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Abstract. In this paper we propose a local orthogonal decomposition method (LOD) for elliptic
partial differential equations with inhomogeneous Dirichlet and Neumann boundary conditions. For
this purpose, we present new boundary correctors which preserve the common convergence rates of
the LOD, even if the boundary condition has a rapidly oscillating fine scale structure. We prove
a corresponding a priori error estimate and present numerical experiments. We also demonstrate
numerically that the method is reliable with respect to thin conductivity channels in the diffusion
matrix. Accurate results are obtained without resolving these channels by the coarse grid and without
using patches that contain the channels.
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1. Introduction. In this work we consider linear elliptic problems with a high
variable diffusion matrix and possibly high variable Dirichlet and Neumann boundary
conditions. Such problems are typically referred to as multiscale problems and arise
in various applications, such as simulations of groundwater flow. Due to the large size
of the computational domains and the rapid variations in the diffusivity which must
be resolved by the computational grid, tremendous computing effort is needed. Such
problems cannot be handled by standard finite element or finite volume methods.

To overcome these difficulties, a large number of so-called multiscale methods
have been proposed in recent decades (see, e.g., [1, 2, 3, 8, 9, 12, 16, 18, 27, 20, 21,
22, 25, 26]). In this work, we focus on the local orthogonal decomposition method
(LOD) that was originally introduced in [23] and that was derived from the variational
multiscale method framework (cf. [19, 22]).

The essence of the LOD is to construct a low dimensional solution space (with a
locally supported partition of unity basis) that exhibits very high H1-approximation
properties with respect to the exact solution that we are interested in. The construc-
tion of the space does not rely on regularity or any structural assumptions on the type
or the speed of the variations in the data functions. Advantages are therefore that the
method does not rely on classical homogenization settings but that it is also justified
if no scale separation is available. The approach is fully robust against the variations
in the diffusion matrix A. Furthermore, as shown in the numerical experiments, the
method even shows a good behavior for high-contrast cases and conductivity chan-
nels. Such structures typically have to be resolved with the coarse grid, but it is not
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A1610 PATRICK HENNING AND AXEL MÅLQVIST

necessary for the LOD. Like for most other multiscale methods, another advantage
is that the constructed space (i.e., the computed correctors) can be fully reused for
different source terms and different boundary conditions. (In the latter case, only the
boundary correctors have to be recomputed.) This particularly pays off in various
nonlinear settings, where the constructed space has to be computed only once, but
can be reused in every iteration step of the nonlinear solver (see, e.g., [13, 14]).

The fundamental idea of the LOD is to start from two computational grids: a
coarse grid and a fine grid that resolves all fine scale features from the data functions.
Accordingly, there are two corresponding finite element spaces, a coarse space VH

and a very high dimensional space Vh. Introducing a quasi-interpolation operator
IH : Vh → VH , it is possible to define an (again high dimensional) remainder space
Wh that is just the kernel of the operator IH . The orthogonal complement of Wh

in Vh with respect to the energy scalar product is a low dimensional space with very
high approximation properties. (We refer to this space as the “multiscale space”
V ms.) With this strategy, it is possible to split the high dimensional finite element
space Vh into the orthogonal direct sum of a low dimensional multiscale space V ms

and a high dimensional remainder space Wh. The final problem is solved in the
low dimensional space V ms and is therefore cheap. However, the construction of the
exact splitting of Vh = V ms ⊕Wh is computationally expensive and, therefore, must
be somehow localized to make the method useful. In fact, localization is possible
since the canonical basis functions of the multiscale space V ms show an exponential
decay to zero outside of the support of the coarse finite element basis functions of
VH . A first localization strategy was proposed and analyzed in [23]. Here, localized
multiscale basis functions are determined by computing orthogonal complements of
coarse basis functions in localized patches. This strategy has been recently applied
to semilinear multiscale problems [13], eigenvalue problems [24], and the computation
of ground states of Bose–Einstein condensates [14] and it was also combined with a
discontinues Galerkin approach in [11, 10]. However, the localization strategy also
suffers from a pollution of the exponential decay by the factor 1/H , where H denotes
the coarse mesh size. This pollution is numerically visible and leads to larger patches
for the localization problems. In [17], motivated by homogenization theory, a different
localization strategy was proposed, which successfully avoids the pollution effect and
practically leads to much smaller patch sizes, which can be confirmed in numerical
experiments. However, the localization proposed in [17] was given in a very specific
formulation which is only adequate for finite element spaces consisting of piecewise
affine functions on triangular meshes. In this paper we will close this gap by proposing
a strategy that does not suffer from the mentioned pollution and that is applicable to
arbitrary coarse spaces VH .

So far, inhomogeneous and mixed boundary conditions have been ignored in the
construction and analysis of the LOD. High aspect ratios and channels have also not
been studied in a systematic way. In this work we extend and investigate the LOD
further by

1. introducing new boundary correctors that allow for an efficient treatment of
inhomogeneous possibly oscillating Dirichlet and Neumann boundary condi-
tions and

2. investigating the question of how the method reacts to high conductivity
channels.

These aspects are crucial for many multiscale applications, such as porous media
flow where the porous medium might be crossed by cracks. Typically, these kinds
of structures have to be resolved with the coarse mesh in order to get accurate ap-
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proximations. We will see that this is not necessary for the LOD. The approach that
we propose will particularly generalize the localization strategy of [17]. The new ap-
proach will no longer be restricted to triangular meshes and it will be also clear how
the method generalizes to finite element spaces consisting of piecewise polynomials of
a higher degree.

The general setting of this work is introduced in section 2, the LOD for boundary
value problems is proposed in section 3, and detailed numerical experiments are given
in section 4.

2. General setting and notation. In this paper, we consider a linear elliptic
diffusion problem with mixed Dirichlet and Neumann boundary conditions, i.e., find
u with

−∇ ·A∇u = f in Ω,

u = g on ΓD,

A∇u · n = q on ΓN ,

where
(A1) Ω ⊂ R

d, for d = 1, 2, 3, denotes a bounded Lipschitz domain with a piece-
wise polygonal boundary that is divided into two pairwise disjoint Hausdorff
measurable submanifolds ΓD and ΓN with ΓD ∪ ΓN = ∂Ω and ΓD being a
closed set of nonzero Hausdorff measure of dimension d− 1. By n we denote
the outward-pointing normal on ∂Ω.

(A2) f ∈ L2(Ω) denotes a given source term, g ∈ H
1
2 (ΓD) the Dirichlet boundary

values, and q ∈ L2(ΓN ) the Neumann boundary values.
(A3) A ∈ L∞(Ω,Rd×d

sym) is a symmetric matrix-valued coefficient with uniform spec-
tral bounds β ≥ α > 0,

(2.1) σ(A(x)) ⊂ [α, β] for almost all x ∈ Ω.

Let TD : H1(Ω) → H
1
2 (ΓD) denote a trace operator with respect to ΓD and define the

spaceH1
ΓD

(Ω) := {v ∈ H1(Ω)| TD(v) = 0}. Then, by the Lax–Milgram theorem, there
exists a unique weak solution of problem 2 above, i.e., u ∈ H1(Ω) with TD(u) = g
and ∫

Ω

A∇u · ∇φ =

∫
Ω

fφ+

∫
ΓN

qφ for all φ ∈ H1
ΓD

(Ω).

In order to discretize the above problem, we consider two different shape-regular
conforming triangulations/quadrilations TH and Th of Ω. For instance, for d = 2, both
TH and Th consist either of triangles or quadrilaterals and for d = 3, both TH and
Th consist either of tetrahedrons or hexahedrons. We assume that Th is a, possibly
nonuniform, refinement of TH . By H we denote the maximum diameter of an element
of TH and by h ≤ H/2 the maximum diameter of an element of Th. Together with
h ≤ H/2, we also assume that TH was at least one time globally (uniformly) refined to
generate Th. (Otherwise the use of our approach does not make sense.) The “coarse
scale” partition TH is arbitrary, whereas the “fine scale” partition Th is connected to
the problem in the sense that we assume that the grid fully resolves the variations in
the coefficients A and g. For T = TH , Th we denote

P1(T ) := {v ∈ C0(Ω) |
for all T ∈ T : v|T is a polynomial of total (resp., partial) degree ≤ 1}.
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We define Vh := P1(Th)∩H1
ΓD

(Ω) to be the “high resolution” finite element space and
VH := P1(TH) ∩H1

ΓD
(Ω) ⊂ Vh to be the coarse space. By NH we denote the set of

Lagrange points of the coarse grid TH and by Nh we denote the set of the Lagrange
points of the fine grid Th. For simplification, we assume that ΓD ∩ ΓN ⊂ NH (i.e.,
there is always a node on the interface between the Dirichlet and Neumann boundary
segments).

In the following, the notation a � b stands for a ≤ Cb with some constant C that
can depend on the space dimension d, Ω, α, β and interior angles of the triangulations
but not on the mesh sizes H and h. In particular it does not depend on the possibly
rapid oscillations in A, g, q, and f .

2.1. Reference problem. We now define the fine scale reference problem. In
the following, we do not compare the error between the exact solution and the LOD
approximation (which we introduce in the next section) but always compare the error
between LOD approximation and a fine scale reference solution. First, we need an
approximation of the Dirichlet boundary condition: for each z ∈ Nh ∩ ΓD and Bε(z)
denoting a ball with radius ε around z, we define

gz := lim
ε→0

∫
ΓD∩Bε(z)

− g .

If g is continuous we have gz = g(z). Now, let gH ∈ P1(TH) be the function that
is uniquely determined by the nodal values gH(z) = gz for all z ∈ NH ∩ ΓD and
gH(z) = 0 for all z ∈ NH \ ΓD. Using this, we define the (fine scale) Dirichlet
extension gh ∈ P1(Th) uniquely by the nodal values gh(z) = gz for all z ∈ Nh ∩ ΓD

and gh(z) = gH(z) for all z ∈ Nh \ ΓD. With this, we avoid degeneracy of gh for h
tending to zero. The reference problem reads as follows: find vh ∈ Vh with∫

Ω

A∇vh · ∇φh =

∫
Ω

fφh −
∫
Ω

A∇gh · ∇φh +

∫
ΓN

qφh for all φh ∈ Vh.(2.2)

Define the final fine scale approximation by uh := vh + gh.

3. LOD.

3.1. Orthogonal decomposition. Let N̊H := NH \ΓD be the set of free coarse
nodes. For z ∈ NH we let Φz ∈ VH denote the corresponding nodal basis function with
Φz(z) = 1 and Φz(y) = 0 for all y ∈ NH \ {z}. We define a weighted Clément-type
quasi-interpolation operator (cf. [5, 6])

IH : H1
ΓD

(Ω) → VH , v �→ IH(v) :=
∑

z∈N̊H

vzΦz with vz :=
(v,Φz)L2(Ω)

(1,Φz)L2(Ω)
.(3.1)

Using that the operator (IH)|VH
: VH → VH is an isomorphism (see [23]), we can

define Wh := {vh ∈ Vh| IH(vh) = 0} to construct a splitting of the space Vh into the
direct sum

Vh = VH ⊕Wh, where vh︸︷︷︸
∈Vh

= (IH |VH )−1(IH(vh))︸ ︷︷ ︸
∈VH

+ vh − (IH |VH )−1(IH(vh))︸ ︷︷ ︸
∈Wh

.

(3.2)

The subspace Wh contains the fine scale features in Vh that cannot be captured by the
coarse space VH . However, the fact that Wh is the kernel of an interpolation operator
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suggests that the features of the (high dimensional) space Wh could be neglected.
Consequently we can look for a splitting Vh = V new

H ⊕Wh, where V new

H has high H1-
approximation properties to the solution of the multiscale problem but where V new

H

is low dimensional because dim(V new

H ) =dim(Vh)−dim(Wh) =dim(VH). In order to
explicitly construct such a splitting, we look for the orthogonal complement of Wh in
Vh with respect to the scalar product (A∇·,∇·)L2(Ω). The corresponding orthogonal
projection PA,h : Vh → Wh is given by the following: for vh ∈ Vh, PA,h(vh) ∈ Wh

solves

(A∇PA,h(vh),∇wh)L2(Ω) = (A∇vh,∇wh)L2(Ω) for all wh ∈ Wh.

Observe that we have (1 − PA,h)(Vh) = (1 − PA,h)(VH) since Vh = VH ⊕ Wh and
(1− PA,h)(Wh) = 0. We can therefore define

V c
H := (1 − PA,h)(VH)(3.3)

to obtain the desired splitting

Vh = kern(PA,h)⊕Wh = (1−PA,h)(Vh)⊕Wh=(1−PA,h)(VH)⊕Wh = V c
H ⊕Wh.

Observe that this splitting can be equivalently characterized by a localized operator
QT

h : Vh → Wh with QT
h (vh) ∈ Wh solving∫

Ω

A∇QT
h (φh) · ∇wh = −

∫
T

A∇φh · ∇wh for all wh ∈ Wh.(3.4)

In this case we obtain that PA,h = −
∑

T∈TH
QT

h . Since QT
h (φh) decays rapidly to

zero outside of T (allowing us to replace Ω by some small environment of T ), the
above reformulation of PA,h = −

∑
T∈TH

QT
h will be the basis for constructing a

suitable localized version of the splitting Vh = V c
H ⊕ Wh. This will be done in the

next subsection.

3.2. Localization and formulation of the method. In order to localize the
“detail space” Wh, we use admissible patches. We call this restriction to patches
localization.

Definition 3.1 (admissible patch). For T ∈ TH , we call U(T ) an admissible
patch of T if it is nonempty, open, and connected, if T ⊂ U(T ) ⊂ Ω, and if it is the
union of the closure of elements of Th, i.e.,

U(T ) = int
⋃

τ∈T ∗
h

τ, where T ∗
h ⊂ Th.

By U we denote a given set of admissible localization patches, i.e.,

U := {U(T ) | T ∈ TH and U(T ) is an admissible patch},

where U contains one and only one patch U(T ) for each T ∈ TH . Throughout the
paper, we refer to the set U(T )\T as an extension layer. Now, for any given admissible
patch U(T ) ⊂ Ω we define the restriction of Wh to U(T ) by W̊h(U(T )) := {vh ∈
Wh| vh = 0 in Ω \ U(T )}. With this, we are prepared to define the local orthogonal
decomposition method.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1614 PATRICK HENNING AND AXEL MÅLQVIST

Definition 3.2 (LOD approximation for boundary value problems). For a
given set U of admissible patches, we define the local correction operator QT

h : Vh →
W̊ (U(T )) by the following: for a given φh ∈ Vh and T ∈ TH find QT

h (φh) ∈ W̊h(U(T ))
such that∫

U(T )

A∇QT
h (φh) · ∇wh = −

∫
T

A∇φh · ∇wh for all wh ∈ W̊h(U(T )).(3.5)

The Neumann boundary correctors are given by the following: for all T ∈ TH with
T ∩ ΓN �= ∅ find BT

h ∈ W̊h(U(T )) such that∫
U(T )

A∇BT
h · ∇wh = −

∫
T∩ΓN

qwh for all wh ∈ W̊h(U(T )).(3.6)

The global correctors are given by

Qh(φh) :=
∑

T∈TH

QT
h (φh) and Bh :=

∑
T∈TH

T∩ΓN �=∅

BT
h .

Defining Rh := Id+Qh, the LOD approximation is given by uLOD := Rh(vH+gh)−Bh,
where vH ∈ VH solves∫

Ω

A∇Rh(vH) · ∇Rh(ΦH)(3.7)

=

∫
Ω

fRh(ΦH)−
∫
Ω

A∇(Rh(gh)−Bh) · ∇Rh(ΦH) +

∫
ΓN

qRh(ΦH)

for all ΦH ∈ VH .

That problem (3.7) is well-posed follows by the Lax–Milgram theorem in the
Hilbert space X = {Rh(ΦH)|ΦH ∈ VH} and the fact that ΦH = IH(Rh(ΦH)) for all
ΦH ∈ VH .

Remark 3.3 (interpretation of the method for U(T ) = Ω). Recall the definition
of V c

H (see (3.3)) and assume that g = 0, q = 0 and U(T ) = Ω for all T ∈ TH . Then,
uLOD ∈ V c

H is the unique solution of∫
Ω

A∇uLOD · ∇Φ =

∫
Ω

fΦ for all Φ ∈ V c
H .

Furthermore, we have uh − uLOD ∈ kern(IH) = Wh and the explicit relation

uLOD =
(
(1− PA,h) ◦ (IH |VH )−1 ◦ IH

)
(uh).

Practically, using the fact that the basis functions of VH have a partition of unity
property, we need to solve the local corrector problem (3.5) only d · |TH | times in
the case of a triangulation and (d + 1) · |TH | times in the case of a quadrilation.
Additionally, we need to determine the corrector Qh(gh) which involves solving a
local problem for each T ∈ TH with T ∩ ΓD �= ∅.

Note that even though the method was defined for finite elements spaces of partial
degree less than or equal to 1, it directly generalizes to arbitrary polynomial degrees.
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3.3. Error estimate for the “ideal” method. Before presenting the result,
we recall that the quasi-interpolation operator IH (defined in (3.1)) is locally stable
and fulfills the typical approximation properties (cf. [5, 6]), i.e., there exists a generic
constant C, depending on the shape regularity of TH but not on the local mesh size
HT := diam(T ), such that for all v ∈ H1(Ω) and for all T ∈ TH it holds that

(3.8) H−1
T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ C‖∇v‖L2(ωT ).

Here, we denote ωT := ∪{K ∈ TH | K ∩ T �= ∅}. The approximation and stability
properties of the Clément-type quasi-interpolation operator were shown in [6], but
only for triangular meshes. In [5] they are also proved for quadrilateral meshes but in
this latter work the weights vz in (3.1) are slightly modified to account for boundary
corrections. However, from the proofs in [5, 6] it is clear that estimate (3.8) (as can
be found in [6]) directly generalizes to quadrilateral meshes.

The following theorem guarantees that in the ideal (but impractical) case of no
localization (i.e., full sampling U(T ) = Ω), the proposed LOD method preserves
the common linear order convergence for the H1-error without suffering from pre-
asymptotic effects due to the rapid variations in A.

Theorem 3.4 (a priori error estimate for U(T ) = Ω). Assume (A1)–(A3) and
U(T ) = Ω for all T ∈ TH . If uh denotes the solution of the reference problem (2.2)
and uLOD the corresponding LOD approximation given by Definition 3.2, then it holds
that

‖uLOD − uh‖H1(Ω) � H‖f‖L2(Ω).(3.9)

Proof. Let U(T ) = Ω. Using (3.3) and the definition of the corrector operator Qh

the (A∇·,∇·)-orthogonal complement of Wh in Vh is given by

V c
H = (1− PA,h)(VH) = (1 +Qh)(VH) = {ΦH +Qh(ΦH)|ΦH ∈ VH}.

With (2.2) and (3.7), we get for all Φc
H ∈ V c

H∫
Ω

A∇ (Rh(vH) +Qh(gh)−Bh) · ∇Φc
H

(3.7)
=

∫
Ω

fΦc
H −

∫
Ω

A∇gh · ∇Φc
H +

∫
ΓN

qΦc
H

(2.2)
=

∫
Ω

A∇vh · ∇Φc
H .

Together with Vh = V c
H⊕Wh and V c

H⊥Wh this implies Rh(vH)+Qh(gh)−Bh−vh ∈ Wh

and therefore

IH(Rh(vH) +Qh(gh)−Bh − vh) = 0.(3.10)

Now, letting wh ∈ Wh be arbitrary (which implies IH(wh) = 0), we obtain∫
Ω

A∇ (Rh(vH) +Qh(gh)−Bh − vh) · ∇wh

(2.2)
=

∫
Ω

A∇ (Rh(vH) +Rh(gh)) · ∇wh −
∫
Ω

A∇Bh · ∇wh −
∫
Ω

fwh −
∫
ΓN

qwh

(3.5)
= −

∫
Ω

A∇Bh · ∇wh −
∫
Ω

fwh −
∫
ΓN

qwh

(3.6)
= −

∫
Ω

fwh =

∫
Ω

f(IH(wh)− wh).
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Using (3.10), we can choose wh = eh := Rh(vH) +Qh(gh)−Bh − vh to obtain

‖A1/2∇ (uLOD − uh) ‖2L2(Ω) = ‖A1/2∇ (Rh(vH) +Rh(gh)−Bh − vh − gh) ‖2L2(Ω)

= ‖A1/2∇ (Rh(vH) +Qh(gh)−Bh − vh) ‖2L2(Ω)

=

∫
Ω

f(IH(eh)− eh) � H‖f‖L2(Ω)‖∇eh‖L2(Ω)

� H‖f‖L2(Ω)‖A1/2∇ (uLOD − uh) ‖L2(Ω).

Assume again that U(T ) = Ω for all T ∈ TH . Observe that by Theorem 3.4 we
get

‖∇ (Rh(vH) +Qh(gh)−Bh) ‖L2(Ω) ≤ ‖∇ (uLOD − uh) ‖L2(Ω) + ‖∇uh‖L2(Ω)

� ‖f‖L2(Ω) + ‖∇gh‖L2(Ω) + ‖q‖L2(ΓN )(3.11)

with a constant independent of the variations in the data. By using the stability (3.8)
of the quasi-interpolation operator IH the above estimate implies

‖∇vH‖L2(Ω) = ‖∇IH (Rh(vH) +Qh(gh)−Bh) ‖L2(Ω)

(3.11)
� ‖f‖L2(Ω) + ‖∇gh‖L2(Ω) + ‖q‖L2(ΓN ).(3.12)

3.4. Error estimates for the localized method. Theorem 3.4 gave us a first
hint that the method is capable of preserving the usual convergence rates. However,
the case of full sampling (i.e., U(T ) = Ω) is not computationally feasible, since the
cost for solving one corrector problem would be identical to the cost of solving the
original problem on the full fine scale. The key issue is therefore to find a minimum
size for the localization patches U(T ), so that we still preserve the rate obtained in
Theorem 3.4. Let us first specify what we understand by the notion “patch size.”

Definition 3.5 (patch size). Let U(T ) be an admissible patch and let xU(T ) ∈
U(T ) denote the barycenter of the patch. We say that U(T ) is of category m ∈ N if

|xU(T ) − x̄| ≥ m| log(H)|H for all x̄ ∈ ∂U(T ) \ ∂Ω.

If U(T ) ∩ ∂Ω = ∅, a category m patch is nothing but a patch with diameter
2m| log(H)|H . The generalized definition above accounts for the fact that we know
the correct boundary condition on ∂Ω and that we do not have to deal with a decay
behavior there.

The following abstract lemma shows that any solution of a generalized corrector
problem (with respect to T ∈ TH) exponentially decays to zero outside T . In order
to quantify the decay with respect to the coarse grid, we introduce patches U(T )
that consist of k coarse element layers attached to T (i.e., U(T ) is a category m =
�k/| log(H)|� patch).

Lemma 3.6 (decay of local correctors). Let k ∈ N>0 be fixed. We define patches
where the extension layer consists of a fixed number of coarse element layers. For all
T ∈ TH , we define element patches in the coarse mesh TH by

(3.13)
U0(T ) := T,

Uk(T ) := ∪{T ′ ∈ TH | T ′ ∩ Uk−1(T ) �= ∅}, k = 1, 2, . . . .

Now, let pTh ∈ Wh be the solution of∫
Ω

A∇pTh · ∇φh = FT (φh) for all φh ∈ Wh,(3.14)
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where FT ∈ W ′
h is such that FT (φh) = 0 for all φh ∈ W̊h(Ω \ T ). Furthermore, we let

pT,k
h ∈ W̊h(Uk(T )) denote the solution of∫

Uk(T )

A∇pT,k
h · ∇φh = FT (φh) for all φh ∈ W̊h(Uk(T )).(3.15)

Then there exists a generic constant 0 < θ < 1 that depends on the contrast but not
on H, h or the variations of A such that∥∥∥∥∥ ∑

T∈TH

∇(pTh − pT,k
h )

∥∥∥∥∥
2

L2(Ω)

� kdθ2k
∑

T∈TH

‖∇pTh ‖2L2(Ω).(3.16)

The proof of Lemma 3.6 is postponed to the appendix. It is similar to the proofs
given in [23] and [17], but with some technical details that account for the boundary
conditions and the possibly quadrilateral partition of Ω. Using Lemma 3.6 we can
quantify what is a sufficient size of the localization patches U(T ).

Theorem 3.7 (a priori error estimates for the localized method). Assume (A1)–
(A3). Given k ∈ N>0, let U(T ) = Uk(T ) for all T ∈ TH , where Uk(T ) is defined as in
Lemma 3.6. By uh we denote the solution of the reference problem (2.2) and by uLOD

we denote the LOD approximation introduced in Definition 3.2. Then, the following
a priori error estimates hold true:

‖∇uh −∇uLOD‖L2(Ω) � (H + k
d
2 θk)‖f‖L2(Ω) + k

d
2 θk(‖∇gh‖L2(Ω) + ‖q‖L2(ΓN )),

‖uh − uLOD‖L2(Ω) � (H + k
d
2 θk)‖∇uh −∇uLOD‖L2(Ω),

where 0 < θ < 1 is as in Lemma 3.6.
Remark 3.8 (discussion of localization strategies). Assume that ΓD = ∂Ω and

that g = 0. The LOD is based on an appropriate localization of the optimal correction
operator Qh : VH → Wh given by (3.4). Furthermore, k > 0 is an integer.

In [23] it was proposed to pick a k-layer environment Uk(ωz) of ωz := supp(Φz)
for every coarse nodal basis function Φz (z ∈ NH) and to solve for λz ∈ W̊h(Uk(ωz))
with ∫

U(ωz)

A∇λz · ∇wh = −
∫
ωz

A∇Φz · ∇wh for all wh ∈ W̊h(Uk(ωz)).

For arbitrary ΦH ∈ VH , the approximation of the optimal global corrector Qh is
then given by Q1

h(ΦH) :=
∑

z∈NH
ΦH(z)(λz + Φz). Since “λz + Φz” does not form

a partition of unity, the localization error is polluted by the factor (1/H), i.e., we
obtain the worse estimate

‖∇uh −∇ums‖L2(Ω) � (H + (1/H)k
d
2 θk)‖f‖L2(Ω).

The factor (1/H) can be numerically observed and leads to larger patches Uk(ωz).
In [17] it was proposed to solve for wh,T,i ∈ W̊h(U(T )) (for 1 ≤ i ≤ d) with∫

U(T )

A∇wh,T,i · ∇wh = −
∫
T

Aei · ∇wh for all wh ∈ W̊h(U(T )),

where ei ∈ R
d denotes the ith unit vector in R

d (i.e., (ei)j = δij). The approximation

of the global corrector is given by Q2
h(ΦH) :=

∑
T∈TH

∑d
i=1 ∂xiΦH(xT )wh,T,i, where
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xT denotes the barycenter of T . This approach is motivated from homogenization
theory and leads to the same error estimates as presented in Theorem 3.7. However,
this strategy is restricted to P1 finite elements on triangular grids (in this case it
is equivalent to the strategy presented in this paper) and in particular it fails for
quadrilateral grids.

Another localization strategy, also based on a partition of unity for the right-hand
side of the local problems, was proposed in [21]. Similar a priori error estimates can
be expected; however, in the mentioned work, more local problems need to be solved.

Conclusion 3.9. Let assumptions (A1)–(A3) be fulfilled, let TH be a given
coarse triangulation, and let U denote a corresponding set of admissible patches, with
the property that each patch U(T ) is of category m ∈ N>0 (in the sense of Definition
3.5). Then for arbitrary mesh sizes H ≥ h it holds that

‖∇uh −∇uLOD‖ � H‖f‖L2(Ω) +Hm(‖∇gh‖L2(Ω) + ‖q‖L2(ΓN )),

‖uh − uLOD‖ � H2‖f‖L2(Ω) +H2m(‖∇gh‖L2(Ω) + ‖q‖L2(ΓN )).

Observe that powers in m are obtained from Theorem 3.7 by choosing k �
m log(H−1).

Proof of Theorem 3.7. Let QT
h : Vh → W̊h(Uk(T )) denote the correction operator

defined according to (3.5) and let QΩ,T
h : Vh → Wh denote the ideal correction operator

for U(T ) = Ω. Likewise, by BT
h ∈ W̊h(U(T )) we denote the boundary corrector given

by (3.6) and by BΩ,T
h ∈ Wh we denote the solution of (3.6) for U(T ) = Ω. In the

same way, we distinguish between Qh and QΩ
h , Bh and BΩ

h , and uLOD and uΩ
LOD

. The
coarse part vH of the LOD approximation is defined by (3.7) for U(T ) = Uk(T ) and
by vΩH for U(T ) = Ω. Let ΦH ∈ VH be arbitrary. Using the Galerkin orthogonality∫

Ω

A∇ (Rh(vH) +Qh(gh)−Bh − vh) · ∇Rh(ΦH) = 0,(3.17)

we get

‖A1/2∇ (Rh(vH) +Qh(gh)−Bh − vh) ‖L2(Ω)(3.18)

≤ ‖A1/2∇ (Rh(ΦH) +Qh(gh)−Bh − vh) ‖L2(Ω).

This yields

‖∇uh −∇uLOD‖L2(Ω)

= ‖∇vh −∇Rh(vH)−∇Qh(gh) +∇Bh‖L2(Ω)

(3.18)
� ‖∇vh −∇vΩH −∇Qh(v

Ω
H)−∇Qh(gh) +∇Bh‖L2(Ω)

≤ ‖∇vh +∇gh −∇vΩH −∇QΩ
h (v

Ω
H)−∇QΩ

h (gh) +∇BΩ
h −∇gh‖L2(Ω)

+ ‖∇
(
Qh −QΩ

h

)
(vΩH )‖L2(Ω) + ‖∇

(
Qh −QΩ

h

)
(gh)‖L2(Ω) + ‖∇

(
Bh −BΩ

h

)
‖L2(Ω)

(3.16)
� ‖∇uh −∇uΩ

LOD‖L2(Ω)

+ kd/2θk

( ∑
T∈TH

‖∇QΩ,T
h (vΩH)‖2L2(Ω) + ‖∇QΩ,T

h (gh)‖2L2(Ω) + ‖∇BΩ,T
h ‖2L2(Ω)

)1/2

.
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Equation (3.9) and the estimates

∑
T∈TH

‖∇QΩ,T
h (vΩH)‖2L2(Ω)

(3.5)
�

∑
T∈TH

‖∇vΩH‖2L2(T ) = ‖∇vΩH‖2L2(Ω)

(3.12)
� ‖f‖2L2(Ω) + ‖∇gh‖2L2(Ω) + ‖q‖2L2(ΓN )

and

‖∇QΩ,T
h (gh)‖L2(Ω)

(3.5)
� ‖∇gh‖L2(T ) and ‖∇BΩ,T

h ‖L2(Ω)

(3.6)
� ‖q‖L2(T∩ΓN )

readily yield the assertion for the H1-error. The L2-error estimate is obtained by an
Aubin–Nitsche duality argument. We define eh := uh − uLOD. Note that eh ∈ Vh,
but in general not in Wh (only for U(T ) = Ω). We consider two dual problems
(which correspond to problems with homogenous Dirichlet and Neumann boundary
condition): find zh ∈ Vh with∫

Ω

A∇φh · ∇zh =

∫
Ω

ehφh for all φh ∈ Vh(3.19)

and find zH ∈ VH with∫
Ω

A∇Rh(ΦH) · ∇Rh(zH) =

∫
Ω

ehRh(ΦH) for all ΦH ∈ VH .(3.20)

As in the previous case, we get

‖∇(zh −Rh(zH))‖L2(Ω) � (H + kd/2θk)‖eh‖L2(Ω).(3.21)

On the other hand we have with eh ∈ Vh

‖eh‖2L2(Ω)

(3.19)
=

∫
Ω

A∇eh · ∇zh
(3.17)
=

∫
Ω

A∇eh · (∇zh −∇Rh(zH))

(3.21)
� ‖∇eh‖L2(Ω)(H + kd/2θk)‖e‖L2(Ω).

Dividing by ‖eh‖L2(Ω) and with the previously derived estimate for ‖∇eh‖L2(Ω) we
obtain the L2-error estimate.

4. Numerical experiments. In this section we present three different model
problems with corresponding numerical results. The first model problem is to demon-
strate the usability of the boundary correctors. Here we prescribe a Dirichlet boundary
condition that is rapidly oscillating and that cannot be captured by the coarse grid.
However, we will see that the Dirichlet boundary correctors perfectly capture its ef-
fect. In the second numerical experiment we investigate the influence of a very thin
isolator close to the boundary of the domain in the case of a nonzero Dirichlet bound-
ary condition. This leads to a solution with very narrow accumulations that cannot
be described on the coarse scale but which are accurately reproduced by the LOD
approximation. In the third model problem we investigate how the method reacts to
channels of high conductivity and an additional isolator channel. These channels are
very thin and long. Typically, either such channels have to be resolved by the coarse
mesh or the localized patches must be large enough so that each channel is contained
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in a patch. In our experiment we observe that neither is necessary if we apply the
LOD to this model problem.

In this section, we let uh denote the fine scale reference given by (2.2) and we let
uLOD denote the LOD approximation given by Definition 3.2. All errors are relative
errors denoted by

‖uh − uLOD‖rel

L2(Ω) :=
‖uh − uLOD‖L2(Ω)

‖uh‖L2(Ω)
and

‖uh − uLOD‖rel

H1(Ω) :=
‖uh − uLOD‖H1(Ω)

‖uh‖H1(Ω)
.

In the following, we use localization patches that we construct by adding fine grid
element layers to a coarse grid element, i.e., for a given fixed number of fine layers
 ∈ N>0 and for T ∈ TH , we define element patches by

Uh,0(T ) := T and Uh,�(T ) := ∪{T ′ ∈ Th | T ′ ∩ Uh,�−1(T ) �= ∅},  = 1, 2, . . . .

This choice is more flexible than using full coarse grid element layers for constructing
the patches. Still, in the spirit of definition (3.13), any number of fine grid element
layers translates into a corresponding number of coarse grid element layers (which
might be fractional then). For the reader’s convenience we will state both numbers,
even though they can be concluded from each other. Subsequently, �·� denotes the
floor function. For fixed Th and fixed set of patches U (see Definition 3.1) we denote
by |T U

h | and |NU
h | the average number of elements and the average number of nodes

in the patches, i.e.,

|T U
h | := |U|−1

∑
U∈U

|Th(U)| and |NU
h | := |U|−1

∑
U∈U

|Nh(U)|.(4.1)

4.1. Model problem 1. We consider the following model problem.
Problem 4.1. Let Ω :=]0, 1[2 and ε := 0.05. Find u ∈ H1(Ω) such that

−∇ · A(x)∇u(x) = 1 in Ω,

u(x) = sin

(
2π

ε
x1

)
+ cos

(
2π

ε
x2

)
+

1

2
ex1+x2 on ∂Ω,

where

A(x1, x2) :=
11

10
+

1

2
sin
(⌊x1

ε

⌋)
+

1

2
cos
(
2π

x1

ε

)
.(4.2)

A is depicted in Figure 1.
This first model problem involves a Dirichlet boundary condition that is rapidly

oscillating and that cannot be accurately described on the coarse scale. We want to
investigate how the Dirichlet boundary corrector captures these effects to incorporate
them in the final LOD approximation without resolving the boundary with the coarse
mesh. The reference solution was obtained with a standard finite element method for
h = 2−8. First, we choose the coarse grid with mesh size H such that h = H2. In
Figure 2 we can see the corresponding results. The left plot shows the reference solu-
tion, the middle plot shows the LOD approximation obtained using localized patches
with one coarse grid layer (in the sense of (3.13)), and the right plot shows the LOD
approximation with two coarse grid layers. We observe that the boundary oscillations
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Fig. 1. Model problem 1. Plot of the rapidly varying diffusion coefficient A given by (4.2). It
takes values between about 0.1 and 2.1.

Fig. 2. Model problem 1. Computations made for H = 2−4 and h = 2−8. The left picture shows
the standard FEM reference solution on the fine grid and, below, the coarse grid for comparison.
The middle picture shows the LOD approximation obtained for one coarse grid layer, and the right
picture shows the LOD approximation for two coarse grid layers.

and all relevant fine scale features are perfectly captured by the LOD, even for small
patch sizes and without resolving the boundary conditions with the coarse mesh. For
two coarse grid layers almost no difference to the reference solution is visible. The
influence of the boundary corrector can be concluded from Figure 3, where the whole
fine scale part of uLOD is depicted. We see that the boundary correctors contribute
essential information. A quantitative comparison between reference solution and LOD
is given in Tables 1 and 2. Table 1 shows the error behavior if we double the number
of coarse layers with each uniform coarse grid refinement (starting with half a coarse
layer for H = 2−2). We observe up to quadratic convergence for the H1-error and up
to almost cubic convergence for L2-error. Note that these high rates are only due to
the doubling of the number of coarse layers, instead of increasing the patch thickness
by the logarithmic factor log(H−1). We refer to the numerical experiments in [13]
for detailed results on how the rates stated in Conclusion 3.9 can be obtained by the
logarithmic scaling. In Table 2, the exponentially fast decay of the error with respect
to coarse grid layers is demonstrated. Using the newly introduced boundary correc-
tors, the LOD is able to accurately handle the rapidly varying Dirichlet boundary
condition (in addition to the variations produced by the diffusion coefficient A).
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Fig. 3. Model problem 1. Computations made for H = 2−4, h = 2−8, and k = 2 coarse grid
layers around each T ∈ TH for localization. The picture shows the fine part (i.e., corrector part
Qh(vH + gh) −Bh) of the LOD approximation.

Table 1

Model problem 1. Computations made for h = 2−8, i.e., |Th| = 131072 and |Nh| = 66049.
k denotes the number of coarse layers. |T U

h | and |NU
h |, the averages for elements and nodes in a

patches, are defined in (4.1). The table depicts errors between uh and uLOD.

H k ‖uh − uLOD‖rel

L2(Ω)
‖uh − uLOD‖rel

H1(Ω)
|T U

h | |NU
h |

2−2 0.5 0.03593 0.07684 22,480 11,465

2−3 1 0.00824 0.04241 14,696 7525

2−4 2 0.00162 0.01664 10,743 5520

2−5 4 0.00024 0.00453 8922 4596

Table 2

Model problem 1. Computations made for H = 2−4 and h = 2−8, i.e., |Th| = 131072 and
|Nh| = 66049. In the first column, the number of fine grid element layers is shown, and k denotes
the corresponding number of coarse grid element layers. |T U

h | and |NU
h | are defined in (4.1). The

table depicts L2- and H1-errors.

Fine layers k ‖uh − uLOD‖rel

L2(Ω)
‖uh − uLOD‖rel

H1(Ω)
|T U

h | |NU
h |

4 0.25 0.02699 0.24344 847 471
8 0.5 0.01593 0.14345 1675 900
16 1 0.00508 0.05071 3994 2090
32 2 0.00162 0.01664 10,743 5520
64 4 0.00017 0.00185 30,599 15,548

4.2. Model problem 2. We consider the following model problem.
Problem 4.2. Let Ω :=]0, 1[2. Find u ∈ H1(Ω) such that

−∇ · A(x)∇u(x) = f(x) in Ω,

u(x) = x1 on ∂Ω,

where for c := (12 ,
1
2 ) and r := 0.05

f(x) :=

{
20 if |x− c| ≤ r,

0 else.

The structure of the diffusion coefficient A is depicted in Figure 4.
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Fig. 4. Model problem 2. Plot of the diffusion coefficient A. It consists of a rapidly varying
basis structure (green/yellow region) given by 1

10
(2 + cos(2π x1

ε
)) for ε = 0.05. Here, A takes values

between 0.1 and 0.3. This structure is perturbed by an isolator that is located close to the boundary
(blue region) and that has a conductivity of 0.01. A second perturbation can be found in a ball of
radius 0.25 around the center of the domain. Here, the diffusivity changes its values in circular
layers between 1 (red region) and 0.1 (turquoise region).

The second model problem is devoted to the question of how the LOD is able
to catch local properties of the exact solution (such as concentration accumulations)
that are generated by an interaction of thin isolating channels and a contrasting
boundary condition. The coarse grid is too coarse to capture the channels and too
coarse to describe the narrow accumulations of the solution. Again, these effects must
be captured and reproduced by the local correctors. In model problem 2, the features
of the exact solution are generated by a thin isolating frame close to the boundary of
the domain (see Figure 4). Within the framed region the solution shows a different
behavior to what is prescribed by the boundary condition. Furthermore, energy is
pumped into the system by a very local source term f . The propagation is distorted
by a circular structure that contains rings of high and low conductivity. Again, the
FEM reference solution was obtained for a resolution of h = 2−8.

We start with a visual comparison that is depicted in Figure 5. The two plots on
the left-hand side of the figure show the reference solution. The middle and the right
picture in the upper row show LOD approximations for H = 2−3, and the middle
and the right picture in the lower row show LOD approximations for H = 2−4. In
both cases, all desired features (in particular the steep and narrow accumulations) are
captured by the LOD for patches with only one coarse layer. The results are improved
by adding another coarse layer. In this case, almost no difference to the reference
solution is visible. This finding is emphasized by Figure 6, where we can see a direct
comparison of the isolines of reference and LOD approximation for (h,H) = (2−8, 2−4)
and two coarse grid layers. The isolines are close to perfect matching. The error
development in terms of coarse grid layers is given in Table 3 for H = 2−3 and
H = 2−4. Since Figures 5 and 6 predict that two coarse grid layers are sufficient
to obtain LOD approximations that are visually almost not distinguishable from the
reference solution, this finding should also be recovered from the error table. Indeed,
the results in Table 3 show a fast error reduction within the first two coarse layers,
and then the error still decreases, but much slower. Adding a third or fourth coarse
layer to the patches leads only to small improvements of the approximations and
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Fig. 5. Model problem 2. Computations made for h = 2−8 and, respectively, H = 2−3 in the
upper row and H = 2−4 in the lower row. The left picture always shows the standard FEM reference
solution on the fine grid (i.e., h = 2−8) and, below, the coarse grid for comparison (H = 2−3 and
H = 2−4, respectively). The middle picture shows the LOD approximation obtained for one coarse
grid layer, and the right picture shows the LOD approximation for two coarse grid layers.

Fig. 6. Model problem 2. Computations made for h = 2−8 and H = 2−4 and two coarse grid
element layers for localization. The left picture depicts the isolines of the FEM reference solution
on the fine grid (i.e., h = 2−8). The right picture shows a comparison of the isolines of LOD
approximation and reference solution. The colored isolines belong to the LOD approximation. They
overlie the corresponding black isolines of the reference solution.

seems to be unnecessary. This finding is in accordance with the results of Theorem
3.7, which predict that the first term in the a priori error estimate (which is of order
H‖f‖L2(Ω) and H2‖f‖L2(Ω), respectively) will quickly dominate since the other terms
decay exponentially to zero. For the results stated in Table 3, this dominance of



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOD TECHNIQUES FOR BOUNDARY VALUE PROBLEMS A1625

Table 3

Model problem 2. Computations made for h = 2−8, i.e., |Th| = 131072 and |Nh| = 66049. In
the second column, the number of fine grid element layers is shown, and k denotes the corresponding
number of coarse grid element layers. |T U

h | and |NU
h | are defined in (4.1). The table depicts L2-

and H1-errors between uh and uLOD.

H Fine layers k ‖uh − uLOD‖rel

L2(Ω)
‖uh − uLOD‖rel

H1(Ω)
|T U

h | |NU
h |

2−3 4 0.125 0.09234 0.50579 2047 1102

2−3 8 0.25 0.06929 0.38912 3290 1738

2−3 16 0.5 0.04636 0.26852 6340 3291

2−3 32 1 0.01708 0.12064 14,696 7525

2−3 64 2 0.00655 0.07400 36,398 18,472

2−3 96 3 0.00557 0.06996 61,556 31,131

2−4 4 0.25 0.05513 0.35118 847 471

2−4 8 0.5 0.02893 0.19508 1675 900

2−4 16 1 0.00908 0.09389 3994 2090

2−4 32 2 0.00159 0.03066 10,743 5520

2−4 48 3 0.00091 0.02269 19,821 10,111

2−4 64 4 0.00074 0.02011 30,599 15,548

the order H term is already reached after two coarse grid layers. The conductivity
contrast of value 100 does not lead to a demand for large patch sizes.

4.3. Model problem 3. Generally, multiscale methods such as HMM or
MsFEM have the disadvantage that channels of high conductivity must be resolved
by the macro grid in order to get reliable approximations. The reason is the following:
if there are long channels of high conductivity in the computational domain, informa-
tion is transported with high speed from one end of the channel to the other end. Now
consider, e.g., a local problem with a prescribed homogenous Dirichlet boundary con-
dition on a patch. This problem is a localization of an originally global problem with
homogenous Dirichlet boundary condition. Due to the high conductivity channel, the
global solution can only decay to zero in a thin region very close to the boundary of
the domain. Any interior localization of the solution that intersects the channel will
not show a decay behavior. In other words, prescribing a zero boundary condition
for a local function that cannot decay to zero on this patch leads to a large discrep-
ancy between the chosen boundary condition on the patch and the real value on this
boundary. The approximations are typically distorted and not reliable. However, if
the coarse grid resolves these channel structures, the multiscale basis functions (for,
e.g., HMM or MsFEM) tend to standard finite element basis functions on the fine
grid and the final approximation gets adequate again. An alternative is that the local
problems are so large that they contain the full channels.

The situation for the LOD is different. Due to solving the corrector problems in a
space that is the kernel of a quasi-interpolation operator, correctors show an intrinsic
decay behavior that depends much less on the structure of the diffusion matrix A.
Imagine that the Clément-type operator in the definition of Wh (see (3.2)) is replaced
by a nodal interpolation operator. Then Wh consists of fine functions that are zero in
every coarse grid node. This means that the solutions of the local problems repeatedly
lose energy in these nodes. This leads to the previously stated exponential decay, even
in the case of high conductivity channels. This consideration shall be emphasized by
the following model problem, where we encounter two conductivity channels of width
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Fig. 7. Model problem 3. Plot of the diffusion coefficient A. It consists of a
rapidly varying basis structure (green/turquoise/yellow region) given by the equation 6

5
+

1
2
sin

(
�x1 + x2�+

⌊x1
ε

⌋
+

⌊x2
ε

⌋)
+ 1

2
cos

(
�x1 − x2�+

⌊ x1
ε

⌋
+

⌊ x2
ε

⌋)
for ε = 0.05. Here, A takes

values between 0.2 and 2.2. This structure is perturbed by an isolator of thickness ε and length 0.3
(blue region) and that has a conductivity of 0.01. Additionally, there are two conductors (red) with
high conductivity 20. These two conductors also have a thickness of ε and a length of 0.8. They are
aligned with the Neumann inflow boundary condition given by (4.3).

ε in which energy is brought in by a Neumann boundary condition. Additionally, we
have a narrow isolator that forms a blockade. The model problem reads as follows.

Problem 4.3. Let Ω :=]0, 1[2, ΓN := {0}×]0, 1[, and ΓD := ∂Ω \ ΓN .

−∇ ·A∇u = 0 in Ω,

u = 0 on ΓD,

A∇u · n = q on ΓN ,

where for ε := 0.05

q(0, x2) :=

⎧⎪⎨
⎪⎩
2 if 0.2 ≤ x2 ≤ 0.2 + ε,

2 if 0.8− ε ≤ x2 ≤ 0.8,

0 else.

(4.3)

The structure of the diffusion coefficient A is depicted in Figure 7.
We are interested in the behavior of the LOD in the case that none of the local-

ization patches has full knowledge about one of the conductivity channels, i.e., within
each patch only a piece of information is accessible. For this purpose, we restrict
ourselves to patches that contain a maximum of one coarse grid layer. We look at
uniformly refined coarse grids with H = 2−2, H = 2−3, H = 2−4, and H−5, i.e.,
we neither resolve the structure nor use large patches. The corresponding errors are
presented in Table 4, where each computation was performed for exactly one coarse
layer. We observe that the L2-errors (respectively, H1-errors) are all roughly of the
same size. Note that convergence rates cannot be expected, since we fix the number
of coarse layers (which leads to a strongly decreasing layer thickness). The results are
equally good, independent of how much the coarse grid resolves the structures and
independent of how much information from the channels is contained in the patches.
This observation is stressed by Figure 8, where the reference solution and the corre-
sponding LOD approximations are plotted. Each of the LOD approximations captures
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Fig. 8. Model problem 3. Computations made for h = 2−8 and k = 1 fixed coarse grid element
layer for localization. The left picture shows the FEM reference solution (for h = 2−8). The
remaining pictures show the LOD approximations that correspond with the four results in Table 5,
i.e., they were obtained for the four different coarse grids that are mapped below the plots (H =
2−2, 2−3, 2−4, 2−5).

the information transported along the channels and the steep accumulation generated
by the isolator. For H = 2−2 we see that the transitions are not yet fully smoothed
but this improves with decreasingH . The approximation obtained for H = 2−5 comes

Table 4

Model problem 3. Computations made for h = 2−8, i.e., |Th| = 131072 and |Nh| = 66049, and
one fixed coarse grid element layer for localization. In the second column, the number of fine grid
element layers is shown that the coarse layer corresponds with. |T U

h | and |NU
h | are defined in (4.1).

The table depicts L2- and H1-errors between uh and uLOD.

H Fine layers k ‖uh − uLOD‖rel

L2(Ω)
‖uh − uLOD‖rel

H1(Ω)
|T U

h | |NU
h |

2−2 64 1 0.02281 0.23212 49,120 2488

2−3 32 1 0.03547 0.23215 14,696 7525

2−4 16 1 0.02794 0.28425 3994 2090

2−5 8 1 0.02104 0.21349 1037 566

Table 5

Model problem 3. Computations made for H = 2−3 and h = 2−8, i.e., |Th| = 131072 and
|Nh| = 66049. The first column depicts the number of fine grid element layers. k denotes the
corresponding number of coarse element layers. |T U

h | and |NU
h | are defined in (4.1). L2- and H1-

errors between uh and uLOD are shown.

Fine layers k ‖uh − uLOD‖rel

L2(Ω)
‖uh − uLOD‖rel

H1(Ω)
|T U

h | |NU
h |

4 0.125 0.21952 0.570727 2047 1102
8 0.25 0.15593 0.528436 3290 1738
16 0.5 0.09784 0.432237 6340 3291
32 1 0.03547 0.232147 14,696 7525
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visually very close to the reference solution. Finally, Table 5 shows that we still have
the common error decay in terms of layers.

Appendix A. Proof of Lemma 3.6. This proof is based on the arguments
introduced in [23] and [17] transferred to the general scenario of this work. We require
the following lemma (see [23, Lemma 2.1] and [15, Lemma 1]), which characterizes
the quasi-interpolation operator IH .

Lemma A.1. There exists a constant C1 that can depend on the shape regularity
of Th and TH but not on the mesh sizes H and h, such that for all vH ∈ VH there
exists a vh ∈ Vh with

IH(vh) = vH , ‖∇vh‖L2(Ω) ≤ C1‖∇vH‖L2(Ω), and supp(vh) ⊂ supp(vH).

Proof. The following proof can be found in more detailed versions in [23, Lemma 2.1]
and [15, Lemma 1]. For completeness, we add the main arguments.

For all coarse basis functions Φz ∈ VH , we search for bz ∈ Vh with

I(bz) = Φz, |∇bz(x)| ≤ C|∇Φz(x)| for x ∈ Ω and supp(bz) ⊂ supp(Φz).

This can be achieved by choosing bz to be an element from the finite element space
associated with the mesh given by a uniform refinement of TH , with values 0 on
∂(suppΦz) and appropriately chosen values on the newly created nodes that can be
determined by solving a system of equations. (Since we assumed that Th was obtained
by at least one uniform refinement of TH , bz will be an element of Vh.) For an explicit
construction of bz, we refer the reader to [15, Lemma 1]. Finally, the function

vh := vH +
∑

z∈NH

(vH(z)− IH(vH)(z)) bz ∈ Vh

has the desired properties.
Recall the definition of the coarse layer patches Uk(T ) that were introduced in

(3.13). We require suitable cutoff functions that are central for the proof. For T ∈ TH
and , k ∈ N with k > , we define ηT,k,� ∈ VH with nodal values

ηT,k,�(z) = 0 for all z ∈ N ∩ Uk−�(T ),(A.1)

ηT,k,�(z) = 1 for all z ∈ N ∩ (Ω \ Uk(T )) , and

ηT,k,�(z) =
m


for all x ∈ N ∩ ∂Uk−�+m(T ), m = 0, 1, 2, . . . , .

For a given patch ω ⊂ Ω also recall the definition

W̊h(ω) := {vh ∈ Wh| vh(z) = 0 for all z ∈ Nh \ ω}.

We start with the following lemma, which says that ηT,k,�w with w ∈ Wh is close
to a Wh-function.

Lemma A.2. For a given w ∈ Wh and a given cutoff function ηT,k,� ∈ P1(TH)

defined in (A.1) and k >  > 0, there exists some w̃ ∈ W̊h(Ω \Uk−�−1(T )) ⊂ Wh such
that

(A.2) ‖∇(ηT,k,�w − w̃)‖L2(Ω) � −1‖∇w‖L2(Uk+2(T )\Uk−�−2(T )).

Proof. We fix the element T ∈ TH and k ∈ N and denote η� := ηT,k,� and
c�K := |ωK |−1

∫
ωK

η� for K ∈ TH . Here, we define ωK := ∪{K ′ ∈ TH | K ′ ∩K �= ∅}.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOD TECHNIQUES FOR BOUNDARY VALUE PROBLEMS A1629

The operator Ih : H1(Ω) ∩ C(Ω̄) → P1(Th) shall define the classical linear Lagrange
interpolation operator with respect to Th. Lemma A.1 yields that there exists some
v ∈ V h such that

IHv = IHIh(η�w), ‖∇v‖L2(Ω) � ‖∇IHIh(η�w)‖L2(Ω), and(A.3)

supp(v) ⊂ supp(η�w) ⊂ Ω \ Uk−�−1(T ).

We can therefore define w̃ := Ih(η�w) − v ∈ W̊h(Ω \ Uk−�−1(T )). Using (3.8) and
IH(Ih(w)) = IH(w) = 0 we obtain for any K ∈ TH

‖∇IHIh(η�w)‖L2(K) = ‖∇IHIh((η� − c�K)w)‖L2(K) � ‖∇((η� − c�K)w)‖L2(ωK).

(A.4)

Note that we used that the Lagrange interpolation operator Ih is H1-stable on shape-
regular partitions when it is restricted to piecewise polynomials of a fixed (small)
degree. (The stability constant only blows up to infinity when the polynomial degree
blows up to infinity; here the degree is bounded by 3.) This gives us

‖∇IHIh(η�w)‖2L2(Ω)

(A.5)

(A.1),(A.4)

�
∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

∥∥∇ ((η� − c�K
)
w
)∥∥2

L2(ωK)

�
∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

‖(∇η�)(w − IHw)‖2L2(ωK) +
∥∥(η� − c�K

)
∇w
∥∥2
L2(ωK)

(A.1)

�
∑

K∈TH :

K⊂Uk(T )\Uk−�(T )

‖(∇η�)(w − IHw)‖2L2(K) +
∑

K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

∥∥(η� − c�K
)
∇w
∥∥2
L2(ωK)

(3.8)
� ‖H∇η�‖2L∞(Ω)‖∇w‖2L2(Uk+1(T )\Uk−�−1(T )) +

∑
K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

∥∥(η� − c�K
)
∇w
∥∥2
L2(ωK)

� ‖H∇η�‖2L∞(Ω)‖∇w‖2L2(Uk+2(T )\Uk−�−2(T )),

where we used the Lipschitz bound ‖η� − c�K‖L∞(ωK) � H‖∇η�‖L∞(ωK). Recall the
local H1-estimate for the Lagrange interpolation operator on shape-regular partitions
(cf. [7] for quadrilaterals and hexahedra):

(A.6) ‖∇(p− Ihp)‖L2(S) � hS‖∇2p‖L2(S)

for all p ∈ C0(S) ∩H2(S) and S ∈ Th. Using this, Ih(w) = w and IH(w) = 0 we get
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‖∇(η�w − Ih(η�w))‖2L2(Ω) =
∑

K∈TH

‖∇((η� − c�K)w − Ih((η� − c�K)w))‖2L2(K)

(A.7)

� h2
∑

K∈TH

‖∇2η�(w − IH(w))‖2L2(K)+‖∇η� · ∇w‖2L2(K)

+
∑

S∈Th:
S⊂K

‖(η� − c�K)∇2w‖2L2(K)

(∗)
� h2

∑
K∈TH :

K⊂Uk+1(T )\Uk−�−1(T )

‖∇η�‖2L∞(K)‖∇w‖2L2(K)

+H2‖∇η�‖2L∞(ωK)

∑
S∈Th:
S⊂K

h−2‖∇w‖2L2(S)

� ‖(h+H)∇η�‖2L∞(Ω)‖∇w‖2L2(Uk+1(T )\Uk−�−1(T )).

In (∗) we used the obvious estimate ‖∇2η�‖L∞(K) � H−1‖∇η�‖L∞(K) and the inverse
estimate ‖∇2w‖L2(S) � h−1‖∇w‖L2(S) (cf. [4]). Combining (A.5) and (A.7) yields

‖∇(η�w − w̃)‖2L2(Ω)

(A.3)

� ‖∇(η�w − Ih(η�w))‖2L2(Ω) + ‖∇IHIh(η�w)‖2L2(Ω)

(A.5),(A.7)

�
(
‖h∇η�‖2L∞(Ω) + ‖H∇η�‖2L∞(Ω)

)
‖∇w‖2L2(Uk+2(T )\Uk−�−2(T ))

(A.1)

� −2‖∇w‖2L2(Uk+2(T )\Uk−�−2(T )).

This ends the proof.

The following lemma describes the decay of the solutions of ideal corrector prob-
lems (i.e., problems such as (3.6) and (3.5) for U(T ) = Ω).

Lemma A.3. Let T ∈ TH be fixed and let pTh ∈ Wh be the solution of

∫
Ω

A∇pTh · ∇φh = FT (φh) for all φh ∈ Wh,(A.8)

where FT ∈ W ′
h is such that FT (φh) = 0 for all φh ∈ W̊h(Ω \ T ). Then, there exists

a generic constant 0 < θ < 1 (depending on the contrast) such that for all positive
k ∈ N,

‖∇pTh ‖L2(Ω\Uk(T )) � θk‖∇pTh ‖L2(Ω).(A.9)

Proof. The proof is analogous to [23] and [17]. Let us fix k ∈ N and  ∈ N with
 < k − 1. We denote η� := ηT,k−2,�−4 ∈ P1(TH) (as in (A.1)). Applying Lemma A.2
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gives us the existence of p̃Th ∈ W̊h(Ω \ Uk−�+1(T )) with ‖∇(η�p
T
h − p̃Th )‖L2(Ω) �

−1‖∇pTh‖L2(Uk(T )\Uk−�(T )). Due to p̃Th ∈ W̊h(Ω \ T ) and the assumptions on FT

we also have ∫
Ω\Uk−�(T )

A∇pTh · ∇p̃Th =

∫
Ω

A∇pTh · ∇p̃Th = FT (p̃
T
h ) = 0.(A.10)

This leads to∫
Ω\Uk(T )

A∇pTh · ∇pTh ≤
∫
Ω\Uk−�(T )

η�A∇pTh · ∇pTh

=

∫
Ω\Uk−�(T )

A∇pTh ·
(
∇(η�p

T
h )− pTh∇η�

)
(A.10)
=

∫
Ω\Uk−�(T )

A∇pTh ·

⎛
⎝∇(η�p

T
h − p̃Th )− (pTh − IH(pTh )︸ ︷︷ ︸

=0

)∇η�

⎞
⎠

� −1
(
‖∇pTh ‖2L2(Ω\Uk−l(T ))

+ H−1‖∇pTh ‖L2(Ω\Uk−�(T ))‖pTh − IH(pTh )‖L2(Ω\Uk−�(T ))

)
� −1‖∇pTh ‖2L2(Ω\Uk−�−1(T )).

This implies that there exists a constant C independent of T , , k, and A, such that

(A.11) ‖∇pTh‖2L2(Ω\Uk(T )) ≤ C
β

α
−1‖∇pTh ‖2L2(Ω\Uk−�−1(T )).

A recursive application of this inequality with the choice of  := �eC β
α� yields

‖∇pTh‖2L2(Ω\Uk(T )) � e−k/(�+3)‖∇pTh‖2L2(Ω).

The choice θ := e−(�eC β
α+3)−1

proves the lemma.
We are now prepared to prove the decay lemma.
Proof of Lemma 3.6. Again, the proof is analogous to [17]. We let ηT,k,1 be

defined according to (A.1) and denote z :=
∑

T∈TH
(pTh − pT,k

h ) ∈ Wh (which again
implies IH(z) = 0). We obtain∥∥∥A1/2∇z

∥∥∥2
L2(Ω)

=
∑

T∈TH

(A∇(pTh − pT,k
h ),∇(z(1− ηT,k,1)))L2(Ω)︸ ︷︷ ︸

=:I

+ (A∇(pTh − pT,k
h ),∇(zηT,k,1))L2(Ω)︸ ︷︷ ︸

=:II

,

where

I ≤ ‖∇(pTh − pT,k
h )‖L2(Ω)‖∇ (z(1− ηT,k,1)) ‖L2(Uk+1(T ))

≤ ‖∇(pTh − pT,k
h )‖L2(Ω)

(
‖∇z‖L2(Uk+1(T )) + ‖z∇ (1− ηT,k,1) ‖L2(Uk+1(T )\Uk(T ))

)
� ‖∇(pTh − pT,k

h )‖L2(Ω)

(
‖∇z‖L2(Uk+1(T )) +

1

H
‖z − IH(z)‖L2(Uk+1(T )\Uk(T ))

)
� ‖∇(pTh − pT,k

h )‖L2(Ω)‖∇z‖L2(Uk+2(T )),
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and again with Lemma A.2 which gives us z̃ ∈ W̊h(Ω \ Uk−2(T )) with the properties∫
Ω
A∇(pTh −pT,k

h ) ·∇z̃ = 0 and ‖∇(zηT,k,1− z̃)‖L2(Ω) � ‖∇z‖L2(Uk+2(T )) and therefore

II = (A∇(pTh − pT,k
h ),∇((zηT,k,1)− z̃)L2(Ω) � ‖∇(pTh − pT,k

h )‖L2(Ω)‖∇z‖L2(Uk+2(T )).

Combining the estimates for I and II finally yields

∥∥∥A1/2∇z
∥∥∥2
L2(Ω)

�
∑

T∈TH

‖A1/2∇(pTh − pT,k
h )‖L2(Ω)‖∇z‖L2(Uk+2(T ))(A.12)

� k
d
2

( ∑
T∈TH

‖∇(pTh − pT,k
h )‖2L2(Ω)

) 1
2

‖A1/2∇z‖L2(Ω).

It remains to bound ‖∇(pTh − pT,k
h )‖2L2(Ω). In order to do this, we use Galerkin or-

thogonality for the local problems, which gives us

‖∇(pTh − pT,k
h )‖2L2(Ω) � inf

p̃T,k
h ∈W̊h(Uk(T ))

‖∇(pTh − p̃T,k
h )‖2L2(Ω).(A.13)

Again, we use Lemma A.1, which yields the existence of ṽ ∈ V h such that

IH ṽ = IHIh((1 − ηT,k,1)p
T
h ), ‖∇ṽ‖L2(Ω) � ‖∇IHIh((1 − ηT,k,1)p

T
h )‖L2(Ω) and

supp(ṽ) ⊂ supp((1− ηT,k,1)p
T
h ) ⊂ Uk(T ).

We can therefore define p̃Th := Ih((1 − ηT,k,1)p
T
h ) − ṽ ∈ W̊h(Uk(T )) and make two

observations:

‖∇IHIh((1 − ηT,k,1)p
T
h )‖2L2(Uk(T ))

(A.14)

= ‖∇IHIh((1 − ηT,k,1)p
T
h )‖2L2(Uk(T )\Uk−2(T )) + ‖∇IHIh((1 − ηT,k,1)p

T
h )‖2L2(Uk−2(T ))

= ‖∇IHIh((1 − ηT,k,1)p
T
h )‖2L2(Uk(T )\Uk−2(T )) + ‖∇IHpTh ‖2L2(Uk−2(T ))

= ‖∇IHIh((1 − ηT,k,1)p
T
h )‖2L2(Uk(T )\Uk−2(T ))

and

‖∇
(
(1− ηT,k,1)p

T
h − Ih((1 − ηT,k,1)p

T
h )
)
‖2L2(Uk(T ) � ‖∇pTh ‖2L2(Uk+1(T )\Uk−2(T )),

(A.15)
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which can be proved in the same way as (A.5) in Lemma A.2. Recall p̃Th = Ih((1 −
ηT,k,1)p

T
h )− ṽ; then altogether we obtain

‖∇(pTh − pT,k
h )‖2L2(Ω)(A.16)

(A.13)

� ‖∇(ηT,k,1p
T
h + (1 − ηT,k,1)p

T
h − p̃Th )‖2L2(Ω)

(A.15)

� ‖∇pTh‖2L2(Ω\Uk(T )) + ‖∇pTh ‖2L2(Uk+1(T )\Uk−2(T )) + ‖∇ṽ‖2L2(Uk(T ))

� ‖∇pTh ‖2L2(Ω\Uk(T )) + ‖∇pTh ‖2L2(Uk+1(T )\Uk−2(T ))

+ ‖∇IHIh((1− ηT,k,1)p
T
h )‖2L2(Uk(T ))

(A.14)

� ‖∇pTh‖2L2(Ω\Uk−2(T )) + ‖∇IHIh((1 − ηT,k,1)p
T
h )‖2L2(Uk(T )\Uk−2(T ))

� ‖∇pTh ‖2L2(Ω\Uk−3(T ))

(A.9)

� θ2(k−3)‖∇pTh‖2L2(Ω).

Combining (A.12) and (A.16) proves the lemma.
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[20] T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J. Quincy, The variational multiscale
method—a paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg.,
166 (1998), pp. 3–24.
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