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Abstract—The Characteristic Basis Function Pattern (CBFP)
method is presented as a generic modeling technique for obtain-
ing highly accurate approximations of antenna radiation patterns
using very few measurements. The method is described in detail
and illustrated for a reflector antenna system as an application
example. Future challenges facing the further development and
application of the method are also discussed.

Index Terms—antenna radiation patterns, calibration, charac-
teristic basis function patterns, radio astronomy.

I. INTRODUCTION

The fast and accurate prediction of antenna radiation pat-
terns is of importance in many wireless applications, ranging
from antenna measurement to radar systems, and from earth
observation to satellite antenna systems. In remote sensing
applications, for instance, one attempts to remove the instru-
mental effects from the received signal in order to recover the
true nature of the source of interest from that signal. This,
in turn, requires an accurate characterization of the dominant
instrumental effects at the time of observation as these effects
manifest themselves in the antenna radiation pattern, which
converts the incident electromagnetic waves into an electrical
current at the antenna terminals. Often, the antennas used in
such systems are exposed to harsh and highly variable environ-
mental conditions, such as in space applications, aviation, and
radio astronomy. In these instances, a once-off characterization
of the system may be insufficient, since the instrumental
effects vary, thus requiring routine calibration measurements
to be performed at the time of observation. Furthermore, since
instrumentation and signal processing techniques increase the
receiving sensitivity even further, the required level of ac-
curacy in determining the system response must increase as
well in order to prevent instrumental effects from limiting
the overall performance. This accuracy requirement should be
balanced with the time allocated for performing the necessary
calibration measurements as it reduces the time available for
observation measurements.

The development of such efficient calibration techniques
is currently a very active area of research within the radio
astronomy community [1]–[4], since a new generation of
instruments, such as MeerKAT [5], ASKAP [6], and the
SKA [7], [8] are being developed. Utilising the sensitivity
offered by these new systems to their full potential will re-
quire the use of so-called third-generation calibration methods

which take into account direction-dependent (radiation pattern)
effects over a wide angular region.

Ideally, the antenna directivity pattern should be accurately
approximated by a model which can be expressed as a
weighted sum of basis functions in which the weighting
coefficients are the unknowns to be solved [9]. The basis
functions used in the expansion should be chosen so as to
minimize the number of terms required to reach a certain level
of accuracy. Recently, various different approaches have been
proposed as a solution to this beam calibration problem [10]–
[14]. The common denominator in all these methods is the
reliance on a priori knowledge of the antenna in consideration
when choosing the basis functions. This is in no small part due
to advances in computer technology and computational algo-
rithms enabling the analysis of relatively large and complex
antenna structures using rigorous full-wave methods [15], [16].

The Characteristic Basis Function Pattern (CBFP) method is
one such approach [13], [14], [17]–[19], which constructs basis
functions from measured and/or simulated radiation patterns
for the antenna structure in question. The method distinguishes
between a primary basis function pattern, which corresponds
to an ideal realization of the antenna design (nominal pattern),
and secondary CBFPs, each of which corresponds to a possible
expected perturbation of the ideal antenna design. The high
efficiency of this modeling approach is due to the fact that
many of the pattern features are inherent to a particular antenna
design and are therefore already included in the primary basis
function giving a fairly accurate approximation to the radiation
pattern of the actual antenna. Secondary basis functions are
then included to optimally compensate for certain anticipated
system errors that cause deviation of the radiation pattern from
the ideally expected pattern.

A detailed description of the method is provided in the next
section, followed by an illustrative example with numerical
results in Section III. The final section discusses some future
challenges concerning the application of the CBFP modeling
method.

II. CBFP METHOD

In order to describe the CBFP method it is useful to
view the antenna as a mathematical operator mapping a
set of parameters defining its structure and operating point
(e.g. dimensions, material properties and composition, array
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excitation vector) to a single full-polarization complex-valued
radiation pattern function defined on the far-field sphere [14].
Let there be a non-redundant set of Nd real-valued parameters
that uniquely defines any particular instance of a given class
of antennas. Each instance of the given antenna class may
then be represented as an Nd-dimensional vector d ∈ D where
D ⊆ RNd . The far-field pattern function p(θ, φ) corresponding
to the antenna instance d may then be determined via the
mapping

Y : D → P (1)

so that p(θ, φ) = Y (d). The space P is defined as the set of
all patterns that are realizable by selecting any d from D, i.e.
P is the image of D under Y .

For an ideal antenna the defining parameters are fixed to
their designed values d = d0 (or perfectly controlled in the
case of a reconfigurable antenna), and the resulting radiation
pattern can be determined exactly p = p0 = Y (d0). However,
in practice, as a result of imperfect manufacturing processes
and changing operating conditions, these antenna definition
parameters may differ from their designed values, so that the
actual realized instance dr = d0 + δd, results in the realized
radiation pattern pr = p0 + δp, that is,

pr = p0 + δp = Y (d0 + δd) = Y (dr). (2)

Note that in general Y (dr) 6= p0 + Y (δd) due to the possible
non-linearity in Y . Typically, there is some practical degree
of uncertainty in measuring δd, so that the resulting radiation
pattern cannot be determined exactly.

However, in practice the variation in antenna configuration
is limited so that for a particular design d0 the realizable con-
figurations resides in a small subset D(d0) ⊂ D. Consequently
any realized pattern pr is an element of a subset Pr(d0) ⊂ P
centered around the nominal solution p0. Since the DOFs of
the pattern perturbations is then physically limited, and since
in practice the norm of the difference between the ideal and
actual realized radiation patterns is relatively small, the CBFP
assumes that any element in Pr can be approximated in a (K-
dimensional) space PB = span{pk}Kk=1 surrounding p0 and
where each pk ∈ Pr(d0).

Hence, the CBFP method proceeds by finding a pattern
model pm such that pr ≈ pm, where the approximation error
is yet to be quantified through a suitable error norm, and where
pm itself is given through the expansion

pm(θ, φ) =

K∑
k=1

αkpk(θ, φ). (3)

The set {αk}Kk=1 contains the unknown expansion coefficients
that need to be solved. Generally, pr /∈ {pk}

K
k=1, since the

differences between a given design and its realization are
assumed to be unknown.

A. Generating Basis Functions Patterns

Since each of the pattern expansion functions {pk}Kk=1 used
in (3) is an element in Pr(d0), each pattern basis function

corresponds to a different realization of a particular antenna
design, i.e.,

pk(θ, φ) = Y (dk) for k = 1, . . . ,K (4)

where dk = d0 + δdk. It is pointed out that the mapping may
not necessarily be unique, since different instances d can give
rise to an identical radiation pattern if the radiation occurs from
a structure that supports only a limited number of radiating
modes (e.g. a single-mode radiating slot). Nonetheless, each
of the relevant pattern basis functions can be obtained by
applying a different perturbation to the antenna configuration
and determining the resulting radiation pattern. Since d is
an Nd-dimensional vector in a space spanned by Nd basis
function vectors, we expect to generate also a corresponding
set of Nd basis function patterns, implying that K = Nd.
Any other instance d and its corresponding pattern is then
obtained through the superposition principle. However, if Y is
non-linear, the superposition principle does not hold and one
must ensure to generate sufficient basis function patterns and
therefore take the set {dk} large, i.e., K � Nd. Evaluating
Y is done through either simulation or, where possible, direct
measurement. Note that the basis functions need to be con-
structed only once, even though the solution procedure for αk
in (3) may need to be repeated as often as necessary (typically
once or more during the course of a single observation). This
allows very accurate (potentially time-consuming) simulation
or measurement techniques to be used in generating the basis
functions without affecting the time required to perform the
calibration measurements.

Let {Ωs}Ss=1 be a set of S points on the far-field sphere
where the radiation patterns are sampled to form each of the
basis function patterns. Since the radiation pattern has two
polarization components each of the basis functions may then
be represented as a complex-valued (2S)-vector pk

pk =



p(CP)
k (Ω1)

p(CP)
k (Ω2)

...

p(CP)
k (ΩS)

p(XP)
k (Ω1)

p(XP)
k (Ω2)

...

p(XP)
k (ΩS)



(5)

where p(CP)
k (Ωs) and p(XP)

k (Ωs) are the co-polarized and cross-
polarized components of pk(Ωs), respectively. The discrete
pattern model pm constructed using the CBFP method may
then be expressed as

pr ≈ pm =

K∑
k=1

αkpk (6)

where pr is the actual radiation pattern of the antenna sampled
over {Ωs}. Since the basis functions are generated once-off,
the sampling used to construct them is made as dense as
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required by the employed pattern interpolation scheme, so that
the model (6) is able to predict the actual pattern in all desired
directions sufficiently accurate.

Obtaining a useful set of basis functions requires proper
selection of the perturbations δdk that are applied to the
antenna configuration in generating the radiation patterns. This
in turn requires knowledge of the kind of differences that may
be expected to be present between the actual antenna and its
design. By systematically applying perturbations that form a
set representative of the various expected possible antenna
configurations a corresponding set of representative pattern
functions is obtained.

For instance, the structure of a reflector antenna is known
to differ from its design due to various environmental and
manufacturing factors. Some of these differences may be
deterministically related to specific causes, e.g., the structural
deformation resulting from the gravitational loading associated
with a specific pointing elevation angle. So a set of basis
functions may be obtained by calculating the radiation pattern
at a number of different elevations over the range of angles
that the reflector will be steered to. The variation in the
radiation pattern over the range of angles will generally
be non-linear so that it may be insufficient to use only
the patterns at the minimum and maximum elevations, and
additional patterns obtained at intermediate elevations may
be required. Now consider a second effect, say temperature
induced panel buckling of the reflector surface. The resulting
effect on the radiation pattern may be different from that due
to varying gravitational loading so that the effectiveness of
the basis functions constructed through varying the elevation
angle may be limited when compensating for effects related
to temperature variation. In this case more basis functions
may need to be generated using different geometries that each
corresponds to a different operating temperature.

As more effects are included the number of basis functions
increases and more unknown coefficients need to be solved
for in (6). Since it is desired to achieve the highest model
accuracy for a given number of terms it is useful to form a
set {ul}Ll=1 of L < K basis functions which can be used to
accurately approximate any element in the space spanned by
{pk}

K
k=1. It can be shown that such a set which minimizes the

sum of squares of the distances from the space U = span {ul}
to each pk is minimized by selecting {ul}Ll=1 as columns from
the matrix U where

P =
[
p1 p2 · · · pK

]
= UΣVH (7)

is the Singular Value Decomposition (SVD) of P [20]. The
new set of basis functions is obtained by selecting the columns
from U for which the singular values are above a certain
tolerance τ ∈ [0, 1) relative to the maximum singular value.
That is, for σ1 ≥ σ2 ≥ · · · ≥ σL > τσ1 and τσ1 ≥
σL+1 ≥ σL+2 ≥ · · · ≥ σK only the first L columns
{u1,u2, · · · ,uL} of U are retained as basis functions. The
CBFP model constructed with orthonormalized basis functions
then becomes

pr ≈ um =

L∑
l=1

βlul. (8)

B. Pattern Model Solution

The model in (8) requires the solution of the expansion
coefficients {βl}Ll=1. Toward this end, we first sample the
actual radiation pattern and each of the basis functions in a
few directions {Ωt}Tt=1 with T ≥ L, and where T � S, since
the idea is to use as few measurements as possible. From this,
the linear system

Aβ = y (9a)

is constructed with

yt = p(P )
r (θt, φt) (9b)

and where Atl is the element in ul corresponding to po-
larization P and direction Ωt. For T = L pattern samples
the system in (9) is exactly determined and a solution is
found as β = A−1y; for T > L the system is over-
determined and a linear least-squares solution is obtained as

β =
(

AHA
)−1

AHy. Since each of the basis functions de-
fined in (5) contains both polarization components, a solution
to the system (9) obtained using any combination of co- /
cross-polarized samples of the actual pattern to form y will
yield a full-polarization pattern model. However, practically it
makes sense to use measurements of the co-polarized pattern
if the antenna is designed to have low cross-polarization since
this would typically yield a higher signal-to-noise ratio.

Since the radiation pattern is a complex-valued function
the measurements used to construct y should also yield the
phase pattern at the measured points. When the relative phase
difference of the calibrator source is unknown from sample
to sample, a correlation-based measurement can be used as
described in [21]. In radio astronomy, for instance, this mea-
surement technique involves a reference antenna that is pointed
at a strong celestial calibrator radio source1, while the antenna-
under-test (AUT) is steered to position that same calibrator
source successively at each of the directions {Ωt} in which
the radiation pattern is required to construct (9). The output
voltages V1 and V2 of the reference antenna (#1) and the AUT
(#2), respectively, are correlated to produce the correlation

1Often these sources are unpolarized, in which case the subsequent results
are somewhat more complicated for a practical antenna with non-zero cross-
polarization. It can be shown that under these conditions the correlation matrix
elements become

R21 =
〈
V (CP)
2 V

(CP)
1

〉
+

〈
V (XP)
2 V

(XP)
1

〉
R11 =

〈
V (CP)
1 V

(CP)
1

〉
+

〈
V (XP)
1 V

(XP)
1

〉
where V (CP)

i (V (XP)
i ) is the voltage output produced by antenna i due to the

component of the incident electric field which is parallel (orthogonal) to the
co-polarization. The cross-terms that are omitted in the above expressions are
zero since the two polarization components of the signal are uncorrelated,
and both R11 and R21 contain one extra term which each affects the model
solution in a different way. In R11 the added term is equivalent to a scalar
multiplication of the right-hand side vector y in (9), whereas the added term
in R21 is equivalent to additive noise which varies across the elements in
y since the cross-polarized response of the AUT is a direction-dependent
property [19]. However, if it may further be assumed that the reference
antenna and AUT both have low cross-polarization, these expressions yield
approximately the same result as (11) for the case where only co-polarized
pattern measurements are performed.

It is assumed herein that the calibrator source is completely polarized and
that it has the polarization that is defined as the co-polarization.

3



Forum for Electromagnetic Research Methods and Application Technologies (FERMAT)

matrix R. For a wide-sense stationary ergodic source signal
the correlation may be replaced with a time-average, so that
R may be written as

R =

[
R11 R12

R21 R22

]
=

[〈
V1V 1

〉 〈
V1V 2

〉〈
V2V 1

〉 〈
V2V 2

〉] (10)

where 〈·〉 means the time-average and x means the complex-
conjugate of x. With this result, the complex-valued radiation
pattern samples can be obtained within a constant normaliza-
tion factor, which can further be accounted for by calibrating
on a source with known flux density. Then, the elements in
the right-hand side vector in (9) become

y
(P )
t =

R21

R11
=
p
(P )
r (θt, φt)

p
(P )
ref (0, 0)

. (11)

After solving for the expansion coefficients β, the pattern
model in (8) can be used to predict the both polarizations of
the actual radiation pattern in all directions {Ωs} in which
the basis functions are defined. Furthermore, if the sampling
used to construct the basis functions is sufficiently fine,
interpolation techniques can be used to obtain an accurate
continuous beam model.

In evaluating the performance of the proposed modeling
technique it is useful to consider the error between the actual
pattern and the model. The accuracy of any given approxima-
tion to the actual radiation pattern is evaluated herein using
the error metric

Error =

∫
θ≤θmax

‖pr − pm‖
2 dΩ∫

θ≤θmax

‖pr‖
2 dΩ

(12)

where θmax defines the relevant beam area centered around
(θ = 0, φ = 0). Since the pattern functions pr and pm
are complex-valued this error takes into account differences
in the phase patterns of the model and the actual pattern.
Furthermore, since the pattern functions are also vector-valued,
differences in both the co-polarized and cross-polarized com-
ponents of the patterns also impact on the error.

Note that the solution to (9) does not guarantee the mini-
mization of the error defined in (12) for a given set of model
basis functions. An alternative method to determine the pattern
model coefficients, which does minimize the error in (12), is
to solve the system

A′β = y′ (13a)

wherein

A′tl =

∫
θ≤θmax

pl · pt dΩ (13b)

y′t =

∫
θ≤θmax

pr · pt dΩ. (13c)

However, this solution for the model parameters is of little
practical use, since the computation in (13c) requires knowl-
edge of the actual radiation pattern over the entire angular
region over which the model is to be used, thus defeating the
purpose of seeking a model in the first place. Nevertheless,
this approach is useful from a theoretical perspective and to
test the efficiency of a given set of basis functions.

θ

Pf(r, θ, φ)

φ
x′

z′

y′

x

z
y

Pp

Ps

Fig. 1. Offset Gregorian reflector antenna. Positional errors of the feed
and subreflector are referenced to the (x, y, z) coordinate system where z is
directed along the support arm from the main reflector base to the subreflector
base, x is in the symmetry plane. The far-field is referenced to the (x′, y′, z′)
coordinate system where z′ is parallel to the main reflector axis and x′ is in
the symmetry plane.

III. RESULTS

In this section, the CBFP modeling technique is illustrated
through modeling the radiation pattern of a reflector antenna
which, due to changing environmental and operating condi-
tions, is varying in time. The antenna is a single-pixel fed
offset Gregorian reflector with a projected diameter of 13.5 m
and is based on the MeerKAT radio telescope [22]. Radiation
patterns for the structure were obtained in GRASP [23] using
Physical Optics and the Physical Theory of Diffraction (PO +
PTD) principles. Unless stated otherwise, results are shown for
an operating frequency of 1.42 GHz. Two kinds of structural
deformations are assumed to affect the radiation pattern of the
antenna, namely (see Fig. 1): (i) a deformation of the support
arm, on which the feed and subreflector are hosted, and; (ii)
a deformation of the main reflector surface.

A. Support arm deformation

In simulation, the deformation of the support arm is mod-
eled by repositioning the feed and subreflector according to
tolerances obtained from a mechanical analysis taking into
account the effects of wind, temperature, and gravitational
loading [24]. The range of expected positional errors for the
feed and subreflector are listed in Table I. Since the feed
and subreflector are fixed to the same support structure, the
changes in their positions are affected in proportion to their
relative positions on the support arm and the direction of
change is the same for both components. Upon assuming that
the rest of the system is free of errors, all possible realizations
of the system can be described by the three-element row vector
δd = [δx , δy , δz] of normalized displacement positions,
where d = δd D gives the absolute displacement of the sub-
reflector from the designed position if D is a diagonal matrix
such that diag (D) = [0.01 , 0.005 , 0.02]. Accordingly, we
can define the subset Dr = {(δx, δy, δz) | δx, δy, δz ∈ [−1, 1]}.

A few patterns from the corresponding Pr space obtained by
varying δx are shown in Fig. 2. The patterns are shown in the
xz-plane (φ = 0◦). The ideally expected pattern corresponds
to the perfectly constructed antenna d = d0 = 0, which has
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Dimension x [mm] y [mm] z [mm]
Feed ±7.7 ±3.9 ±15.4
Subreflector ±10.0 ±5.0 ±20.0

TABLE I
EXPECTED RANGE OF FEED AND SUBREFLECTOR POSITIONAL ERROR DUE

TO SUPPORT ARM DEFORMATION.

θ [deg]
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Fig. 2. Pattern variation resulting from x-displacement of the feed and
subreflector.

δx = 0, and the remaining two patterns correspond to the
maximum displacement δx = ±1 of the subreflector along
the x-dimension. As expected, the feed (and subreflector)
displacement primarily results in a change in the pointing
direction of the main beam.

Suppose we wish to apply the CBFP method to model any
pattern resulting from any δx ∈ [−1, 1]. An obvious choice
of basis functions is to use Y (0) as the primary CBFP, and
the two additional ones Y ([±1 , 0 , 0]) as secondary CBFPs.
Using the SVD, an orthonormalized set of three basis functions
is obtained to yield the model in (8). Now suppose the actual
radiation pattern is pr = Y ([δx , 0 , 0]) where δx = 0.4254.
The linear system in (9) is constructed by sampling the co-
polarized component of pr in three directions within the region
θ ≤ 1◦. This angular region is selected to be within the
main beam region where the Signal-to-Noise Ratio (SNR)
can be expected to be sufficiently high to yield accurate
measurements. Next, the system model coefficient vector β is
solved and the pattern model um is obtained. Fig. 3 shows the
actual pattern and CBFP model, as well as the ideally expected
pattern for comparison. On the scale shown, the model and the
actual pattern are virtually indistinguishable in amplitude and
phase, whereas the difference between the actual and expected
pattern is clearly visible. The model also accurately predicts
the pattern over a region covering the main lobe and first few
sidelobes which extends well beyond the region within which
the actual pattern was sampled.

Since Y is non-linear for the considered system, the range
space Pr may be better approximated by generating more
CBFPs, each of which corresponds to a basis function taken
from a finer sampled domain space. Let the first space for
x-displacements be C(x)

1 = {Y (d) | δx ∈ ∆1 and δy, δz = 0}
where ∆1 = {0,±1} (the same as the set above), and then

θ [deg]
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(b)
Fig. 3. CBFP model for x-displacement of the feed and subreflector. (a)
Amplitude and (b) phase plots of the actual pattern pr , ideally expected pattern
p0, and CBFP model um are all shown in the φ = 0◦ plane.

form similar sets C(x)
2 and C

(x)
3 using ∆2 = {0,±0.5,±1}

and ∆3 = {0,±0.25,±0.5,±0.75,±1}, respectively. The
SVD was performed for each of these sets, whose left-singular
vectors corresponding to σl ≥ 10−6σ1 were retained to form
the new set of orthonormalized basis functions. This resulted
in three basis functions for C(x)

1 and five basis functions for
both C

(x)
2 and C

(x)
3 . Next, a number of CBFP models were

solved for each set by varying the number of basis functions
employed from that set and using in each case as many pattern
samples within θ ≤ 1◦ as there are unknown coefficients.
The error in the model was then calculated using (12) and
θmax = 10◦. A comparison of the errors obtained with models
containing various numbers of terms and constructed from
the different sets is shown in Fig. 4(a). It is clear that
finer samplings of the pattern space generally yield models
of higher accuracy, even for a constant number of terms.
Nevertheless, using only a two-term model from C

(x)
1 (and

therefore sampling the actual pattern only in two directions)
the error in the pattern model is already more than three orders
of magnitude lower than the error in assuming the ideally
expected pattern.

A similar result can be achieved for CBFP models to com-
pensate for pattern variations resulting from a y-displacement
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Fig. 4. CBFP model error as a function of the number of terms L.
System error is (a) x-, and (b) y-displacement of the feed and subreflector. A
comparison is shown for different sets of basis functions. Dashed horizontal
line indicates error in assuming ideally expected pattern.

of the feed and subreflector. In this case, the CBFP sets
are C

(y)
1 = {Y (d) | δy ∈ ∆1 and δx, δz = 0}, as well as

C
(y)
2 and C(y)

3 similarly defined as before. The actual pattern
to be modeled in this case is pr = Y ([0 , δy , 0]) where
δy = 0.3914. The errors in the various models are shown
in Fig. 4(b). Note that the errors are typically smaller than for
the case of x-displacements, and that using the same tolerance
τ = 10−6 results in one less basis function to be retained in
the sets C(y)

2 and C
(y)
3 relative to the sets C(x)

2 and C
(x)
3 ,

respectively. This is a result of the fact that the range of
positional errors is larger along the x- than the y-dimension.

Consider now generating a set of CBFPs to model pattern
variations for displacement of the feed and subreflector in
the xy-plane. One approach is to combine the sets con-
structed for the x- and y-displacements, e.g. C(x)

1 ∪ C(y)
1 .

However, owing to the non-linearity of Y this would not
provide a very accurate approximation for any physically
feasible solution in Pr. A better approach would be to also
employ CBFPs generated for displacements along both x

and y simultaneously. Following this approach, let C(xy)
1 ={

Y (d) | (δx, δy) ∈ ∆2
1 and δz = 0

}
, and let C(xy)

2 and C
(xy)
3

be similarly defined using (δx, δy) ∈ ∆2
2 and (δx, δy) ∈ ∆2

3,
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Fig. 5. CBFP model error as a function of the number of terms L. System
error is xy-displacement of the feed and subreflector. A comparison is shown
for different sets of basis functions constructed from (a) separate x- and y-
displacement, and (b) separate as well as combined x- and y-displacement of
the feed and subreflector. Dashed horizontal line indicates error in assuming
ideally expected pattern.

respectively. For the sake of comparison, both approaches
are examined and models with various numbers of terms
are constructed from the different sets as done above, and
then solved, so that the errors for each model can be de-
termined. The results are shown in Fig. 5(a) for the CBFP
sets obtained by simply combining x- and y-displacement
sets, and in Fig. 5(b) for CBFP sets that also contain patterns
corresponding to simultaneous x- and y-displacements. From
the results it is clear that the latter approach is preferred if high
accuracy is priority — the addition of patterns for combined
xy-displacement increases the dimension of the space spanned
by the basis function set, and enables solutions of much
higher accuracy. Nevertheless, for models with very few terms,
either approach seems to yield similar levels of accuracy. In
the case where these levels of accuracy are sufficient, the
approach which simply combines x- and y-displacement sets
is preferred since it typically requires much less initial CBFPs
to be constructed.

Note in Fig. 5 that the addition of more basis functions to the
model does not necessarily result in a decrease in error. In fact,
in certain cases the error increases with addition of terms in
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Fig. 6. Results similar to that in Fig. 5, except that the models are solved
using the linear system in (13). A comparison is shown for different sets
of basis functions constructed from (a) separate x- and y-displacement,
and (b) separate as well as combined x- and y-displacement of the feed
and subreflector. Dashed horizontal line indicates error in assuming ideally
expected pattern.

the model. This is due to the fact that the solution to (9) does
not guarantee the minimization of the error defined in (12)
for a given set of model basis functions. Fig. 6 shows results
similar to those in Fig. 5, except that the model solutions
are obtained using (13) and with each additional term in the
respective models the error is seen to decrease. However, in
agreement with the results in Fig. 5, for larger numbers of
basis functions the models which also employ CBFPs for
simultaneous displacements along both x and y perform much
better than those which simply combine CBFP sets for separate
x and y displacement.

The difference between the actual pattern and each of the
models obtained by solving (9) with C

(xy)
1 for L = 1, 2, 3, 6

is shown in Fig. 7. For comparison, the difference between the
actual pattern and the ideally expected pattern is also shown.
Differences are normalized to the maximum of the actual
realized pattern. Using only one basis function (L = 1), a
single testing point in the on-axis direction is used to solve the
model, which results in a zero difference between the actual
pattern and the model at that point. Adding the second basis
function (L = 2) compensates for pattern variations similar

to that observed for x-displacements, causing the pattern error
to reduce significantly in the φ = 0◦ plane, while this is not
really the case in the φ = 90◦ plane. Only after adding a
third basis function (L = 3) the error in the φ = 90◦ plane
reduces significantly. Not surprisingly, the orthonormalized
basis functions obtained from the SVD are ordered in a specific
manner to reflect the fact that a greater degree of pattern
variation is observed for x- than for y-displacements, which
is caused by the the larger range of movement allowed along
the x-dimension for the considered mechanical deformations.
Also note how the model accuracy for the cross-polarized
component behaves as more basis functions are added. For
the first two basis functions, the error for the cross-polarization
component in the φ = 0◦ plane remains as high as that in the
ideally expected pattern; this error only reduces from the third
basis function upward. On the other hand, even employing
the first basis function helps to reduce the error in cross-
polarization level in the φ = 90◦ plane. For the offset design,
the cross-polarization is practically zero in the plane of sym-
metry (φ = 0◦), but rather significant in the orthogonal plane
(φ = 90◦). In the case where the subreflector and feed are
displaced along the x-dimension, the symmetry is still intact
and the cross-polarization level in the φ = 0◦ plane remains
low, whereas a displacement along the y-dimension breaks the
symmetry causing the cross-polarization level in that same
plane to increase significantly. According to the ordering of
the orthonormalized basis functions, as described above, this
means that the second basis function, which compensates
mostly for x-displacements, is unable to model relatively large
cross-polarization levels in the φ = 0◦ plane. With the addition
of the third basis function, which compensates mostly for y-
displacements, the cross-polarization can be modeled properly
in both planes.

Finally, the CBFP method was applied to model pattern vari-
ations resulting from displacements in all three dimensions and
at two frequencies, viz., 580 MHz and 1750 MHz. The CBFPs
that have been generated at both frequencies are C(xyz) ={
Y (d) | (δx, δy, δz) ∈ ∆3

}
where ∆ =

{
0,± 1

3 ,±
2
3 ,±1

}
. The

orthonormalized basis functions for which σl < 10−6σ1 are
yet again discarded. For the lower frequency, where the same
absolute displacement is electrically smaller than at the higher
frequency, only 9 CBFPs are retained; at the higher frequency
11 basis functions are retained. For each frequency, fifty actual
patterns were then generated, each by applying an arbitrary
displacement to the feed and subreflector within the space Dr.
Next, a CBFP model was developed for each of the resulting
patterns using as many pattern measurements as there are
solvable coefficients and by restricting these measurements
to within the main beam region. Accordingly, the error was
calculated for each model using θmax = 13.2◦ and θmax = 4.1◦

at the lower and higher frequency, respectively. The results
are shown in Fig. 8(a) for the lower frequency and in (b) for
the higher frequency. As can be expected, the overall error is
smaller at the lower frequency than at the higher frequency. In
either case, and for all solutions using only two basis functions,
the model error is reduced to less than 10% between the actual
and the ideally expected pattern.
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Fig. 7. Normalized difference between actual pattern and CBFP models with various numbers of terms. System error is xy-displacement of the feed and
subrefletor. Co-pol component shown in (a) φ = 0◦ and (b) φ = 90◦ planes, and cross-pol component shown in (c) φ = 0◦ and (d) φ = 90◦ planes.
Difference between actual and ideally expected patterns is also shown.

B. Deformation of main reflector surface

The second kind of structural deformation considered here
is that of the main reflector surface due to temperature
variation. The reflector surface is assumed to consist of a
number of panels that are arranged in concentric rings and
divided sectorially. It is further assumed that the supporting
structure on which the panels are mounted does not change
with temperature, so that the edges of the panels (which
are fixed to the underlying support structure) also remain in
position. As the panels expand and contract with changes in
the temperature the panels buckle, causing the reflector surface
to deviate from a smooth paraboloid section. This effect is
modeled in simulation by meshing the reflector surface into
triangular patches and by applying an axial shift ξz′ to the
mesh nodes according to the formula [19], [25]

ξz′(ρ, ψ) =
γρ

a

∣∣∣∣sin (mρπρ) sin

(
mψψ

2

)∣∣∣∣ (14)

where (ρ, ψ) are circular cylindrical coordinates over the main
reflector aperture plane, a is the projected aperture diameter,
mρ and mψ are the number of panels in the radial and angular
directions, respectively, and γ is a temperature-dependent
constant that controls the magnitude of the panel buckling.

Compared to the formula used in [25], here a linear factor ρ
is added to (14) to account for the large panel sizes farther
out from the aperture center. Fig. 9 shows the surface error as
a function over the aperture plane for γ = 4.5× 10−3.

Assuming that this is the only error present in the system,
all possible realizations of the antenna structure are entirely
specified by the single parameter γ, which will here be limited
to the range [−Γ,Γ] with Γ = 0.006. The maximum surface
error is therefore ≈ 6 mm, which is about λ/35 at 1.42 GHz.
The corresponding space of realizable patterns Pr is then
formed by the image of all mappings Y (δγ) where γ = Γδγ
and δγ ∈ [−1, 1].

The CBFP set constructed to compensate for the possible
pattern variation was formed as C(γ) = {Y (δγ) | δγ ∈ ∆}
with ∆ = {0,±0.5,±1} and the actual pattern to be modeled
was obtained using pr = Y (δγ = 0.75). As before, only
orthonormalized basis functions for which σl ≥ 10−6σ1 are
retained, resulting in only 4 CBFPs. Models with various
numbers of terms were solved by sampling the actual pattern
within the region θ ≤ 1◦, and the error for each model was
calculated using θmax = 10◦.

The ideally expected pattern and a two-term CBFP model
are compared to the actual pattern in Fig. 10. One observes that
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Fig. 8. Error as a function of the number of basis functions L in each model
at (a) 580 MHz and (b) 1750 MHz. System error is subreflector and feed
xyz-displacement. Dots show results for fifty separate solutions and solid
line indicates mean result across all fifty solutions. Dashed horizontal lines
indicate error between ideally expected and actual patterns, averaged across
all fifty solutions.
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φ = 20◦-plane. System error is temperature induced main reflector surface
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the dominant effect on the radiation pattern of this particular
deformation is a change in sidelobe structure, which the model
is able to predict very accurately. The decrease in error, when
the number of terms in the model is increased, is shown in
Fig. 11, where the two-term model is seen to significantly
reduce the error as compared to the error between the ideally
expected and actual pattern.

IV. DISCUSSION

This paper describes the CBFP method and demonstrates
its use through examples pertaining to structural deformations
typically occurring in a dual-reflector antennas. It has been
shown that the actual realized pattern resulting from these
system errors can be approximated accurately in a space of
basis function patterns (CBFPs) of relatively low dimension.
From this subspace of initially generated of CBFPs, highly
accurate low-order (two- or three-term) CBFP models for these
patterns can be extracted through the application of the SVD in
conjunction with a threshold procedure on the singular values.
This presents an efficient modeling solution in applications
where the calibration of a time-varying radiation pattern using
as few measurements as possible is required.
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In order to help put the results presented in this paper into
perspective, it is useful to consider the accuracy requirement
for certain applications. For example, in radio astronomy,
achieving the image fidelity target of 10−4 for the SKA will
require the root mean square error between the antenna radi-
ation pattern and its model to be lower than about 5.5× 10−3

for the dish array [14], [26]. Achieving this level of accuracy
with traditionally used single-term analytic functions, such as
the jinc-function2 and cosn functions [27]–[29], is impossible;
even more sophisticated multiple-term analytic models do
not offer sufficient accuracy [14], especially with as few
terms as are typically used in the CBFP models presented
herein. Meeting the requirements of an accurate pattern model,
obtained with very few measurements at the observation time,
will have to rely on approaches, such as the CBFP method
proposed herein, where as much a priori knowledge of the
antenna system is built into the model and only a few solvable
parameters (DoFs) are retained to compensate for dominant
sources of pattern variation.

In the following, some future challenges for the devel-
opment and extension of the proposed CBFP method are
discussed. Finally, some comments are made regarding the
use of Macro Basis Functions (MBFs) and Nyquist sampling.

A. Extending Applications of the Method

Although the application example provided herein pertains
to a certain class of expected system uncertainties affecting
the beam pattern of reflector antennas, the extension of the
method to other system errors and many other antenna designs
is relatively straightforward. To this end, it is important to
identify errors which are likely to be present in the system
and which would have a significant effect on the radiation
pattern. One application area where still much work is required
is the beam modeling for large array antennas, such as for
the LOFAR [30] radio telescope and the SKA-low [7]. The
CBFP method was first demonstrated as an efficient calibration

2Similar to the naming of sinc function, jinc =
J1(x)

x
where J1 is the 1st

order Bessel function of the first kind.

method for array antennas, where the element pattern was
expected to perturb due to mismatch effects [13].

The major challenge is the sheer size of the arrays — on the
order of a few hundred antenna elements. Even if the pattern
of each of the antennas in the array is approximated with just
a single-parameter model then, due to the size of the array, the
model for the entire array would contain hundreds of solvable
parameters, provided that one cannot use the array factor times
the embedded element pattern approximation. In this case, it is
necessary to develop techniques which could further reduce the
number of solvable parameters in the model to find a practical
beam modeling solution.

Another possible approach is to work directly with the array
beam pattern when constructing basis functions. By doing this,
the space in which the possible (array) antenna configurations
reside becomes very large and it is yet to be determined how
this affects the space of possible radiation patterns. Research
in this direction is required to obtain an indication of how
certain errors (e.g., weather dependent ground reflection, gain
drift, etc.) in the array affect its radiation pattern.

Similar challenges exist for reflector antenna systems that
employ dense array feeds or, so-called, “phase array feeds”
(PAFs) [31], [32]. However, in this case the problem may
exacerbate further as the presence of a complex reflector
system may introduce an additional set of dominant system
errors [33].

B. Experimental Verification

Thus far, results for the CBFP method have only been
obtained through computer simulations, while the experimen-
tal verification of the accuracy of the method is still an
important challenge to address. Firstly, it is to be determined
how effective numerically generated CBFPs are at modeling
the radiation pattern of an actual antenna. This is mostly
determined by how well the physically built antenna can
be characterized and modeled in simulation. In fact, precise
causes for artifacts in the actual patterns can be hard to
trace [26], which makes it difficult to introduce the relevant
system errors in the simulation model when generating a set of
CBFPs. This advocates the inclusion of at least one measured
pattern in the set of CBFPs.

Secondly, suppose a CBFP model is constructed for an
actual radiation pattern, then it is natural to question the
accuracy of that model. Verifying the model accuracy would
require the actual radiation pattern to be measured as it
exists at the time when the model is solved. This may also
prove challenging for large antenna structures (e.g., arrays or
reflector antennas) since the radiation pattern has to remain
stable during the course of a measurement.

C. Macro Basis Functions and Nyquist sampling

A question which has been raised (originally in the context
of MBFs for frequency domain method of moments applica-
tions) is whether MBFs violate Nyquist sampling. This limit
is often loosely specified as being λ/2, but this is only strictly
valid in the context of explicit time-domain methods, such
as the Finite Difference Time-Domain (FDTD) method. (In
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the FDTD, for instance, the temporal sampling is defined
by the Nyquist limit for a monochromatic analysis; in 1D,
running at the Courant limit, this does indeed translate to a
spatial sampling limit of λ/2.) For frequency domain methods,
the appropriate Nyquist frequency is actually in the spectral
(Fourier, or k-space) domain, and the appropriate frequency
is spatial frequency. However, the key point here — in both
the context of the MBF methods such as in computational
electromagnetics and in the present context of patterns —
is that since well-constructed MBFs inherently contain the
required spatial variation, one can indeed apparently spatially
under-sample. In particular in the present context, it is obvious
that only one sample is needed if the solution is identical to
the MBF. For this reason, MBFs have been generated in both
the spectral and spatial domains [34], [35].
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