

Department of Signals & Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2014

Decision Making for Automated Vehicles
in Merging Situations
- using Partially Observable Markov Decision Processes
Master’s thesis in Systems Control and Mechatronics

MALIN NILSSON

The research leading to these results has received funding from the European Commission
Seventh Framework Programme under the project AdaptIVe, grant agreement number
610428. The author(s) would like to thank all partners within AdaptIVe for their cooperation
and valuable contribution.

CHALMERS UNIVERSITY OF
TECHNOLOGY

Department of Signal and Sys-
tems

Visiting address:
Hörsalsvägen 9-11, level 5-7
Göteborg, Sweden

Postal address:
Chalmers University of Technology
Instutitionen för Singaler och System
412 96 Göteborg

Telephone:
031-772 10 00

Telefax:
031-772 17 48

Web page:
http://www.chalmers.se/sv/institutioner/s2

Abstract

In this thesis a decision making algorithm for automated cars in
lane change situations is presented. The algorithm accounts for
situations when all objects detected by the sensor system cannot
be classified. The algorithm is partially formulated as a Partially
Observable Markov Decision Process which is solved approximately
with means of Point Based Value Iteration.

The algorithm is implemented in a simulation environment and
then tested and analyzed with simulation data. The results show
that the decision algorithm is able to choose a proper gap to merge
into and it is able to cancel a maneuver if the traffic situation
changes so that a merging operation cannot be completed. If the
execution time of the implemented Point Based Value Iteration
algorithm could be decreased this would further improve the real
world applicability of the decision making algorithm.

Keywords: Automated cars, merging, decision making, POMDP,
MDP, Point Based Value Iteration.

Decision Making for Automated Vehicles in Merging Situations -

using Partially Observable Markov Decision Processes

Malin Nilsson

c© Malin Nilsson, 2014

Author: Malin Nilsson, Systems Control and Mechatronics Master’s Program,

Chalmers University of Technology

Advisor: Stefan Solyom, Technical Expert - Autonomous Drive, Volvo Car Corporation

Examiner: Jonas Sjöberg, Professor, Research Group Leader, Mechatronics,

Chalmers University of Technology

Sponsor: Volvo Car Corporation

Acknowledgements

———————————————————————————

For their help in the work that has resulted in this thesis, I would
like to thank a few people.

First of all I would like to thank the people at the department
of Automated Drive at Volvo Car Corporation for a great few
months which have been very rewarding. In particular I would
like to thank my advisor Stefan Solyom and my examiner Jonas
Sjöberg for all the support I have been given. I also want to extend
thanks to Julia Nilsson, PhD student at Volvo Car Corporation,
for giving me valuable feedback especially in the beginning of the
project.

Lastly I would like to thank Staffan Häglund for providing support
and cheering me up whenever the algorithm troubled me.

———————————————————————————

Nomenclature

ADR: Average Discounted Reward, see (4.1).

Agent: The agent in an MDP or a POMDP is the decision maker. In the merging decision
algorithm the agent is the host car.

Cardinality of X, |X|: The cardinality of X is the number of elements in the set X.

Gap: Defined in Definition 3.1.3.

Ghost-car: A ghost-car is an object that is falsely classified as a car. In the merging decision
algorithm a ghost-car is an object that has been detected but that can be neglected in the con-
text of merging.

Host car: The host car is the automated car for which the algorithm presented in this thesis
is designed for.

Master function: Defined in Definition 3.1.4.

MDP: Markov Decision Process

Merging decision algorithm: The merging decision algorithm is the algorithm presented in
this thesis and consists of four stages.

Merging lane: The merging lane is the lane that the host car will drive in when the merging
maneuver has been completed.

PBVI: Point Based Value Iteration

POMDP: Partially Observable Markov Decision Process

Status of a suspected ghost-car: Defined in Definition 3.1.2.

Suspected ghost-car: Defined in Definition 3.1.1.

Time complexity: The time complexity of an algorithm, commonly described using the big O
notation, describes the time it takes for an algorithm to run as a function of the length of the
input. The big O notation is described asymptotically, hence lower order terms and coefficients
are excluded. For example, a for-loop from 1 to N over an operation that is constant in time
has complexity O(N).

Contents

1 Introduction 1
1.1 Thesis Outline . 1
1.2 Context of the Thesis Project . 1
1.3 The Merging Situation and the Optimal Merging Maneuver 2
1.4 Decision Making . 2
1.5 Automated Decision Making in Merging Situations and its Difficulties 3
1.6 Problem Definition and Scope of Thesis . 4
1.7 Overview of the Solution . 5
1.8 Contributions . 5

2 Theory and Related Work 7
2.1 Related Work on Decision Making in Merging Situations 7
2.2 Markov Decision Processes . 8

2.2.1 MDPs and their Applications . 8
2.2.2 Infinite-Horizon Discounted Reward MDP 8
2.2.3 A Policy - the Solution to an MDP . 10
2.2.4 Solution Methods of MDPs . 10

2.2.4.1 The Value Iteration Algorithm 10
2.3 Partially Observable Markov Decision Processes 11

2.3.1 Formulation of the Infinite-Horizon Discounted Reward POMDP 11
2.3.2 Solving an Infinite-Horizon Discounted Reward POMDP 13
2.3.3 Point Based Value Iteration . 15

2.3.3.1 Belief Point Selection . 16
2.3.3.2 Termination Criteria . 18

3 The Merging Decision Algorithm 19
3.1 Terminology . 19
3.2 Stage 1 . 20

3.2.1 Description of the POMDP model . 21
3.2.1.1 State space S . 21
3.2.1.2 Action space A . 22

i

CONTENTS

3.2.1.3 Reward function R : S ×A → R 23
3.2.1.4 Transition function T : S ×A× S → [0,1] 27
3.2.1.5 Observation space O . 29
3.2.1.6 Observation function Z : S ×O → [0,1] 31
3.2.1.7 Initial belief point b0 . 32
3.2.1.8 Discount factor γ . 33

3.2.2 Description of the MDP model . 33
3.2.3 Solving the POMDP model and the MDP model 34
3.2.4 Top Level Implementation of Stage 1 . 39

3.3 Stage 2 . 42
3.4 Stage 3 . 43
3.5 Top Level Implementation of the Merging Decision Algorithm 44

4 Results 46
4.1 Implementation of the Merging Decision Algorithm 46
4.2 Test Cases . 46

4.2.1 Test Case 1 . 47
4.2.2 Test Case 2 . 50
4.2.3 Test Case 3 . 52
4.2.4 Test Case 4 . 54

4.3 Policy Evaluation . 54
4.3.1 Policy Evaluation Test 1 . 57
4.3.2 Policy Evaluation Test 2 . 57
4.3.3 Policy Evaluation Test 3 . 58
4.3.4 Policy Evaluation Test 4 . 58

4.4 Speed Performance of Solving the POMDP Model 59

5 Discussion and Conclusions 65
5.1 Comments on the Results . 65

5.1.1 Quality of the Decisions Made . 65
5.1.2 Attractiveness of a Gap . 65
5.1.3 Data with High versus Data with Low Confidence 66
5.1.4 Using the Algorithm with Data from a Real Traffic Scenario 66
5.1.5 Policy Performance . 66
5.1.6 Execution Time Required . 67

5.2 Scalability of the Proposed Model . 67
5.3 Additional Improvements . 68
5.4 Concluding Remarks . 68

Bibliography 71

Appendix A 73

ii

1
Introduction

T
he topic of this thesis concerns decision making for automated cars in merging situ-
ations where the automated car needs to change lane and join its path with vehicles
driving in the adjacent lane. An algorithm, denoted the merging decision algorithm, is
presented and its performance is evaluated in a simulation environment.

1.1 Thesis Outline

This chapter describes the problems involved in decision making in general and automated
decision making in merging situations in particular. It also presents an overview of the final
solution and states the contributions of the thesis. In Chapter 2 the theory that the algorithm
is based on is presented where the main focus is on Markov Decision Processes and Partially
Observable Markov Decision Processes. In Chapter 3 the merging decision algorithm is described
in detail and in Chapter 4 the results are presented followed by a discussion and concluding
remarks in Chapter 5.

1.2 Context of the Thesis Project

This thesis project is part of the Volvo Car Group pilot project named ”Drive Me”where the goal
is to produce one hundred automated Volvo cars by the year of 2017. The cars are to be used on
typical commuter roads in and around the city of Gothenburg [1]. The automated cars must be
capable of handling a large number of different traffic situations including the merging situation
where decision making is fundamental in order to safely perform the merging maneuver. The
decisions that need to be made concern where to merge, when to merge and whether to continue
to merge or cancel a merging maneuver.

1

1.3. THE MERGING SITUATION AND THE OPTIMAL MERGING MANEUVER

1.3 The Merging Situation and the Optimal Merging Maneuver

Figure 1.1 shows a typical merging situation where the automated car - the host car - is in the
left lane and there are five cars in the right lane such that every two subsequent cars create a
gap. The merging situation may also involve a vehicle in front of the host car in the same lane,
denoted vehicleFront. The goal for the host car is to merge into the right lane - the merging
lane - before the end-point (also illustrated in Figure 1.1) and without violating any traffic rules.
Optimally an optimal merging maneuver should be performed.

Definition 1.3.1 - Optimal merging maneuver
For a given merging situation, an optimal merging maneuver is a maneuver where the host
car manages to merge into the merging lane before the end-point without violating any
traffic rules and with as small impact as possible on all vehicles involved in the merging
situation, including the host car itself.

Figure 1.1: A typical merging situation with the host car in the left lane, a vehicle in front of the
host car in the left lane and five cars in the right lane. The host car should merge into the right lane
before the end-point. All vehicles are traveling to the right in the figure.

With this definition a merging maneuver involving low positive or low negative acceleration
(longitudinally or laterally) is preferred to a merging maneuver with high acceleration values.
The highest impact on vehicles involved in the merging maneuver corresponds to a car crash
and sometimes this may be the only option available in order to merge into the right lane before
the end-point. However, since an intentional car crash would violate traffic rules, an optimal
merging maneuver would not be possible to perform in this case.

As stated, decision making is fundamental when performing a merging maneuver and next
section discusses decision making in general terms.

1.4 Decision Making

Decision making can be broken down into two categories; decision making when the outcome is
deterministic and decision making when the outcome is stochastic. An outcome appears to be
stochastic when there is limited knowledge available or there is limited access to the information
that is needed in order to determine the outcome. Out of all possible outcomes some are usually
preferred to others, hence the outcomes have different utilities. Also, some outcomes are more

2

1.5. AUTOMATED DECISION MAKING IN MERGING SITUATIONS AND ITS
DIFFICULTIES

likely than others. The likelihood of an outcome may not be known due to limited knowledge
on how to determine the probability of an outcome. Also it is not possible to determine the
probability of an outcome if all data that is needed to determine the probability is not available.
If this is the case, estimations of the probabilities can be made.

Good decision making weights the probabilities of all outcomes with the utilities of these out-
comes. However, since there is not just a single way to weight the utilities it can be difficult
to tell whether a decision is good or not or if one decision is better than another. There are
some situations where all rational people would agree that one decision is better than another
but this is not always the case and then there may not be an objective method available that
can be used to measure the quality of a decision. Moreover, if the probability of an outcome
is estimated differently from using different models or judgments this makes it even harder to
determine the quality of a decision.

Also, by only considering the outcome of a decision it is not possible to determine the quality of
the decision since a good decision does not necessarily have a good outcome and conversely, bad
decisions do not imply bad outcomes. As an example, if the host car is close to the end-point
and it is next to a gap that is both wide and is getting larger, one can argue that a good decision
would be to merge into that gap. If the host car starts to merge into that gap but the driver in
the car in front of the host car in the merging lane suddenly breaks hard so that the size of the
gap quickly decreases, the outcome is bad. Still, the decision can be regarded as good because in
considering all information that was available at the time when the decision was made, the gap
chosen was a good gap to merge into. This means that an optimal merging maneuver does not
always have to correspond to good decision making but the single best decision making method
to use when performing a merging maneuver is to consistently make good decisions.

1.5 Automated Decision Making in Merging Situations and its
Difficulties

Automated decision making in merging situations is in similarity to decisions made by human
drivers associated with stochastic outcomes, since it is impossible to determine the future behav-
ior of all vehicles involved in the situation. Even though a merging maneuver is an interaction
maneuver, which means that the driver can influence the behavior of surrounding vehicles to
some extent, this only means that the likelihood for specific outcomes can be increased or de-
creased, not determined.

Decisions that need to be made in merging situations concern:

1. Which gap to try to merge into.

2. When to try to merge into the gap.

3. If an initiated merging maneuver should be canceled.

3

1.6. PROBLEM DEFINITION AND SCOPE OF THESIS

As stated in Section 1.4 the decisions should be based on the probabilities as well as the utilities
of the outcomes. The probabilities of the outcomes can only be estimated since in a merg-
ing situation, like in any complex traffic situation, it is not known how to exactly determine
the probabilities of the outcomes. Also the sensor system is not perfect which means that the
information available is limited and consequently only estimations of the probabilities of the
outcomes can be made. The sensor system is limited in the way that it may not detect all rele-
vant objects and/or it might detect relevant objects twice. The sensor system is also associated
with uncertainties regarding the velocities of the objects and the distances between the objects
and the automated car. Moreover the sensor system is limited when it comes to classification
of objects. Some objects can be classified as cars with high probability whereas other objects
can only be classified as cars with low probability. These objects may be trucks, motorbikes,
traffic signs etc. or just noise. Since an automated merging maneuver is a real time application
the decisions also need to be made in real time. This means that the execution time for a deci-
sion making algorithm is very limited and this can have an impact on the quality of the decisions.

A merging situation is associated with decision making where the exact quality of the decisions
cannot be determined objectively since the probabilities of the outcomes are estimated and there
is not just one way to weight the utilities of the outcomes. Therefore the quality of a decision
in a merging situation can only be evaluated through rational reasoning.

1.6 Problem Definition and Scope of Thesis

The algorithm presented in this thesis - the merging decision algorithm - can be used to make
the decisions that are associated with a merging maneuver and that are listed in Section 1.5.
Hence, the algorithm decides:

1. Which gap the automated car should try to merge into.

2. When the automated car should try to merge into the gap.

3. If the automated car should cancel an initiated merging maneuver.

The algorithm tries to make as good decisions as possible from using the sensor data. However,
since there is no formula available that objectively quantifies the quality of decisions made in
merging situations, the quality of the decisions made by the algorithm will only be evaluated
through rational reasoning.

Some assumptions that simplify the decision making are made. It is assumed that there will be
a gap available that the host car can merge into before the end-point and that the sensor system
is perfect except when it comes to the classification of detected objects. It is also assumed that
all vehicles in the right lane are cars which means that all objects detected are either cars or
objects that can be neglected in the context of merging.

4

1.7. OVERVIEW OF THE SOLUTION

1.7 Overview of the Solution

The merging decision algorithm consists of four stages, illustrated in Figure 1.2, where decisions
1 and 2 listed in Section 1.6 are handled in Stage 1 and decision 3 is handled in Stage 2 and 3.

Figure 1.2: Overview of the
solution. The merging decision
algorithm is divided into four
stages, each one responsible for
a specific task.

In the first stage, Stage 1, the task is to choose which
gap to merge into. A heuristic described in Section 3.2.1.3
creates the foundation for the decision about which gap
to choose. Once a gap has been chosen and this gap is
considered good enough to try to merge into (according
to criteria described in Section 3.2.1.3), the system tran-
sitions to Stage 2 where the host car shows its intention
to merge by signaling with the indicators and laterally
moving towards the line that separates the left lane from
the right lane. The host car should give signal for some
time, allowing surrounding vehicles to be aware of its in-
tention to merge. Therefore the system stays in Stage 2
for some time before transitioning to Stage 3 where the
lane change maneuver takes place, that is, the host car
moves laterally to the middle of the right lane. Finally,
in Stage 4 the merging maneuver has been completed and
the host car follows the car in front of it in the right lane.
The system may transition from Stage 2 to Stage 1 if it
turns out that the gap is not suitable (according to cri-
teria described in Section 3.3), e.g. due to lack of co-
operativeness from surrounding vehicles. Also the system
may transition from Stage 3 to Stage 1 if something un-
expected happens that requires the merging operation to
be canceled. This transition is only an emergency transi-
tion. Figure 1.2 also illustrates the transitions between the
stages.

In Stage 1 the merging situation is described with means of a set of states where each state
corresponds to a position of the host car relative to the objects detected in the right lane.
The state description makes it possible to use the framework of Markov Decision Processes
(MDPs) and Partially Observable Markov Decision Processes (POMDPs) which are explained
in Chapter 2.

1.8 Contributions

The contributions of this thesis concerns decision making in merging situations for automated
cars. The algorithm presented, denoted the merging decision algorithm, uses Markov Decision
Processes (MDPs) and Partially Observable Markov Decision Processes (POMDPs) where each
state in the MDP model and the POMDP model corresponds to a position of the host car relative

5

1.8. CONTRIBUTIONS

to the objects detected in the lane into which the host car should merge. The POMDP model,
which is capable of making decisions in merging situations also when all objects detected by the
sensor system cannot be classified, is solved with means of Point Based Value Iteration (PBVI)
where the belief point selection strategy is specifically designed to suit the POMDP model. The
algorithm is tested in a simulation environment using simulation data as well as data collected
from a real traffic scenario.

6

2
Theory and Related Work

T
his chapter presents related work on decision making in traffic situations, more specif-
ically decision making in merging situations and it outlines the theory which the merg-
ing decision algorithm is based on. In Section 2.1 the related work is presented and
in Section 2.2 it is described how to design and solve a decision making problem for-

mulated as a Markov Decision Process (MDP). There are many kinds of MDPs but only the
one used in the merging decision algorithm in Stage 1 (see Section 1.7) will be discussed. In
Section 2.3 it is described how to set up and interpret a Partially Observable Markov Decision
Process (POMDP), also used in the merging decision algorithm in Stage 1. Section 2.3 also
includes a description of a method called Point Based Value Iteration (PBVI), which is used to
find approximate solutions of POMDPs.

2.1 Related Work on Decision Making in Merging Situations

Decision making for automated cars in merging situations has been investigated by several re-
searchers. Nilsson and Sjöberg present in [2] an algorithm for decision making for lane change
maneuvers where a mixed logical dynamical system is computed and then solved with means of
model predictive control. The model predictive control framework is also used by Cao, Mukai
and Kawabe in [3] which describes the generation of a merging path when entering a road from
a ramp. In [3] no more than one car in the main lane and no more than one car in the merging
lane is considered, also sensor noise is neglected.

In [4], Brechtel, Gindele and Dillman describe a general framework for decision making in traffic
situations. They use an MDP model derived from discretization of a continuous state space
resulting in high computational time complexity. The problem of high computational time com-
plexity is handled by Ulbrich and Maurer in [5] with means of two so-called signal processing
networks that are intended to simplify a POMDP model. The algorithm developed by Ulbrich
and Maurer is used for lane change maneuvers in automated cars and was successfully tested in
an automated car in real world traffic. However, the majority of the decision problem is solved

7

2.2. MARKOV DECISION PROCESSES

using the signal processing networks, not the POMDP. Moreover, the algorithm only consider
one gap, hence the automated car does not choose between several gaps.

An MDP framework is also used in [6] by Wei et al. for single-lane autonomous driving where
the host car is only controlled longitudinally. A so called point-based MDP is derived in which
sensor limitations as well as the uncertain behavior of surrounding vehicles are considered. The
algorithm does not deal with the merging problem but it shows how the MDP framework can
be implemented and used for decision making in a specific traffic situation.

2.2 Markov Decision Processes

This section outlines the theory used when formulating the MDP model used in Stage 1 in the
merging decision algorithm, a so called infinite-horizon discounted reward MDP. For a detailed
description of other kinds of MDPs the reader is referred to [7].

2.2.1 MDPs and their Applications

Markov Decision Processes are widely used within artificial intelligence for modeling sequential
decision-making in environments with probabilistic dynamics where an autonomous decision
maker - the agent - has to determine actions to execute in order to achieve an objective. The
applications of MDPs also extend to other areas such as operations research, computational
finance, gambling theory, control theory and computational neuroscience [7, pp. 3, abstract].

Within the MDP framework it is assumed that the agent has perfect sensors. In the case of
noisy sensors, the MDP can be extended to a Partially Observable Markov Decision Process
(POMDP) [7, pp. 2], discussed in Section 2.3.

2.2.2 Infinite-Horizon Discounted Reward MDP

An infinite-horizon discounted reward MDP can be described as a tuple 〈S,A,T ,R,γ〉 [8],[7,
pp. 8, 16],[9] where:

• S is the finite set of all possible states of the system.

• A is the finite set of all actions the agent can execute.

• T : S × A × S → [0,1] is the transition function where T (s,a,s′) gives the probability of
ending up in state s′ when starting in state s and executing action a.

• R : S ×A×S → R is a reward function where R(s,a,s′) gives the utility for ending up in
state s′ when starting in state s and executing action a. The S × A × S reward function
can be converted to a S ×A function by taking the expectation over the next state,

R(s,a) =
∑
s′∈S
T (s,a,s′)R(s,a,s′). (2.1)

8

2.2. MARKOV DECISION PROCESSES

• γ is the discount factor, 0 < γ < 1.

The set of states describes the different situations that the system can be in and the set of
actions describes all actions the agent can take in order to move between states. In the merging
situation a state can for example describe the position of the host car relative to surrounding
vehicles and the set of actions can consists of different driving commands. An MDP model
typically describes an environment in which the outcome of an action is not deterministic, that
is, when executing a non deterministic action the agent does not transition from one state to
another with probability one. These uncertainties are described in the transition function. In
the merging situation, a non-deterministic action would be ”change lane”. This action is non-
deterministic since it is not possible to tell beforehand whether the surrounding vehicles will
be cooperative when the host car tries to change lane, hence, a lane change may not succeed.
The reward function describes the rewards associated with each state and each action executed.
The objective for the agent is to maximize the sum of rewards gained over an infinitely long
sequence of actions. The rewards are discounted with means of the discount factor γ so that
rewards that can be gained closer to present time are favored to rewards that can be gained later.

Example 2.2.1 Figure 2.1 illustrates an infinite-horizon discounted reward MDP with four
states and two actions. The probability p of going from one state to another state when
executing an action and the reward r obtained for a successful transition are given by a tuple
(p,r). For example, action a1 takes the agent from state s3 to state s4 with probability 0.8
and 4 points are then received in reward.

Figure 2.1: Illustration of an infinite-horizon discounted reward MDP with four states and two
actions. The transition probabilities p and the rewards r are given by tuples (p,r).

9

2.2. MARKOV DECISION PROCESSES

2.2.3 A Policy - the Solution to an MDP

The solution to an MDP is called a policy, denoted π.

Definition 2.2.1 - Policy for an infinite-horizon discounted reward MDP.
A policy in an infinite-horizon discounted reward MDP maps states to actions, π : S → A [7,
pp. 11].

Finding the optimal solution to an infinite-horizon discounted reward MDP means finding the
optimal policy, π∗, which is the policy that maximizes the expected sum of discounted rewards.
The optimal policy corresponds to the optimal value function, V ∗(s).

Definition 2.2.2 - Optimal policy and optimal value function for an infinite-
horizon discounted reward MDP.
The optimal policy π∗ and the optimal value function V ∗ for an infinite-horizon discounted
reward MDP are defined implicitly as,

π∗(s) = argmax
a∈A

Ω(s,a),∀s ∈ S,

V ∗(s) = max
a∈A

Ω(s,a),∀s ∈ S,

where Ω(s,a) =
∑

s′∈S T (s,a,s′)[R(s,a,s′) + γV ∗(s′)].

Hence, the optimal policy with respect to the value function defines the best action to execute
in each state [7, pp. 17].

2.2.4 Solution Methods of MDPs

Value iteration, policy iteration and linear programming are three of the most popular techniques
used for solving infinite-horizon discounted reward MDPs. However, policy iteration and linear
programming are computationally expensive techniques when solving problems with large state
spaces because they require solving systems of linear equations of the same size as the state
space. Value iteration on the other hand has a recursive approach that does not suffer from
this drawback and this technique is used in Stage 1 in the merging decision algorithm. The
remainder of this section focuses on the value iteration algorithm [8].

2.2.4.1 The Value Iteration Algorithm

The value iteration algorithm is a dynamic programming algorithm which improves the approx-
imation Vn of the optimal value function V ∗ for every iteration step n until some predefined
accuracy has been reached. As the number of iteration steps n tends to infinity, Vn converges
to V ∗. For each iteration step the previous approximation Vn−1 is used to compute the new
approximation Vn. This update is known as a Bellman backup or Bellman update and for an
infinite-horizon discounted reward MDP it is given by,

10

2.3. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Vn(s) = max
a∈A

∑
s′∈S
T (s,a,s′)[R(s,a,s′) + γVn−1(s′)]. (2.2)

There are no specific requirements for the initialization step in value iteration so V0 can be set
arbitrarily for each state. When the required accuracy has been met the policy can be found by
using,

πVn(s) = argmax
a∈A

∑
s′∈S
T (s,a,s′)[R(s,a,s′) + γVn(s′)]. (2.3)

The term ε-consistency is usually used for describing the accuracy of Vn. A value function
approximation is ε-consistent when the maximum residual ResVn is less than ε,

ResVn = max
s∈S
|Vn(s)− Vn−1(s)|. (2.4)

A value function that is ε-consistent remains ε-consistent for all subsequent iterations [7, pp. 54,
40-43]. If ResVn < ε then the error |Vn(s0) − V ∗(s0)| that results from following the policy
corresponding to Vn from the initial state s0 rather than following the optimal policy from the
initial state s0 is no greater than 2εγ/(1− γ) [10, pp. 84].

2.3 Partially Observable Markov Decision Processes

Partially Observable Markov Decision Processes (POMDPs) is the framework to use when the
agent cannot fully observe which state it is in [7, pp. 158,159]. As in the case of MDPs there are
many types of POMDPs but this thesis only considers the infinite-horizon discounted reward
POMDP which is the type of POMDP used in Stage 1 in the merging decision algorithm.

2.3.1 Formulation of the Infinite-Horizon Discounted Reward POMDP

The infinite-horizon discounted reward POMDP differs from the infinite-horizon discounted re-
ward MDP in that it also has a set of observations O, an observation function Z and an ini-
tial belief point b0 which all stem from the fact that all states in the state space cannot be
fully observed. An infinite-horizon discounted reward POMDP can be described as a tuple
〈S,A,T ,R,O,Z, γ, b0〉 where S, A, T , R and γ have the same interpretations as in an infinite-
horizon discounted reward MDP (see Section 2.2.2) and the remaining parts are defined as,

• O is the finite set of all observations that the agent can sense using its sensors.

• Z is the observation function where Z(s,a,o) gives the probability of observing o when the
system is in state s and the last action executed was a.

• b0 is the initial belief point which identifies the initial distribution over states such that
each element, b0(s), indicates the initial probability of being in state s [11].

Since all states cannot be fully observed in a POMDP, the agent will only be able to determine
the probability of being in a specific state and these probabilities are comprised in the belief point

11

2.3. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

b. If the POMDP has a state space of size |S| then each belief point b = (b(s1), b(s2), . . . , b(s|S|))
has dimension |S| and each element b(s) indicates the probability of being in state s. Hence every
belief point is a probability distribution where every element in b is non-negative and the sum of
all |S| elements equals unity,

∑
s∈S b(s) = 1. This means that there is an infinite number of belief

points1 where the set of belief points is denoted ∆. A POMDP can be seen as an MDP but with a
continuous state space where each state in the continuous MDP is a belief point [7, pp. 145], [12].

Example 2.3.1 A belief point in a two state POMDP has two elements where b(s1) = p
indicates the probability of being in state s1 and b(s2) = 1− p indicates the probability of
being in state s2. Since there are only two states, once the probability of being in one of the
states is known, so is the probability of being in the other state. The entire space of belief
points can therefore be represented with a line ranging from zero to one, where every point
on the line represents the probability of being in state s1, see Figure 2.2. In a POMDP with
many states, the representation will instead of a line be given by a hyperplane.

Figure 2.2: Representation of the belief space for a two state POMDP. The black dot represent the
probability p of being in state s1.

For every action that the agent executes, the probability of being in a specific state may change,
hence the system may transition from one belief point to another. A belief point cannot trans-
form to an arbitrarily belief point in just a single transition but there is a finite number of
possible belief points that can be reached by a single transition. These points can be determined
with means of the finite number of actions and observations. Every new belief point is associated
with a combination of an action and an observation. The initial belief point may transform to
the same next belief point for more than one action-observation-pair, but there will be at most
|A||O| new possible next belief points. The set of belief points that will ever be possible to reach
is called the set of reachable belief points, denoted ∆̄ where ∆̄ ⊆ ∆ [12]. The belief point reached
from b when executing action a and obtaining observation o is denoted boa and is defined in (2.9).

Example 2.3.2 Figure 2.3 illustrates the scenario where a belief point (in the two state
POMDP) represented with a big black dot is transformed to a new belief point represented
with a small black dot. There are two actions A = {a1,a2} and three observations O =
{o1, o2, o3} available, so in total there are six new possible next belief points. The arcs
in Figure 2.3 represent the transformations where the dotted arcs are associated with the
transformations that result from executing action a2 [12].

1The cardinality of the set of belief points is uncountably infinite since belief points are drawn from the unit
hypercube [0,1]|S| ⊂ R|S| and normalized and |R|S|| =

∣∣{b = (b(s1), b(s2), . . . , b(s|S|)) s.t.
∑
s∈S b(s) = 1}

∣∣ = ℵ1.

12

2.3. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Next section describes how to solve a POMDP.

Figure 2.3: Reachable belief points when executing action a1 or action a2 in a two state POMDP.
There are three observations available o1, o2 and o3. The big black dot represent the initial belief
point and the small black dots represent the belief points reachable from the initial belief from a
single transition. The dotted arcs are associated with the transformations that result from executing
action a2.

2.3.2 Solving an Infinite-Horizon Discounted Reward POMDP

The value iteration step for an infinite-horizon discounted reward POMDP [11] is described as,

Vn(b) = max
a∈A

[
R(a,b) + γ

∑
o∈O

ba(o)Vn−1(boa)

]
, (2.5)

where R(a,b) is the reward of executing an action a in belief point b, ba(o) is the probability of
observing o after executing action a in belief point b and boa is the belief point that is reached
after executing action a and observing o, hence boa(s) is the probability of being in state s after
executing action a and receiving o. The formulas for calculating these parameters are:

R(a,b) =
∑
s∈S
R(s,a)b(s), (2.6)

ba(s) =
∑
s′∈S
T (s′,a,s)b(s′), (2.7)

ba(o) =
∑
s∈S
Z(s,a,o)ba(s), (2.8)

boa(s) = Z(s,a,o)ba(s)/ba(o), (2.9)

where the same notation is used as in [10, pp. 98-100]. Note that ba(s) in (2.7) and ba(o) in (2.9)
are different functions.

By iteratively using (2.5) a sequence of iterations {Vn(b)}n=1,2... is obtained. When this sequence
has converged with a satisfactory accuracy the action to execute in belief point b is the action a
that maximizes the value function,

a = argmax
a∈A

[
R(a,b) + γ

∑
o∈O

ba(o)Vn(boa)

]
. (2.10)

13

2.3. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

The value iteration algorithm used for an MDP (see (2.2)) cannot be used when solving a
POMDP since a POMDP has an infinite number of belief points. However, the optimal value
function V ∗ in a POMDP is a piecewise linear and convex function with respect to the belief
space which means that the optimal value function can be expressed by a set of vectors Γ∗ where
each vector has |S| elements. These vectors are called α-vectors. With means of the optimal set
Γ∗, the value of the optimal value function V ∗ at belief point b can be determined according to,

V ∗(b) = max
α∈Γ∗

∑
s∈S

b(s)α(s) = max
α∈Γ∗

bTα, (2.11)

which provides a way of implementing value iteration. If the initial value function V0 is expressed
with a set of α-vectors Γ0 this set can be used to compute the set of α-vectors at the next iteration
step Γ1 which is used to express V1 [10, pp. 99-101], [11]. By inductive reasoning on (Γ0, V0)
and (Γ1, V1) the set of α-vectors Γn−1 can be computed where Γn−1 is used to express Vn−1 at
belief point b,

Vn−1(b) = max
α∈Γn−1

∑
s∈S

b(s)α(s). (2.12)

In utilizing (2.5) and (2.12) a POMDP iteration step can be expressed as,

Vn(b) = max
a∈A

[
R(a,b) + γ

∑
o∈O ba(o)Vn−1(boa)

]
=

= max
a∈A

[
R(a,b) + γ

∑
o∈O ba(o)

[
max
α∈Γn−1

∑
s∈S b

o
a(s)α(s)

]]
=

= max
α∈Γn

∑
s∈S b(s)α(s),

(2.13)

[10, pp. 101-102] where the last equality can be used to obtain Γn from Γn−1. A more detailed
explanation on how Γn is calculated from Γn−1 is given next.

Given a set Γn−1 with α-vectors, one can obtain the next set Γn by construction of three
intermediate sets Γa,∗n , Γa,on and Γan:

Γa,∗n ← αa,∗ s.t. (αa,∗(s) = R(s,a),∀s ∈ S) , ∀a ∈ A, (2.14)

Γa,on ← αa,o s.t.

(
αa,o(s) = γ

∑
s′∈S
T (s,a,s′)Z(s′,a,o)α(s′),∀s ∈ S

)
,∀α ∈ Γn−1,∀a ∈ A,∀o ∈ O, (2.15)

Γan = Γa,∗n +
⊕
o∈O

Γa,on , ∀a ∈ A, (2.16)

where αa,∗ and αa,o are |S|-dimensional hyperplanes2, the symbol ⊕ is the cross-sum of sets and
the arrow in the expression Γ ← α symbolizes the addition of α to the set Γ. The final set Γn
is obtained from taking the union of the sets Γan,

2The |S|-dimensional hyperplanes are given by αa,∗ =
(
αa,∗(s1), αa,∗(s2), . . . ,αa,∗(s|S|)

)T
and αa,o =(

αa,o(s1), αa,o(s2), . . . ,αa,o(s|S|)
)T

.

14

2.3. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Γn =
⋃
a∈A

Γan. (2.17)

The set Γn may contain as many as |A||Γn−1||O| different α-vectors and has a time complexity3 of
O(|S|2|A||Γn−1||O|). The exponential increase in the number of α-vectors from a single iteration
step is the major reason why computing Γn according to (2.14) - (2.17) is very time consuming,
making approximation methods attractive. A popular approximating method used for solving
POMDPs is called Point Based Value Iteration (PBVI) in which the value function is updated
at a restricted but carefully chosen subset of belief points [10, pp. 101-102],[13],[5]. This method
is described next.

2.3.3 Point Based Value Iteration

As stated in the previous section, a single iteration step for a POMDP can yield |A||Γn−1||O|
different α-vectors. However, some of these α-vectors are useless since they do not maximize the
value function at any belief point. This is illustrated in Figure 2.4 where the dotted lines rep-
resent useless α-vectors. Every belief-point can be associated with one α-vector that maximizes
the value function for that specific belief point. One α-vector may be associated with many
different belief-points so if a set of belief points can be identified that automatically generates
all the dominating α-vectors and at the same time excludes the useless ones, the iteration step
can be less time expensive. This is the idea behind the PBVI algorithm. The main problem in
PBVI is how to find the set of belief points that generates all dominating α-vectors. However,
even if all belief points required to generate all of the dominating α-vector are not included in
the algorithm, the main features of the optimal value function may be found which may serve
as a satisfactory approximation.

In the PBVI algorithm there are many ways in which the belief points can be chosen and differ-
ent conditions for when to terminate the iteration procedure can be used [10, pp. 101-103],[12].
Different strategies for selecting belief points and two common termination criteria are described
in Section 2.3.3.1 and Section 2.3.3.2 respectively. Next follows an explanation of how Γn is com-
puted in the PBVI algorithm.

Assuming there already exist a set B of strategically chosen belief points, the next set of α-
vectors, Γn, is then obtained by generating three intermediate sets Γa,∗n , Γa,on and Γan. The first
two sets are identical to the definitions of Γa,∗n and Γa,on in (2.14) and (2.15) respectively. The
third set however is now defined by,

Γan ← αab ≡
[
Γa,∗n +

∑
o∈O

arg max
α∈Γa,on

(∑
s∈S

α(s)b(s)

)]
∀b ∈ B, ∀a ∈ A. (2.18)

The final set Γn is then constructed from,

3See the Nomenclature section in the beginning of the thesis for an explanation of time complexity.

15

2.3. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Figure 2.4: Some of the α-vectors generated from one iteration step may not maximize the value
function at any belief point. The dotted lines represent such α-vectors.

αb = arg max
αab∈Γan

(∑
s∈S

αab (s)b(s)

)
∀b ∈ B, (2.19)

Γn =
⋃
b∈B

αb. (2.20)

These operations guarantee that only the best α-vector is kept for each belief point b ∈ B. The
two main advantages from making a point-based update instead of an exact update is that the
update step is decreased to polynomial time complexity, O(|S||O||A||Γn−1||B|). Moreover, the
number of α-vectors are guaranteed not to exceed |B|. The initial value function V0 associated
with the initial α-vector(s) α0 ∈ Γ0 can be set arbitrarily [13] and one way of initializing the
value function is to use a so called blind policy for which the same action is always executed.
This way a lower bound on the value function is obtained [11]. Even though the PBVI algorithm
guarantees that only the best α-vectors are kept for each selected belief point this does not mean
that the policy (which is defined for all belief points) is guaranteed to improve monotonically
with the number of iterations or the number of selected belief points [13].

2.3.3.1 Belief Point Selection

The task of choosing suitable belief points is crucial for the accuracy of the point-based value
iteration algorithm. The more belief points selected, the higher is the computational complex-
ity. On the other hand, more belief points included gives a higher chance of finding the optimal
solution. As stated in Section 2.3.3, more than one belief point can be associated with the same
α-vector so just including an arbitrary belief point does not guarantee a better approximation.
There are several methods available for belief point selection and this section will further explain
five heuristics all of which are described in [13].

16

2.3. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Random Belief Selection (RA)
The RA strategy samples belief points randomly from the whole belief space ∆. It performs
quite well for small problems (less than 20 states), but as the number of states grows, it cannot
provide good coverage of the belief space with a reasonable number of points, resulting in poor
performance.

The rest of the strategies focus on reachable belief points (previously mentioned in Section 2.3.1)
rather than the whole belief space. Figure 2.5 shows the set of reachable belief points ∆̄ starting
from an initial belief point b0 where the available actions are {a1,a2, . . . ,a|A|} and the available
observations are {o1,o2, . . . ,o|O|}. If all reachable belief points are included, the solution at the
initial belief point is guaranteed to be optimal. However, since the set of reachable belief points
∆̄ may grow rapidly for every step, such an approach is not very attractive. A subset of reach-
able belief points B ⊂ ∆̄ therefore needs to be selected.

Stochastic Simulation with Random Action (SSRA)
This strategy randomly chooses a belief point that is reachable and adds it to the subset B.
First a belief point b ∈ B is randomly picked and then an action a and an observation o are
randomly selected. The next belief point bnew is then calculated from (2.9) and added to to the
set B, that is B = B ∪ {bnew}.

Stochastic Simulation with Greedy Action (SSGA)
The SSRA strategy does not consider whether the action picked is likely to be executed. This
is considered in the SSGA strategy where the current best action at the randomly picked belief
point b is selected with probability 1− ε and a random action is picked with probability ε.

Figure 2.5: Illustration of the set of reachable belief points ∆̄ starting from belief point b0. The
available actions are {a1,a2, . . . ,a|A|} and the available observations are {o1,o2, . . . ,o|O|}.

17

2.3. PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

Stochastic Simulation with Exploratory Action (SSEA)
The SSEA strategy aims to sample belief points so that the distance d between belief points
b ∈ B and the one step forward reachable belief points denoted b′ ∈ B′ is minimized. The
distance is simply the L1 norm,

d =
∑
s∈S
|b(s)− b′(s)| = ||b− b′||1.

Greedy Error Reduction(GER)
The GER strategy focuses on minimizing the maximum expected error between the optimal
value function and the approximation of ditto. Since the exact error is not known a bound on
the error is used. The belief point b added to the set B is the belief point that maximizes the
error bound reduction. For a more detailed explanation of this strategy the reader is referred
to [13] which recommends this strategy even though it has higher computational complexity
than the previously described strategies.

2.3.3.2 Termination Criteria

As described in Section 2.2.4 a termination criterion for the MDP value iteration algorithm is
easily computed by comparing the value for each state from two subsequent iterations (pre-
viously described in Section 2.2.4). This is not possible for the POMDP model due to the
unlimited number of belief points. A simple termination criterion that is commonly used within
the POMDP community is to predefine the number of iterations and iterate this number of
times. A drawback of this approach is that it is not possible to tell how close the final approxi-
mation is to the optimal value function without additional time consuming calculations [13].

Another approach is to compute an upper and lower bound on the optimal value function and
then terminate when the maximum difference between the upper and lower bound is smaller than
some predefined limit. Alternatively, the termination criterion could be a maximum number of
iterations and when this limit has been reached, the accuracy of the final approximation can be
determined using upper and lower bounds [11]. This approach may seem more attractive, but
updating the upper bound requires solving linear programs which is computationally expensive.
Hence, if time is the most limiting factor this approach may not be the best alternative.

18

3
The Merging Decision Algorithm

T
his chapter describes the merging decision algorithm. First Section 3.1 presents some
terminology used when describing the algorithm and then Section 3.2, Section 3.3 and
Section 3.4 describe in detail how Stage 1, Stage 2 and Stage 3 are implemented.
Section 3.5 describes how all stages are put together to form the merging decision

algorithm. An overview of the merging decision algorithm including a description of all stages
was given in Section 1.7.

3.1 Terminology

Figure 3.1 shows an example of a merging situation for an automated car where five objects
(object1 − object5) have been detected in the right lane and these are numbered in increasing
order in the driving direction such that the object closest to the end-point has the highest object
number. Out of the five objects, four are classified as cars and one is classified as a suspected
ghost-car. The status of the suspected ghost-car in the example is real car. In total there are six
gaps available, illustrated with circles in Figure 3.1. The exact definition of suspected ghost-car,
status of a suspected ghost-car and gap are given next.

Definition 3.1.1 - Suspected ghost-car
A suspected ghost-car is a detected object that cannot be classified as a car with high
probability and is either an object that can be neglected in the the context of merging or a
car.

Definition 3.1.2 - Status of a suspected ghost-car
A suspected ghost-car has a status that is either real car or ghost-car where the real car
status indicates that the true situation is that the suspected ghost-car is a real car and the
ghost-car status means that the true situation is that the suspected ghost-car is a ghost-car
and can be neglected.

19

3.2. STAGE 1

Figure 3.1: A merging situation with five objects detected in the right lane where four are classified
as cars and one is a suspected ghost-car with status real car. There are six gaps available, illustrated
with circles and numbered in increasing order in the driving direction.

Definition 3.1.3 - Gap
A gap refers to the space between two subsequent objects detected in the right lane. In the
merging decision algorithm it is also said to be a gap behind the object with the lowest object
number and in front of the object with the highest object number. Gaps are numbered in
increasing order in the driving direction such that the gap with the highest gap number
is closest to the end-point. The size of a gap may change depending on the status of a
suspected ghost-car such that if object j is a suspected ghost-car with status ghost-car then
the size of gap j equals the size of gap j + 1. Hence, in this situation gap j and gap j + 1
both refer to the same space. Note that the number of gaps only depends on the number of
objects detected but that the size of a gap depends on the status of suspected ghost-cars.

A suspected ghost-car is denoted car?m where m = {1,2, . . . ,Nunsure} and Nunsure is the total
number of suspected ghost-cars. A higher value of m indicates that the suspected ghost-car is
detected closer to the end-point.

In the description of the merging decision algorithm the term master function is also used which
is defined below.

Definition 3.1.4 - Master function
In the merging decision algorithm the master function refers to the function that provides
the merging decision algorithm with all inputs required as well as actualizes the decisions
into driving commands.

3.2 Stage 1

Stage 1 in the merging decision algorithm deals with decision 1 and 2 stated in Section 1.6, hence
the objective is to decide which gap to merge into and when to merge into the gap. Stage 1 is
solved both with means of a POMDP model and an MDP model, both of which are frequently

20

3.2. STAGE 1

computed and solved. The MDP model assumes that all suspected ghost-cars have status real
car, whereas this is not assumed in the POMDP model. Section 3.2.1 and Section 3.2.2 present
the POMDP model and the MDP model respectively and these sections utilize the theory from
Section 2.3.1 and Section 2.2.2. Section 3.2.3 describes how an ε-consistent solution of the MDP
model is found using the theory from Section 2.2.4 and it is also described how the POMDP
model is solved approximately using the theory from Section 2.3.2. Finally Section 3.2.4 explains
how all parts included in Stage 1 are put together.

3.2.1 Description of the POMDP model

This section defines the POMDP model used in Stage 1 in the merging decision algorithm. The
type of POMDP used is an infinite-horizon discounted reward POMDP, described in Section 2.3.1
and therefore the state space, the action space, the reward function, the transition function, the
observation space, the observation function, the initial belief point and the discount factor need
to be described. Section 3.2.1.1 - Section 3.2.1.8 describe all of these components.

3.2.1.1 State space S

The state space of the POMDP model is described with three state variables: Xlane, Xgap and
Xcomb which are defined as follows:

• Xlane indicates which lane the host car can be in, that is Xlane ∈ {Left,Right}.

• Xgap indicates which gap the host car can be in or adjacent to. If there are Ngaps − 1
objects detected in the right lane resulting in Ngaps gaps then Xgap ∈ {1, 2, . . . , Ngaps}.

• Xcomb indicates all possible combinations of the status of suspected ghost-cars. The set
of all possible values that Xcomb can assume, Xvec

comb, contains Ncomb = 2Nunsure vectors1

xveccombk
∈ BNunsure each of which can be represented as a binary number2 xcombk = (xveccombk

)2

where xcombk < xcombk+1
and k ∈ {1,2, . . . ,Ncomb}. Also xcombk(m) = 0 indicates that

car?m has status ghost-car and xcombk(m) = 1 indicates that car?m has status real car.
From now on xcombk will be used both to denote the binary number and the vector repre-
sentation of said number. The distinction will be clear from the context.

Example 3.2.1 If there are two suspected ghost-cars, car?1 and car?2 then
Xvec
comb = {xcomb1 , xcomb2 , xcomb3 , xcomb4} = {002, 012, 102, 112} where for example 002 means

that both car?1 and car?2 have status ghost-car and 102 means that car?1 has status real
car and car?2 has status ghost-car.

A state in the state space consists of a state variable triple (Xlane, Xgap, Xcomb) which means
that the total number of states equals |S| = 2NgapsNcomb. The state space is ordered in the
following way,

1
B
N is the binary space of dimension N , BN = {X = (x1, x2, . . . , xN)|xi ∈ {0,1}, i = 1,2, . . . ,N}.

2A number in binary form is represented with number two as subscript, e.g. 112 = 3 where ”3” is in base ten.

21

3.2. STAGE 1

Xlanes =

Left in state sn , if n ≤ |S|/2,

Right in state sn , if n > |S|/2,
(3.1)

Xgap = j in state sn, , where j = 1 + (n− 1) mod Ngaps, (3.2)

Xcomb = xcomb(1+K mod Ncomb)
in state sn , where K = N−1

gaps

(
(n− 1)− (n− 1) mod Ngaps

)
,

(3.3)

where sn ∈ S, n ∈ {1,2, . . . , |S|}.

Example 3.2.2 If there are six gaps available (Ngaps = 6) and two objects are suspected
ghost-cars (Nunsure = 2) then the state space is defined as follows,

S =



s1 : (Left,1,002) s13 : (Left,1,102) s25 : (Right, 1,002) s37 : (Right, 1,102)

s2 : (Left,2,002) s14 : (Left,2,102) s26 : (Right, 2,002) s38 : (Right, 2,102)

s3 : (Left,3,002) s15 : (Left,3,102) s27 : (Right, 3,002) s39 : (Right, 3,102)

s4 : (Left,4,002) s16 : (Left,4,102) s28 : (Right, 4,002) s40 : (Right, 4,102)

s5 : (Left,5,002) s17 : (Left,5,102) s29 : (Right, 5,002) s41 : (Right, 5,102)

s6 : (Left,6,002) s18 : (Left,6,102) s30 : (Right, 6,002) s42 : (Right, 6,102)

s7 : (Left,1,012) s19 : (Left,1,112) s31 : (Right, 1,012) s43 : (Right, 1,112)

s8 : (Left,2,012) s20 : (Left,2,112) s32 : (Right, 2,012) s44 : (Right, 2,112)

s9 : (Left,3,012) s21 : (Left,3,112) s33 : (Right, 3,012) s45 : (Right, 3,112)

s10 : (Left,4,012) s22 : (Left,4,112) s34 : (Right, 4,012) s46 : (Right, 4,112)

s11 : (Left,5,012) s23 : (Left,5,112) s35 : (Right, 5,012) s47 : (Right, 5,112)

s12 : (Left,6,012) s24 : (Left,6,112) s36 : (Right, 6,012) s48 : (Right, 6,112) .

Thus, for this state space example there are 48 states in total where for example s9 =
(Left, 3, 012) represents the host car being in the left lane adjacent to gap 3 and out of the
two suspected ghost-cars, the first one, car?1, is a ghost-car whereas the second one, car?2,
is a real car.

3.2.1.2 Action space A

The action space A consists of four actions ai, i ∈ {1, 2, 3, 4} defined as follows,

• a1 : change lane,

• a2 : stay at the current gap,

• a3 : drive to the closest gap in front,

22

3.2. STAGE 1

• a4 : wait for the closest gap behind.

If the action to be executed in Stage 1 is a1 then the system transitions from Stage 1 to Stage
2. Hence, even though a1 is defined as ”change lane” in the POMDP model, it is used as an
action indicating that the host car should start showing its intention to merge. Action a2 should
be interpreted as staying by a gap, that is the host car should move as fast as the midpoint
of the gap it is currently adjacent to. When executing action a3 the host car may drive at its
maximum allowed speed vmax and when executing action a4 the host car may slow down to its
minimum allowed speed vmin. Both vmax and vmin are given by the master function.

3.2.1.3 Reward function R : S ×A → R

Equations (3.7)-(3.10) define the rewards given when starting in state s and ending up in state
s′ after executing any of the actions a1, a2, a3 or a4. The reward function is computed as an
|S| × |A| × |S| matrix and then converted to an |S| × |A| matrix using (2.1).

Table 3.1 and Table 3.2 describe the variables and tuning parameters used in (3.7)-(3.10) and
Figure 3.2 illustrates the distances sizeGap(j,xcombk) and distMidEnd(j,xcombk), for j = 4 and
xcombk = 12. Figure 3.3 illustrates the same distances but for j = 4 and xcombk = 02. Next, the
variables sizeGap(j,xcombk) and distMidEnd(j,xcombk) are explained further.

Figure 3.2: Illustration of distances sizeGap(j,xcombk) and distMidEnd(j,xcombk) for j = 4 and
xcombk = 12. Hence gap 4 is considered and the suspected ghost-car has status real car.

In order to calculate sizeGap(j,xcombk) and distMidEnd(j,xcombk) Stage 1 is given a vector
denoted the certainity vector defined as:

Definition 3.2.1 - Certainty vector
The certainty vector, denoted certainty, indicates whether an object is classified as a car
or a suspected ghost-car. The certainty vector is defined as,

23

3.2. STAGE 1

Figure 3.3: Illustration of distances sizeGap(j,xcombk) and distMidEnd(j,xcombk) for j = 4 and
xcombk = 02. Hence gap 4 is considered and the suspected ghost-car has status ghost-car.

certainty(m) =

1 , if objectm is classified as a car,

0 , if objectm is classified as a ghost-car,
(3.4)

where m ∈ {1,2 . . . ,Ngaps − 1}.

The values in sizeGap(j,xcombk) are calculated according to,

sizeGap(j,xcombk) =


gapsize(j) + gapsize(j + 1) + CarSize+ η , if ∃i s.t. (j = I(i)) ∧ (xcombk (i) = 0)

gapsize(j) + gapsize(j − 1) + CarSize , if ∃i s.t. (j − 1 = I(i)) ∧ (xcombk (i) = 0)

gapsize(j) , otherwise

(3.5)

where gapsize(j) is the size of gap j if all suspected ghost-cars have status real car, CarSize
is a constant that equals the (average) length of a car, η is a small positive constant used
in order to favor the gap with the lower gap number and I is an ordered list3 s.t. I =
orderedList[{m|certainty(m) = 0}]. The size of the first gap and the last gap in gapsize are set
such that gapsize(1) < gapsize(2) and gapsize(Ngaps) < gapsize(Ngaps − 1). This is done in
order to make the first gap and the last gaps unfavorable to merge into since it is assumed that
the host car cannot detect objects behind the object with the lowest object number or in front
of the object with the highest object number.

The values in distMidEnd(j,xcombk) are calculated according to,

3An ordered list is here defined as a list that can be indexed and where I(i) ≤ I(i+ 1) ∀i

24

3.2. STAGE 1

Table 3.1: Description of variables used in (3.7)-(3.10).

sizeGap(j,xcombk) The size of gap j if the status of the suspected ghost-cars
are as indicated by xcombk .

distMidEnd(j,xcombk) The distance from the midpoint of gap j to the end-point
if the status of the suspected ghost-cars are as indicated by
xcombk .

distMidHost(j) The distance from the midpoint of gap j to the host car if
all suspected ghost-cars have status real car.

distMidFront(j) The distance from the midpoint of gap j to vehicleFront if
all suspected ghost-cars have status real car.

tMid,Front(j) The estimated time for the midpoint of gap j to reach
vehicleFront if all suspected ghost-cars have status real car.

tMid,End(j) The estimated time for the midpoint of gap j to reach the
end-point if all suspected ghost-cars have status real car.

tHost,Front The estimated time for the host car to reach vehicleFront.

tHost,Endmin The lowest estimated time for the host car to reach the end-
point, given by driving at velocity vmax.

tHost,Endmax The highest estimated time for the host car to reach the
end-point, given by driving at velocity vmin.

Table 3.2: Tuning parameters used in (3.7)-(3.10).

DistSafetyFront Minimum distance required between host car and vehicleFront.

GapSafetyLC Minimum size of a gap required in order to obtain a non-zero
reward for execution of action a1.

THost,Front Minimum time required between host car and vehicleFront.

TMid,Front
S Minimum time required for the midpoint of a gap to reach

vehicleFront. Used with action a2.

TMid,Front
LC Minimum time required for the midpoint of a gap to reach

vehicleFront. Used with action a1.

GX Weights, whereX ∈ {LC, SG, SE, FG,FE, FM,WG,WE,WM}.

distMidEnd(j,xcombk) =



(
distmidend(j) + distmidend(j + 1)

)
/2 , if ∃i s.t.

(
j = I(i)) ∧ (xcombk (i) = 0

)
(
distmidend(j) + distmidend(j − 1)

)
/2 , if ∃i s.t.

(
j − 1 = I(i)) ∧ (xcombk (i) = 0

)
distmidend(j) , otherwise

(3.6)

25

3.2. STAGE 1

where distmidend(j) is the distance from the midpoint of gap j to the end-point if all suspected
ghost-cars have status real car and I is as previously described.

The reward function on form |S|× |A|× |S| is defined in (3.7)-(3.10) for all actions, where it can
be seen that a non-zero reward is only given if a corresponding condition (denoted BLC , BS , BF
and BW) is True. As an example, for action a1 this condition is denoted BLC (LC for lane
change). Hence, a gap is only considered good enough to try to merge into if BLC is True.
In (3.7)-(3.10) it can also be seen that a non-zero reward cannot be obtained if the host car is
in or adjacent to gap 1 or gap Ngaps since it is assumed that the host car cannot detect objects
behind the object with the lowest object number or in front of the object with the highest object
number.

R(s,a1,s
′) =


max

(
rewLC(j,xcombk),0

)
, if
(
BLC(j,xcombk) = True

)
∧
(
s = (Left,j,xcombk)

)
∧

∧
(
s′ = (Right,j,xcombk)

)
,

0 , otherwise,

where,

rewLC(j,xcombk) = GLC · rewS(j, xcombk) (rewS is defined in (3.8)),

BLC(j,xcombk) =
(
sizeGap(j,xcombk) > GapSafetyLC

)
∧
(
tMid,Front(j) > TMid,Front

LC

)
∧

∧
(
distMidFront(j) > DistSafetyFront

)
∧
(
j 6= Ngaps

)
∧
(
j 6= 1

)
,

j ∈ {1,2, . . . , Ngaps}, k ∈ {1,2, . . . , Ncomb}.
(3.7)

R(s,a2,s
′) =


max

(
rewS(j,xcombk),0

)
, if
(
BS(j) = True

)
∧
(
s = (Left,j,xcombk)

)
∧

∧
(
s′ = (Left,j,xcombk)

)
,

0 , otherwise,

where,

rewS(j,xcombk) = GSG · sizeGap(j,xcombk) +GSE · distMidEnd(j,xcombk)

BS(j) =
(
tMid,Front(j) > TMid,Front

S

)
∧
(
tHost,Front > THost,Front

)
∧

∧
(
distMidFront(j) > DistSafetyFront

)
∧
(
j 6= Ngaps

)
∧
(
j 6= 1

)
,

j ∈ {1,2, . . . , Ngaps}, k ∈ {1,2, . . . , Ncomb}.
(3.8)

26

3.2. STAGE 1

R(s,a3,s
′) =


max

(
rewF (j,xcombk),0

)
, if
(
BF (j) = True

)
∧
(
s = (Left,j,xcombk)

)
∧

∧
(
s′ = (Left,j + 1,xcombk)

)
,

0 , otherwise,

where,

rewF (j,xcombk) = GFG · sizeGap(j + 1,xcombk) +GFE · distMidEnd(j + 1,xcombk)−
−GFM · |distMidHost(j + 1)|,

BF (j) =
(
tHost,Endmin < tMid,End(j + 1)

)
∧
(
j + 1 6= Ngaps

)
∧

∧
(
j 6= Ngaps

)
∧
(
BS(j + 1)

)
,

j ∈ {1,2, . . . , Ngaps}, k ∈ {1,2, . . . , Ncomb}.
(3.9)

R(s,a4,s
′) =


max

(
rewW (j,xcombk),0

)
, if
(
BW (j) = True

)
∧
(
s = (Left,j,xcombk)

)
∧

∧
(
s′ = (Left,j − 1,xcombk)

)
,

0 , otherwise,

where,

rewW (j,xcombk) = GWG · sizeGap(j − 1,xcombk) +GWE · distMidEnd(j − 1,xcombk)−
−GWM · |distMidHost(j − 1)|,

BW (j) =
(
tHost,Endmax > tMid,End(j − 1)

)
∧
(
j − 1 6= 1

)
∧

∧
(
j 6= 1

)
∧
(
BS(j − 1)

)
,

j ∈ {1,2, . . . , Ngaps}, k ∈ {1,2, . . . , Ncomb}.
(3.10)

3.2.1.4 Transition function T : S ×A× S → [0,1]

In the transition function all actions except action a1 are set to be deterministic, meaning that
for action a2, a3 and a4 the host car is guaranteed to be able to go to/stay at the gap it intends
to but this is not true for action a1. Action a1 which should take the host car back and forth
between the left lane and the right lane is stochastic since it is not certain that the merging
will succeed e.g. due to lack of cooperation from surrounding vehicles. Equations (3.13)-(3.16)
define the transition probabilities for action a1, a2, a3 and a4 respectively. First the transition
probabilities for the first action are described in detail.

Transition probabilities for action a1

The probability of being able to change lane, from left to right, is set to a low number denoted

27

3.2. STAGE 1

plow ∈ (0,0.3) if the Boolean BLC(j, xcombk) (defined in (3.7)) is False. If BLC(j, xcombk) = True
the matrix probLC ∈ RNgaps×Ncomb is used. The probabilities in probLC are set with means
of a vector prob and a matrix uLC , where prob = (0.95, (0.95 − d), (0.95 − 2d), . . . , (0.95 −
(Ngaps − 1)d))T contains probabilities in descending order set with a fixed interval 0 < d <
(0.95− plow)/(Ngaps − 1) and uLC is the utility of a lane change such that,

uLC(j, xcombk) =

−
(
GU · vMidRel(j) + 1/rewS(j,xcombk)

)
, if vMidRel(j) > 0,

−
(
GU · vMidRel(j)− rewS(j,xcombk)

)
, otherwise,

(3.11)

where j = {1,2, . . . ,Ngaps}, rewS(j,xcombk) is defined as in (3.8), GU is a weight and vMidRel(j)
is the relative velocity between the midpoints of gap j and gap j + 1. If vMidRel(j) > 0 this
means that the midpoint of gap j is moving faster than the midpoint of gap j+1. A higher value
of uLC(j,xcombk) is used as an indicator of a higher probability of being able to change lane. A col-
umn in uLC is denoted uLCk where uLCk = (uLC(1,xcombk), uLC(2,xcombk), . . . , uLC(Ngaps,xcombk))T

and in using prob and uLCk each column probLC,k in probLC is calculated as,

probLC,k = Mperm,kprob, (3.12)

where Mperm,k is a permutation matrix, which is not necessarily unique s.t. Mperm,kuLC,k =
usortedLC,k where usortedLC,k is sorted in descending order such that usortedLC,k (j) ≥ usortedLC,k (j + 1).

Note that a gap given the highest probability of a lane change is not necessarily the gap that
will be chosen in Stage 1 since this gap may for example be far away from the host car. The
transition probabilities for action a1 are given by,

T (s,a1,s
′) =



plow , if BLC = False ∧ s = (Left, j,xcombk) ∧ s′ = (Right,j,xcombk),

1− plow , if BLC = False ∧ s = (Left,j,xcombk) ∧ s′ = (Left,j,xcombk),

probLC(j, xcombk) , if BLC = True ∧ s = (Left, j,xcombk) ∧ s′ = (Right,j,xcombk),

1− probLC(j, xcombk) , if BLC = True ∧ s = (Left, j,xcombk) ∧ s′ = (Left,j,xcombk),

1 , if s = (Right, j,xcombk) ∧ s′ = (Left,j,xcombk),

0 , otherwise,

(3.13)

where j ∈ {1,2, . . . , Ngaps}, k ∈ {1,2, . . . , Ncomb}.

Transition probabilities for action a2, a3 and a4

The transition probabilities for action a2, a3 and a4 are calculated as,

28

3.2. STAGE 1

T (s,a2,s
′) =

1 , if s = (i, j,xcombk) ∧ s′ = (i,j,xcombk),

0 , otherwise,
(3.14)

T (s,a3,s
′) =



1 , if s = (Left, j,xcombk) ∧ s′ = (Left,j + 1,xcombk) ∧ j 6= Npos,

1 , if s = (Left, j,xcombk) ∧ s′ = (Left,j,xcombk) ∧ j = Npos,

1 , if s = (Right, j,xcombk) ∧ s′ = (Right,j,xcombk),

0 , otherwise,

(3.15)

T (s,a4,s
′) =



1 , if s = (Left, j,xcombk) ∧ s′ = (Left,j − 1,xcombk) ∧ j 6= 1,

1 , if s = (Left, j,xcombk) ∧ s′ = (Left,j,xcombk) ∧ j = 1,

1 , if s = (Right, j,xcombk) ∧ s′ = (Right,j,xcombk),

0 , otherwise,

(3.16)

where i ∈ {Left,Right}, j ∈ {1,2, . . . , Ngaps} and k ∈ {1,2, . . . , Ncomb}. From inspecting (3.14)
- (3.16) it can be seen that actions a2, a3 and a4 are deterministic, as previously stated.

Example 3.2.3 Figure 3.4 illustrates a POMDP representing a merging situation with five
gaps and one suspected ghost-car. States where Xlane = Right are indicated with an ’R’
and states where Xlane = Left are indicated with an ’L’. The transitions are illustrated
with arrows but the transition probabilities are not shown. In Figure 3.4 it can be seen that
if the host car starts in state s1 and executes action a3 then it is taken from state s1 to state
s2 where s1 represents the host car being in the left lane by gap 1 and the suspected ghost
car has status ghost-car and state s2 represents the host car remaining in the left lane but
by gap 2 and the suspected ghost car is still a ghost-car. The non deterministic behavior of
action a1 is also illustrated in Figure 3.4. It can be seen that if the host car starts in state
s1 and executes action a1 then it is either taken from state s1 to state s11 or it remains in
state s1.

3.2.1.5 Observation space O

The observation space of the POMDP model consists of 2Ngaps number of observations and
is described by means of the state variables Xlane and Xgap defined in Section 3.2.1.1. An
observation in the observation space consists of a state variable pair (Xlane, Xgap) which are
ordered in the following way,

29

3.2. STAGE 1

Figure 3.4: Illustration of the POMDP model in Stage 1 when there are five gaps and one suspected
ghost-car. The transitions are illustrated with arrows.

Xlanes =

Left in observation on , if n ≤ |O|/2,

Right in observation on , if n > |O|/2,
Xgap = j in observation on , where j = 1 + (n− 1) mod Ngaps,

where on ∈ O, n ∈ {1, . . . , |O|}.

30

3.2. STAGE 1

Example 3.2.4 If there are six gaps available (Ngaps = 6) then the observation space is
defined as,

O =



o1 : (Left,1) o7 : (Right,1)

o2 : (Left,2) o8 : (Right,2)

o3 : (Left,3) o9 : (Right,3)

o4 : (Left,4) o10 : (Right,4)

o5 : (Left,5) o11 : (Right,5)

o6 : (Left,6) o12 : (Right,6) .

3.2.1.6 Observation function Z : S ×O → [0,1]

It is assumed that the host car is able to sense in which lane it is and at which gap it is in or
adjacent to but it cannot determine the status of a suspected ghost-car. Also, there is no action
that the host car can execute in order to better determine the status. Therefore the observation
function is independent of the action taken and it is also deterministic. The observation function
is defined as,

Z(s,o) =


1 , if s = (Left, j,xcombk) and o = (Left,j),

1 , if s = (Right,j,xcombk) and o = (Right,j),

0 , otherwise,

(3.17)

where o ∈ O, s ∈ S, j ∈ {1,2, . . . , Ngaps} and k ∈ {1,2, . . . , Ncomb}.

Example 3.2.5 The observation matrix from the example illustrated in Figure 3.4 is shown
below where the POMDP models a merging situation with five gaps and one suspected
ghost-car. In the observation matrix shown, it can be seen that state s1 and s6 both give
rise to the same observation o1. The reason is that from the definition of the state space,
s1 = (Left,1,02) and s6 = (Left,1,12) indicating that the host car is in the left lane and
adjacent to gap 1 which is what o1 = (Left,1) indicates.

31

3.2. STAGE 1

Z =



o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

s1 1 0 0 0 0 0 0 0 0 0
s2 0 1 0 0 0 0 0 0 0 0
s3 0 0 1 0 0 0 0 0 0 0
s4 0 0 0 1 0 0 0 0 0 0
s5 0 0 0 0 1 0 0 0 0 0
s6 1 0 0 0 0 0 0 0 0 0
s7 0 1 0 0 0 0 0 0 0 0
s8 0 0 1 0 0 0 0 0 0 0
s9 0 0 0 1 0 0 0 0 0 0
s10 0 0 0 0 1 0 0 0 0 0
s11 0 0 0 0 0 1 0 0 0 0
s12 0 0 0 0 0 0 1 0 0 0
s13 0 0 0 0 0 0 0 1 0 0
s14 0 0 0 0 0 0 0 0 1 0
s15 0 0 0 0 0 0 0 0 0 1
s16 0 0 0 0 0 1 0 0 0 0
s17 0 0 0 0 0 0 1 0 0 0
s18 0 0 0 0 0 0 0 1 0 0
s19 0 0 0 0 0 0 0 0 1 0
s20 0 0 0 0 0 0 0 0 0 1


3.2.1.7 Initial belief point b0

The initial belief point is computed with means of the probability vector of suspected ghost-cars.

Definition 3.2.2 - Probability vector of suspected ghost-cars
The probability vector of suspected ghost-cars, denoted probreal contains Nunsure elements
where probreal(m) ∈ (0,1) indicates the probability that car?m has status real car.

Example 3.2.6 Probability vector probreal = [0.25, 0.5] indicates that car?1 has status real
car with probability 0.25 and car?2 has status real car with probability 0.5.

The initial belief point b = b(s1), b(s2), . . . ,b(s|S|) is computed as,

32

3.2. STAGE 1

b0(s) =


∏Nunsure
m=1 probTot(m) , if s = (Left,hostpos,xcombk),

0 , otherwise,
(3.18)

s.t.

probTot(m) =

1− probreal(m) , if xcombk(m) = 0,

probreal(m) , if xcombk(m) = 1,

where m ∈ {1, . . . ,Nunsure}, k ∈ {1,2, . . . ,Ncomb}, s ∈ S and hostpos ∈ {1,2, . . . ,Ngaps} indicates
which gap the host car is adjacent to.

3.2.1.8 Discount factor γ

The discount factor must be kept in the interval 0 < γ < 1 and the influence of γ on the behavior
of the host car is examined in Section 4.2.3.

3.2.2 Description of the MDP model

The MDP model used in Stage 1 is an infinite-horizon discounted reward MDP (see Section 2.2.2),
and is described as follows.

State space, SMDP

The MDP state space SMDP is a subset of the POMDP state space S and is given by,

SMDP =
{
s ∈ S|s = (i,j,xcombNcomb), i ∈ {Left,Right}, j ∈ {1,2, . . . , Ngaps}

}
. (3.19)

Hence, the MDP state space only consists of those POMDP states representing all suspected
ghost-cars having status real car. In total the MDP state space has |SMDP| = 2Ngaps number of
states and these are ordered as described in (3.1)-(3.3) but with Xcomb = xcombNcomb .

Example 3.2.7 If the same POMDP example is considered as in Example 3.2.2, the re-
sulting MDP state space is,

SMDP =



s1 : (Left,1,112) s7 : (Right,1,112)

s2 : (Left,2,112) s8 : (Right,2,112)

s3 : (Left,3,112) s9 : (Right,3,112)

s4 : (Left,4,112) s10 : (Right,4,112)

s5 : (Left,5,112) s11 : (Right,5,112)

s6 : (Left,6,112) s12 : (Right,6,112).

33

3.2. STAGE 1

Action space, AMDP

The MDP action space AMDP equals the POMDP action space A,

AMDP = A. (3.20)

Transition function, TMDP : SMDP ×AMDP × SMDP → [0,1]
The MDP transition function TMDP equals the POMDP transition function T for states included
in the MDP state space,

TMDP(s,a,s′) = T (s,a,s′) , if s,s′ ∈ SMDP. (3.21)

Reward function, RMDP : SMDP ×AMDP → R

The MDP reward function RMDP equals the POMDP reward function R for states included in
the MDP state space,

RMDP(s,a) = R(s,a) , if s ∈ SMDP. (3.22)

Discount factor, γMDP

The discount factor in the MDP model equals the discount factor in the POMDP model,

γMDP = γ. (3.23)

3.2.3 Solving the POMDP model and the MDP model

The solution of Stage 1 is computed in three steps illustrated in Figure 3.5 where in Step 1 the
MDP model is derived, in Step 2 an ε-consistent solution of the MDP model is found and in
Step 3 an approximate solution of the POMDP model is calculated. All steps are described next.

Figure 3.5: Illustration of the steps involved when solving the POMDP model and the MDP model.

34

3.2. STAGE 1

Step 1: Derive MDP model from POMDP model
The first step derives the MDP model from the POMP model using (3.19)-(3.23). These equa-
tions are implemented in an algorithm called deriveMDP.

Step 2: Solve MDP using Value Iteration
In Step 2 the MDP model obtained from Step 1 is solved with means of value iteration using (2.2)
and (2.3). A solution can be provided from this step if the maximum allowed execution time is
reached before a solution has been found in the final step (Step 3). If all suspected ghost-cars
have status real car or if the sensors are perfect so that there are no suspected ghost-cars, the
solution from Stage 1 is ε-consistent with respect to the model. If there is still execution time
left, the value function resulting from the value iteration VMDP is passed to the next and final
step.

Step 3: Solve POMDP using PBVI
In Step 3 the POMDP model is solved approximately with means of PBVI. The PBVI algorithm
may run until the predetermined maximum execution time is reached and the host car needs to
know which action to execute. The value function from Step 2, VMDP is considered a good first
approximation of the POMDP model and therefore the PBVI algorithm is initialized with this
value function. The POMDP value function is initialized as Γ0 = {α0} where α0 is the initial
α-vector defined by,

α0(s) =

VMDP(sMDP) , if s = sMDP = (i,j,xcombNcomb),

0 , otherwise,
(3.24)

where i ∈ {Left,Right}, j ∈ {1,2, . . . , Ngaps}, s ∈ S and sMDP ∈ SMDP.

Algorithm 3.2.1 describes the PBVI algorithm used to solve the POMDP. The PBVI algorithm
is based on the PBVI equations: (2.14), (2.15), (2.18), (2.19) and (2.20), but also utilizes the fact
that the observation matrix is deterministic. The algorithm is given the set of α-vectors from
the previous iteration step Γn−1, the transition matrix T , the reward matrix R, the selected
belief points B to be used in the iteration, the discount factor γ, the number of actions |A|,
the number of observations |O| and the number of states |S|. Also the algorithm is given a
matrix Zindexes where each row in Zindexes indicates the non-zero elements in each column in
the observation matrix Z. The matrix Zindexes is used in order to allow for faster computation
of Γa,on . In Algorithm 3.2.1 ei refers to the unit vector in the ith dimension and Sa is an |S|× |B|
matrix where each column equals the second term in (2.18), that is,

Column b in Sa =
∑
o∈O

arg max
α∈Γa,on

(∑
s∈S

α(s)b(s)
)

b ∈ B, a ∈ A, (3.25)

The algorithms described in this thesis use some Matlab syntax so for example in Algorithm 3.2.1
the notation T (: ,a,Io) refers to all elements in the first dimension, element a in the second
dimension and elements Io in the third dimension. Also note that (Imaxbα)i refers to the ith

element in Imaxbα and that the sets Γa,on , Γa,∗n , Γan are treated as matrixes.

35

3.2. STAGE 1

Algorithm 3.2.1: PointBasedValueIteration (Γn−1, T ,R,B, γ, |A|, |O|, |S|,Zindexes)

for a = 1, . . . ,|A| do

Initialize sum over observations, Sa = 0|S|×|B|

for o = 1, . . . ,|O| do

Obtain row o from Zindexes, Io = Zindexes(o, :)

Calculate Γa,on = γ · T (: ,a, Io) · Γn−1(Io, :)

Obtain sum over all b ∈ B and all αa,o ∈ Γa,on , Sbα = B · Γa,on
Calculate Imaxbα , the indexes for the max values in each row in Sbα, (Imaxbα)i = argmax(Sbαei)

Calculate Sa = Sa + Γa,on (: ,Imaxbα)

end for

Set Γa,∗n = R(: ,a)

Set Γan = Γa,∗n + Sa

end for

for a = 1, . . . ,|A| do

Obtain sum over all b ∈ B and all αab ∈ Γan, SbΓ = B · Γan
end for

Calculate ImaxbΓ , the indexes for the max value in each row in SbΓ, (ImaxbΓ)i = argmax(SbΓei)

Remove duplicates in ImaxbΓ

for each j in ImaxbΓ do

Add new α-vector, Γn = Γn ∪ {Γan(j)}
end for

return Γn

The belief point selection strategy used with the PBVI algorithm does not implement any of
the strategies described in Section 2.3.3.1. Instead the strategy used is specifically designed for
the Stage 1 POMDP model. The strategy is based on the fact that Stage 1 will transition to
Stage 2 when the host car wishes to execute action a1. Therefore this action is only considered
interesting when it is used for taking the host car from the left lane to the right lane, not the
other way around. The belief points resulting from the host car returning to the left lane are
therefore excluded.

If the host car cannot receive any non-zero reward for changing lane, that is
∑

sR(s,a1) = 0,
then states corresponding to the same observation have exactly the same transition proba-
bilities (see (3.13)-(3.16)). Since the observation matrix is deterministic this means that if∑

sR(s,a1) = 0 the number of belief points that can ever be reached is no more than the num-
ber of observations. This can be seen from inspecting (2.9). When the host car cannot receive
any non-zero reward for changing lane, all belief points that can ever be reached are selected.

If the host car can receive non-zero rewards for changing lane, Algorithm 3.2.2 is used. This
algorithm is initially given those belief points that are reachable when executing the determin-

36

3.2. STAGE 1

istic actions (a2, a3 and a4) from the initial belief point. All of these actions cause the host car
to stay in the left lane. Within Algorithm 3.2.2, Algorithm 3.2.3 is called which finds the one
step forward reachable belief points that correspond to the host car still being in the left lane
(denoted B′Left) and the one step forward reachable belief points corresponding to the host car
being in the right lane (denoted B′Right). Algorithm 3.2.3 is only given the set BLeft as input
since these are the belief points still of interest. In Algorithm 3.2.3 expressions (2.7) - (2.9) are
used, where, the algorithm calculates ba(s), ba(o) and boa(s) ∀s ∈ S, ∀b ∈ BLeft and these sets
are denoted Bas , Bao and Bo

a respectively. Algorithm 3.2.3 returns the sets B′Right and B′Left
which are used in Algorithm 3.2.2 to update the old sets BRight and BLeft. In Algorithm 3.2.2
a parameter called resolution is also used to remove belief points in B′Left and B′Right that are
closely spaced in the belief space. Using B′Right as an example this operation is mathematically
expressed as follows:

Let B̂ = ∅ and f(b) = nint(resolution · b) where nint(x) is the nearest integer function applied
to each element in x, and define the set operation f(B̂) = {f(b)|b ∈ B̂}. The set B̂ is then
calculated from the following statement,

∀b ∈ B′Right
(
f(b) /∈ f(B̂)→ B̂ = B̂ ∪ {b}

)
, (3.26)

hence B̂ ⊆ B′Right where B̂ is used to update B′Right. The default value of resolution is
resolution = 1000.

Algorithm 3.2.2 is called as long as the number of belief points in B = B′Right ∪ B′Left does not
exceed Maxb. The final set of selected belief points is the set B.

Algorithm 3.2.2: SelectBeliefPoints (BRight,BLeft,|A|, |O|, |S|, T ,Z, resolution)

[B′Right,B′Left] = GetReachableBeliefPoints(BLeft, |A|, |O|, |S|, T ,Z)

B′Right = BRight
⋃
B′Right

Remove zero rows and duplicate rows in B′Right
Use resolution to remove belief points in B′Right that are very close in the belief space

B′Left = BLeft
⋃
B′Left

Remove zero rows and duplicate rows in B′Left
Use resolution to remove belief points in B′Left that are very close in the belief space

return B′Right,B′Left

37

3.2. STAGE 1

Algorithm 3.2.3: GetReachableBeliefPoints (BLeft,|A|, |O|, |S|, T ,Z)

for a = 1, . . . ,|A| do

Calculate Bas = BLeft · T (: ,a, :)

Calculate Bao = Bas · O
Only loop over left lane observations

for o = 1, . . . ,|O|/2 do

Find indexes of non-zero elements in Bao , denote IBao

Find indexes of zero elements in Bao , denote I0
Bao

if I0
Bao
6= ∅

Action a and observation o is not a possible combination for belief points with index IBao

Set Boa = 0 for these belief points

end if

if IBao
6= ∅

Action a and observation o is a possible combination for belief points with index IBao

Calculate Boa for these belief points using (2.9)

end if

end for

end for

Set B′Left = Boa

Set a = 1

Calculate Bas = BLeft · T (: ,a, :)

Calculate Bao = Bas · O
Only loop over right lane observations

for o = |O|/2 + 1, . . . ,|O| do

Find indexes of non-zero elements in Bao , denote IBao

Find indexes of zero elements in Bao , denote I0
Bao

if I0
Bao
6= ∅

Action a and observation o is not a possible combination for belief points with index IBao

Set Boa = 0 for these belief points

end if

if IBao
6= ∅

Action a and observation o is a possible combination for belief points with index IBao

Calculate Boa for these belief points using (2.9)

end if

end for

Set B′right = Boa

return B′Right,B′Left

38

3.2. STAGE 1

3.2.4 Top Level Implementation of Stage 1

Stage 1 is described in Algorithm 3.2.4. The tuning parameters (given as inputs) to the al-
gorithm are listed in Table 3.2 and Table 3.4 and the input variables are listed in Table 3.3.
Algorithm 3.2.4 returns the action to be executed in Stage 1, denoted aStage1 .

Table 3.3: Input variables to Stage 1.

vObjRightRelHost The velocities of the detected objects in the right lane rela-
tive to the host car.

lObjRightRelHost The longitudinal positions of the detected objects in the
right lane relative to the host car.

vV ehicleLeftRelHost The velocity of the vehicle in front of the host car in the left
lane relative to the host car.

lV ehicleLeftRelHost The longitudinal position of the vehicle in front of the host
car in the left lane relative to the host car.

lEndRelHost The distance to the end-point from the host car.

vhost The velocity of the host car.

vmax Maximum allowed velocity of the host car.

vmin Minimum allowed velocity of the host car.

certainty The certainty vector, see Definition 3.2.1.

probreal The probability vector of suspected ghost-cars, see Defini-
tion 3.2.2.

Within Algorithm 3.2.4 another algorithm, Algorithm 3.2.5, is called and this algorithm is given
all input variables listed in Table 3.5 and Table 3.1 except sizeGap(j,xcombk) and distMidEnd(j, xcombk).
Algorithm 3.2.5 is also given the input tuning parameters listed in Table 3.2 as well as the tuning
parameters GU and CarSize which are used in (3.11) and (3.5) respectively.

Algorithm 3.2.5 computes all parts required in the POMDP model and returns the transition
function, the reward function, the observation function and the initial belief point. Also a
Boolean called solve is returned which if False indicates that the POMDP model should not be
solved and then the action to be executed is set to aStage1 = −1. This can for example happen
if vehicleFront drives very slowly so that the host car cannot stay adjacent to any gap between
two subsequent objects detected in the right lane. Some extra caution needs to be taken if
there are no suspected ghost-cars, that is Nunsure = 0. In that case a POMDP model is still
created and an MDP model is derived, however, only the MDP model is solved. If there is at
least one suspected ghost-car (Nunsure > 0) the PBVI algorithm is used to find an approximate
solution of the POMDP. The PBVI algorithm runs Maxiter times or until the number of α-
vectors exceeds Maxα. If Maxα is reached it is assumed that a PBVI update takes to long
to compute resulting in a non-real time decision. The action to be executed is calculated by
means of calling MostPromisingAction which is not described further in this report since it

39

3.2. STAGE 1

Table 3.4: Remaining tuning parameters (given as inputs) to Stage 1. In Table 3.2 the other tuning
parameters used in Stage 1 are shown.

Maxb The selection of belief points terminates when the num-
ber of selected belief points exceeds Maxb. Used in Algo-
rithm 3.2.2.

resolution Tolerance used to remove reachable belief points that are
closely spaced, see Algorithm 3.2.2.

Maxα Maximum number of α-vectors allowed in the PBVI algo-
rithm.

Maxiter Maximum number of PBVI updates allowed.

GU Weight used when computing the POMDP transition func-
tion, used in (3.11).

CarSize The average length of a car.

γ Discount factor in the POMDP model and the MDP model.

Table 3.5: Remaining input variables to CreatePOMDP (Algorithm 3.2.5). In Table 3.1 the
other input variables to CreatePOMDP are shown.

hostpos The number of the gap that the host car is adjacent to.

certainty The certainty vector, see Definition 3.2.1.

probreal The probability vector of suspected ghost-cars, see Defini-
tion 3.2.2.

Ncomb The number of possible values of Xvec
comb, see Section 3.2.1.1.

Nunsure The number of suspected ghost-cars.

Ngaps Number of gaps.

|S| Number of states in the POMDP model

gapsize(j) The size of gap j if all suspected ghost-cars have status real
car, see (3.5).

distmidend(j) The distance from the midpoint of gap j to the end-point if
all suspected ghost-cars have status real car, see (3.6).

vMidRel The relative velocity between the midpoints of gap j and
gap j + 1, see (3.11).

is merely an implementation of (2.10).

40

3.2. STAGE 1

Algorithm 3.2.4: Stage1 (args)

Calculate the input variables to CreatePOMDP, (Algorithm 3.2.5).

if Nunsure = 0

Temporarily change the number of suspected ghost-cars: certainty(end− 1) = 0, Nunsure = 1, |S| = 2 ·Ngaps21

[T ,R,Z, b0, solve] = CreatePOMDP(args)

Restore the number of suspected ghost-cars: certainty(end− 1) = 1, Nunsure = 0, |S| = 2 ·Ngaps20

else

[T ,R,Z, b0, solve] = CreatePOMDP(args)

end if

if solve = True

if Nunsure = 0

Temporarily change Ncomb, Ncomb = 2

[TMDP,RMDP] = deriveMDP(T ,R, Ngaps, Ncomb, |A|)
Restore Ncomb, Ncomb = 1

else

[TMDP,RMDP] = deriveMDP(T ,R, Ngaps, Ncomb, |A|)
end if

Set current MDP state to the gap that the host car is adjacent to, stateIN = hostpos

Solve MDP with value iteration. Obtain value function VMDP and action aMDP to execute in stateIN

Set POMDP action to MDP action, aStage1 = aMDP

if Nunsure > 0

Initialize PBVI algorithm using VMDP

Find non-zero indexes in each column in Z, store in Zindexes
Select belief points B using SelectBeliefPoints(BRight,BLeft,|A|, |O|, |S|, T ,Z, resolution)
for n = 1,2, . . . ,Maxiter do

Γn = PointBasedValueIteration(Γn−1, T ,R,B, γ, |A|, |O|, |S|,Zindexes)
if number of α-vectors in Γn > Maxα

break

end if

end for

aStage1 = MostPromisingAction(b0,R, T ,Z, |S|, |A|, |O|,Γn)

end if

else

No gap is suitable to stay by, set aStage1 = −1

end if

return aStage1

41

3.3. STAGE 2

Algorithm 3.2.5: CreatePOMDP(args)

Calculate the initial belief point b0 using (3.18).

Create transition matrix T : S ×A× S using (3.13)-(3.16).

Create observation matrix Z : S ×O using (3.17).

Create reward matrix R : S ×A× S using (3.7)-(3.10).

if Reward matrix R gives no rewards for action a2

solve = False

end if

Convert R from S ×A× S to S ×A using (2.1).

return T ,R,Z, b0, solve

3.3 Stage 2

In Stage 2 the objective for the host car is to show its intention to merge by signaling and moving
laterally towards the line that separates the left lane from the right lane. The host car should
give signal for some time, allowing surrounding vehicles to be aware of its intention to merge
and then decide whether to continue to Stage 3 or return to Stage 1.

In Stage 2 Algorithm 3.3.1 is called where several conditions are checked in order to decide which
action to execute. The action to be executed in Stage 2 is denoted aStage2 where,

• aStage2 = 1 indicates that the host car shall return to Stage 1,

• aStage2 = 2 indicates that the host car shall continue to show its intention,

• aStage2 = 3 indicates that the host car shall continue to the next stage, Stage 3.

Table 3.6 describes the input variables used in Algorithm 3.3.1 and Table 3.7 describes the tun-
ing parameters used.

Table 3.6: Input variables to Stage 2.

hostpos The number of the gap that the host car is adjacent to.

gapsize(j) The size of gap j if all suspected ghost-cars have status real
car.

tint Indicates for how many time samples the host car has shown
its intention.

badgap The number of the gap that the host car failed to merge
into. This variable is further explained in Section 3.5.

42

3.4. STAGE 3

Table 3.7: Tuning parameters (given as inputs) to Stage 2.

GapSafety Minimum gap size required for allowing host car to start
merging into a gap.

Tint Indicates for how many time samples the host car has to
show its intention.

Algorithm 3.3.1: Stage2 (hostpos, gapsize,GapSafety, tint, Tint, badgap)

Set goal gap, goalgap = hostpos

Find gap size of goal gap, sizeGapgoal = gapsize(goalgap)

if tint = 0

Store size of gap at start, gapmem(1) = sizeGapgoal

else if tint = Tint

Store size of gap at end time, gapmem(end) = sizeGapgoal

Find out if gap has become larger, proggap = gapmem(1)− gapmem(end)

end if

if tint < T limint

Keep showing intention, aStage2 = 2

Increase intention timer tint = tint + 1

else if tint ≥ Tint and ((sizeGapgoal ≥ GapSafety) or (proggap > 0 and sizeGapgoal ≥ GapSafety · 0.8))

Go to Stage 3, aStage2 = 3

Reset intention timer tint = 0

else

Go back to Stage 1, aStage2 = 1

Reset intention timer tint = 0

Update bad gap badgap = goalgap

end if

return aStage2 , tint, badgap

3.4 Stage 3

In Stage 3 the objective for the host car is to perform the actual lane changing maneuver. In this
stage Algorithm 3.4.1 is called which checks a condition in order to decide whether to continue
to merge or cancel the merging operation. The action to be executed in Stage 3 is denoted
aStage3 where,

• aStage3 = 1 indicates that the host car should continue to merge,

43

3.5. TOP LEVEL IMPLEMENTATION OF THE MERGING DECISION ALGORITHM

• aStage3 = 2 indicates that the host car should cancel the merging operation and return to
Stage 1.

In Table 3.6 and Table 3.7 all input variables and tuning parameters used in Algorithm 3.4.1
are included.

Algorithm 3.4.1: Stage3 (hostpos, gapsize,GapSafety)

Set goal gap, goalgap = hostpos

Find gap size of goal gap, sizeGapgoal = sizeGaps(goalgap)

if sizeGapgoal ≥ GapSafety
Keep performing merging, aStage3 = 1

else

Cancel merging, aStage3 = 2

Update bad gap, badgap = goalgap

end if

return aStage3 , badgap

3.5 Top Level Implementation of the Merging Decision Algo-
rithm

Algorithm 3.5.1 describes the top level implementation of the merging decision algorithm. The
tuning parameters (given as inputs) to the algorithm are shown in Table 3.2, Table 3.4, Table 3.7
and Table 3.8 and the input variables are described in Table 3.3. The merging decision algorithm
is also given a variable called Stage which indicates which stage the system is in. The tuning pa-
rameters shown in Table 3.8, that is TBadgap and THost,End, will next be explained in more detail.

Table 3.8: Remaining tuning parameters (given as inputs) to the merging decision algorithm.
Table 3.2, Table 3.4, Table 3.7 and Table 3.8 show the other tuning parameters used.

TBadgap Number of time samples before badgap is reset.

THost,End Minimum time required in order to set endclose = True.

The tuning parameter denoted TBadgap is associated with the variable badgap. If the host car
tries to merge into a gap but the gap turns out to be unfavorable to merge into then badgap
takes on the number of the unfavorable gap. The host car is prevented from trying to merge into
the same unfavorable gap while badgap 6= 0 and badgap is set to zero after some time TBadgap . If
badgap 6= 0 then sizeGap(badgap,xcombk), distMidEnd(badgap,xcombk) and distMidHost(badgap)

44

3.5. TOP LEVEL IMPLEMENTATION OF THE MERGING DECISION ALGORITHM

are adjusted so that the host car will not find that gap favorable.

The tuning parameter denoted THost,End is associated with a Boolean called endclose which
indicates whether the host car is close to the end-point or not. This Boolean is set to True if
the estimated time for the host car to reach the end-point is less than THost,End. The Boolean
endclose is returned by Algorithm 3.5.1 and can be used by the master function to increase
aggressiveness of the host car.

Algorithm 3.5.1: MergingDecisionAlgorithm (args)

Set stage actions to zero, aStagei = 0, i ∈ {1,2,3}
If there are no or one object detected in the right lane, set Stage = −1, aStage1 = −1

Estimate average time for host to end-point, denote tHost,End

if tHost,End < THost,End then endclose = True end if

if tBadgap > TBadgap then badgap = 0 end if

Increase badgap timer, tBadgap = tBadgap + 1

if Stage = 1

Calculate all input variables to be used in Stage1

aStage1 = Stage1(args)

else if Stage = 2

Clear bad gap timer, tBadgap = 0

Calculate all input variables to be used in Stage2

[aStage2 , tint, badgap] = Stage2(hostpos, sizegap, tint, Tint, GapSafety, tBadgap)

else if Stage = 3

Calculate all input variables to be used in Stage3

[aStage3 , badgap] = Stage3(hostpos, sizegap,GapSafety)

end if

return aStage1 , aStage2 , aStage3 , endclose

The master function calls Algorithm 3.5.1 frequently and determines when the merging operation
has been completed. If it has been completed the system transitions to Stage 4 where the host
car is controlled (by the master function) so that it follows the car in front of it in the right lane.

45

4
Results

T
his chapter presents results obtained when testing the merging decision algorithm
(Algorithm 3.5.1). Section 4.1 describes how the algorithm is implemented in a sim-
ulation environment and Section 4.2 presents four test cases where the main focus is
on showing different properties of the algorithm and evaluating the quality of the de-

cisions made by the algorithm. Section 4.3 evaluates the performance of policies obtained when
using the implemented POMDP solver and lastly Section 4.4 evaluates the execution time of the
algorithm. The results from this chapter are discussed in more detail in Section 5.1.

4.1 Implementation of the Merging Decision Algorithm

All algorithms described in Chapter 3 are implemented in embedded Matlab in order to make
it easier to use the merging decision algorithm in a real test car. Also a simulation environment
is developed so that the merging decision algorithm can be tested for different traffic scenarios
also without using a real test car. Figure 4.1 shows a snap shot of the simulation window. The
host car is in the left lane and there are six objects detected in the right lane where the third
object and the fifth object are suspected ghost-cars. Also there is a car in front of the host car
in the left lane. The end-point cannot be seen.

4.2 Test Cases

This section presents results obtained from using the merging decision algorithm in the simu-
lation environment. Test case 1 and Test case 2 show how the behavior of the host car differs
between decisions based on the POMDP model and decisions based on the MDP model. Test
case 3 shows how the discount factor γ can be used in order to adjust the behavior of the host
car. In Test case 4 the algorithm is tested with data from a real traffic scenario. In all test cases
the desirable behavior of the host car is discussed through rational reasoning.

46

4.2. TEST CASES

Figure 4.1: Snap shot of the simulation window. There are six objects detected in the right lane
and the ones colored in gray are suspected ghost-cars.

In the first three test cases six cars are simulated in the right lane and in all test cases there
is either zero, one or two suspected ghost-cars where the status for the suspected ghost-cars
are real car. Test case 1, 2 and 3 include at least two sub-tests and for a given test case the
behavior of the cars in the right lane is the same for all sub-tests. Also in all test cases the
distance to the end-point is set to a high value. The values of the tuning parameters used when
performing the tests can be found in Appendix A. Note that the values of Maxb, Maxα, Maxiter
and resolution are only important for sub tests where there is at least one suspected ghost-car,
that is Nunsure > 0 (see Algorithm 3.2.4). In Appendix A it is also described how the maximum
allowed speed for the host car vmax and the minimum allowed speed for the host car vmin are
set in the simulation environment.

In the first three test cases the simulation time in Simulink is set to 100 s and a decision is
made every 0.2 s. The real execution times are presented in Table 4.1 where it can be seen that
the execution times vary significantly between sub-tests. This is explained by the fact that the
number of suspected ghost-cars vary between tests and the amount of time that the host car is
in Stage 1, which is the most computationally complex stage, also varies between the tests.

4.2.1 Test Case 1

In all sub-tests in Test case 1 the host car starts by gap 4 (in Definition 3.1.3 it is described
how the gaps are numbered) and must not drive above 75 km/h. In this test case the cars in
the right lane are equally spaced and are driving at 70 km/h. No gap is wide enough to try to
merge into, hence BLC will always be False.

Test case 1.1
The certainty vector in Test case 1.1 equals certainty = [1 1 1 1 1 1], hence there are no sus-
pected ghost-cars. This means that the action given from Stage 1 will always equal the action
provided from solving the MDP model, hence aStage1 = aMDP (see Algorithm 3.2.4).

47

4.2. TEST CASES

Table 4.1: Execution times required for Test case 1, 2 and 3.

Test Case Execution Time [s]

Test Case 1.1 13.4

Test Case 1.2 189.6

Test Case 1.3 233.3

Test Case 1.4 55.0

Test Case 2.1 10.6

Test Case 2.2 43.3

Test Case 3.1 12.7

Test Case 3.2 9.5

Desirable behavior of host car
Since all cars are equally spaced and are driving at the same speed it is reasonable to assume
that the likelihood that one of the gaps becomes wider the next time instance is the same for
all gaps. In this situation it would therefore be reasonable to move so that the sensor system
may detect other gaps that are larger. If the host car increases its speed it will get even closer
to the end-point and therefore a better alternative is to slow down. Since gap 1 should always
be considered an unfavorable alternative, a good decision would be to stay by gap 2.

Behavior of host car
The host car waits for gap 2 and stays there throughout the rest of the simulation. The re-
sults from Test case 1.1 are shown with green lines with connected circles in Figure 4.2a and
Figure 4.2b where Figure 4.2a shows the actions executed at each simulation time step and
Figure 4.2b shows which gap the host car is adjacent to at every time step.

Test case 1.2
In test case 1.2 the certainty vector is set to certainty = [1 1 1 1 0 1] and the probability vector
for suspected ghost-cars equals probreal = [0.5], thus object5 is a suspected ghost-car and has
status real car with probability 0.5 and the other objects are classified as cars.

Desirable behavior of host car
Since there is a 50% chance that object5 has status ghost-car this means that there is a 50%
chance that gap 5 and gap 6 correspond to the same space which is then large enough to try to
merge into. A good decision would therefore be to try to merge into that space. However, a 50%
chance that gap 5 and gap 6 correspond to the same space may also be considered too small.
Then a good decision could be to try to find larger gaps that are further away and therefore
waiting for gap 2 could be a good alternative (using the reasoning made in Test case 1.1). If the
host car tries to merge into gap 5 or gap 6 but fails to complete the maneuver, a good decision
would be to wait for gap 2. In this case the same reasoning as in Test case 1.1 is used.

48

4.2. TEST CASES

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4

5

6

7
Action Test case 1

Simulation Time

A
ct
io
n
a

a= 0 : not in Stage 1
a= 1 : change lane
a= 2 : stay
a= 3 : forward
a= 4 : wait
a=−1 : carFront is blocking

Test Case 1.1
Test Case 1.2
Test Case 1.3
Test Case 1.4

(a) Actions executed versus time. A decision, fol-
lowed by an action, is made every 0.2 s.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
Gap that host car is in or adjacent to, Test case 1

Simulation Time

G
a
p
n
u
m
b
er

Test Case 1.1
Test Case 1.2
Test Case 1.3
Test Case 1.4

(b) Number of the gap that the host car is adjacent
to versus time.

Figure 4.2: Results from the sub-tests in Test case 1. In Test case 1.1 no cars are classified as
suspected ghost-cars and in this test case the host car waits (action a4) for gap 2 and then stays
(action a2) adjacent to this gap throughout the rest of the simulation (green line with connected
circles). In Test case 1.2 object5 is classified as a suspected ghost-car and has status real car with
probability 0.5. In this test case the host car tries to merge into gap 5 (blue solid line). In Test
case 1.3 object5 has status real car with probability 0.9 and the host car behaves as in Test case 1.1.
There is only a small chance that object5 is a ghost-car and therefore gap 5 is not as attractive as in
Test case 1.2. In Test case 1.4 there are two suspected ghost-cars as well as a vehicle in front of the
host car in the left lane. At time step t ' 54 this vehicle prevents the host car from staying adjacent
to gap 2 which is why the host car is forced to stay by gap 1 (dark gray line with connected stars).

Behavior of host car
The host car first drives forward to gap 5 where it shows its intention to merge and thus the
system transitions to Stage 2, which can be seen from the blue solid line in Figure 4.2a at time
steps 8 / t / 24 where the action equals zero. In the graph, a = 0 only indicates that the host
car is not in Stage 1, therefore when a = 0 the host car can either be in Stage 2, Stage 3 or Stage
4 (see Algorithm 3.5.1). It turns out that gap 5 is not a favorable gap to merge into (since the
status of the suspected ghost-car is real car) and the host car then waits for gap 2. The host car
stays by gap 2 for some time, see the blue solid line in Figure 4.2b for time steps 32 / t / 52,
but then it once again returns to gap 5. This is explained by the fact that the badgap variable
has been reset. Before the simulation stops, the host car tries to merge into gap 5 once again,
seen in Figure 4.2a for 74 / t < 100.

Test case 1.3
In test case 1.3 the certainty vector is, in similarity with Test case 1.2, set to certainty =
[1 1 1 1 0 1], however the probability vector for suspected ghost-cars equals probreal = [0.9],
hence the probability that object5 has status real car is now 0.9 instead of 0.5.

49

4.2. TEST CASES

Desirable behavior of host car
In this situation the same reasoning can be made as in Test case 1.2. However, in this test case
the chance that gap 5 and gap 6 refer to the same space is decreased to just 10% so it is more
reasonable to stay by gap 2 compared to Test case 1.2.

Behavior of host car
The host car behaves exactly as in Test case 1.1. The resulting graphs from Test case 1.3 can
be seen from the orange dashed line in Figure 4.2a and Figure 4.2b. This line coincides with the
line representing the results from Test case 1.1.

Test case 1.4
In Test case 1.4 object3 and object5 are classified as suspected ghost-cars, thus the certainty
vector is set to certainty = [1 1 0 1 0 1]. The probability vector for suspected ghost-cars is set
to probreal = [0.5, 0.8], hence object3 has status real car with 50% confidence and object5 has
status real car with 80% confidence. A vehicle is also driving in front of the host car in the left
lane. This vehicle is initially driving faster than the cars in the right lane but eventually slows
down.

Desirable behavior of host car
If there would not be a vehicle in front of the host car in the left lane a good decision could
be to try to merge into gap 3 or gap 4 which are the gaps closest to object3. There is a 50%
chance that these gaps correspond to the same space. If the host car tries to merge into one
of these gaps but fails to complete the maneuver a good decision could be to try to merge into
gap 5 or gap 6 which are the closest gaps to object5. However, these gaps only refer to the
same space with a probability of 20%. Therefore a good decision could also be to stay by gap
2, using the same reasoning as in Test case 1.1. If vehicleFront is getting too close, the host
car should not try to merge into any gap but slow down to keep a safe distance to the car in front.

Behavior of host car
The host car first tries to merge into gap 3, but this gap turns out to be unfavorable (since the
status of all suspected ghost-cars are real car). The car in front of the host car in the same lane,
vehicleFront, is blocking gap 5 so the host car waits for gap 2 and it stays adjacent to this gap
for some time. However, at t ≈ 54 the host car cannot stay by gap 2 any more but has to adjust
its behavior so that it does not drive into vehicleFront. The Boolean solve equals False and so
the action is set to aStage1 = −1 (see Algorithm 3.2.4). The dark gray line with connected stars
in Figure 4.2a and Figure 4.2b show the results from Test case 1.4.

4.2.2 Test Case 2

In all sub-tests in Test case 2 the host car starts by gap 4 and the speed limit is set to 65 km/h.
All cars in the right lane are first equally spaced and are driving at 50 km/h. However, after
a while object6 increases its speed to 53 km/h which eventually makes gap 6 large enough to
merge into.

50

4.2. TEST CASES

Test case 2.1
In Test case 2.1 the certainty vector is set to certainty = [1 1 1 1 1 1], thus there are no suspected
ghost-cars.

Desirable behavior of host car
By using the same reasoning as in Test case 1.1, a good decision would be to stay by gap 2
during the time when all cars are equally spaced. After a while when gap 6 has become larger
a good decision would be to try to merge into this gap. The host car will have to accelerate to
reach this gap but since the goal of merging into the right lane may be fulfilled the increased
impact level associated with such an action can be justified.

Behavior of host car
The host car waits for gap 2 and stays adjacent to this gap and when the size of gap 6 increases
the host car drives to this gap where it shows its intention and successfully merges. The actions
executed and the gap that the host car is in or adjacent to for all time steps can be seen in
Figure 4.3a and Figure 4.3b where the green line with connected circles represents Test case 2.1.

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4

5

6

7
Action Test case 2

Simulation Time

A
ct
io
n
a

a= 0 : not in Stage 1
a= 1 : change lane
a= 2 : stay
a= 3 : forward
a= 4 : wait
a=−1 : carFront is blocking

Test Case 2.1
Test Case 2.2

(a) Actions executed versus time. A decision, fol-
lowed by an action, is made every 0.2 s.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
Gap that host car is in or adjacent to, Test case 2

Simulation Time

G
a
p
n
u
m
b
er

Test Case 2.1
Test Case 2.2

(b) Number of the gap that the host car is adjacent
to versus time.

Figure 4.3: Results from the sub-tests in Test case 2. In Test case 2.1 the host car waits (action
a4) for gap 2 and stays (action a2) there until gap 6 becomes larger. Then the host car drives to this
gap (action a3) where it merges successfully. In this test case there are no suspected ghost-cars. In
Test case 2.2 there is one suspected ghost-car which has status real car with probability 0.7. The
host car tries to merge into gap 3 but without success. Next the host car tries to merge into gap 6
even though the host car can obtain a higher reward for trying to merge into gap 3 again. However,
at gap 6 the host car is guaranteed to receive a quite high reward for a lane change for all values of
Xcomb but this is not the case for gap 3.

51

4.2. TEST CASES

Test case 2.2
In Test case 2.2 the certainty vector is set to certainty = [1 1 0 1 1 1] and the probability vector
for suspected ghost-cars equals probreal = [0.7], thus object3 is a suspected ghost car and has
status real car with probability 0.7. The variable TBadgap is set to zero (see Appendix A) so that
the host car will forget any unfavorable gap right away.

Desirable behavior of host car
Before gap 6 has become larger a good decision could be to try to merge into one of the gaps
closest to object3, that is gap 3 or gap 4. There is an 30% chance that object3 has status ghost
car and therefore there is a 30% chance that gap 3 and gap 4 refer to the same space which
would then be large enough to try to merge into. After gap 6 has become larger a good decision
would be to try to merge into this gap. Even though gap 6 is closer to the end-point object6 is
a car with high probability and therefore the size of gap 6 is known whereas this is not the case
for gap 3 and gap 4.

Behavior of host car
The host car first waits for gap 3 and shows its intention to merge into this gap. After failing to
merge into gap 3 the host drives forward to gap 6 which has now become larger. In inspecting
the reward matrix at this time instance, it can be seen that the host car can receive the highest
rewards if it executes action a1 =”change lane” and merges into gap 3 or gap 4 (TBadgap = 0
which is why a lane change into gap 3 can give a non-zero reward, even though the host car just
tried to merge into this gap). However, these rewards can only be obtained if the status of the
suspected ghost-car is ghost-car. If the suspected ghost-car has status real car, no rewards can
be obtained for a lane change neither when the host car is by gap 3 nor by gap 4. On the other
hand, the host car can always receive a quite high reward for changing lane and merging into
gap 6, regardless of the status of the suspected ghost-car and therefore this gap turns out to be
the most favorable. The host car successfully merges into gap 6. The actions executed and the
gap that the host car is in or adjacent to in Test case 2.2 can be seen from the blue solid line in
Figure 4.3a and Figure 4.3b.

4.2.3 Test Case 3

In all sub-tests in Test case 3 the host car starts by gap 4 and the speed limit is set to 75 km/h.
All cars in the right lane except car 6 are driving at 70 km/h and they are equally spaced with
none of the gap sizes larger than GapSafety. Car 6 is frequently changing speed so that it drives
above 70 km/h for some time and then below 70 km/h for some time. This means that gap 6 is
also frequently changing its size. The maximum size of gap 6 is larger than GapSafety.

Test case 3.1
In test case 3.1 the certainty vector is set to certainty = [1 1 1 1 1 1], thus there are no suspected
ghost-cars. The discount factor is set to γ = 0.95 (see Appendix A).

Desirable behavior of host car
A good decision in this test case could be to try to merge into gap 6 since when the size of
this gap starts to increase a reasonable assumption is that gap 6 may eventually become large

52

4.2. TEST CASES

enough to try to merge into. The host car does not start by gap 6 and therefore it will take some
time before it can reach this gap and by that time the traffic situation might have changed so
that gap 6 is not a preferable gap to try to merge into. Taking this into account a good decision
could also be to try to detect other gaps. This means that a good decision could also be to stay
by gap 2, using the reasoning in Test case 1.1.

Behavior of host car
The actions executed and the gaps that the host car is adjacent to in Test case 3.1 are shown
with the green line with connected circles in Figure 4.4a and Figure 4.4b. It can be seen that
the host car frequently changes its position. When gap 6 becomes larger the host car accelerates
and drives towards this gap. However, when the gap becomes smaller the host car waits by gap
2. The behavior is repeated.

0 10 20 30 40 50 60 70 80 90 100
−2

−1

0

1

2

3

4

5

6

7
Action Test case 3

Simulation Time

A
ct
io
n
a

a= 0 : not in Stage 1
a= 1 : change lane
a= 2 : stay
a= 3 : forward
a= 4 : wait
a=−1 : carFront is blocking

Test Case 3.1
Test Case 3.2

(a) Actions executed versus time. A decision, fol-
lowed by an action, is made every 0.2 s.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7

8
Gap that host car is in or adjacent to, Test case 3

Simulation Time

G
a
p
n
u
m
b
er

Test Case 3.1
Test Case 3.2

(b) Number of the gap that the host car is adjacent
to versus time.

Figure 4.4: Results from the sub-tests in Test case 3 in which there are no suspected ghost-cars.
In Test case 3.1 the discount factor is set to γ = 0.95 and the host car changes its position relative
to a gap frequently. In Test case 3.2 the discount factor is set to γ = 0.34. In comparing the results
from this test with Test case 3.1 it can be seen that a lower value on the discount factor results in
smoother driving.

Test case 3.2
In test case 3.2 the certainty vector is still set to certainty = [1 1 1 1 1 1] but the discount factor
is decreased to γ = 0.34.

Desirable behavior of host car
The reasoning made in Test case 3.1 can be used also in this test case.

53

4.3. POLICY EVALUATION

Behavior of host car
The actions executed and the gaps that the host car is adjacent to are presented with the blue
solid line in Figure 4.4a and Figure 4.4b. It can be seen that the host car chooses to stay at gap
2 throughout the whole simulation.

4.2.4 Test Case 4

The merging decision algorithm is in this test case analyzed with data collected from a real traffic
scenario. All objects that were detected on the right side of the test car and that were traveling
with a speed exceeding 10 m/s are included. The lateral positions of the objects are adjusted so
that all objects appear on a straight line in the simulation but the longitudinal positions are not
altered. In this test case all objects are set to be real cars. Many objects come and go throughout
the simulation because an object detected at one time instance may not be detected the next
time instance. However, there are many gaps available that are large enough to try to merge into.

Desirable behavior of host car
In this test case the host car should drive to the closest gap that is large enough to try to merge
into and whose size is not quickly decreasing.

Behavior of host car
The host car first drives to the middle of gap 2 which is the closest gap to the host car that
fulfills the conditions required in order to try to merge into a gap (BLC = True, see (3.7)). The
host car makes an attempt to merge into this gap but before it has reached the middle of the
right lane all objects detected behind the host car have disappeared and then the host car is by
gap 1 which is considered an unfavorable gap to merge into, causing the host car to return to
the left lane. Figure 4.5a - Figure 4.5d show this phenomena. In the end of the simulation the
host car manages to merge into a gap between two cars that are continuously detected by the
sensor system.

4.3 Policy Evaluation

A policy π can be evaluated by applying it in a simulation where at each time step t′ an action
provided from the policy is executed. The action to be executed a is given by the policy, the
current state s is sampled in accordance with the probabilities given in the current belief state b,
and the observation outcome o given the state s is determined stochastically in accordance with
the probabilities given in the observation function. For every action executed the agent receives
a reward Rt′ which depends on the current state s. The rewards obtained are discounted with
means of the discount factor γ and the sum of discounted rewards gained at time step t′ = t is cal-
culated,

∑t
t′=1Rt′γ

t′−1. The sequence of rewards creates a trajectory of rewards {Rt′}t′=1,2,...,n

which can be associated with the sequence of actions - the action trajectory - {at′}t′=1,2,...,n.
Since the dynamics in a POMDP model (or an MDP model) typically are not deterministic the
amount of reward obtained from using the policy can vary from time to time. Therefore, in order
to test the performance of a policy it has to be simulated several times. The action trajectory
should ideally, in the case of an infinite-horizon discounted reward POMDP, be infinitely long

54

4.3. POLICY EVALUATION

−50 0 50 100

Action mdp:1

Action pomdp:1

Stage:1

Velocity of host car:56.4 km/h

Simulation time:0.7 s
(a) The host car is in Stage 1 in the left lane adjacent to gap 2.

−50 0 50 100

Action mdp:0

Action pomdp:0

Stage:2

Velocity of host car:43.3 km/h

Simulation time:1.4 s
(b) The host car is in Stage 2 and shows its intention to merge into gap 2.

0 50 100 150

Action mdp:0

Action pomdp:0

Stage:2

Velocity of host car:58.8 km/h

Simulation time:2.2 s
(c) The car that was behind the host car in Figure 4.5b has now disappeared so the host
car is in gap 1 which is considered an unfavorable gap.

0 50 100 150

Action mdp:3

Action pomdp:3

Stage:1

Velocity of host car:59.5 km/h

Simulation time:3.5 s
(d) The host car has canceled the merging operation and returned to Stage 1.

Figure 4.5: Results from test case 4. Before the host car has reached the middle of the right lane
it is in gap 1 and therefor the merging operation is canceled.

(n → ∞). Of course it is not possible to simulate an infinitely long trajectory but the perfor-
mance of a policy may be compared to other policies also with shorter trajectories (n = Nsteps).
The higher reward that (on average) can be obtained from using a policy, the better is the policy.

In this section the performance of policies obtained from Stage 1 are evaluated. The driving
scenarios described in Test case 1.2 and Test case 2.2 are used and for each of these scenarios
two POMDP models are extracted at two different time instances. These POMDP models are
used for creating a total of ten different policies Π = {πi|i = 1,2, . . . ,10} described in Table 4.2.
The two last policies in Table 4.2 are obtained from using a POMDP solver called the gapMin
algorithm which is available for download and described in [11]. This algorithm finds a lower
and an upper bound on the value function and the policies corresponding to the lower bound
value function and the upper bound value function are evaluated. Every policy is simulated with
its corresponding POMDP model Nsim = 300 times and in each simulation an action trajectory

55

4.3. POLICY EVALUATION

Table 4.2: Names, notations and descriptions of the policies evaluated.

Name of policy Notation Description of policy

Greedy policy π1 The policy chooses the action that can give the
highest reward when just looking one step for-
ward. The likelihood of receiving the reward is
not considered.

MDP-policy π2 The policy corresponding to α0 which is com-
puted with means of the value function VMDP

provided from solving the MDP model (see
(3.2.3)).

(|B| = x, Maxiter = y)-policy π3, . . . ,π8 The policy corresponding to the
value function resulting from calling
PointBasedValueIteration (Algo-
rithm 3.2.1) Maxiter = y times and using
|B| = x number of belief points selected
with means of SelectBeliefPoints (Algo-
rithm 3.2.2).

gapMin UB policy π9 The policy corresponding to the upper bound
value function provided from the gapMin algo-
rithm.

gapMin LB policy π10 The policy corresponding to the lower bound
value function provided from the gapMin algo-
rithm.

of length Nsteps = 1000 is used. The average discounted reward at time step t = 1,2, . . . ,Nsteps

for policy π, denoted ADRπ(t), is then calculated as,

ADRπ(t) =
1

Nsim

Nsim∑
sim=1

t∑
t′=1

Rπsim,t′γ
t′−1, (4.1)

where Rπsim,t′ is the reward obtained at time step t′ in simulation sim using policy π. The
normalized average discounted reward at time step t′ for policy π, denoted ADRnormπ (t), is
computed as,

ADRnormπ (t) =
ADRπ(t)

max
π̄∈Π

(ADRπ̄(Nsteps))
, π ∈ Π. (4.2)

The normalized average discounted reward (normalized ADR) is used in the policy evaluation
tests since it can be used to compare the performance of policies from different tests.

56

4.3. POLICY EVALUATION

Table 4.3: Value of normalized ADR at time step t = Nsteps for each policy evaluated in Policy
Evaluation Test 1.

Notation Name of policy ADRnormπ (Nsteps)

π1 Greedy-policy 0.8794

π2 MDP-policy 0.8825

π3 (|B| = 24, Maxiter = 100)-policy 0.9730

π4 (|B| = 24, Maxiter = 200)-policy 0.9837

π5 (|B| = 72, Maxiter = 100)-policy 0.9645

π6 (|B| = 72, Maxiter = 200)-policy 1.0000

π7 (|B| = 120, Maxiter = 100)-policy 0.9828

π8 (|B| = 120, Maxiter = 200)-policy 0.9921

π9 gapMin UB-policy 0.8760

π10 gapMin LB-policy 0.9896

4.3.1 Policy Evaluation Test 1

In Policy evaluation test 1 the POMDP model computed at simulation time t = 2.4 in Test
case 1.2 in Section 4.2.1 is used and at this time instance the host car is driving forward to
gap 5, see solid blue lines in Figure 4.2a and Figure 4.2b. Figure 4.6a shows, for each time
step, the normalized ADR for the policies described in Table 4.2 with |B| ∈ {24, 72, 120} and
Maxiter ∈ {100, 200}. Figure 4.6b is a zoomed in version of Figure 4.6a. In Table 4.3 the
normalized ADR values for time step t = Nsteps are shown for each policy. In inspecting
Table 4.3 it can be seen that the policy computed from the highest number of belief points
and the highest number of iterations, that is the (|B| = 120,Maxiter = 200)-policy, does not
perform the best but is outperformed by one other policy, the (|B| = 72,Maxiter = 200)-policy.
This phenomenon may be explained by the fact that the PBVI does not guarantee that the
policy improves monotonically with the number of belief points or the number of iterations (see
Section 2.3.3). From Table 4.3 it can also be seen that the policy that performs the worst is the
gapMin UB -policy, its final normalized ADR value is 0.8760.

4.3.2 Policy Evaluation Test 2

In Policy evaluation test 2 the POMDP model computed at simulation time t = 27 in Test
case 1.2 in Section 4.2.2 is used and at this time instance the host car is waiting for gap 2, see
solid blue lines in Figure 4.2a and Figure 4.2b. Figure 4.7a shows how the policies described in
Table 4.2 perform with |B| ∈ {26, 66, 115} and Maxiter ∈ {100, 200}. Figure 4.7b is a zoomed
in version of Figure 4.7a. In Table 4.4 the normalized ADR values for time step t = Nsteps are
shown for each policy. From this table it can be seen that the greedy-policy and the gapMin
LB-policy perform the worst and that the remaining policies perform equally well. However,
since the final normalized ADR values for the policies that perform the worst is greater than 0.99
the difference in performance between all policies in this policy test may be considered small.

57

4.3. POLICY EVALUATION

Table 4.4: Value of normalized ADR at time step t = Nsteps for each policy evaluated in Policy
Evaluation Test 2.

Notation Name of policy ADRnormπ (Nsteps)

π1 Greedy-policy 0.9956

π2 MDP-policy 1.0000

π3 (|B| = 26, Maxiter = 100)-policy 1.0000

π4 (|B| = 26, Maxiter = 200)-policy 1.0000

π5 (|B| = 66, Maxiter = 100)-policy 1.0000

π6 (|B| = 66, Maxiter = 200)-policy 1.0000

π7 (|B| = 115, Maxiter = 100)-policy 1.0000

π8 (|B| = 115, Maxiter = 200)-policy 1.0000

π9 gapMin UB-policy 1.0000

π10 gapMin LB-policy 0.9956

4.3.3 Policy Evaluation Test 3

In Policy evaluation test 3 the POMDP model computed at simulation time t = 2.4 in Test case
2.2 in Section 4.2.2 is used and at this time instance the host car is by gap 3, see Figure 4.3a
and Figure 4.3b. Figure 4.8a shows how the policies described in Table 4.2 perform with |B| ∈
{24, 67, 98} and Maxiter ∈ {100, 200}. Figure 4.8b is a zoomed in version of Figure 4.8a. In
Table 4.5 the normalized ADR values for time step t = Nsteps are shown for each policy. From this
table it can be seen that the greedy-policy, which performs the worst, performs significantly worse
than the greedy-policy in Policy Evaluation Test 1 and the greedy-policy in Policy Evaluation
Test 2. Also in this test the non-monotonic policy improvement feature of the PBVI algorithm
is apparent since the policy with the highest number of belief points and the highest number
of iterations does not perform the best. However, all policies but the greedy-policy have a final
normalized ADR value that is greater than 0.9, thus the best policy may not be considered
significantly better than the other policies.

4.3.4 Policy Evaluation Test 4

In Policy evaluation test 4 the POMDP model computed at simulation time t = 21.2 in Test
case 2.2 in Section 4.2.2 is used and at this time instance the host car is driving forward to gap
5, see Figure 4.3a and Figure 4.3b. Figure 4.9a shows how the policies described in Table 4.2
perform where |B| ∈ {24, 67, 97} and Maxiter ∈ {100, 200}. Figure 4.9b is a zoomed in version
of Figure 4.9a. It can be seen that the greedy policy once again performs significantly worse
than the other policies. The remaining policies perform almost equally well since they all have
a final normalized ADR value above 0.99 which can be seen in Table 4.6.

58

4.4. SPEED PERFORMANCE OF SOLVING THE POMDP MODEL

Table 4.5: Value of normalized ADR at time step t = Nsteps for each policy evaluated in Policy
Evaluation Test 3.

Notation Name of policy ADRnormπ (Nsteps)

π1 Greedy-policy 0.3885

π2 MDP-policy 0.9070

π3 (|B| = 24, Maxiter = 100)-policy 0.9725

π4 (|B| = 24, Maxiter = 200)-policy 0.9635

π5 (|B| = 67, Maxiter = 100)-policy 0.9718

π6 (|B| = 67, Maxiter = 200)-policy 0.9784

π7 (|B| = 98, Maxiter = 100)-policy 1.0000

π8 (|B| = 98, Maxiter = 200)-policy 0.9876

π9 gapMin UB-policy 0.9052

π10 gapMin LB-policy 0.9753

Table 4.6: Value of normalized ADR at time step t = Nsteps for each policy evaluated in Policy
Evaluation Test 4.

Notation Name of policy ADRnormπ (Nsteps)

π1 Greedy-policy 0.3360

π2 MDP-policy 0.9983

π3 (|B| = 24, Maxiter = 100)-policy 0.9938

π4 (|B| = 24, Maxiter = 200)-policy 0.9966

π5 (|B| = 67, Maxiter = 100)-policy 0.9956

π6 (|B| = 67, Maxiter = 200)-policy 0.9985

π7 (|B| = 97, Maxiter = 100)-policy 0.9968

π8 (|B| = 97, Maxiter = 200)-policy 1.0000

π9 gapMin UB-policy 0.9987

π10 gapMin LB-policy 0.9980

4.4 Speed Performance of Solving the POMDP Model

In this section the execution time of the merging decision algorithm is evaluated. The execution
time of the algorithm depends almost entirely on the time required for selecting belief points
(Algorithm 3.2.2) and then running the PBVI algorithm (Algorithm 3.2.1). Therefore only these
two steps are evaluated for various limits on the maximum number of iterations and a varying
number of selected belief points. The speed performance tests ran on a 2.5 GHz processor.
Table 4.7 shows the execution times for solving a POMDP model computed from a problem with

59

4.4. SPEED PERFORMANCE OF SOLVING THE POMDP MODEL

six cars in the right lane where one of the cars is classified as a suspected ghost-car. In total the
POMDP model has 28 states. It is clear that the execution time increases with the maximum
number of iterations and the number of selected belief points. Table 4.8 shows the corresponding
values for a 56 state POMDP. The execution time required for the gapMin algorithm described
in Section 4.3 is not included in the table since it varies significantly for different POMDP
models with the same number of states. In the policy evaluation tests described in Section 4.3
the execution time of the gapMin algorithm varied between a couple of hundreds of milliseconds
to more than seven seconds. In all but one of the policy evaluation tests the gapMin algorithm
required longer execution time than the POMDP solver implemented in Stage 1. The time
required to compute the MDP-policy in the policy evaluation tests was about 0.006 seconds.
Hence the MDP policy requires significantly shorter execution time than the policies provided
from using the PBVI algorithm.

Table 4.7: Execution times required for selection of belief points and running the PBVI algorithm
Maxiter times for a 28 state POMDP. Times are given in seconds.

Maxiter = 100 Maxiter = 200 Maxiter = 300 Maxiter = 400

|B| = 24 0.1328 0.2649 0.3920 0.5142

|B| = 69 0.2228 0.4462 0.6439 0.8780

|B| = 107 0.3371 0.6916 1.0750 1.3491

Table 4.8: Execution times required for selection of belief points and running the PBVI algorithm
Maxiter times for a 56 state POMDP. Times are given in seconds.

Maxiter = 100 Maxiter = 200 Maxiter = 300 Maxiter = 400

|B| = 29 0.1718 0.3434 0.5025 0.6858

|B| = 56 0.2671 0.6109 0.7356 0.9676

|B| = 100 0.3952 0.7905 1.1563 1.5080

60

4.4. SPEED PERFORMANCE OF SOLVING THE POMDP MODEL

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Policy Evaluation Test 1 using 300 trajectories

Time step

N
or

m
al

iz
ed

 A
D

R

Greedy
MDP
|B|=24, Maxiter=100

|B|=24, Maxiter=200

|B|=72, Maxiter=100

|B|=72, Maxiter=200

|B|=120, Maxiter=100

|B|=120, Maxiter=200

gapMin UB
gapMin LB

(a) Normalized averaged discounted reward versus time step.

990 991 992 993 994 995 996 997 998 999 1000
0.8

0.85

0.9

0.95

1

1.05
Policy Evaluation Test 1 using 300 trajectories, zoomed in

Time step

N
or

m
al

iz
ed

 A
D

R

Greedy
MDP
|B|=24, Maxiter=100

|B|=24, Maxiter=200

|B|=72, Maxiter=100

|B|=72, Maxiter=200

|B|=120, Maxiter=100

|B|=120, Maxiter=200

gapMin UB
gapMin LB

(b) Figure 4.6a zoomed in.

Figure 4.6: Results from Policy evaluation test 1. The policy computed from the highest number
of belief points and the highest number of iterations is outperformed by one other policy computed
from the POMDP solver implemented in Stage 1. The gapMin UB-policy performs the worst.

61

4.4. SPEED PERFORMANCE OF SOLVING THE POMDP MODEL

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Policy Evaluation Test 2 using 300 trajectories

Time step

N
or

m
al

iz
ed

 A
D

R

Greedy
MDP
|B|=26, Maxiter=100

|B|=26, Maxiter=200

|B|=66, Maxiter=100

|B|=66, Maxiter=200

|B|=115, Maxiter=100

|B|=115, Maxiter=200

gapMin UB
gapMin LB

(a) Normalized averaged discounted reward versus time step.

990 991 992 993 994 995 996 997 998 999 1000
0.99

0.992

0.994

0.996

0.998

1

1.002

1.004

1.006

1.008

1.01
Policy Evaluation Test 2 using 300 trajectories, zoomed in

Time step

N
or

m
al

iz
ed

 A
D

R

Greedy
MDP
|B|=26, Maxiter=100

|B|=26, Maxiter=200

|B|=66, Maxiter=100

|B|=66, Maxiter=200

|B|=115, Maxiter=100

|B|=115, Maxiter=200

gapMin UB
gapMin LB

(b) Figure 4.7a zoomed in.

Figure 4.7: Results from Policy evaluation test 2. The greedy-policy and the gapMin LB-policy
perform the worst. The policies computed from the POMDP solver implemented in Stage 1 perform
equally well.

62

4.4. SPEED PERFORMANCE OF SOLVING THE POMDP MODEL

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Policy Evaluation Test 3 using 300 trajectories

Time step

N
or

m
al

iz
ed

 A
D

R

Greedy
MDP
|B|=24, Maxiter=100

|B|=24, Maxiter=200

|B|=67, Maxiter=100

|B|=67, Maxiter=200

|B|=98, Maxiter=100

|B|=98, Maxiter=200

gapMin UB
gapMin LB

(a) Normalized averaged discounted reward versus time step.

990 991 992 993 994 995 996 997 998 999 1000
0.85

0.9

0.95

1

1.05
Policy Evaluation Test 3 using 300 trajectories, zoomed in

Time step

N
or

m
al

iz
ed

 A
D

R

Greedy
MDP
|B|=24, Maxiter=100

|B|=24, Maxiter=200

|B|=67, Maxiter=100

|B|=67, Maxiter=200

|B|=98, Maxiter=100

|B|=98, Maxiter=200

gapMin UB
gapMin LB

(b) Figure 4.7a zoomed in.

Figure 4.8: Results from Policy evaluation test 3. In this test the non-monotonic policy improve-
ment feature of the PBVI algorithm can be seen. However, the difference in performance is not
significant for all but the greedy-policy.

63

4.4. SPEED PERFORMANCE OF SOLVING THE POMDP MODEL

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Policy Evaluation Test 4 using 300 trajectories

Time step

N
or

m
al

iz
ed

 A
D

R

Greedy
MDP
|B|=24, Maxiter=100

|B|=24, Maxiter=200

|B|=67, Maxiter=100

|B|=67, Maxiter=200

|B|=97, Maxiter=100

|B|=97, Maxiter=200

gapMin UB
gapMin LB

(a) Normalized averaged discounted reward versus time step.

990 991 992 993 994 995 996 997 998 999 1000
0.98

0.985

0.99

0.995

1

1.005

1.01
Policy Evaluation Test 4 using 300 trajectories, zoomed in

Time step

N
or

m
al

iz
ed

 A
D

R

Greedy
MDP
|B|=24, Maxiter=100

|B|=24, Maxiter=200

|B|=67, Maxiter=100

|B|=67, Maxiter=200

|B|=97, Maxiter=100

|B|=97, Maxiter=200

gapMin UB
gapMin LB

(b) Figure 4.7a zoomed in.

Figure 4.9: Results from Policy evaluation test 4. All of the policies except the greedy-policy
perform almost equally well.

64

5
Discussion and Conclusions

T
his chapter discusses the developed merging decision algorithm and states the conclu-
sions. In Section 5.1 the results presented in Chapter 4 are discussed and conclusions
are drawn. Section 5.2 discusses the applicability of the proposed merging decision
algorithm in other traffic situations and Section 5.3 proposes some algorithm improve-

ments. Lastly, in Section 5.4 some concluding remarks are given.

5.1 Comments on the Results

In Chapter 4 the proposed merging decision algorithm was tested in various simulated traffic
scenarios, the performance of policies were evaluated and the execution time of the algorithm
was examined. This section discusses the results.

5.1.1 Quality of the Decisions Made

In Section 4.2 the desirable behavior of the host car was discussed for all test cases and from the
results obtained it can be concluded that the host car behaved as desired. From the discussion
on the desirable behavior it is also evident that many times there are more than just one decision
that may be considered appropriate. In Test case 3.1 the discount factor γ was set to a higher
value than in Test case 3.2 and it was shown that by changing the value of γ the host car also
made different decisions both of which were considered appropriate. However, a passenger that
prefer smoother driving would choose the lower value on γ in order to favor a behavior where
the host car changes its position relative to a gap less frequently.

5.1.2 Attractiveness of a Gap

In Section 4.2 it was shown how the host car acts in correspondence to the probability of the
status of the suspected ghost-car(s), given by probreal. A lower confidence on the real car status
means a higher chance that the object is a ghost-car and this makes the gaps next to the
suspected ghost-car more attractive than if the suspected ghost-car has status real car with high

65

5.1. COMMENTS ON THE RESULTS

confidence. This can be seen when comparing the results from Test case 1.1, Test case 1.2 and
Test case 1.3. In Test case 1.1 there are no suspected ghost-cars, but in Test case 1.2 the fifth
object is classified as a suspected ghost-car which is assumed to have status real car with 50%
confidence. This is why gap 5 is more attractive in Test case 1.2 than in Test case 1.1. In Test
case 1.3 the fifth car, still classified as a suspected ghost-car, is assumed to have status real car
with 90% confidence making gap 5 less attractive compared to Test case 1.2. In Test case 1.3
the host car behaves as in Test case 1.1, hence the confidence of the real car status influences
the attractiveness of a gap.

5.1.3 Data with High versus Data with Low Confidence

In Test case 2 it is shown how data with high confidence is favored over data with low confidence.
The host car chooses a gap with a lower reward since this gap guarantees quite high rewards
for all possible values of Xcomb (02 and 12) in contrast to the highest rewarded gap which only
has the highest reward for one out of the two possible values of Xcomb (only 02). The gap
corresponding to the lower reward is generated by objects that are classified as cars with high
confidence and it is therefore independent of the status of the suspected ghost-car.

5.1.4 Using the Algorithm with Data from a Real Traffic Scenario

In Section 4.2.4 the merging decision algorithm was tested with data collected with means of
a test car driving in real traffic. It was described how the host car tried to merge into a gap
without succeeding due to the fact that an object in the right lane behind the host car could
not be detected throughout the merging maneuver. Since the objects detected in the right lane
are the objects that the test car detected without applying the merging decision algorithm it
is reasonable to assume that other objects would have been detected if the test car would have
acted in accordance with the merging decision algorithm. This test is still valuable since the
merging decision algorithm is used on data that better imitates driving behavior of vehicles in
the right lane.

5.1.5 Policy Performance

In Section 4.3 the performance of policies provided by the POMDP solver implemented in Stage
1 were evaluated. It can be concluded that in the policy tests the greedy-policy is outperformed
by all policies computed from the POMDP solver implemented in Stage 1 (Algorithm 3.2.2 and
Algorithm 3.2.1). In inspecting Table 4.3 - Table 4.6 it can be concluded that the difference in
performance between the policies provided from the POMDP solver implemented in Stage 1 is
relatively small; the lowest normalized ADR value at time step t = Nsteps for these policies is
0.9635 (see Table 4.5). From Table 4.3 - Table 4.6 it can also be concluded that the policies
provided from the POMDP solver implemented in Stage 1 perform very well in comparison to
the gapMin algorithm. Also the MDP-policy, which is computed using value iteration, outper-
formed at least one of the gapMin-policies in all policy performance tests.

In the policy evaluation tests the non-monotonic policy improvement feature of the PBVI algo-
rithm is evident. This feature is disadvantageous since it means that that even though more time

66

5.2. SCALABILITY OF THE PROPOSED MODEL

is spent on finding a better approximate solution of a POMDP model the resulting policy is not
guaranteed to perform better than a policy found after a shorter period of time. The resulting
policy can even perform worse. Another approximate solution method for POMDPs is called
Point Based Policy Iteration which, according to [14], does not suffer from this disadvantage,
hence this method would be interesting to investigate further.

5.1.6 Execution Time Required

Section 4.4 also reveals a less advantageous feature of the implemented POMDP solver. The
POMDP solver used in Stage 1 is in general faster than the gapMin algorithm, but it is still
not as fast as desired. In this real time application, ’not so fast’ refers to more than a couple of
hundreds of milliseconds. Much effort has been put in trying to optimize the code, for example
by using the fact that the observation matrix is deterministic, but the inherent computational
time complexity associated with solving a POMDP still remains.

The speed of the algorithm may be improved if sparse matrices are used instead, however the
sparse matrix feature is not available in embedded Matlab so the sparse functions would first
have to be implemented in C-code. The PBVI algorithm implemented in Stage 1 is considered
to be a promising POMDP solver choice, however one may test other available POMDP solvers
to see if that speeds up the merging decision algorithm.

Some POMDP models that need to deliver decisions in real time can first be solved roughly
offline after which a better solution based on the rough solution and the current belief point can
be computed online. This is not an applicable approach for the POMDP model described in this
thesis since the POMDP model is not only solved online but also created in real time. When
the traffic situation changes, so does the POMDP model.

Even though it would be advantageous if the POMDP solver used in Stage 1 executes faster, the
policy evaluation tests show that the MDP-policy perform quite well since in all policy tests the
final normalized ADR value for the MDP-policy was greater than 0.88, which may be considered
high. If also taking into account that the MDP-policy can be provided in significantly shorter
time than policies provided from the belief selection heuristic and the PBVI algorithm, the
MDP-policy appears even more attractive.

5.2 Scalability of the Proposed Model

Probably the most attractive property of the merging decision algorithm is its scalability to other
decision making situations for automated cars. There are many situations in which the structure
of the proposed POMDP model may be applicable. As an example, in a situation where the host
car needs to turn left in an intersection and where the right-of-way rule is applicable the sensors
might detect ’suspected ghost vehicles’ or ’suspected ghost pedestrians’ and this situation can
be modeled using a similar structure as the one used in the POMDP model in Stage 1. The
actions might be set to ’wait’, ’drive forward’ and ’turn left’ and the state variables might be
set to X1 ∈ {start lane, middle of intersection, end lane} and X2 = Xcomb.

67

5.3. ADDITIONAL IMPROVEMENTS

5.3 Additional Improvements

The PBVI algorithm is only allowed to run Maxiter times or until the number of α-vectors
exceeds Maxα. Also the number of reachable belief points |B| is restricted with means of Maxb.
This way the PBVI algorithm is guaranteed to not run for to long. Another approach would
be to use a predefined time limit and then let the PBVI algorithm run until the time limit is
reached. This feature was not implemented due to limitations in Simulink.

An additional feature that can further improve the POMDP model is to also account for cases
when there are two subsequent suspected ghost-cars. Two suspected ghost-cars in a row would
result in a very wide gap if both suspected-ghost cars have status ghost-car. The POMDP model
proposed in this thesis is a bit more restrictive and only combines at most two gaps (see (3.5)).

The calculation of the vector probLC which gives the probabilities of the host car being able to
change lane from left lane to right lane may be further improved. Factors other than distances
between the detected objects in the right lane and the differences in velocity between any two
subsequent objects may be included. Preferably the probability values should not be set with a
fixed interval since the true probabilities of being able to change lane are most often not ordered
with a fixed difference. Section 3.2.1.4 describes how probLC is calculated.

The merging decision algorithm assumes that all vehicles in the right lane are cars and thus the
size of the the vehicles are known to a relatively high accuracy. At present time the sensors
in the automated car cannot be used in order to obtain information of the sizes of the vehicles
in the right lane. However, if this information is provided the merging decision algorithm can
easily be extended so that it also handles different vehicle sizes.

It can be hard to find a set of parameters that creates a reward function that guides the algorithm
in a desirable way in all situation, especially without using a real test car for verification.
However, if it is of interest to add more features this can easily be done by extending expressions
(3.7) - (3.10).

5.4 Concluding Remarks

This thesis has proposed an algorithm for decision making for automated cars in merging situ-
ations. The performance has been evaluated in a simulation environment with simulated data
as well as data collected from a real traffic scenario. The algorithm has not yet been tested in
a real test car.

Solving the POMDP model exactly is very time consuming even for moderate sized problems
but as shown in this thesis the POMDP model can be solved approximately in real time with
good results. Also, in case of perfect sensors, an ε-consistent solution of the underlying model
can be found in real time. Incorporating a POMDP solver that is faster and that guarantees that
the policy is improved monotonically, if such a solver exists, would further improve the solving
of the POMDP model computed in Stage 1. Hopefully the algorithm proposed in this thesis

68

5.4. CONCLUDING REMARKS

will serve as a foundation for further development and subsequent implementation in vehicles at
Volvo Cars.

69

Bibliography

[1] Volvo car group initiates world unique swedish pilot project with self-driving cars on public
roads, https://www.media.volvocars.com/global/en-gb/media/pressreleases/136182/volvo-
car-group-initiates-world-unique-swedish-pilot-project-with-self-driving-cars-on-public-
roads, accessed: 2014-01-21 (2013).

[2] J. Nilsson, J. Sjöberg, Strategic decision making for automated driving on two-lane, one-
way roads using model predictive control, IEEE Intelligent Vehicles Symposium (IV), Gold
Coast, Australia, 2013.

[3] W. Cao, M. Mukai, T. Kawabe, Two-dimensional merging path generation using model
predictive control, Artificial Life and Robotics 17 (3-4) (2013) 350–356.

[4] S. Brechtel, T. Gindele, R. Dillmann, Probabilistic mdp-behavior planning for cars, in:
Intelligent Transportation Systems (ITSC), 2011 14th International IEEE Conference on,
2011, pp. 1537–1542.

[5] S. Ulbrich, M. Maurer, Probabilistic online pomdp decision making for lane changes in fully
automated driving, in: Intelligent Transportation Systems - (ITSC), 2013 16th International
IEEE Conference, 2013, pp. 2063–2067.

[6] J. Wei, J. M. Dolan, J. M. Snider, B. Litkouhi, A point-based mdp for robust single-lane
autonomous driving behavior under uncertainties, in: Robotics and Automation (ICRA),
2011 IEEE International Conference on, 2011, pp. 2586–2592.

[7] M. Kolobov, A. Kolobov, Planning with Markov Decision Processes: An AI Perspective,
Morgan and Claypool, 2012, [e-book].

[8] M. de Guadalupe Garcia-Hernandez et al., New prioritized value iteration for markov deci-
sion processes, The Artificial Intelligence Review 37 (2) (2012) 157–167.

[9] G. Shani, J. Pineau, R. Kaplow, A survey of point-based pomdp solvers, Autonomous
Agents and Multi-Agent Systems 27 (1) (2013) 1–51.

[10] H. Geffner, B. Bonet, A Concise Introduction to Models and Methods for Automated Plan-
ning, Morgan and Claypool, 2013, [e-book].

70

BIBLIOGRAPHY

[11] P. Poupart, K.-E. Kim, D. Kim, Closing the gap: Improved bounds on optimal pomdp
solutions, in: ICAPS, Association for the Advancement of Artificial Intelligence, 2011.

[12] A. R. Cassandra, Pomdps for dummies, http://www.pomdp.org/tutorial/index.shtml, ac-
cessed: 2014-04-11 (2013).

[13] J. Pineau, G. J. Gordon, S. Thrun, Anytime point-based approximations for large pomdps,
Journal of Artificial Intelligence Research 27 (2006) 335–380.

[14] S. Ji, R. Parr, H. Li, X. Liao, L. Carin, Point-based policy iteration, in: In Proceedings of
the Twenty-Second National Conference on Artificial Intelligence, 2007.

71

BIBLIOGRAPHY

Appendix A

Table 1: Parameter values used in Test Case 1 - Test Case 4 in Section 4.2.

Parameter Name Test Case 1 Test Case 2 Test Case 3 Test Case 4

DistSafetyFront [m] 20 20 20 20

GapSafety [m] 10 10 10 10

GapSafetyLC [m] 8 8 8 8

GFE 0.9 0.9 0.9 0.9

GFG 1.8 1.8 1.8 1.8

GFM 0.9 0.9 0.9 0.9

GLC 3 3 3 3

GSE 0.9 0.9 0.9 0.9

GSG 1.8 1.8 1.8 1.8

GU 50 50 50 50

GWE 0.9 0.9 0.9 0.9

GWG 1.8 1.8 1.8 1.8

GWM 0.9 0.9 0.9 0.9

γ 0.95 0.95 0.95 or 0.34 0.95

Maxα 40 40 40 40

Maxb 20 20 20 20

Maxiter 100 100 100 100

resolution 1000 1000 1000 1000

TBadgap [samples] 120 0 120 120

THost,End[s] 25 25 25 25

THost,Front [s] 3 3 3 3

Tint [samples] 60 60 60 60

TMid,Front
LC [s] 20 20 20 20

TMid,Front
S [s] 10 10 10 10

The maximum allowed speed vmax and the minimum allowed speed vmin for the host car in Test
case 1, 2, 3 and 4 are given by,

72

BIBLIOGRAPHY

vmax =


min

(
vlimit, vFront

)
, if
(
∃ vehicleFront

)
∧ . . .

∧
(
lV ehicleLeftRelHost < DistSafetyFront

)
,

min
(
vlimit,median(vObjRight) ·Gvmax

)
, otherwise,

(1)

vmin =


min

(
median(vObjRight) ·Gvmin , vFront ·Gvmin

)
, if
(
∃ vehicleFront

)
∧ . . .

∧
(
lV ehicleLeftRelHost < DistSafetyFront

)
,

median(vObjRight) ·Gvmin
, otherwise,

(2)

where vlimit is the speed limit, vFront is the velocity of vehicleFront, the vector vObjRight are
the velocities of the objects detected in the right lane and the gains Gvmax and Gvmin have values
1.2 and 0.8 respectively.

73

	Introduction
	Thesis Outline
	Context of the Thesis Project
	The Merging Situation and the Optimal Merging Maneuver
	Decision Making
	Automated Decision Making in Merging Situations and its Difficulties
	Problem Definition and Scope of Thesis
	Overview of the Solution
	Contributions

	Theory and Related Work
	Related Work on Decision Making in Merging Situations
	Markov Decision Processes
	MDPs and their Applications
	Infinite-Horizon Discounted Reward MDP
	A Policy - the Solution to an MDP
	Solution Methods of MDPs
	The Value Iteration Algorithm

	Partially Observable Markov Decision Processes
	Formulation of the Infinite-Horizon Discounted Reward POMDP
	Solving an Infinite-Horizon Discounted Reward POMDP
	Point Based Value Iteration
	Belief Point Selection
	Termination Criteria

	The Merging Decision Algorithm
	Terminology
	Stage 1
	Description of the POMDP model
	State space S
	Action space A
	Reward function R: SAR
	Transition function T:SAS[0,1]
	Observation space O
	Observation function Z:SO[0,1]
	Initial belief point b0
	Discount factor

	Description of the MDP model
	Solving the POMDP model and the MDP model
	Top Level Implementation of Stage 1

	Stage 2
	Stage 3
	Top Level Implementation of the Merging Decision Algorithm

	Results
	Implementation of the Merging Decision Algorithm
	Test Cases
	Test Case 1
	Test Case 2
	Test Case 3
	Test Case 4

	Policy Evaluation
	Policy Evaluation Test 1
	Policy Evaluation Test 2
	Policy Evaluation Test 3
	Policy Evaluation Test 4

	Speed Performance of Solving the POMDP Model

	Discussion and Conclusions
	Comments on the Results
	Quality of the Decisions Made
	Attractiveness of a Gap
	Data with High versus Data with Low Confidence
	Using the Algorithm with Data from a Real Traffic Scenario
	Policy Performance
	Execution Time Required

	Scalability of the Proposed Model
	Additional Improvements
	Concluding Remarks

	 Bibliography
	 Appendix A

