

is referred to [28].

(a) (b)

Figure 3.3: Tire forces (a) Longitudinal force as a function of longitudinal

slip κ, for different slip angles α (b) Lateral force as a function of side slip
angle α, for different slip values κ.

The aerodynamic drag force is denoted by Fd and is represented as

Fd =
1

2
ρCdAF (vx + vw)2, (3.5)

where ρ, Cd, AF and vw are the air mass density, drag coefficient, frontal
area of the vehicle and wind velocity, respectively. The rolling resistance is

denoted by Froll and is proportional to the normal forces, i.e.,

Froll = f(FNf + FNr), (3.6)

where FNf and FNr are the normal forces at the place of front and rear tires

and f is the rolling resistance coefficient. Finally the gravitational force can
be written as,

Fg = mg sin(θ), (3.7)

17
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where θ is the slope of the road.

As described in Chapter 2, for control purposes, the longitudinal model
of a vehicle is divided into an upper and a lower level. While the upper level

model should capture the dynamics between the desired acceleration (upper
level control input) and the actual acceleration that the vehicle delivers, the

lower level model describes the dynamics between the acceleration and the
actuator inputs (brake/throttle). The longitudinal acceleration dynamics

can be described by the following nonlinear differential equation, [29],

ȧx = f(vx, ax) + g(vx)η, (3.8)

where ax is the longitudinal acceleration and η is the control input of lower

level controller. The functions f(., .) and g(.) are defined as,

f(vx, ax) = −
2Kd

m
vxax −

1

τ(vx)
[ax +

Kd

m
v2
x +

dm
m

] (3.9a)

g(vx) =
1

mτ(vx)
(3.9b)

where τ , Kd and dm are the engine time constant, aerodynamic drag coef-

ficient and mechanical drag. As far as the low level controller is concerned,
nonlinear control synthesis, e.g., feedback linearization control techniques

can be used to calculate the actuator command for tracking the desired
acceleration, [30, 31]. Utilizing a feedback linearization control law,

η(t) = mu(t) +Kdv
2
x(t) + dm + 2τ(vx)Kdvx(t)ax(t), (3.10)

in (3.8) gives the following system model,

ȧx(t) = −
1

τ
ax(t) +

1

τ
u(t), (3.11)

as far as the higher level controller is concerned this first order linear model

is widely used in the literature. Equation (3.11) is a low pass filter which
describes the imperfectness of the lower level controller in tracking the de-

sired acceleration. In Paper 1, 2, 3 and 5 of this thesis, the model described

by (3.11) is used for the control synthesis and analysis.

3.2 Lateral vehicle dynamics

In the previous section, the longitudinal dynamics of the vehicle along its

longitudinal axis is presented. In this section, the lateral dynamics of the
vehicle is presented. Here, lateral dynamics refers to both the dynamics of

vehicle along the axis perpendicular to the longitudinal axis of the vehicle
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and also the yaw dynamics. First, we introduce the basic of the so-called

bicycle model, which is a well accepted model to capture the lateral vehicle’s
motion. A bicycle model assumes identical slip angles for the left and right

wheel on each axis. However, this assumption is reasonable for negotiating
curves of moderate radius at normal driving velocity. Hence, the bicycle

model sometimes is referred to as the single track model as well. Applying
Newton’s second law along the y axis depicted in Figure 3.4,

may = Fyr + Fyf (3.12)

where ay, Fyr and Fyf are the inertial acceleration of the vehicle along the

y axis at the central of gravity (c.o.g) and the lateral tire force of rear and
front tires, respectively. The inertial acceleration ay consists of lateral ac-

celeration v̇y in the vehicle body frame and also the centripetal acceleration

vxψ̇. Hence, the inertial acceleration can be written as,

ay = v̇y + vxψ̇ (3.13)

where v̇y, vx and ψ̇ are the acceleration in the body frame, longitudinal
velocity in the body frame and the angular velocity of body frame coordinate

in inertial frame. By replacing (3.13) in (3.12), the vehicle motion along

Figure 3.4: Vehicle model

the y axis can be written as,

m(v̇y + vxψ̇) = Fyf + Fyr (3.14)

The lateral forces Fyf and Fyr are proportional to the so-called slip angle

of front and rear tires, respectively. As can be seen in Figure 3.3, the slip
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angle of the tire is defined as the angle between the orientation and velocity

of the tire.

α = arctan(
vyω
vxω

) (3.15)

where vyω and vxω are the lateral and the longitudinal velocity of the tire.

Slip angle αf of the front wheel can be written as,

αf = δ − θf (3.16)

where, δ and θf are the steering angle and the angle between the velocity

vector of front wheel and longitudinal axis of the vehicle. Similarly, the slip
angle of the rear tire can be described as,

αf = −θr (3.17)

where θr is angle between the velocity vector of rear wheel and longitudinal

axis of the vehicle. Therefore, the lateral forces of front and rear tires can
be written as:

Fyf = Cαf (δ − θf ) (3.18)

Fyr = Cαr(−θf ) (3.19)

where, Cαf and Cαr are the cornering stiffness of the front and rear tires,
respectively. However, the proportionality relation between lateral force

and slip angle only holds for small slip angles. For larger slip angles, more
sophisticated models are required, [28]. Figure 3.3(b) shows the lateral force

of tire versus the slip angle.

The yaw dynamics is described via the moment equation around the z

axis in Figure 3.4,

Izψ̈ = Fyf lf − Fyrlr (3.20)

where Iz, lr and lf are the moment of inertia around the z axis and the dis-

tances between the rear and front tires and c.o.g of the vehicle, respectively.
Under the assumptions of i) small slip angles and ii) constant longitudinal

velocity vx, the longitudinal and lateral vehicle dynamics can be decoupled
and described by a set of linear differential equations. Harsher driving style

results in larger slip angles where the tire forces enter to the nonlinear re-
gion. However, for the application considered in this thesis, i.e., vehicle

platooning it is reasonable to assume that the vehicle only operates within
the linear region of tires. A further study on the validity of linear model in

describing the tire’s slip-force relation can be found in [32].
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3.3. Global frame

3.3 Global frame

The vehicle model developed in the previous section is based on a coordinate

frame which is fixed to the vehicle. However, it might also be of interest to
describe the vehicles motion with respect to the global coordinate frame as

well. The vehicle’s equations of motion in the global frame are

Ẏ = vx sin(ψ) + vy cos(ψ) (3.21)

Ẋ = vx cos(ψ) − vy sin(ψ) (3.22)

where vx and vy are the longitudinal and lateral velocity of vehicle’s c.o.g.
As can be seen from (3.21) and (3.22), the vehicle motion’s dynamics in the

global frame is nonlinear, see Figure 3.5.

Figure 3.5: Vehicle in inertial frame
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Chapter 4

Cooperation topology and
stability of vehicle platoon

In this chapter, two important and interrelated concepts regarding to vehicle

platooning are introduced. First, an overview of the cooperation topologies
in a vehicle platoon is introduced. Different cooperation topologies may

result in different choices of the control structure. Hence it can have a
great impact on overall performance of a vehicle platoon. Secondly, string

stability as an important concept in vehicle platooning is introduced and
formally defined. Finally, we briefly discuss how the stability of a vehicle

platoon can be affected by different choices of cooperation, inter-vehicle
spacing policy and homogeneity vs heterogeneity.

4.1 Cooperation topology

As mentioned in Chapter 1, every vehicle in a platoon may be equipped

with a wireless communication link, which can send and receive information
to/from other vehicles in the platoon. In this thesis, there is no intention

to give an extensive survey of different cooperation topologies, instead, the
most common cooperation topologies in the literature are introduced. As

can be seen from Figure 4.1, the simplest communication topology is when
every vehicle in the platoon only receives information from its immediate

predecessor and send information only to its immediate follower. This topol-
ogy is preferable from an implementation point of view and is commonly

adopted by CACC [19, 33]. The second common assumed communication
topology for a platoon requires that all vehicles in a platoon receive infor-

mation from the leader of the platoon in addition to their preceding vehicle.
This configuration is illustrated in Figure 4.2. The advantage of this topol-

ogy is that the extra information provided to the controller may result in
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Figure 4.1: Predecessor-follower communication

Figure 4.2: Predecessor-follower and leader followers communication

improved control performance [2]. This topology is particularly useful to ob-
tain string stability for the spacing error, as is explained in the next section.

However, such topology might require a more complicated control algorithm

and also a wireless communication system with higher bandwidth. Another
topology to consider is when every vehicle in the platoon exchanges infor-

mation with both its preceding vehicle and its follower, see Figure 4.3. This
type of structure is inspired by the way that a human driver drives. A hu-

man driver normally tries to adjust the speed and distance to the preceding
car by constantly monitoring the preceding and the following car.

Figure 4.3: Bidirectional communication topology

4.2 String stability

String stability is an important property, which refers to the capability of
a platoon in attenuating any disturbance/error introduced by the leader or

any other vehicle in the platoon. The disturbance and error can be con-
sidered, e.g., with respect to acceleration, [8], and position error between

vehicles, [2], respectively. Hence, a platoon is string stable if any distur-
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bance/error with respect to the desired signal damps out as it propagates

toward the tail of the platoon. In this section an overview of string sta-
bility w.r.t. different i) norm measures and ii) cooperation topologies, iii)

inter-vehicle spacing is presented. Furthermore, string stability w.r.t. to the
homogeneity vs heterogeneity and w.r.t. the direction of vehicle motion is

studied. Note that the discussion presented in this chapter is limited to the
string stability of linear systems, for study on string stability of nonlinear

systems the reader is referred to, [34].

4.2.1 Mathematical preliminaries

String stability can be defined mathematically as a norm condition in the
frequency domain w.r.t. different signals and norm measures. Considering

γi i = 1, ..., N as the desired signals to be suppressed in a platoon with
N vehicles. Denote Gi(jω) as the transfer function between input γi−1 to

output γi. The input-output relation can be described through convolution
in the time domain.

γi(t) = g(t) ∗ γi−1(t), (4.1)

where g(t) = L−1(Gi(jω)) is the impulse response of the system. The peak

norm (L∞-norm) and the total energy (L2-norm) of a scalar signal γi(t) are
defined as,

‖γi‖∞ , sup
t≥0

|γi(t)| , ‖γi‖2 , (

∞∫

0

γi(t)
2dt)1/2. (4.2)

The H∞ of transfer function Gi(jω) is defined as,

‖Gi(jω)‖∞ , sup
ω

|Gi(jω)| = sup
γi−1 6=0∈L2

‖γi‖2

‖γi−1‖2

. (4.3)

The L1 norm of the impulse response gi(t) is defined as,

‖gi‖1 ,

∞∫

0

|gi(t)| dt = sup
γi−1 6=0∈L∞

‖γi‖∞
‖γi−1‖∞

. (4.4)

4.2.2 Norm measure

The following string stability criteria can be defined,

Definition 1 A vehicle platoon is L2 string stable if the energy of the output

signal is less than the energy of the input signal, i.e.,

‖Gi(jω)‖∞ ≤ 1 ∀i = 2, ...N, ∀ω, (4.5)
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this gives,

‖γi‖2 ≤ ‖γi−1‖2

Definition 2 A vehicle platoon is L∞ string stable if the maximum magni-

tude of the output signal is less than the maximum magnitude of the input
signal, i.e.,

‖gi‖1 ≤ 1 ∀i = 2, ...N, (4.6)

this gives,

‖γi‖∞ ≤ ‖γi−1‖∞

Definition 3 A vehicle platoon is string stable without overshoot in the

frequency domain if (4.6) holds and the impulse response does not change
sign, i.e., [35],

‖gi‖1 ≤ 1 ∀i = 2, ...N, and gi(t) ≥ 0 ∀t. (4.7)

Note that the string stability condition (4.6) only guarantee that the max-
imum magnitude of the desired signal is attenuated. This does not say

anything about the sign of the signals. Hence, even if this condition holds,
in case of different signal signs, dangerous situations may occur.

Lemma 1 If the impulse response gi(t) ≥ 0, then the following holds [4],

‖gi‖1 = ‖Gi(jω)‖∞ (4.8)

Proof: From linear system theory and using the Laplace definition,

|Gi(0)| ≤ ‖Gi(jω)‖∞ ≤ ‖gi‖1, (4.9)

|Gi(0)| =

∣
∣
∣
∣

∫ ∞

0

gi(t)dt

∣
∣
∣
∣
≤

∫ ∞

0

|gi(t)| dt = ‖gi‖1, (4.10)

when gi(t) ≥ 0,
‖gi‖1 = ‖Gi(jω)‖∞ (4.11)

4.2.3 Cooperation topology

Depending on the type of cooperation topology and specifications, two def-

initions for string stability can be given, i.e., i) predecessor-follower string

stability and ii) leader-followers string stability

Definition 4 (Predecessor-follower) A vehicle platoon is predecessor-

follower L2 string stable if
∥
∥
∥
∥

γi(jω)

γi−1(jω)

∥
∥
∥
∥
∞

≤ 1 ∀i = 2, ...N, ∀ω (4.12)
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Definition 5 (Leader-follower) A vehicle platoon is leader-followers L2

string stable if ∥
∥
∥
∥

γi(jω)

γ1(jω)

∥
∥
∥
∥
∞

≤ 1 ∀i = 2, ...N, ∀ω (4.13)

Note that condition (4.12) is more stringent compared to (4.13). Similarly

L∞ and without overshoot string stability can be defined for the two topolo-
gies mentioned previously. To guarantee string stability, a controller should

be designed such that condition (4.12) or (4.13) is satisfied. An example of
L∞ string stable platoon with respect to acceleration signal is depicted in

Figure 4.4. The red dashed signal is the acceleration of lead vehicle and as
can be seen from the figure the acceleration signal is attenuating from the

leader to the last follower (blue dashed signal).
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Figure 4.4: String stable platoon with respect to acceleration signal. The

red dashed signal: acceleration of the lead vehicle and blue dashed: accel-
eration of the last follower.

4.2.4 Spacing policy

Depending on the type of adopted spacing policy, string stability may or

may not be achieved,

• Constant spacing A spacing policy where the vehicles in the platoon
follow each other at a constant space.

• Constant headway time Headway time refers to the time that a

vehicle can reach its preceding vehicle if travels at the current speed.
A spacing policy where vehicles maintain a constant headway w.r.t.

their preceding cars is called constant headway time policy.

It is known that for a constant spacing policy communication with the

leader of the platoon is essential to obtain string stability, see e.g., [2], [36]
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Chapter 4. Cooperation topology and stability of vehicle platoon

and [37]. This is a general result and holds for any linear controller due

to the complementary sensitivity integral constraint. In [38] it is shown
that even a bi-directional control strategy cannot overcome this problem.

On the other hand for a constant headway policy string stability w.r.t. all
aforementioned cooperation topologies and all different norm measure can

be achieved without the need of communication with the leader, [13, 35].
In [5], the minimum required headway to achieve string stability with a

unidirectional control structure is studied. Further studies on the spacing
policies and its effect on the string stability and traffic flow capacity is given

in [39].

4.2.5 Homogeneity vs heterogeneity

A vehicle platoon that consist of identical vehicles, controllers and coop-
eration topology is referred to as homogeneous vehicle platoon. On the

other hand a heterogeneous platoon may consist of vehicles with different,
e.g., dynamics and/or different control structure. While, extensive studies

of string stability of homogeneous platoons can be found in the literature,
as far as heterogeneous string stability is concerned, the literature is rather

sparse. One of the early studies of heterogeneous platoon was done by [30].
In [14,40] string stability of heterogeneous vehicle platoon under a constant

spacing policy and a decentralized control structure are studied. These
studies show that under a constant spacing policy, contrary to the homoge-

neous case, the spacing error cannot be attenuated uniformly in the platoon.
Later in [41], a CACC control structure for string stable heterogeneous ve-

hicle platoon is presented. Further studies with particular attention on
the feasibility of CACC system for real time implementation can be found

in [42], Paper 1 and Paper 2 in this thesis. Note that, In the homogeneous

vehicle platoon string stability w.r.t. a desired signal results in string sta-
bility w.r.t. to other signals, however, this is not true for a heterogeneous

vehicle platoon. This can be simply explained by looking at the transfer
function between the position error and acceleration of two adjacent vehi-

cles. For the former case the two transfer functions are equivalent while for
the latter case such result does not hold in general, see Section 4.3 and [41].

4.2.6 Longitudinal vs lateral direction

While string instability in the longitudinal direction may result in shock-
waves and consequently accidents, string instability in the lateral direction

may result in vehicles ending in the wrong lane after, e.g., a lane change ma-
neuver. Hence, in a vehicle-following setup with automatic steering, string

stability in the lateral direction should be considered in the control design
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as well. Similar to the longitudinal case, string stability in the lateral direc-

tion can be defined as norm condition. However, string stability is defined
w.r.t. the lateral offset between the vehicles, [43, 44] and Paper 3 in this

thesis.

4.3 Appendix

In this section, as an example the spacing error dynamics and acceleration
between two adjacent vehicles are derived and compared. Denote pk, vk, ak
and uk as the absolute position, velocity, acceleration and control command

for vehicle k, respectively. Define the initial conditions as,

pk−1(0) = vk−1(0) = ak−1(0) = vk(0) = ak(0) = 0, (4.14)

pk(0) = −δ.

The longitudinal vehicle dynamics for vehicle k can be written as,

sPk(s) = Vk(s) + pk(0) (4.15a)

sVk(s) = Ak(s) (4.15b)

Ak(s) = Hk(s)Uk(s) (4.15c)

where s is the Laplace variable and Hk(s) = 1
1+τs

, hence

Pk−1(s) =
Hk−1(s)

s2
︸ ︷︷ ︸

Gk−1(s)

Uk−1(s), Pk(s) =
Hk(s)

s2
︸ ︷︷ ︸

Gk(s)

Uk(s) − δ/s, (4.16)

the inter-vehicle spacing error between the vehicle k and k−1 is defined as,

Ek(s) = Pk−1(s) − Pk(s) − hVk(s) − δ/s, (4.17)

manipulating the equations above gives the following

Ek(s) = Gk−1(s)Uk−1(s) − (1 + hs)Gk(s)Uk(s). (4.18)

Considering a linear control law, e.g., a state feedback control law C(s) =

kp+kds+kas
2, the control command becomes Uk(s) = Ck(s)Ek(s). Plug in

Uk(s) in equation (4.17) and considering an initial spacing error ek(0) leads

to

Ek(s) =
Gk−1(s)Ck−1(s)

1 + (1 + hs)Gk(s)Ck(s)
Ek−1(s) +

1

1 + (1 + hs)Gk(s)Ck(s)
ek(0)/s.

(4.19)
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Similarly, the transfer functions between the accelerations of two adjacent

vehicles can be derived. From equation (4.19) and considering (Uk−1(s) =
Ck−1(s)Ek−1(s) and ek(0) = 0), we have,

Uk(s) =
Ck(s)Gk−1(s)

1 + (1 + hs)Gk(s)Ck(s)
Uk−1(s). (4.20)

Then, from (4.15c) we have,

Ak(s) = Hk(s)Uk(s) =
Hk(s)Ck(s)Gk−1(s)

1 + (1 + hs)Gk(s)Ck(s)
Uk−1(s)
︸ ︷︷ ︸

Ak−1(s)

Hk−1(s)

, (4.21a)

⇒
Ak(s)

Ak−1(s)
=

Hk

Hk−1

Ck(s)Gk−1(s)

1 + (1 + hs)Gk(s)Ck(s)
(4.21b)

⇒
Ak(s)

Ak−1(s)
=

Ck(s)Gk(s)

1 + (1 + hs)Gk(s)Ck(s)
(4.21c)

Comparing (4.17) and (4.15) shows that the spacing error transfer func-

tion and acceleration transfer function between two adjacent vehicles are
equivalent only if the following holds:

Gk−1Ck−1 = GkCk. (4.22)

While (4.22) is true for a homogeneous vehicle platoon, this is not generally

the case for a heterogeneous vehicle platoon.
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Tools

This chapter is dedicated to an overview of the tools and techniques which
are used in this thesis, to formulate the control design problem and safety

verification problem of automated vehicles.

5.1 Receding horizon control

Control of a vehicle platoon can be formulated as an optimization problem.

Model predictive control (MPC) is a powerful tools to handle constraints
on control inputs and states is considered as the control scheme in our

automated driving system. In most cases, MPC can be formulated as a
quadratic programming (QP), i.e. a quadratic objective function subject to

linear constraints. Consider a platoon of n vehicles, a centralized control
strategy can be formulated as the following,

min
U
x(N)TPx(N) +

N−1∑

k=0

x(k)TQx(k) + u(k)TRu(k) (5.1a)

subject to

x(k + 1) = Ax(k) +Bu(k) (5.1b)

x(k) ∈ X , u(k) ∈ U , (5.1c)

Ex(k) + Fu(k) ≤ 0 k = 1 · · · , N (5.1d)

where,

U =
[
ut1 ut2 · · · utn

]T
, (5.2a)

x =

[
v1, a1
︸ ︷︷ ︸

x1

ep,2, ev,2, a2
︸ ︷︷ ︸

x2

· · · ep,n, ev,n, an
︸ ︷︷ ︸

xn

]T

, (5.2b)

are the control input (commanded acceleration) and the state vectors for

the entire platoon, respectively, with vi, ai, ep,i, ev,i denoting the velocity,

31



Chapter 5. Tools

acceleration, spacing error and relative velocity for ith vehicle, respectively,

P , Q and R are weighting matrices with appropriate dimensions to penalize
the final state, state and input signal, N is the prediction horizon, X , U are

admissible set of states and control signals, respectively.

The system dynamics of a vehicle platoon are coupled through their
states.

x1(k + 1) = A1x1(k) +Biu1(k) (5.3a)

xi(k + 1) = Aixi(k) +Biui(k) + Eixi−1(k) i = 2, · · · , n. (5.3b)

However, by considering the coupling term Eixi−1 as an external distur-
bance, i.e. ωi(k) = xi−1(k), the state update equations (5.3) become decou-

pled and the centralized optimization problem (5.1) can be cast as a decen-
tralized optimization problem for each vehicle. Hence, the MPC problem

for decoupled sub-systems (vehicles) can be written as,

min
Ui

xi(N)TPixi(N) +

N−1∑

k=0

xi(k)
TQixi(k) + ui(k)

TRiui(k) (5.4a)

subject to

xi(k + 1) = Aixi(k) +Biui(k) + Eiωi(k), (5.4b)

xi(k) ∈ Xi, ui(k) ∈ Ui, k = 1 · · · , N (5.4c)

Eixi(k) + Fiui(k) ≤ 0, i = 2, · · · , n. (5.4d)

At every time step k, each vehicle solves the optimization problem (5.4)
using new measurement. First optimal move ui(k) is applied to the plant,

then, at the next time step k + 1 the same procedure is repeated. This is
illustrated in Figure. 5.1. The weighting matrices Qi and Ri are used to

penalize the states and control input, respectively. Penalizing the states
guarantee that the spacing error, relative velocity and acceleration become

smaller, while penalizing the control command ensure that the acceleration
and braking remains on a reasonable level. Minimizing the control command

has direct effect on the fuel consumption. Hence, the choice of Qi and Ri

can be seen as a trade off between the performance and fuel consumption.

Solving the optimization problem online using new measurements provides
feedback effect in the controller. It should be noted that the (QP) problem

presented here, is considered as a class of convex optimization which efficient
solvers are available for, e.g. [45,46]. For further information on the subject

the reader is referred to [47].
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5.1. Receding horizon control

Figure 5.1: Model predictive control scheme
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5.2 Reachability analysis and invariant set

theory

To increase the traffic throughput, it is desirable to reduce the inter-vehicle
distance between vehicles in a platoon. Decreasing the inter-vehicle dis-

tance can also result in reduction of fuel consumption. However, reducing
the inter-vehicle distance apparently can increase the risk of rear end col-

lisions. As described earlier, every vehicle in a platoon is equipped with a
sensing module, e.g. radar and camera, which measures the relative distance

and velocity between the vehicles. In addition to that, each vehicle can also

be equipped with wireless communication which makes it possible to receive
information like acceleration of preceding vehicle. The information sensed

by sensing module and received by communication are fused and sent to
the control unit. Then, using the received measurement and based on a

motion model, the control unit calculate a commanded acceleration which
will be sent to either throttle or brake system. However, the overall perfor-

mance of such complex system which requires interaction between different
subsystems, largely depends on the accuracy of sensor measurement, com-

munication delay, packet drops, model mismatch and delay in the throttle
and brake actuator. Although, extensive simulations can be used to ver-

ify system reliability and performance in different situation, any analysis
based on simulation may not capture all the phenomena and may require

an enormous amount of time. To verify such complex system mathematical
tools are required. Reachability analysis technique and invariant set theory

can be used to safety verification of autonomous systems. In this section, a

brief overview on the aforementioned methods is presented which can serve
a background for the second part of this thesis.

A few definitions are introduced and basic results on reachability anal-
ysis, are presented. For further study regarding invariant set theory and

reachability analysis, the reader is referred to [48] and [49].

Definition 6 A polyhedron P ∈ R
n is the intersection of finite number of

closed halfspaces in R
n

P = {x ∈ R
n|Hx ≤ h} (5.5)

Remark: A closed polyhedron is called a polytope.

Definition 7 The Minkowski sum of two polytopes R and Q is a polytope
defines as,

R⊕Q = {x+ y ∈ R
n|x ∈ R, y ∈ Q} (5.6)
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Figure 5.2: Ploytope

Definition 8 The Pontryagin difference of two polytopes R and Q is a
polytope defines as,

R	Q = {x ∈ R
n|x+ q ∈ R, ∀q ∈ Q} (5.7)

Definition 9 The convex hull of a set of points X = {X i}Nx

i=1 is the smallest
convex set which contains X.

hull(X) = {x ∈ R
n : x =

Nx∑

i=1

λiX
i, 0 ≤ λi ≤ 1,

Nx∑

i=1

λi = 1} (5.8)

Definition 10 Composition of an affine mapping f and a polyhedron P,
with f as,

f : z ∈ R
m 7→ Az + b, A ∈ R

mA×m, b ∈ R
m (5.9)

is defined as,

f ◦ P = {y ∈ R
m|y = Ax+ b ∀x ∈ R

n, Hx ≤ h} (5.10)

Denote by fa the state update function of an autonomous system,

x(k + 1) = fa(x(k), ω(k)), (5.11)

where x(k) and ω(k) are the state and disturbance vector, respectively. The
system (5.11) is subject to the following constraint,

x ∈ X , ω ∈ W, (5.12)

where X and W are polytopes in R
n and R

d, respectively.
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Definition 11 For the autonomous system (5.11), we denote the robust

one-step reachable set for initial states x(0) contained in the set S as,

Reachfa(S,W) = {x ∈ R
n : ∃x(0) ∈ S, ∃ω ∈ W|x = fa(x(0), ω)},

this is the set of states, the system dynamic (5.11) can evolve to from a
given set of initial states S for some disturbance ω ∈ W.

In Figure (5.3), the reachable set from the set of initial states S under the
dynamical system (5.11) is represented. The reachable set is represented

for two time instances with blue and purple sets. The green arrows show

how the initial states x0 evolve into the reachable sets.

Figure 5.3: N-step reachable set. S represents the set of initial states. The
blue and purple sets are the reachable set for two time instances. X is the

admissible set.

Definition 12 For the autonomous system (5.11), the robust Pre set is

defined as the dual of one-step reachable set,

Prefa(T ,W) = {x ∈ R
n : fa(x(k), ω(k)) ∈ T , ∀ω ∈ W},

this is the set of initial states which under the system dynamics (5.11)can

in one-step evolve to the target set T for ∀ω ∈ W.

The backward reachable set from the target set T for a couple of steps is

depicted in Figure (5.4)
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Figure 5.4: N-step backward reachable set. T represents the target set
(desired set). The yellowish sets are the backward reachable set for different

time instances. X is the admissible set.
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Chapter 6

Summary of included papers

This chapter provides a brief summary of the papers that constitute the
base for this thesis. Full versions of the papers are included in Part II. The

papers have been reformatted to increase readability and to comply with
the layout of the rest of the thesis.

Paper 1

R. Kianfar, B. Augusto, A. Ebadighajari, U. Hakeem, J. Nilsson,
A. Raza, R. S. Tabar, N. V. Irukulapati, C. Englund, P. Falcone,

S. Papanastasiou, L. Svensson and H. Wymeersch, “Design and
Experimental Validation of a Cooperative Driving System in

the Grand Cooperative Driving Challenge”, Intelligent Trans-
portation Systems, IEEE Transactions on, vol. 13, no. 3, pp

994-1007, 2012.

This paper presents a simulation and experimental study of a string stable
cooperative adaptive cruise controller. The first part of the paper briefly

describe the implementation of a communication module based on IEEE
protocol. This follows by a brief explanation about the sensor fusion mod-

ule which was used to filter the data in a real time scenario. The rest
of the paper is dedicated to the evaluation of proposed control strategy.

The proposed control strategy is an MPC approach which can handle dif-
ferent constraints and specifications while stabilizing the vehicle dynamics.

Constraints and specifications are resulted from safety constraints, actua-
tor limitations and performance requirements. Finally traditional frequency

domain definition of string stability is translated into time domain and is ac-
counted for in the control design. The simulation and experimental results

indicate the effectiveness of the proposed method.
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The author of this thesis is responsible for designing the MPC controller

and collecting the experimental data related to the controller, conducting
the comparison between the controllers. Furthermore, the author of the

thesis is responsible for editing the overall paper.

Paper 2

R. Kianfar, P. Falcone, J. Fredriksson, “Control Matching Model

Predictive Control Approach to String Stable Vehicle Platoon-
ing”, Submitted to Control Engineering Practice.,

As discussed in Chapter 4, string stability of a vehicle platoon is defined in

the frequency domain and traditionally is enforced by design of controllers in
the frequency domain as well. However, to enable a safe vehicle platooning,

safety requirements, actuator limitations and passenger comfort should also
be explicitly considered in the control design. While it is more convenient to

state string stability condition in the frequency domain, the latter specifi-
cations are better fitted in time domain. Combining the specifications from

frequency and time domain into a single control design is not trivial. In this

paper a novel approach is proposed to combine the aforementioned specifi-
cations into a single control design. First a linear controller in the frequency

domain is designed in order to guarantee the string stability of the platoon.
Then, an MPC controller is designed to handle the time domain specifica-

tions (constraints). Finally, an optimization technique is used to tune the
weighting matrices of an MPC controller such that its behaviour matches

with the linear controller. As a result, as long as the constraints are not
active the behaviour of the MPC controller is identical to the string stable

controller. When a violation of constraints is predicted over the prediction
horizon, the behaviour of the two controllers is not identical anymore and

MPC controller makes sure that the constraints are fulfilled. Simulations
and experimental results show the effectiveness of proposed method in both

maintaining string stability and also fulfilling the constraints.
The author of this thesis is responsible for the main ideas, has per-

formed the simulations, has conducted the experiments and prepared the

manuscript. The work has been done under the guidance and supervision
of the co-authors.

Paper 3

R. Kianfar, P. Falcone and J. Fredriksson, “A Distributed Model

Predictive Control (MPC) Approach to Active Steering Con-
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trol of String Stable Cooperative Vehicle Platoon” Proceeding

of the 7th IFAC Symposium on Advances in Automotive Con-
trol, September 2013, Tokyo, Japan.

A distributed receding horizon control strategy to active steering control

of vehicle platoon is presented in this paper. In particular, automation of
vehicle platoon in the lateral direction is considered in this work. The main

idea in this paper is to develop a control strategy which can i) guarantee the
stability of individual vehicles ii) keep the vehicle within the linear region

of tire’s operation iii) enforce the stability of entire platoon, i.e., lateral

string stability. To accomplish this, the control problem is formulated as an
optimization problem (MPC-based approach) and is solved locally by each

vehicle. It is assumed that every vehicle in the platoon can receive infor-
mation form its preceding vehicle and send information to its follower. The

information is sent via communication links between vehicles. To achieve
the first objective a linear MPC controller is implemented by each vehicle

such that the stability of individual vehicle is enforced. To keep the vehicle
within the linear region of the tires, constraints on the lateral slip angle are

imposed and embedded into the control problem formulation. Finally, to
obtain string stability, it is assumed that each vehicle broadcasts an inten-

tion over a future prediction horizon. The intention is the optimal open
loop trajectory calculated by the local MPC controllers over a finite time

prediction horizon. Furthermore, unlike to Paper 2, lateral string stability
is formulated as a time domain constraint, which is accounted for in the

control design. The simulation results show the effectiveness of proposed

approach.

The author of this thesis is responsible for the main ideas, has performed
the simulations and prepared the manuscript. The work has been done

under the guidance and supervision of the co-authors.

Paper 4

R. Kianfar, M. Ali, P. Falcone and J. Fredriksson, “Combined
Longitudinal and Lateral Control Design for String Stable Vehi-

cle Platooning within a Designated Lane” Proceeding of the 17th
IEEE Conference on Intelligent transportation Systems, ITSC,

October 2014, Qingdao, China.

In Paper 1 and 2 string stability and constraints satisfaction for a vehicle
platoon in the longitudinal direction are studied and two novel approaches

for enforcing string stability and constraints are proposed. In Paper 3, under
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the assumption of constant longitudinal velocity, the longitudinal and lateral

dynamics of the vehicles are decoupled. Hence, a distributed MPC approach
is proposed to enforce string stability in the lateral direction. In this paper

a combined longitudinal and lateral control problem of a vehicle platoon
is considered. Contrary to Paper 3 where the longitudinal vehicle veloc-

ity is assumed to be constant, an LPV-based MPC is proposed to account
for the variations in the longitudinal velocity. Furthermore, by combining

linear frequency and time domain control strategies technique, a novel con-
trol strategy is proposed to guarantee string stability (a frequency domain

specification) and constraints satisfaction (time domain specifications) si-
multaneously. The proposed method is validated through simulations and

experiments with two prototype vehicles.

The author of this thesis is responsible for the main ideas, has per-
formed the simulations, has conducted the experiments and prepared the

manuscript. The work has been done under the guidance and supervision
of the co-authors.

Paper 5

R. Kianfar, P. Falcone and J. Fredriksson, “Safety Verification
of Automated Driving Systems”, Intelligent Transportation Sys-

tems Magazine, IEEE. vol. 5, no. 4, pp 73-86, 2013.

In many practical cases the safety of given controllers should be verified

a posteriori. Hence, in this paper a method based on reachability analy-

sis technique and invariant set theory is presented to safety verification of
automated driving systems. The main idea is to develop a mathematical

framework to safety verification of automated driving systems to avoid ex-
tensive simulations and expensive experiments. The evaluation is carried

out for two different linear controllers and the results are compared. As an
example, the method is applied to study the minimum required safe dis-

tance between two adjacent vehicles in a vehicle platoon. The method is
further extended to account for model uncertainty, delay and possible mea-

surement noise. The proposed method can be used to calculate the maximal
admissible safe set. In words, a set which vehicle safety is guaranteed for

all the future time. Such set can be used as a reference for guaranteeing
the safety of automated driving systems, e.g., ACC or CACC. Effectiveness

of the proposed approach is validated via simulations and partially through
field experiment as well.

The author of this thesis is responsible for the main ideas, has per-

formed the simulations, has conducted the experiments and prepared the
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manuscript. The work has been done under the guidance and supervision

of the co-authors.
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Chapter 7

Concluding remarks and future
research directions

In this chapter a summary of the thesis is given and some directions for
future research are mentioned.

7.1 Concluding remarks

This thesis investigates how automated/cooperative driving or in particular
vehicle platooning can be enabled to mitigate congestions problem and raise

the vehicles safety. Alleviating congestions and other problem associated to
that have a clear benefit in traffic flow, fuel economy and air pollution.

The focus of this thesis is to i) develop control algorithm which can

enable vehicle automation in a safe and efficient way ii) present a mathe-
matical framework which can be used for safety and performance verification

of automated driving systems.

In Paper 1 and 3, methods are presented to develop model based control
strategies enabling vehicle platooning in the longitudinal and the lateral

directions, respectively. The main challenge is to account for constraints
and string stability simultaneously in the control design. The proposed

control strategy can formulate these limitations and specifications into a
constrained optimal control problem which is solved in a receding horizon.

In Papers 1 and 3, time-domain definitions for string stability both in the
longitudinal and the lateral directions are introduced and translated into

inequality constraints. Hence, decentralized MPC controllers are developed
which can simultaneously guarantee safety and performance while enforcing

string stability. The proposed method requires communication between two
adjacent vehicles to enforce string stability. Each vehicle calculates and

sends an intention of its movement for finite steps ahead to its follower. A
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combination of old and future information (intention) is used as a constraint

to enforce string stability.

The main advantage of the proposed method in Papers 1 and 3 is their

ability in translating the string stability criterion from frequency domain
into time domain constraints and enforcing that together with other time-

domain requirements. However, this approach requires intensive communi-
cation between vehicles which can be challenging from a practical point of

view. Hence, in Paper 2, an alternative approach based on control matching
technique is proposed. In particular, a two step design procedure is proposed

which can combine string stability and constraint satisfaction into a single
MPC-based control design problem. The main advantage of this method

compared to the one proposed in Papers 1 and 3 is that this approach does
not require an intention of the preceding vehicles, thus less communication

bandwidth is required. Proposed strategy is effectively implemented on a
platoon of three vehicles.

The combined longitudinal and lateral control of vehicle platoon is ad-
dressed in Paper 4. It is known that a combined longitudinal and lateral

vehicle dynamics result in a nonlinear system which is not favourable from a
control design perspective. It is very common in the literature that by con-

sidering the longitudinal vehicle velocity as constant, the nonlinear dynam-
ics can be decoupled into linear longitudinal and lateral dynamics. However,

this simplistic assumption can have negative impact on the vehicles stabil-

ity. In Paper 4, by considering the longitudinal velocity as a measured
scheduling parameter, the nonlinear dynamics decouple into an LTI and an

LPV model. Then, by combining frequency domain control techniques, e.g.
H∞-design and MPC-based control design, a control strategy is proposed

which accounts for string stability, safety and speed variations. Simulation
and experimental results show that string stability is guaranteed as long

as the constraints are not active and if the controller predicts constraints
violation over the prediction horizon, a corrective control action is applied

to keep the vehicle within the constraint.

Unlike the methods proposed in this thesis, many of the automated driv-

ing controllers used in practice are incapable of guaranteeing specifications
like safety a priori. Hence, in Paper 5, reachability analysis technique and

invariant set theory are used to safety verification of automated driving sys-
tem in presence of uncertainty, delay and model mismatch as a posteriori.

As an example the proposed method can be applied to study the minimum
required safe inter-vehicle distance between vehicles. The reachability anal-

ysis can be used to calculate a set that can guarantee safety over a finite
or even infinite horizon. Finally, it should be emphasized that most of the

techniques presented in this thesis are experimentally validated.
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7.2 Future research directions

Further development towards industrialization of vehicle platooning is one

way to extend the findings in this thesis. To achieve this the control tech-
niques proposed in this thesis can be extended to guarantee string stability

in presence of model uncertainty, imperfect measurements and unreliable
communication. Such idea can be pursued by extending Paper 1, 2, 3, 4. In

particular, in Paper 2 and 4 robust string stability can be achieved using lin-
ear robust control theory to guarantee string stability in presence of model

mismatch and imperfect communication. Another approach to achieve ro-
bust string stability is to extend Paper 1 and 3 by introducing uncertainty in

the MPC frame work. Extending the approach to account for such purpose

can be done by adjusting the prediction model for accommodating model
uncertainty, imperfect measurements and packet losses. Apparently, such

cases can be handled by exploiting techniques from robust/stochastic MPC
theory. In this case, the computational burden increases since instead of a

QP-problem, e.g., a min-max optimization problem should be solved over
the prediction horizon of the MPC controller which may not be suitable for

real time implementations.
Along the same goal, i.e., industrialization of techniques proposed in this

thesis, further verification and validation is required. Although, the longi-
tudinal control techniques proposed in this thesis are tested experimentally,

verification of the lateral controller proposed in Paper 3 and 4 through real
time implementations are good extensions.

Inter-vehicle distance plays an important role in efficiency of vehicle pla-
toon in terms of fuel consumption and road capacity. In Paper 5, methods

are proposed to calculate the minimum achievable safe distance. Depend-

ing on the quality of the communication channel between vehicles and as
well as the quality of the measurements, inter-vehicle distances can be in-

creased or decreased. Obviously, the quality of the communication channel
can vary during a trip and from vehicle to vehicle. An extension to the

work presented in Paper 5 is to estimate a level of confidence for the com-
munication channel and the measured data in real time. This information

can be used to calculate the minimum achievable safe distance in real time.
This requires modification of algorithm presented in Paper 5 to suit for real

time implementation. Another direction to extend the scope of Paper 5 is
to extend the model so it can better capture the engine and brake dynam-

ics. Hybrid modeling could be an alternative, which apparently results in
verification of hybrid systems.
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