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Chapter 1

Introduction

Radio occultation (RO) techniques have been developed for many years to
study planetary atmospheres. The application to the Earth’s atmosphere of
these limb-sounding techniques provides an approach for global scale mon-
itoring of tropospheric/ stratospheric temperature, pressure, and humidity
profiles with high accuracy and vertical resolution, as well as ionospheric
electron density profiles and scintillation properties. When a precision GNSS
receiver on board a low earth orbiting (LEO) satellite tracks GNSS signals
that are observed to rise or set through the atmosphere (see Fig. 1.1), the
arrival time of the received signal is delayed due to the refractive bending and
the retardation as it passes the atmosphere. By measuring the accumulated
signal carrier phase delay on two different frequencies, the neutral (i.e. not
due to the ionosphere) bending angle can be derived. Under the assumption
of a spherically symmetric atmosphere it is then possible to determine the
neutral atmosphere refractive index profile. The atmospheric parameters can
be derived using fundamental physical relations, such as the relation between
refractivity and dry air density, the equation of state, and the equation for
hydrostatic equilibrium.

EUMETSAT is since 2006 flying an RO instrument named GRAS on
board the MetOp satellites [1]. It has since 2007 provided operational data
for numerical weather prediction (NWP) and RO measurements has in a few
years become one of the most important data for NWP.

In this report we present the results of a project aimed at developing an
end-to-end RO simulator. The project was a cooperation between Chalmers
University of Technology, RUAG Space AB, and OHB Sweden, and financed
by the Swedish Space Board within the second National Space Research
Program (NRFP-2). The simulator includes a wave optics propagator (WOP)
capable of simulating realistic GNSS signals as they propagate through the
Earth’s atmosphere using realistic refractivity, a routine for propagating the
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Figure 1.1: Instrument antenna beams.

signal to LEO, a routine for adding noise to the received signal, and a routine
for interpreting the signals in the terms of bending angle and impact height
(in our case achieved using phase matching). In this report we go through
the theory behind each of these techniques, we describe how to implement
them in Matlab, and we evaluate the accuracy of each step. In addition to
this, and in order to evaluate the results from the code, it was necessary
to make a detailed investigation into geometrical optics (GO) and the Abel
transform. Mainly to find a fast and accurate way to calculate the results
from geometrical optics, but as a spin-off we also present a small investigation
into the problem with Abel inversion for super-refractive refractivity profiles.

The report is organized in chapters detailing: the theory behind multiple
phase screen (MPS) propagation; the implementation of the MPS method
in Matlab; the results on the last phase screen for exponential profiles, and
exponential profiles containing local sharp gradients and super-refractive re-
gions; the theory of how to propagate the signal to orbit using a diffractive
integral, and how to implement the technique; the unraveling of the signal
phase using an estimated generic signal; inversion through phase matching;
detailed comparisons between simulations and GO in LEO; and finally a pre-
sentation of the numerical techniques used to calculate the Abel transforms,
and the problem appearing in the case of super-refractive profiles.
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Chapter 2

Theoretical formulation of MPS

2.1 Introduction

In this chapter we shall present the theory behind the MPS, or Fourier
split-step technique (FSS). Although the method is quite well known and
frequently used for solving Schrödinger type equations in connection with
quantum mechanics and wave propagation in non-linear media, there is a
marked lack of complete treatments of the problem in the framework of at-
mospheric wave propagation to be found in the literature. Therefore some
time in this chapter is spent on trying to work out the limitations of the
technique. The theoretical treatment presented here is far from complete. In
particular, when performing the Fourier transform over the vertical coordi-
nate (perpendicular to the wave propagation direction) one assumes that the
refractive index has varies slowly with the vertical coordinate. It is unclear
under what circumstances this approximation is allowed, and this question
has to be deferred due to its mathematical complexity.

2.2 The paraxial approximation

The most general formulation of the wave equation for the electric field in
linear media is [2]

∇2Ē − ǫµ
∂2Ē

∂t2
+∇(Ē · ∇(ln ǫ)) +∇(lnµ)× (∇× Ē) = 0 (2.1)

where Ē is the electric field vector, ǫ the permittivity, and µ the permeability.
In air we can assume with great accuracy that µ ≈ µ0 = const.. Furthermore
we can use n2/c2 = ǫµ, where n is the refractive index, and we get

6



∇2Ē − n2

c2
∂2Ē

∂t2
+ 2∇(Ē · ∇(lnn)) = 0 (2.2)

If we restrict our solution to the steady state case we can use a harmonic
description for the field, Ē = R(Ē0 exp(−iωt)), where ω is the field radian
frequency. And using k0 = ω/c we get

∇2Ē0 + k20n
2Ē0 + 2∇(Ē0 · ∇(lnn)) = 0 (2.3)

Now we wish to model the propagation of the field in the atmosphere,
where n is actually changing, but Eq. (2.3) is too complicated to use with
ease. Fortunately, under the condition that the refractive index changes
slowly in comparison to the electric field we can neglect the third term. The
precise condition for this approximation to be valid can be found by using
ln as the length scale of variations in n, and λ, the field wavelength, as the
length scale for variations in Ē0. We find the order of magnitude of the
different terms to be

∇2Ē0 ∼ k20E0 (2.4)

k20n
2Ē0 ∼ k20E0 (2.5)

2∇(Ē0 · ∇(lnn)) = 2∇
(

Ē0 ·
∇n
n

)

∼ k0E0
1

n

n

ln
=
k0
ln
E0 (2.6)

Hence, we can neglect the third term when k20E0 ≫ k0E0/ln, or ln ≫ λ.
In the atmospheric conditions we are interested in, super-refractivity occurs
when ∂n/∂r < −1.57 × 10−7 m−1 (see chapter 9), so we can put ln ∼ 106 m
as a worst case scale length for n. Furthermore, the GPS signals corresponds
to wavelengths around λ ∼ 10−1 m. This means that λ ≪ ln, and the third
term can be safely neglected for any conditions occurring in the Earth’s
atmosphere. So for our applications we can use

∇2Ē0 + k20n
2Ē0 = 0 (2.7)

But in Cartesian coordinate system this equation must be fulfilled indepen-
dently by all field components. And the full solution to the wave propagation
problem can be found by considering the scalar Helmholtz equation (this in-
cludes the solution for the magnetic field)

∇2ψ + k20n
2ψ = 0 (2.8)
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Furthermore we will assume a wave that propagates predominantly in the
z-direction. The treatment is simplified significantly by using ψ(x, y, z) =
u(x, y, z) exp(ik0z), which changes Eq. (2.8) into

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
+ 2ik0

∂u

∂z
+ k20(n

2 − 1)u = 0 (2.9)

The paraxial approximation consists of disregarding the second order deriva-
tive with respect z. To see when this is allowed we consider a plane wave
propagating in free space with an angle θ with respect to the z-axis. The
wave is described by

ψ(x, y, z) =ψ0 exp(ik̄0 · r̄) = (2.10)

ψ0 exp(ik0(sin θ cosφx+ sin θ sinφy + cos θz)) (2.11)

Now we use the approximations sin θ ≈ θ, and cos θ ≈ 1− θ2/2, which gives

ψ(x, y, z) ≈ ψ0 exp(ik0z) exp(ik0(θ cosφx+ θ sinφy)− ik0
θ2

2
z)) (2.12)

We can see that the role of u(x, y, z) in Eq. (2.9) is now played by
φ0 exp(ik0(θ cosφx + θ sin φy) − ik0

θ2

2
z)). We can therefore use Eq. (2.12)

to find the order of magnitude of the different derivatives in Eq. (2.9). The
derivatives become

∂u

∂z
≈ −ik0

θ2

2
u (2.13)

∂2u

∂z2
≈ −k20

θ4

4
u (2.14)

∂2u

∂y2
≈ −k20θ2 sin φ2u (2.15)

∂2u

∂x2
≈ −k20θ2 cosφ2u (2.16)

The joint condition for neglecting the second derivative with respect to z in
Eq. (2.9) in comparison to the other terms then becomes θ ≪ 2, or expressed
in degrees θdeg. ≪ 115o. The paraxial approximation should thus be quite
exact around θ ≈ 10o. Provided all the conditions above are satisfied we can
finally state the paraxial approximation of the scalar Helmholtz equation
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∂2u

∂x2
+
∂2u

∂y2
+ 2ik0

∂u

∂z
+ k20(n

2 − 1)u = 0 (2.17)

In the code described in this paper we disregard variations of the wavefront
in the horizontal direction, which means that we can neglect the x-part. This
finally yields

∂2u

∂y2
+ 2ik0

∂u

∂z
+ k20(n

2 − 1)u = 0 (2.18)

which will be the basis for all our calculations.
Finally it should be noted that when neglecting the second derivative with

respect to z, one also neglects the backwards propagating wave. Fortunately,
that wave is of no interest in radio occultation.

2.3 The multiple phase screen technique

In order to solve Eq. (2.18) in a complicated atmosphere one can use different
methods, but the most effective seems to be the multiple phase screen, or
Fourier split-step technique. There are many different formulations of this
technique, but the main trick is always the same [3–7]. The medium is
divided into a number of screens extending in the vertical direction. The
wave is propagated between the screens using the solution for constant n,
and the effect of the inhomogeneous n is included by multiplication when the
wave reaches the screen.

To implement this technique one performs spatial Fourier transforms in
the y-direction, viz

ũ(q, z) = F(u(y, z)) =

∫

∞

−∞

u(y, z) exp(−iqy)dy (2.19)

u(y, z) = F−1(ũ(q, z)) =
1

2π

∫

∞

−∞

ũ(q, z) exp(iqy)dq (2.20)

(2.21)

Applying this Fourier transform to the entire Eq. (2.18), and assuming the
n dependence on y can be neglected

−q2ũ+ 2ik0
∂ũ

∂z
+ k20(n

2 − 1)ũ = 0 (2.22)
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This is a differential equation that lacks a general solution due to the fact
that n as a function of z is in general quite complicated. If n was constant
the solution would be

ũ(q, z) = ũ(q, 0) exp

(

i
k0
2
(n2 − 1)z

)

exp

(

− i

2k0
q2z

)

(2.23)

And in normal space

u(y, z) =F−1(ũ(q, z)) = (2.24)

= exp

(

i
k0
2
(n2 − 1)z

)

F−1

(

exp

(

− i

2k0
q2z

)

F(u(y, z))

)

(2.25)

The FSS or MPS-technique now consists of approximating n as constant
and homogeneous over small intervals, ∆z, in the z-direction. The solution
can then be advanced a step ∆z using

u(y, z +∆z) = exp

(

i
k0
2
(n2 − 1)∆z

)

F−1

(

exp

(

− i

2k0
q2∆z

)

F(u(y, z))

)

(2.26)

To investigate what kind of relative error we introduce over the interval
∆z we consider the propagation over a small region where the refractive index
is given by

n(z) ≈ n(z = 0) + z
∂n

∂z
|z=0 (2.27)

Inserting this into Eq. (2.22) and solving yields

ũ(q, z) = ũ(q, 0) exp

(

i
k0
2
(n2

0 − 1)z

)

exp

(

− i

2k0
q2z

)

exp

(

i

2
n0k0

∂n

∂z
|z=0z

2

)

(2.28)
where n0 = n(z = 0). Comparing with Eq. (2.23) we see that the relative
error introduced during a small step ∆z is on the order of the factor

exp

(

i

2
n0k0

∂n

∂z
|z=0∆z

2

)

≈ 1 +
i

2
n0k0

∂n

∂z
|z=0∆z

2 (2.29)

Hence, to use the multiple phase screen technique without introducing errors
because of the finite number of screens we need to be sure that
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k0
∂n

∂z
∆z2 ≪ 1 (2.30)

where we have used the fact that n ≈ 1. The local y-axis makes an angle ξ
with respect to the radius vector drawn from the center of the Earth, and
the derivative in the z-direction is thus given by

∂n

∂z
≈ ∂n

∂r
sin ξ (2.31)

Using typical numbers for the different terms involved, k0 ∼ 30 m−1, ∂n/∂r ∼
5×10−8 m−1, and ξ ≈ 14o (referring to Fig. 3.6 with H = 100 km, Ly = 300
km, and RE = 6371 km), the requirement becomes

∆z ≪ 2000 m (2.32)

But in the presence of super-refraction ∂n/∂z ∼ 2× 10−7 m−1, and

∆z ≪ 1000 m (2.33)

Of course, these approximations are based on a rather small angle of 1 degree.
For larger angles the conditions become more restrictive.

It is not immediately obvious what kind of error we introduce by only
accounting for the refractivity inhomogeneity in the z-direction. This point
is discussed e.g. in Ref. [3], but we will not dwell upon it further, as it
appears to be a question of some mathematical intricacy.

One further remark is in order. Using this proceedure for advancing
the waves will lead to so-called free space losses, which is nothing stranger
than the spreading of the wave, and the decay of the amplitude. If the two
dimensional spatial Fourier transform is used, the losses will be those of a
spherical wave ∝ 1/r. If on the other hand, only the y-direction is taken into
account (as in this report), there will be no spreading in the x-direction, and
the amplitude decays as a cylindrical wave, ∝ 1/

√
r. The cylindrical wave

is generally described using Bessel functions, but far away from the source
(r ≫ λ) one can use

u(r) =
exp(ikr)√

r
(2.34)

2.4 A slightly more accurate MPS technique

The method used in the previous section is quite exact, and for our purposes
it is not really necessary to look for more precise methods. It is however
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quite common to use a slightly different formulation [3,8], where one does not
employ the paraxial approximation. One starts with the Helmholtz equation
(2.9) without taking account of the x-direction

∂2u

∂y2
+
∂2u

∂z2
+ 2ik0

∂u

∂z
+ k20(n

2 − 1)u = 0 (2.35)

One then performs the Fourier transform to yield

−q2 + ∂2ũ

∂z2
+ 2ik0

∂ũ

∂z
+ k20(n

2 − 1)ũ = 0 (2.36)

If one assumes that the z-dependence can be described by

u(z) = u0 exp(az) (2.37)

where a is some constant, we get

−q2 + a2 + 2ik0a + k20(n
2 − 1) = 0 (2.38)

With the solution for a

a = −ik0 ± ik0

√

n2 − q2

k20
(2.39)

Since we have assumed that the main direction of propagation is in the
z-direction, we know that q/k0 < 1, and n > 1, which means that the
term inside the square root is positive. This in turn means that the positive
sign before the square root corresponds to a wave moving in the z-direction,
whereas the negative sign corresponds to the −z-direction. We will limit our
interest to the wave moving in the positive z-direction. For our purposes we
can assume n− 1 ≪ 1 and q/k0 ≪ 1, which means that we get

a = ik0(n− 1) + ik0

(
√

1− q2

k20
− 1

)

(2.40)

The algorithm for advancing the wavefront a small step ∆z is then

u(y, z +∆z) = exp (ik0(n− 1)∆z)F−1

(

exp

(

ik0

(
√

1− q2

k20
− 1

)

∆z

)

F(u(y, z))

)

(2.41)

We can retrieve Eq. (2.26) by employing the approximations
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(n2 − 1)/2 ≈ n− 1 (2.42)
√

1− q2/k20 ≈ 1− q2

2k20
(2.43)

Eq. (2.41) is supposed to be slightly more accurate than Eq. (2.26). However,
to the knowledge of the author the difference is very small.
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Chapter 3

Numerical implementation of
MPS

3.1 Introduction

When implementing the multiple phase screen technique numerically three
main questions will arise: how to perform the discrete Fourier transform
correctly; how to take into account borders (e.g. the Earth’s surface); and
how to avoid aliasing? We will deal with these things separately.

3.2 The discrete Fourier transform

In our theoretical treatment we used the Fourier transforms

ũ(q, z) =

∫

∞

−∞

u(y, z) exp(iqy)dy (3.1)

u(y, z) =
1

2π

∫

∞

−∞

ũ(q, z) exp(−iqy)dq (3.2)

But instead of using q we can use q = 2πfy, which yields

ũ(fy, z) =

∫

∞

−∞

u(y, z) exp(2πifyy)dy (3.3)

u(y, z) =

∫

∞

−∞

ũ(fy, z) exp(−2πifyy)dfy (3.4)

The numerical implementation has to take place in a finite domain, let
us use a vector in the y-plane having length Ly, where the coordinates are
given by
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y[ny] = ny∆y where ny = −M/2,−M/2 + 1, ...,M/2− 1 (3.5)

And ∆y = Ly/M . When using the fast Fourier transform, the algorithm
works most efficiently when M is a power of 2, therefore we shall always
assume that M is even, resulting in integer values for M/2. The Fourier
transform in the discrete domain is found by forming the Riemann sum

ũ(fy, z) =

M/2−1
∑

ny=−M/2

u(y[ny], z) exp(2πifyy[ny])∆y (3.6)

(3.7)

and inserting the correct value for y[ny]

ũ(fy, z) =

M/2−1
∑

ny=−M/2

u(ny∆y, z) exp

(

2πify
nyLy

M

)

∆y (3.8)

(3.9)

Now the discrete spatial frequency must find a suitable definitions. The
spatial step is ∆y, which implies that the highest frequency we can resolve
(due to the Nyqvist criterion) is 1/(2∆y). It is most practical if the frequency
representation has as many vector points as the spatial representation, where-
fore the frequency should be defined according to

fy[my] = my∆fy =
my

M∆y
=
my

Ly
where my = −M/2,−M/2 + 1, ...,M/2− 1

(3.10)

Using the definitions above the discrete Fourier transform becomes

ũ(fy[my], z) =

M/2−1
∑

ny=−M/2

u(y[ny], z) exp
(

2πi
myny

M

)

∆y (3.11)

u(y[ny], z) =
1

M

M/2−1
∑

my=−M/2

u(fy[my], z) exp
(

−2πi
myny

M

) 1

∆y
(3.12)
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During the progression between phase screens the effect of free space
spreading and diffraction effects are incorporated by multiplication with

exp

(

i
k0
2
(n2 − 1)∆z

)

(3.13)

and

exp

(

− i

2k0
q2∆z

)

(3.14)

In the discrete representation these expressions change into

exp

(

i
k0
2
(n(y[ny], z)

2 − 1)∆z

)

(3.15)

and

exp

(

− i

2k0

(

2πmy

Ly

)2

∆z

)

(3.16)

3.3 Discrete Fourier transform in Matlab

Different software have different ways of implementing the discrete Fourier
transform. Although Matlab uses a rather straightforward method, it is
necessary to be aware of what it actually is doing for the results to be correct.
When using the discrete Fourier transform one actually assumes a function
that is periodic in the y-direction, with the period Ly. The natural way to
represent the function is thus to include one full period on Ly, where the
first position in the y vector (i.e. iy = 1, where iy represents the number of
a vector element, going between 1 and M) indicates the start of the period,
and the final positions the end of the period (iy = M). Matlab uses a
different representation, assuming that the first position (iy = 1) belongs to
the middle of the period, the middle to the last, and the last position to the
middle. This is more easily explained using illustrations. In Fig. 3.1 we can
see a function defined on the y-axis, and how Matlab interprets it.

Due to this peculiar feature of Matlab, if one uses the ”natural” way of
defining a function, it is necessary to shift the function before performing
the discrete Fourier transform in Matlab. To do this one uses the function
fftshift(), which works for one and two-dimensional Fourier transforms. After
performing this shift it is straight forward to take the fast Fourier transform
using fft(). In Eqs. (3.11) and (3.12) there appears two numerical factors:
∆y and 1/(M∆y). Matlab only takes into account the 1/M factor, and if
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Figure 3.1: To the left, the ”natural” way of defining a function on an interval.
To the right, how Matlab interprets the function on the left.

needed the other factors will have to be introduced by hand. In our case all
operations are linear, and we can forget about the factors ∆y and 1/∆y since
they cancel in the end. Before multiplying with Eq. (3.16) it is necessary to
undo the previous shift using ifftshift(). After multiplication with (3.16) it
is necessary to use fftshift() again before performing the inverse fast Fourier
transform ifft(). After the inverse transform one has to use ifftshift() again,
and after that one can finally multiply by Eq. (3.15).

3.4 Proper windowing

The discrete Fourier transform generates a function which is periodic in the y-
direction. This will lead to problems during the progression between screens
if not properly handled using a window function. In effect, using the DFT will
actually simulate an infinite number of signals being emitted from an infinite
number of satellites. Each wavefront starts in its own domain, in the case of
our signal it resides mainly in y ∈ [0, Ly]. But this domain will be surrounded
by other identical domains. During the progression the signals from these
separate domains will start to bleed into each other, eventually creating a
terrible mess. The solution for this is to create artificial absorbing boundaries,
i.e. a window function. The window function should be smooth (otherwise it
will generate unwanted higher frequencies in the wave), approach zero close
to the edges, and have no imaginary component. There are of course a great
number of ways to construct such a function, but for our purposes it seems
that we need nothing more complicated than a function which decreases as
a Gaussian close to the edges, viz
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Figure 3.2: The wave amplitude without windowing. The red line is the
amplitude on the first screen, the blue line the amplitude on the last screen.
The green line is the true amplitude of the signal from the satellite on the
last screen.

w =















exp
(

−(y−a1Ly

b1Ly
)2
)

if y < a1Ly,

1 if a1Ly ≤ y ≤ Ly(1− a1),

exp
(

−(y−Ly(1−a1)
b1Ly

)2
)

if Ly(1− a1) < y.

(3.17)

As Ly should be around 100-300 km long, suitable values for a1Ly and b1Ly

seems to be around 20− 30 km and 10 km respectively.
In Figs. 3.2-3.4 we can see a cylindrical wave as it propagates in the

z-direction. In Figs. 3.2 and 3.3 we see the effect of no windowing. The
adjacent wavefronts bleed into our calculation domain and superposes with
the original wave. In Figs. 3.4 and 3.5 we see the same wavefront propa-
gation when the Gaussian window above has been multiplied with the wave
amplitude at each phase screen.
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Figure 3.3: The evolution of the wave amplitude without windowing. As the
wave progresses from the left side to the right side the adjacent wavefronts
start to leak into our calculation box. Blue colors represent low amplitude,
close to zero, and red colors represent high amplitude.
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Figure 3.4: The wave amplitude with proper Gaussian windowing.

3.5 Geometry

The most simple geometry for performing the wave propagation is shown in
Fig. 3.6. One prescribes a calculation box that has a certain area Ly × Lz,
and then one positions the Earth and the GNSS satellite with respect to
this box. The wave propagates freely from the satellite to the first screen,
which is the left vertical border of the box, wherefrom the multiple phase
screen propagation begins. When the calculation reaches the last screen the
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Figure 3.5: The wave amplitude with proper Gaussian windowing. Blue
colors represent low amplitude, close to zero, and red colors represent high
amplitude, in this case close to unity.

wave leaves the atmosphere, and one can calculate the bending angles and
such directly, or propagate the wave to the receiving satellite using different
techniques. In this report we have restricted ourselves to interpreting the
information gathered on the last screen. The size of the calculation box
is of course arbitrary, but if one wants to include the effect of the entire
atmosphere and at the same time minimize the size, the proper choice is when
the lower corners of the red box in Fig. 3.6 coincides with the outer black
circle representing the top of the atmosphere. This gives Lz as a function of
RE , H , Ly, through

(RE +H)2 = (Lz/2)
2 + (RE +H − Ly)

2 (3.18)

or

Lz = 2
√

2Ly(RE +H)− L2
y (3.19)
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Figure 3.6: The geometry used in the simulations. The GNSS satellite is
situated at the black dot. The multiple phase screen routine is performed
within the red borders. The blue area represents the Earth, and the large
black circle represents the top of the atmosphere.

3.6 Aliasing

Aliasing occurs when the wave contains spatial features which vary more
rapidly than the Nyqvist frequency. The effect of this is that repetitive
features appear in the signal which have no physical cause. To avoid this
the sampling rate has to be sufficiently large. To make sure aliasing does not
appear, one has to take into account the position of the transmitting satellite,
the distance between screens, and the gradient of the refractive index. We
formulate explicit conditions for avoiding aliasing below.

3.6.1 Position of the GNSS satellite

The GNSS satellite is generally assumed to emit cylindrical waves described
by

u(r) =
exp(ik0r)√

r
(3.20)

where r is the distance from the source (r =
√

y2 + z2), and the time factor,
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exp(−iωt), is excluded as usual. The satellite is a distance r =
√

y20 + z20
from the lower left vertex of the calculation box where the coordinate origin
is located. When the vertical position of the satellite is y0 = Ly/2, the
wavefront will hit the first screen perpendicularly in the exact center of the
screen. At the corners of the screen the wavefronts make a certain angle with
the screen normal amounting to

tan θ =
Ly

2z0
(3.21)

when the satellite is not positioned in this way, the angle will differ between
different corners, and the largest angle is found from

tan θ =
dy0
z0

(3.22)

and

dy0 =

{

Ly − y0 if y0 < Ly/2,
y0 if y0 > Ly/2.

(3.23)

When these tilted wavefronts hit the screen they will give rise to patterns
repeating themselves with a wavelength λ′. This wavelength is given by the
angle θ as

λ′ =
λ

sin θ
(3.24)

For this wave structure to be sampled sufficiently often we need at least two
vector points per wavelength λ′ [4,9]. Thus we need a resolution that is fine
enough to fulfill

∆y <
1

2
λ′ =

λ

2 sin θ
(3.25)

If computer power is in abundance it might be good to set ∆y to the
limiting value λ/2, which will ensure no aliasing even for rather strange
satellite positions. The wavelength is around 20 cm, which means that the
resolution in that case should be around 10 cm. For a screen height of 100 km
this would mean at least 106 calculation points, i.e. M > 106 ≈ 220. On the
other hand, the paraxial approximation only works for θ < 10o, which means
that the resolution will never have to be finer than 0.5 m. A height of 100
km then implies M ≈ 2× 105 ≈ 218. If one wishes to use a lower resolution,
the exact criteria (3.25) that depends on the satellite position will have to
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Figure 3.7: The aliasing effect of having too low vertical resolution. The
satellite in this case is positioned at y0 = Ly/2, and z0 = 20000 km, trans-
mitting in the L1 band.
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Figure 3.8: The aliasing effect of having too low vertical resolution. The
satellite in this case is positioned at y0 = 0, and z0 = 20000 km, transmitting
in the L1 band.

be used, and one should not forget the extra bending of the signal in the
atmosphere which amounts to a few degrees.

In Fig. 3.7 we can see the effect of having too low resolution in the vertical
direction. The signal forms a repetitive pattern of rather low frequency that
has no physical cause.
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3.6.2 Distance between screens

Knepp [5] noted that multiplication with the exponential factor (3.16)

exp

(

− i

2k0

(

2πmy

Ly

)2

∆z

)

(3.26)

might give rise to aliasing if the factor differs too much between adjacent
grid points. The exponential factor gives rise to a spatial structures where
the phase shift between to adjacent grid points is

1

2k0

(

2π(my + 1)

Ly

)2

∆z − 1

2k0

(

2πmy

Ly

)2

∆z (3.27)

This difference is maximized when my =M/2 (see Eq. (3.10)), so the maxi-
mum phase shift caused by this factor is

2π2∆z(M + 1)

k0L2
y

(3.28)

To fulfill the Nyqvist criterion we need this phase difference to be less than
π. We can state the ”Knepp” criterion as

∆z <
Ly∆y

λ
(3.29)

where we have used the fact that M ≫ 1.
Now we know from the previous section that ∆y ∼ 0.5 m for a screen height
Ly = 100 km, which means that the horizontal step needs to be shorter than
300 km. This simple calculation serves to illustrate that this criterion is of
little concern to modern computers and researchers. And furthermore, from
condition (2.32) we know that for realistic atmospheric data, the resolution
has to be much finer.

Even though this criterion is of little relevance, it is still interesting to
demonstrate how this particular form of aliasing appears. In Fig. 3.9 we can
see the result of having too low horizontal resolution. In this particular case,
the step length is ∆z = 8000 km.
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Figure 3.9: The result of having too long distance between the screens, al-
lowing for aliasing to appear.

3.6.3 Refractive index gradient

The exponential factor containing the refractive index may also give rise to
aliasing. If the refractive index at different screens is completely uncorrelated,
aliasing will arise if the factor (3.15) differs too much between grid points.
Similar to the Knepp criterion we find that to avoid aliasing we require

k0
2

[

((n+ δn)2 − 1)− (n2 − 1)
]

∆z < π (3.30)

where δn is the maximum difference in the refractive index between grid
points. We can approximate δn ≈ |max (∂n/∂y) |∆y, giving

2

∣

∣

∣

∣

max

(

∂n

∂y

)
∣

∣

∣

∣

∆y∆z < λ (3.31)

The refractive index on adjacent screens is not uncorrelated in our case,
and the requirement has to be made more restrictive. If the wave propagates
in a media having a constant gradient in the refractive index over a length
Lz , the criteria for avoiding aliasing becomes

2

∣

∣

∣

∣

max

(

∂n

∂y

)
∣

∣

∣

∣

∆yLz < λ (3.32)

which depending on Lz can become quite restrictive. Let us use the example
of an exponential refractive index profile to see exactly when this problem
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appears. It is easiest to use a geometry where the Earth is considered as flat
and the y-direction coincides with the r-direction. In this case the refractive
index is given by

n(y) = 1 + 10−6N0 exp(−y/Hscale) (3.33)

where N0 is the refractivity at the bottom of the screen, and Hscale is the
scale length of the atmosphere. The derivative becomes

∂n

∂y
= − N0

Hscale
× 10−6 exp(−y/Hscale) (3.34)

Since we are using a window function that gradually dampens the signal
below y = a1Ly and above y = Ly(1 − a1), the y-position with the highest
gradient will not give rise to any problems. Instead we have to take into ac-
count the gradient over the entire y-interval and compare it with the window
function for the y-interval. The criterion over the y-interval becomes

Λ ≡ 2× 10−6 N0

Hscale

∆y

λ
Lz exp(−y/Hscale) < 1 (3.35)

In Figs. 3.10-3.11 we can see how the violation of this criterion gives rise to
aliasing, and how the gradient interplays with the window function. In Fig.
3.10 the point where we violate the criterion (i.e. the blue curve crosses the
dashed black line) is situated deep into the part where the window function
has damped the wave, and we can see no trace of any numerical problems. In
Fig. 3.11 on the other hand, the violation point is situated at a y-value that
is above the point where the window function starts to dampen the signal,
which results is aliasing.

When taking account of the curvature of the atmosphere as it envelopes
the Earth the criteria becomes more complicated. The critical region should
combine high gradients in the direction perpendicular to the propagation
direction with long propagation path perpendicular to the Earth. This indi-
cates the few km’s closest to the Earth’s surface as the critical region. Since
no exact guidelines can be given for this case it is probably easier to just be
careful and investigate how decreasing ∆y influences the appearance of the
signal amplitude profile.

3.7 Taking the Earth into account

The inclusion of the Earth into the simulation is problematic but unfortu-
nately quite necessary. In a simulation which strives to be as realistic as
possible, the finite conductivity, and the polarizability of the Earth should
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Figure 3.10: Illustration of how high gradients in the refractive index might
give rise to aliasing. In this figure the point where the critical factor Λ equals
unity is below the point where the window function has dampened the signal
significantly, which results in no aliasing.
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Figure 3.11: Illustration of how high gradients in the refractive index might
give rise to aliasing. In this figure the point where the critical factor Λ equals
unity is above the point where the window function has dampened the signal
significantly, which results serious aliasing.

be taken into account. This will lead to different reflection properties over dif-
ferent types of terrains (compare for example seawater, which is conducting,
with desert sand, which is dielectric). Procedures for taking these matters
into account can be found in [3, 10]. Initially however, we do not want any
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reflections from the Earth. We want to compare the bending angles retrieved
using the simulations with those found using the Abel transform (and the
equivalent geometrical optics ray tracing routine). The Abel transform takes
no regard of the surface properties of the Earth, and only the rays that do
not reach the Earth surface result in the occultation. To completely remove
reflections from the Earth surface we need to let the wave amplitude decay
slowly with increasing penetration into the Earth. A suitable choice for the
amplitude damping is an exponential function similar to that used in the
window function, viz

wE =

{

exp
(

− (r−RE)2

L2
A

)

if r ≤ RE ,

1 if r > RE .
(3.36)

where r =
√

(Lz/2− z)2 + (y +RE + Ly −H)2 is the distance to the center
of the Earth, and LA is the attenuation length. The damping of the amplitude
is achieved as previously simply by multiplication with the wave amplitude at
each screen. In Fig. 3.12 we can see a comparison of four different attenuation
lengths, and in Fig. 3.13 we can see the wavefront amplitude as it is blocked
by the Earth.

Naively one would state that the lower right curve looks most promising
for good simulations avoiding reflections. That is however before one takes
into account the effect of the refractive index. In an ideal atmosphere the
refractive index decays exponentially away from the Earth surface. In our
simulations we need to specify what the refractive index inside the Earth is.
Just putting it equal to some constant will cause a sharp kink in the curve,
and the generation of aliasing at the surface. One can let the refractivity
continue increasing exponentially inside the Earth. But in that case one
needs to make sure that the damping inside the Earth is sufficiently strong
to avoid rays passing through the Earth with great bending angles. Another
option is letting the refractive index assume the form of a straight line inside
the Earth. In any case, there will be a trade-off. Either one allows some
reflections, or one allows the wave to travel slightly into the Earth with an
unrealistic refractive index.

Below we compare three different functional forms for the refractive index
inside the Earth and how they interplay with different attenuation lengths.
Outside the Earth the refractive index is approximately given by

n(r) = 1 + 10−6N0 exp

(

− 1

Hscale
(r − RE)

)

(3.37)

and the forms inside the Earth should match the value of this function and its
derivative at r = RE . The three forms are: a constant value inside the Earth
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Figure 3.12: The effect of finite conductivity of the Earth’s surface. In the
upper left panel the wave amplitude is set to zero within the Earth, basically
mimicking a perfectly conducting cylinder. This results in massive reflec-
tions and a complicated refraction pattern. The upper right panel lets the
amplitude fall to zero exponentially (as a Gaussian) with a scale length (i.e.
attenuation length) of 50 m. The lower left panel has an attenuation length
of 500 m. The lower right panel an attenuation length of 5000 m. In the last
case reflections are basically eliminated.

that uses an exponential term to match the derivatives at r = RE ; a slanted
line with the same slope as the refractive index at r = RE; and an exponential
that decays with increasing radius. The mathematical formulation is seen in
(3.38)-(3.40).

n(r) = 1 + 10−6N0

[

2− exp

(

1

Hscale
(r −RE)

)]

(3.38)

n(r) = 1 + 10−6N0

[

1− 1

Hscale

(r −RE)

]

(3.39)

n(r) = 1 + 10−6N0 exp

(

− 1

Hscale
(r − RE)

)

(3.40)

In Figs. 3.14-3.16 we see the amplitude of the wave as it has passed
through the Earth’s atmosphere for the three different functional forms of
the refractive index. In Fig. 3.14 we can clearly distinguish the effect of
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Figure 3.13: The shadowing effect of the Earth without an atmosphere. In
this case the damping inside the Earth is slow, with a scale length of 5 km.
Blue colors represent low amplitude, whereas red represents amplitude near
unity.

the three forms, for in this case the attenuation length is 5 km. The exact
features of the curves are too complicated to explain, suffice to say that the
results seem to depend too much on the exact form of the refractive index.
In Fig. 3.15 the attenuation length is 500 m, and the three different curves
are hard to distinguish. In Fig. 3.16 the attenuation length is 50 m, and the
three curves are identical and show a distinct refraction pattern. Clearly the
intermediate value of 500 m combined with the exponential profile Eq. (3.40)
gives the most satisfactory result (if one wishes to eliminate the effects of the
Earth’s surface), and this combination will be used throughout the remainder
of this report. It is interesting to note that the amplitude profile in Fig. 3.15
is very similar in shape to curve A in Fig. 5 in [7]. The curve in [7] continues
down to observation points 50 km below that in Fig. 3.15, but this is merely
an effect of where the observation plane is positioned.
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Figure 3.14: The wave amplitude as it has passed through the Earth’s atmo-
sphere. The attenuation length is 5 km. The blue curve is the result from
using Eq. (3.38) for the refractive index inside the Earth. The red curve is
the result from Eq. (3.39), and the black curve from Eq. (3.40).
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Figure 3.15: Same as in Fig. 3.14 but with an attenuation length of 500 m.
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Figure 3.16: Same as in Fig. 3.14 but with an attenuation length of 50 m.
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Chapter 4

Results on the last phase screen

4.1 Introduction

Under the assumption that each infinitesimal segment of the received signal
on the last phase screen can be linked to one ray it is surprisingly easy to in-
vert the signal and find the bending angle vs. impact height curve using only
the received signal phase and geometry. This method is of course completely
useless for multipath scenarios, as we will see in section 4.3.3. But logically,
in order to evaluate the MPS technique alone we should take some time and
analyze the difference between geometrical optics (GO) and simulations on
the last phase screen for the case of analytical refractivity profiles. The ben-
efit of using analytical profiles is that no effects of interpolation will appear
in the MPS proceedure. We will look at exponential profiles with different
gradients, and exponential profiles with a small region of sharper gradient.
We will see how the difference between GO and simulations depend on the
wavelength, refractivity gradient, number of phase screens, Earth attenua-
tion, and the difference incurred by the truncation error in the numerical
evaluation of the Abel integral. Overall the results show that the agreement
between GO and simulations is very good.

4.2 Geometrical unwrapping of the phase on

the last phase screen

The wavefront strikes the last screen (subscript F) with an angle θF with
respect to the surface normal. To find this angle we first need to find the
relative phase, ψ, of the field on the screen as a function of screen height y,
see Fig. 4.1. Every time the real phase goes above π or below −π, the repre-
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sentation of the phase in Matlab jumps to −π or π respectively. Therefore,
to unravel the relative phase one needs to go through the vector describing
the phase in Matlab, and every time the phase performs such a jump, add
or subtract 2π. In Matlab one simply uses the function unwrap() to per-
form this proceedure. The result of unwrapping a wavefront that has passed
through the Earth’s atmosphere, and a reference wave that has suffered no
refraction is shown in Fig. 4.2.

Tracking the phase along the screen results in a curve of the phase ψ as
a function of position y, as seen in Fig. 4.2. We can take the derivative of
this and find the perceived wavelength on the screen

∂ψ

∂y
=

2π

λ′
(4.1)

The perceived wavelength is related to the real wavelength λ0 through

λ′ sin θF = λ0 (4.2)

So we get

θF = arcsin

[

λ0
2π

(
∂ψ

∂y
)

]

(4.3)

The angle θF calculated this way can be seen in Fig. 4.3.
If one assumes spherical symmetry Bouger’s rule will apply [11, 12] (see

section 9), and we have the relation

rn sinφ = a (4.4)

Therefore every point on the screen corresponds to a certain distance from
the Earth’s center rF , and an angle, φF , between the ray and the line from
the center of the Earth, which when determined will give us the parameters
of the GNSS satellite through

r0 sin φ0 = a (4.5)

The complete geometry of the problem is seen in Fig. 4.4. We can thus
find α through the relations
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Figure 4.1: An example of the appearance of the phase of the wave as it
strikes the final screen.

α = βF + β0 + φ0 + φF − π (4.6)

sin βF =
Lz

2rF
(4.7)

cos(φF − θF ) =
Lz

2rF
(4.8)

cos β0 =
y0 +D

r0
(4.9)

rF =
√

(y +D)2 + (Lz/2)2 (4.10)

r0 =
√

(z0 + Lz/2)2 + (y0 +D)2 (4.11)

D = RE +H − Ly (4.12)

sinφ0 =
rF
r0

sinφF (4.13)

where y is the coordinate along the vertical direction of the last screen. And
we find the corresponding a to the α at a given y through

rF sin φF = a (4.14)
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Figure 4.2: The relative phase found by unraveling the phase in Matlab. The
blue curve represents the wave that has been refracted by the Earths atmo-
sphere (the exponential profile given in Eq. (4.15)),whereas the red curve is
an unrefracted signal. Only the range within which the signal amplitude is
higher than 0.01 has been included, which explains the difference in y-range
for the two signals. The difference in absolute value for the two signals comes
from the fact that it is hard to find the absolute phase of the wavefronts, and
no attempt has been made to do so in this case.

4.3 Differences between geometrical optics and

simulations on the last phase screen

Geometrical optics is generally thought to provide a very good approximation
for radio occultation wave fields. However, there should be minute differences
due to diffraction and the finite size of the Fresnel zone. We will quantify
these differences and try to identify the mechanisms behind them. We will
start the investigation by looking at the results for an exponential profile
(having a constant refractivity gradient determined by the atmospheric scale
height), and its dependence on the refractivity gradient, the number of phase
screens, the vertical resolution of the refractivity data, and the field wave-
length. The great benefit of an exponential profile is that it will result in no
multipath. We will then look at the results for an exponential profile with a
small region having a sharper gradient (not superrefractive). Finally we will
look at the results for an exponential profile having a small superrefractive
region.
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Figure 4.3: The angle with which the wavefront strikes the last screen, found
from the derivative of the relative phase. Blue line represents the wave that
has been refracted in the Earth’s atmosphere, whereas the red curve is an
unrefracted wave. The dashed black line is only there to accentuate that the
red line has an angle zero precisely at y = 150 km, which coincides with the
vertical position of the GNSS satellite (y0 = 150 km).

Figure 4.4: The complete geometry needed to find the bending angle α from
the parameters used in the simulations.
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Figure 4.5: Bending angle, α, as a function of impact height, a, on the last
phase screen for the exponential profile (4.15). On this scale it is impossible
to see any difference between the simulated results and the results from
geometrical optics (the Abel transform).

4.3.1 Exponential refractivity profile

In Fig. 4.5 the results for the profile

N(h) = N0 exp(−h/Hscale) (4.15)

where N0 = 350, and the scale heightHscale = 7 km, can be seen. On the scale
used in Fig. 4.5 it is impossible to detect any difference between geometrical
optics and the simulated results. To see how they differ we take the difference
between the bending angle from simulations, α, and the bending angle from
geometrical optics, αAbel. This difference is shown in Fig. 4.6.

It can be seen in Fig. 4.6 that there is a difference between the results
from simulations and GO which is not removed completely by increasing the
number of screens. The exact number of screens to use is a complicated issue.
There is a lower limit which is set due to the non-aliasing criterion in Sec.
3.6.3. But above this, the only thing that will happen when the number of
screens is increased is that the truncation error in every step will be decreased.
This can be seen more clearly in Fig. 4.7 where the diffraction pattern
becomes more defined as the number of screens is increased. Furthermore,
the average value for the difference only changes when going from 100 to
1000 screens, which indicates that no more than 1000 screens are necessary
to get the correct average value for α. That this is true for profiles involving
regions of sharper gradients will be shown in section 4.3.2.
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Figure 4.6: The difference between the simulated bending angle and the
bending angle from geometrical optics, as a function of impact height on the
last phase screen for the exponential profile (4.15). Three different number
of screens have been used, 100 screens for the blue curve, 1000 for the black,
and 10000 for the red. Clearly, for low a there is a difference between the
different curves. This is due to diffraction.
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Figure 4.7: Same as in Fig. 4.6 but zoomed in on the lower section to show
the diffraction patterns and the average values. Clearly, as the number of
screens is increased, the diffraction pattern becomes more pronounced.

To prove that the pattern for low a is due to diffraction we simply need
to change the wavelength, for the diffraction effects appear in the shadow
zone and the region preceding it. Geometrical optics predict a completely
opaque shadow, and although simulations give a field in the shadow zone, no
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Figure 4.8: The diffraction pattern for the frequency corresponding to L1
(1.57542 GHz), black curve, 10 % of the L1 frequency (blue curve), and 5 %
of the L1 frequency (red curve).

comparison can be made with GO there. However, just above the shadow
zone there is a region which is also affected by diffraction, and as the wave-
length goes to zero the difference between GO and simulations should go to
zero in this region. All simulations so far have been performed using the L1
frequency (1.57542 GHz). In Fig. 4.8 we can see the results for L1, L1/10,
and L1/20. The results clearly indicate that diffraction becomes stronger
with increasing wavelength. And the diffraction pattern seems to have an al-
most linear dependence on the wavelength. For as the wavelength is doubled
between L1/10 and L1/20, the period of the pattern appears to double.

The diffraction pattern should also show some dependence on the impedance
of the Earth’s surface. To investigate this we compare the patterns created
for three different values of the damping length in Eq. 3.36. In Fig. 4.9
the diffraction region is shown for the damping length being 5000 m (black
curve), 500 m (blue curve), and 50 m (red curve). Clearly the diffraction pat-
tern becomes more strong for low values of the damping length, and hardly
any difference can be discerned between 500 and 5000 m. Most likely this is
caused by the complete absorption into the Earth of the part of the wavefront
that interacts with the Earth’s surface.

Looking further up along the curves (fig. 4.10), where the diffraction
pattern has disappeared, a small scale ripple pattern can be seen. This is
caused by the truncation error in the numerical integration used for the Abel
transform. That this is true is shown in fig. 4.10 where three different step
lengths for the height vector is used: 10 m for the black curve, 20 for the red,
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Figure 4.9: The diffraction pattern for three different values of the damping
length, black curve is 5000 m, blue curve is 500, and red curve is 50.
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Figure 4.10: The fine scale ripple pattern caused by the truncation error in
the numerical Abel transform. The step lengths used in the height vector
are 10 m for the black curve, 20 for the red, and 40 for the blue.

and 40 for the blue curve. If the integral could be performed analytically
this pattern would disappear. But it can be reduced to any desired level by
decreasing the step length.

What remains to be investigated in order to have complete confidence in
the simulator for exponential profiles is how the comparison between sim-
ulations and GO depends on the refractivity gradient. For this reason we
will compare the results for the exponential profile with the scale height set
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Figure 4.11: The difference between the simulated bending angle and the
bending angle from GO, as a function of impact height on the last phase
screen for the exponential profile with scale height 6 km. Three different
number of screens have been used, 100 screens for the blue curve, 1000 for
the black, and 10000 for the red. This figure shows the same thing as Fig. 4.7,
namely that the average value for the difference does not change significantly
by increasing the number of screens above 1000, whereas the diffraction pat-
tern becomes ever more detailed by increasing the number of screens.

to 6, 7 and 8 km respectively. We know from the investigation above that
increasing the number of screens above 1000 does not change the average
value for the difference between simulations and GO in the case when the
scale height is 7 km. In Fig. 4.11 we can see that this is also true for a scale
height of 6 km. We can therefore infer that this is true for all exponential
profiles having a less step gradient than the one in Fig. 4.11.

After such preliminary contemplations we can compare the results for the
three different scale heights (4.15). This can be seen in Fig. 4.12, where 1000
screens have been used in order to not have to much overlapping diffractive
undulations. Clearly the average value for the difference tends to increase
with increasing refractivity gradient. This is not at all strange, as any differ-
ence between GO and simulations comes from the finite length of the field
wavelength in comparison to the length scale for the refractivity gradient
both in the atmosphere and in the Earth.

In all the figures above we have used the difference between the bending
angles on the x-axis. It is quite hard to judge how large this difference re-
ally is in comparison with the bending angle itself. For this reason we shall
now quantify the difference for the profile having a 6 km scale height. The
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Figure 4.12: A comparison of the difference between simulations and GO for
three different scale heights: 6 (blue curve), 7 (black) and 8 km (red). The
number of screens used is 1000, and it is clear that the difference between
simulations and GO increases with increasing refractivity gradient.

maximum bending angle is found at the lowest impact height, and has a
value around 0.03545 radians. At the lowest impact height, the difference
in bending angle for 10000 screens oscillate wildly around an average of ap-
proximately −0.5 × 10−4 radians, with a maximal negative value of around
−2.394×10−4. The maximum deviation between simulations and GO is thus

∆αmax ≈
2.394× 10−4

3.5× 10−2
= 0.00684 ≈ 0.7 % (4.16)

which is quite low.

4.3.2 Sharp gradient profile

A usual situation for the refractivity profiles is that there exist a small re-
gion where the gradient is sharper than otherwise (but not superrefractive).
Although such regions will perturb the signal amplitude and the resulting
bending angle vs. impact height curves significantly they do not appear to
give rise to multipath, and can therefore be unraveled directly on the last
screen using GO. The refractivity profile can be modeled analytically by

N(h) = N0 exp(−h/Hscale) +
∆Nl

1 + exp((h− hl)/Hl)
(4.17)

where Hl and ∆Nl determine the range and depth of the layer, and hl the
height where the layer is situated, whereas N0 and Hscale is just the nor-
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Figure 4.13: The refractivity profile given by Eq. (4.17) (red curve) with
N0 = 350, Hscale = 7 km, ∆Nl = 30, Hl = 100 m, and hl = 5 km. The blue
curve is simply the exponential background profile.

mal exponential atmosphere. This type of profile can be seen in Fig. 4.13
alongside a normal exponential profile.

The steepest gradient in this type of profile is found in the middle of the
layer, i.e. h = hl, and has the value

∂N

∂h
|h=hl

= − N0

Hscale
exp(− hl

Hscale
)− ∆Nl

Hl
(4.18)

For the profile in Fig. 4.13 the maximal negative gradient is −324 km−1.
This should be compared with the criterion for super-refractivity which is

∂N

∂h
< −157 km−1 (4.19)

In this section we will look at a profile which is not superrefractive, and
in section 4.3.3 we shall see what happens if the profile is superrefractive. It
is easy to decrease the maximum gradient. By simply changing hl to 500 m
we obtain a profile with a maximum gradient of around −84 km−1. We shall
investigate this profile for the remainder of this section. First of all it is quite
interesting to note how the amplitude (see Fig. 4.14) is modified by adding
this region of extra gradient. There is a U-shaped segment in the amplitude
profile. Apparently the part of the wavefront that will have tangent height
inside the sharp gradient region will be decreased, and more rays will have
tangent heights in the region just below it, leading to a peak to the left of
the U-shaped region.
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Figure 4.14: The amplitude of the signal as it strikes the last phase screen.
Compare with e.g. Fig. 5.11 and note the somewhat depleted region. This
is indicative of a region of sharper gradient.

The appearance of the bending angle vs. impact height curve can be seen
in Fig. 4.15, where it is easily seen that adding the region of sharper gradient
leads to the formation of a hump in the curve. From this figure it is quite
hard to see if there is any difference between the simulated curve and the one
calculated from GO using the Abel transform.

In Fig. 4.16 we can see a detailed plot of the difference between the
bending angle from simulations and GO for 100, 1000 and 10000 screens.
Clearly, 100 screens is not sufficient. But increasing the number of screens
beyond 1000 seem to alter the average difference very little. The maximum
difference in the region influenced by the sharp gradient is around −1.0 ×
10−5. Whereas the bending angle in that region is around 1.7 × 10−2. This
amounts to a deviation between the simulated and GO results of about 0.06
%, implying that the MPS method and GO agrees very well even for slightly
more complicated profiles than a simple exponential.

4.3.3 Superrefractive profile

If we use the same profile as in the previous section, but set Hl = 100 m we
get a maximum negative gradient of −324 km−1. This is roughly twice as
steep as the superrefractive limit at −157 km−1 and we should expect serious
multipath to appear. The amplitude of the signal on the last screen can be
seen in Fig. 4.17, and it is clear that the presence of the superrefractive layer
has wreaked havoc on all parts of the signal with tangent altitude below hl.
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Figure 4.15: The bending angle vs. impact height curves for the sharp gradi-
ent profile. Red curve is from GO, whereas black curve is from simulations.
The difference between the curves is minimal, except that the curve from
simulations extends to lower impact heights; into the shadow region. The
effect of adding the region of sharper gradient is obvious in that it adds a
hump to the otherwise smooth curve around 6 km.

In Fig. an attempt has been made to unravel and invert the signal on
the last phase screen using the GO method. It is quite unsuccessful, but it
is interesting to note in which way the method fails. In the region of the
superrefractive layer and below it the signal is entirely composed of slanted
streaks. This is what happens when one tries to invert a multipath region
using GO.
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Figure 4.16: The difference between simulations and GO for 100 (blue curve),
1000 (black curve) and 10000 screens (red curve). For low impact heights
we see the same features that we have already investigated in the previous
section. Around the region of the sharp gradient we see that simulations and
GO differ. For 100 screens the difference looks crazy, and clearly the number
of screens is to few. For 1000 and 10000 screens the average difference appears
to be the same.
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Figure 4.17: The signal amplitude on the last phase screen for N0 = 350,
Hscale = 7 km, ∆Nl = 30, hl = 5 km, and Hl = 100 m. The U-shaped region
caused by the superrefractive layer is now seriously depleted, and the region
to the left is heavily deformed. This is probably due both to multipath and
diffraction.
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Figure 4.18: A comparison of the calculated bending angle using GO (red
curve), and the inverted (using simple GO) simulated signal (black curve), for
the exponential profile containing a superrefractive layer. Note the slanted
streaking characteristics of the black curve. When using this inversion
method they are indicative of multipath. Also note the singularity in the
red curve. This is a clear indication of super-refractivity when calculating
the bending angle using the Abel transform.
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Chapter 5

Propagating to LEO

5.1 Introduction

The propagation of the GNSS signal through the atmosphere is handled with
the MPS technique, and from the analysis in the previous sections we know
that it works very well. To complete the forward modelling of the RO signal
propagation we need to include the step from the last phase screen to the
LEO satellite. There are several ways of doing this. The standard way is to
use a diffractive integral, which is what we will do, where an integral over
the last phase screen is performed for each position in the LEO occultation
path. The basic method can be sped up using some more or less sophisticated
methods [13, 14]. Alternatively one could simply use the the MPS method
with a very large ∆z to find the field in each point of the orbit [4]. If the
diffractive integral would have to be taken over the entire last phase screen
this method would probably be faster, but we shall see that only a fraction
of the phase screen around the stationary point needs to be included, which
speeds up the process significantly.

5.2 The diffraction integral

In standard textbooks [15, 16] one can find the solution for the Helmholtz
equation which describes the radiation received at any point from an open-
ing in an otherwise opaque wall or enclosure, where the field, or the spatial
derivate of the field is known inside the opening. This formula is a type of
diffraction integral, and in RO publications typically designated with a pre-
fix or combination of prefixes like Kirchoff, Fresnel, or Huygens. It can be
directly applied to the problem of propagating the field from the last phase
screen to a receiving satellite in LEO if one is working in three dimensions.
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So far in our work we have constrained ourselves to two dimensions, and the
solution becomes quite different. The solution in this case is not presented
in any standard textbooks (at least to the knowledge of this author). A
partial derivation of the 2-D diffraction integral can be found in a report by
Gorbunov et al. [17], and all simulations using this type of Earth to LEO
propagation has used this integral without displaying any relevant deriva-
tions. The solution is not overly complicated (although somewhat tedious)
wherefore we will give all the details below. The basic technique is to use
Green’s theorem, assume a certain form for one of the unknown function,
assume some specific boundary conditions in a suitable geometry, and find
the field at one point by integrating over a finite volume. The presentation
below will follow this pattern.

5.2.1 Green’s theorem

Green’s theorem states that

∫

V

(u∇2v − v∇2u)dV =

∮

S

(u∇v − v∇u) · dS̄ (5.1)

where u and v are continuous functions having continuous derivatives within
the volume V (with volume element dV ) which is enclosed by the surface S
(with surface element dS̄). If both u and v satisfies the Helmholtz equation
within V we have

∇2u+ k2u = 0 (5.2)

∇2v + k2v = 0 (5.3)

meaning that Green’s theorem reduces to

∮

S

(u∇v − v∇u) · dS̄ = 0 (5.4)

To find the diffraction integral from this formula one uses the Green’s
function which satisfies

∇2G+ k2G = δ(r) (5.5)

where δ(r) is the Dirac delta function. By excluding the point where r → 0
the Green’s function is a solution of the Helmholtz equation, and actually, by
using the Green’s function one can find general solutions for the Helmholtz
equation having almost any boundary conditions. Now this formula is in-
tended for applications in three dimensions. We want a 2-D solution, and
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therefore we state that any derivative in the z-direction yields zero. In this
case the volume integral reduces to a surface integral in the xy-plane, and the
surface integral reduces to a line integral. The form of the Green’s theorem
we will use is then

∮

C

(u∇v − v∇u) · n̂dl =
∮

C

(u
∂v

∂n
− v

∂u

∂n
)dl = 0 (5.6)

where C is a curve with the surface normal n̂ and length element dl.

5.2.2 The 2-D Green’s function

The Green’s function for the Helmholtz equation satisfies

∇2G+ k2G = δ(r) (5.7)

When one knows the Green’s function one can construct solutions where the
source of the radiation can have complicated shapes, but finding the Green’s
function is always a bit tricky. In our case we can construct the Green’s
function by considering the general solution for the Helmholtz equation in
cylindrical coordinates, where the only dependence is on the radius r. This
is a standard solution which is given by

u(r) = AJ0(kr) +BY0(kr) (5.8)

where J0 is the zeroth order Bessel function of the first kind, and Y0 the zeroth
order Bessel function of the second kind. This solution describes waves that
travel both away and towards the source, and we wish to limit our solution
to waves going away from the source at r = 0. For this purpose we can use
the asymptotic solutions where r → ∞

J0(kr) =

√

2

πkr
cos
(

kr − π

4

)

=
1

2

√

2

πkr
(exp(i(kr − π/4)) + exp(−i(kr − π/4)))

(5.9)

Y0(kr) =

√

2

πkr
sin
(

kr − π

4

)

=
1

2i

√

2

πkr
(exp(i(kr − π/4))− exp(−i(kr − π/4)))

(5.10)

Inserting these solutions gives us

u(r) = exp(i(kr−π/4))
√

2

πkr

[

A

2
+
B

2i

]

+exp(−i(kr−π/4))
√

2

πkr

[

A

2
− B

2i

]

(5.11)
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Since we are using a time dependence on the form exp(−iωt) an outward
travelling solution requires that we eliminate terms on the form exp(−ikr),
consequently we require

A

2
− B

2i
= 0 ⇔ B = iA (5.12)

and the solution for u becomes

u(r) = A (J0(kr) + iY0(kr)) = AH0(kr) (5.13)

where H0 is the zeroth order Hankel function of the first kind. For r → 0
the Hankel function can be approximated by 2i ln(kr)/π, wherefore

u(kr → 0) ∼ 2iA

π
ln(kr) ∼ 2iA

π
ln r (5.14)

What we have found is actually the Green’s function multiplied by some
constant, which can be verified by performing the integral over a cylinder
with radius R with its central axis at r → 0

∫

V

(∇2u+ k2u)dV =

∫

V

∇2udV + k2
∫

V

udV =

∮

S

∇u · dS̄ + k2
∫

V

udV =

(5.15)

=

∫ 2π

0

du

dr
|r=RRdφ+ k2

∫ R

0

∫ 2π

0

u(r)rdφdr (5.16)

Using (5.14) the expression above becomes

∫ 2π

0

2iA

πR
Rdφ+ k2

∫ R

0

∫ 2π

0

2iA

π
ln(r)rdφdr (5.17)

The left term clearly becomes 4iA for any R, whereas the right term tends
to zero as R → 0. The volume integral therefore becomes

∫

V

(∇2u+ k2u)dV = 4iA (5.18)

whereas the Green’s function yields an integral

∫

V

(∇2G+ k2G)dV =

∫

V

δ(r)dV = 1 (5.19)

and hence the Green’s function is given by

G(r) =
u(r)

4iA
=

1

4i
H0(kr) = − i

4
H0(kr) (5.20)
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5.2.3 Constructing a solution

Historically there was much controversy over how to perform the integration
of Eq. (5.6) using correct boundary conditions. The approach used by Kir-
choff was to set v = ∂v/∂n = 0 on s3 in Fig. 5.1. However, according to
a theorem by Riemann, this would imply a v that is zero everywhere. The
problem was partially resolved by Sommerfeld [15] by the use of a clever po-
sitioning of the ”sources” so as to yield u = 0 on s2 and s3. This method has
the advantage of only requiring the knowledge of v, and not its derivative,
along s2 and s3 in order to find the resulting field at any other point. Due
to this positioning of the sources, the Sommerfeld method is limited to plane
surfaces. As to which method gives the most accurate result, that seems to
depend on the parameter region, and the controversy has not yet been re-
solved completely. Below we will use the Sommerfeld method, with the small
difference that we treat the 2-D problem, whereas Sommerfeld was interested
in the 3-D case. The general method is to assume a certain form for u in
order to find v at a specific point p1. The form of u should be some combina-
tion of Green’s functions that yields appropriate boundary conditions. The
integration area is shown in Fig. 5.1. At points p1 and p2 two sources de-
scribed by the 2-D Green’s functions having opposite signs are located. The
solid (s3) and dashed line (s2) that run along the opaque screen lies exactly
on the symmetry line between these sources, which means that u = 0 on s2
and s3. Expression (5.6) then splits into four integrals

I1 + I2 + I3 + I4 = 0 (5.21)

where

Ij =

∫

sj

[

u
∂v

∂n
− v

∂u

∂n

]

dl (5.22)

We can evaluate each contribution separately. The integration over s4 is
performed by assuming that s4 is semi-circle with a radius that approaches
infinity. The integral becomes

I4 =

∫ π

0

[

u
∂v

∂r
− v

∂u

∂r

]

rdφ (5.23)

The function u is taken to be a combination of the 2-D Green’s function,
which means that its minimum rate of decay with increasing distance is
given by

u ∼ exp(ikr)√
r

(5.24)
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Figure 5.1: The integration area used to find the correct diffraction integral.
The dashed line represents the aperture, or in our case the phase screen, and
the two black points represent two point sources radiating in a way described
by the 2-D Green’s function. The two black rectangles represent an opaque
screen, and the integration lines are represented by solid and dashed lines.

Inserting this in (5.23) yields

I4 ∼
∫ π

0

[

∂v

∂r
+

v

2r
− ikv

]√
r exp(ikr)dφ (5.25)

The condition for this integral to vanish is that

lim
r→∞

√
r

[

∂v

∂r
− ikv +

v

2r

]

= 0 (5.26)

which is true if v decays at least as fast as a cylindrical wave (∝ exp(ikr)/
√
r),

which it always will for a distribution of sources over a finite region. The
condition (5.26) is equivalent to the so called Sommerfeld radiation condition
[18] which applies to three dimensions and requires that v scales as a spherical
wave.

To evaluate I1 we need to choose the exact form of u. Let us use (it is
irrelevant which source is set to be negative, the final result will be the same
in both cases)
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u =
i

4
H0(k|r̄ − r̄1|)−

i

4
H0(k|r̄ − r̄2|) (5.27)

where r̄1 and r̄2 are the position vectors of points p1 and p2. Using H0(r →
0) ∼ 2i ln r/π, and using the direction of line element normals indicated by
the little arrows in Fig. 5.1, the integral becomes

I1 = −
∫ 2π

0

[

u
∂v

∂r
− v

∂u

∂r

]

Rdφ ∼ 1

2π

∫ 2π

0

[

lnR
∂v

∂r
|r=R − v(R)

R

]

Rdφ

(5.28)
Now as R → 0 the contribution from the left term goes to zero, since v is
not supposed to have a singularity at r̄1. The integral becomes

I1 = −v(r̄1) (5.29)

The third integral can be put to zero immediately since u = 0, and we
assume v = 0, on s3, so

I3 = 0 (5.30)

Since the function u has been chosen to yield zero on s2, the second
integral reduces to

I2 = −
∫

s2

v
∂u

∂n
dl (5.31)

In order to evaluate the integral it is necessary to find the form of ∂u/∂n
on s2. To do this we need to specify a particular coordinate system. Let
us say that p1 is located at (−x0, y0), and p2 at (x0, y0), and that the y-axis
runs along the line s2 where x = 0. The line normal then points in the same
direction as the x-axis. In this case

u(x, y) =
i

4
[H0 (kra)−H0 (krb)] (5.32)

Where ra =
√

(x+ x0)2 + (y − y0)2 is the distance from p1 to s2, and rb =
√

(x− x0)2 + (y − y0)2 is the distance from p2 to s2.

∂u

∂x
=
ik

4

[

∂ra
∂x

∂H0

∂ζa
− ∂rb
∂x

∂H0

∂ζb

]

(5.33)

where ζa = kra, and ζb = krb, which means that ∂H0/∂ζa = ∂H0/∂ζb. The
expression becomes
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∂u

∂x
=
ik

4

[

x+ x0
√

(x+ x0)2 + (y − y0)2
− x− x0
√

(x− x0)2 + (y − y0)2

]

∂H0

∂ζ
(5.34)

When x = 0 we have

∂u

∂x
=
ik

2

x0
√

x20 + (y − y0)2
∂H0

∂ζ
(5.35)

The second integral then becomes

I2 = −ik
2

∫

s2

v(y)
x0

√

x20 + (y − y0)2
∂H0

∂ζ
dy (5.36)

Collating the results for the four integrals (5.29), (5.25), (5.30), and (5.36)
with (5.21) we find

v(p1) = −ik
2

∫

s2

v(y)
x0

√

x20 + (y − y0)2
∂H0

∂ζ
dy (5.37)

The argument ζ of H0 is quite large, which means that we can use the
expansion

H0(ζ) = J0(ζ)+iY0(ζ) ≈
√

2

πζ
[cos(ζ − π/4) + i sin(ζ − π/4)] =

√

2

πζ
exp(i(ζ−π/4))
(5.38)

and

∂H0

∂ζ
≈
√

2

πζ
exp(i(ζ − π/4))

(

i− 1

2ζ

)

≈ i

√

2

πζ
exp(i(ζ − π/4)) (5.39)

And finally

v(p1) =

√

k

2π

∫

s4

v(y)
x0

√

x20 + (y − y0)2
exp(ik

√

x20 + (y − y0)2 − iπ/4)

(x20 + (y − y0)2)1/4
dy

(5.40)
The above form is most well suited for direct implementation in the sim-
ulation software, however, one often see it expressed in the following way
[8, 9, 12, 14, 17, 19–23].

v(p1) =

√

k

2π

∫

s4

v(y) cos ξ
exp(ik|r̄ − r̄1| − iπ/4)

|r̄ − r̄a|1/2
dy (5.41)
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where ξ is the angle between the vector r̄ − r̄1 and the line normal n̂, where
r̄1 is the vector pointing towards p1, and r̄ points towards a point on line s2.

5.3 Implementation in Matlab

5.3.1 Introduction

To implement (5.40) in our existing geometry we should swap x0 for zr, where
zr is the horizontal distance from the last phase screen to the receiving LEO
satellite. Next we replace y0 with yr, and note that dy → ∆y. We get

v(p1) =

√

k

2π

M−1
∑

j=1

v(y[j])
zr

√

z2r + (y[j]− yr)2
exp(ik

√

z2r + (y[j]− yr)2 − iπ/4)

(z2r + (y[j]− yr)2)1/4
∆y

(5.42)
This integral is readily implemented in Matlab. There is one caveat

though: a sort of aliasing will appear when the phase screen grid length
is too large. The reason for this is the change in the argument of the expo-
nent in (5.40) due to the change in distance to the screen while going from
one grid point to the adjacent one. The maximal change occurs when the
horizontal distance from the screen is minimal, and the vertical distance from
the point being ”scanned” is maximal. This occurs at the upper black dot
in Fig. 5.2. Before deriving the exact condition for this aliasing to appear,
we need to specify the geometry of the problem.

5.3.2 The orbit and the occultation path

The most simple way to treat the orbit of a satellite is to constrain its motion
to the same plane as that of the vertical axis (y) and the propagation direction
of the field (z), and to assume that it is moving in a perfect circle. The
assumption of a perfect circle is in no way mandatory, and one can equally
well just use a two vectors rr and Ω to define occultation path.

If there was in fact no refraction of the wavefront, the complete occulta-
tion would occur in the grey band of Fig. 5.2. Since there is some refraction,
it is necessary to record the amplitude received by the LEO satellite in a
wider band. In the coordinate system attached to the center of the Earth
the band goes between Y = RE + H − Ly and Y = RE + H . For the
unrefracted case the occultation would then occur between Ω’s given by

57



Figure 5.2: The simplest geometry for relating the orbit of the LEO satellite
to the simulation geometry. In the case when the LEO orbit is not circular,
minor modifications to the path inside the grey area will have to be done.

Ωupper = arcsin

(

RE +H

Rr

)

(5.43)

Ωlower = arcsin

(

RE +H − Ly

Rr

)

(5.44)

But we wish to extend the occultation band somewhat, so we take the interval
to be

Ωupper = arcsin

(

RE +H +∆+

Rr

)

(5.45)

Ωlower = arcsin

(

RE +H − Ly −∆−

Rr

)

(5.46)
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Of course, when simulating the wavefront in a real occultation the wavefront
will be artificially limited vertically to the height of the phase screens, and
there will be little point in using ∆+ 6= 0, as it would result in completely
unrealistic fields.

The most convenient coordinate system from the point of view of the
phase screens is attached to the lower left corner of the red calculation box.
And to calculate the diffraction integral we only need to know the position
of the satellite relative this system. The transformation to this system is
achieved through

y = Y − (RE +H − Ly) (5.47)

z = Z + Lz/2 (5.48)

and the coordinates of the start and end of the occultation are

zstart = Rr cosΩupper (5.49)

ystart = Rr sinΩupper (5.50)

zstop = Rr cosΩlower (5.51)

ystop = Rr sin Ωlower (5.52)

for a setting occultation. For a rising occultation the order is reversed.
All the coordinates of the satellite position within the occultation band is
then given by x = Rr cosΩ, and y = Rr sinΩ. It seems prudent to use a
fixed step ∆Ω to discretize the trajectory of the satellite.

5.3.3 Aliasing

As stated in the introduction, aliasing appears when the exponent in (5.40)
changes too rapidly. The point where it changes most rapidly is where the
horizontal distance between the LEO satellite and the screen is minimal, and
where the vertical distance to the calculation point is maximal. In Fig. 5.2
this occurs at the upper black dot. The distance from this point to the lower
right corner of the calculation box is

R =
√

(∆+ + Ly)2 + (Rr cosΩupper − Lz/2)2 (5.53)

The distance to the grid point just above it is

R′ =
√

(∆+ + Ly −∆y)2 + (Rr cosΩupper − Lz/2)2 (5.54)
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So the change in distance between these two points is (provided R ≫ ∆y)

∆R = R− R′ ≈ ∆y(∆+ + Ly)
√

(∆+ + Ly)2 + (Rr cosΩupper − Lz/2)2
(5.55)

Since this is the point of maximal difference in distance from the satellite
between neighboring grid points it gives rise to the maximal phase difference

∆φmax = 2π
∆R

λ
≈ 2π

λ

∆y(∆+ + Ly)
√

(∆+ + Ly)2 + (Rr cosΩupper − Lz/2)2
(5.56)

To avoid aliasing the signal needs to be sampled more than twice per cycle,
wherefore the requirement becomes

∆φmax < π ⇔ ∆y <
λ

2

√

(∆+ + Ly)2 + (Rr cosΩupper − Lz/2)2

(∆+ + Ly)
(5.57)

Let us take a particular example simply to demonstrate how the numerical
error appears, and how sensitive the calculation is to violation of requirement
(5.57). For the wavelength and screen sizes in our simulations, as the EM
field travels on past the last phase screen, it will basically form a beam
with roughly the same width as the screen, i.e. Ly. If we choose to project
the field at a screen parallel to the last phase screen we should therefore
almost replicate the amplitude profile on the last screen. Let us use a phase
screen with a height of 300 km, and project it on a screen with a height
of 600 km. We want symmetry, which means that ∆+ = ∆− = 150 km.
Furthermore, since the screen is parallel to the last phase screen we can just
set (Rr cos Ωupper−Lz/2) to some value independent of the other parameters.
We set it to 1000 km. Inserting these values into (5.57) gives us

∆y < 1.22λ m (5.58)

And for the L1 band we have f = 1.57542 GHz, and λ = 0.1904 m, which
gives us

∆y < 1.22λ ≈ 0.23 m (5.59)

In the four figures 5.3-5.6 below we will investigate how sensitive the
calculation method is to criteria (5.57).

The four figures 5.3-5.6 illustrate clearly that unwanted features appear
when we violate condition (5.57). One can also infer that values of ∆y

60



−100 0 100 200 300 400
0

1

2

3

4

5

y (km)

A
m

p
li
tu

d
e

Figure 5.3: The projected field amplitude in the case when ∆y = 3 m, which
is far too large according to (5.57), which stipulates that the maximal ∆y is
around 0.23 m for this particular set of parameters.
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Figure 5.4: The projected field amplitude in the case when ∆y = 0.6 m.
Clearly, the magnitude of ∆y is still too large.

that are only a fraction larger than the critical value will not give rise to
any obvious errors. There will however be differences in the exact shape of
the amplitude curve. It seems likely that the curve will continue to change
its shape when one changes the grid resolution, and the resolution of the
receiving plane (or the number measurement points in the LEO orbit during
the occultation). The proper value for ∆y will therefore depend on the
refractivity data used, and can therefore only be found through trial and
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Figure 5.5: The projected field amplitude for the two cases ∆y = 0.2 m (blue
curve) and ∆y = 0.3 m (red curve). At this scale there is no way to tell these
two curves apart.
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Figure 5.6: A zoom of the lower left corner of Fig. 5.5. Only in this re-
gion (and the similar right corner) and at this scale is it possible to see the
difference between the curves. It is however quite small.

error in actual realistic simulations.

5.3.4 Stationary phase method

For integrals of the type
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∫

f(y) exp(ikφ(y))dy (5.60)

the major contribution will come from the region where φ′(y) = 0. In the case
when k → ∞ one can regard f as a constant, use a Taylor expansion for φ,
and expand the integration domain to infinity to get a good approximation
for the integral. This is called the stationary phase method. In our case
we have k ≈ 30 and this particular method will not give a very accurate
value for the integral. However, the main idea is still sound. Since the main
contribution to the integral comes from the region around φ′(y) = 0 we do
not have to integrate over the entire phase screen, but only in a limited region
around φ′(y) = 0.

In the case when the field on the last phase screen corresponds to a
cylindrical wave the diffraction integral becomes

v(p1) =

√

k

2π

∫ Ly

0

A
exp(ik

√

(z0 + Lz)2 + (y − y0)2)

((z0 + Lz)2 + (y − y0)2)1/4
× (5.61)

× zr − Lz
√

(zr − Lz)2 + (y − yr)2
exp(ik

√

(zr − Lz)2 + (y − yr)2 − iπ/4)

((zr − Lz)2 + (y − yr)2)1/4
dy

(5.62)

Here

φ =
√

(z0 + Lz)2 + (y − y0)2 +
√

(zr − Lz)2 + (y − yr)2 (5.63)

f(y) =A

√

k

2π

1

((z0 + Lz)2 + (y − y0)2)1/4
zr − Lz

((zr − Lz)2 + (y − yr)2)3/4
exp(−iπ/4)

(5.64)

In this case the point of stationary phase can be found from

∂

∂y

(

√

(z0 + Lz)2 + (y − y0)2 +
√

(zr − Lz)2 + (y − yr)2
)

= 0 (5.65)

with the solution

y =
yr(z0 + Lz) + y0(zr − Lz)

z0 + zr
(5.66)

Using this knowledge we can investigate how sensitive the integral is to the
integration range, and to the alignment of the integration domain with re-
spect to the stationary phase point. In Fig. 5.7 the real part of the integrand
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Figure 5.7: The real part of the integrand in Eq. (5.61). The stationary
phase point can be seen clearly. The imaginary part of the integrand will
display the same behavior.

in (5.61) is shown in the region around the stationary phase point yp given
by Eq. (5.66). In Figs. 5.8 and 5.9 one can see how the value of the integral
converges as the integration domain expands. As ∆yp becomes larger than
0.1Ly the deviations of the integral from the average value becomes less than
1 %. Lastly, in Fig. 5.10 the effect of having the center of the integration
region displaced from the location of the stationary phase is shown. Clearly,
as long as the stationary phase point is included in the interval, the result
is quite insensitive to the precise positioning of the center of the integration
region.

The deviation from the mean value of the integral decreases quite slowly
with increasing integration range. But this process can be sped up through
the use of a Gaussian weight function in the integrand.

In Figs. 5.11-5.14 we see comparisons between the final amplitude and
angle curves in orbit for the three methods: full integration; integration
around the stationary phase point; and integration around the stationary
phase point with a Gaussian weight. The amplitudes for the three methods
do not agree completely, and in the flat region where the wave has undergone
little refraction, the unweighted method produces oscillations around the
correct value. Although the curves corresponding to the full integration range
and the weighted method appear to be close they are not identical. They
differ slightly, and it seems to be impossible to find a weight function that
makes them agree completely. But in the end, the amplitude is not the most
important factor. It is the phase angle that is crucial, in that it determines
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Figure 5.8: The imaginary part (blue curve), real part(red curve), and mag-
nitude of the integral (5.61), and its dependence on the integration interval
around the stationary phase point. As the interval grows the integral con-
verges.
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Figure 5.9: A zoom of the magnitude of the integral (5.61) to show that it
converges monotonically with increasing integration interval.

the optical path length, and the excess phase. For the three methods in that
case it is clear that they produce very similar results. And in fact, when
applying the Gaussian weight, the curves agree almost completely. For these
particular figures a weight on the form

exp

(

−(y − yp)
2

D2

)

(5.67)
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Figure 5.10: The dependence of the magnitude of the integral (5.61) on an
offset of the center point of the integration interval from the stationary phase
point. The black curve represents a correctly centered interval, the red curve
represents an offset by 0.01∆yp/Ly, the blue curve 0.02, and the green curve
0.03.

has been used, where

D =
K

M

Ly

2
(5.68)

and

K = 0.2M (5.69)

The length of the integration interval is then 2KLy/M , and the interval is
symmetric around the stationary phase point yp. These particular values
were found by trial and error to produce the closest fit between the full
integration results and the Gaussian weight method.

5.3.5 Finding the stationary phase point and deter-
mining the geometrical ray path

In a simulation where we are using a real refractive index profile there is no
way to determine the stationary phase point for each position of the LEO
satellite without performing an analysis of the entire signal on the last phase
screen, either in order to find some rough formula for the phase as function
of y, or to actually locate the stationary phase point for each LEO position.
The other alternative is to use a generic atmospheric model to find a rough
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Figure 5.11: The amplitude in orbit for the three methods. Black curve
corresponds to integration over the full screen, red to integration over a small
interval around the stationary phase point, and blue to integration around
the stationary phase point with a Gaussian weight function.
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Figure 5.12: A zoom of the amplitude in orbit for the three methods in the
flat region corresponding to very low refraction.

value for the stationary phase point. In this case one needs to analyze the
geometry in Fig. 5.15. If R0 and Rr are fixed, then for each value of φ0

there is an associated α and φr (through R0 sinφ0 = Rr sin φr = α). Due to
the geometry there is one value of Ωr for each φr, which means that we can
in principle express Ωr as a function φr, or the other way around. The last
option is favorable since for each point in the orbit we can then find a value
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Figure 5.13: The phase angle in orbit for the three methods. Black curve
corresponds to integration over the full screen, red to integration over a small
interval around the stationary phase point, and blue to integration around
the stationary phase point with a Gaussian weight function.
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Figure 5.14: A zoom of the phase angle in orbit for an interval with high
refraction.

for φr, and connect this to a position on the last phase screen. This position
will in turn roughly correspond to the location of the stationary phase, due to
the very nature of light wave propagation as expressed in Fermat’s principle.

Given R0 and the position of the GNSS satellite (Y0, Z0) we can calculate
Ω0. From this we can then find Ωr through

Ωr = Ω0 + φr + φ0 − π − α (5.70)
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Figure 5.15: The geometry for connecting the geometrical ray parameters
with the occultation geometry. The fact that the Y -axis seems to bisect the
angle α is merely a coincidence in this particular case.

This can be inverted, and φr as a function of Ωr can be found. Once φr is
established, the stationary phase point (Yp, Zp) can be found through

Y 2
p +Z2

p = (Yr−Yp)2+(Zr−Zp)
2+R2

r −2
√

(Yr − Yp)2 + (Zr − Zp)2Rr cos φr

(5.71)
Since Zp is already known, the full solution is thus given by

Yp = −Λ−
√
Λ2 + Γ (5.72)

where

Λ =
Yr

Y 2
r − R2

r cos
2 φr

(

ZpZr −R2
r sin

2 φr

)

(5.73)

Γ =
1

Y 2
r − R2

r cos
2 φr

(

R2
r cos

2 φr

(

Z2
p −R2

r sin
2 φr

)

−
(

R2
r sin

2 φr − ZrZp

)2
)

(5.74)

This formula is quite complicated, but its veracity can be checked by inserting
Yr = Rr sinφr, and Zr = Rr cosφr, in which case it should reduce to Yp = Yr.
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Chapter 6

Unraveling the phase

6.1 Introduction

In orbit the GNSS signal is sampled at a specific rate, often 50 Hz, and
since the occultation only takes some 100 s this means that only around
5000 sample points will be available for interpretation. The interpretation
consists of determining the true relative phase of the signal during the entire
occultation, and if this is to be done directly, 5000 sample points are far
too few. Actually, to perform the unraveling of the phase directly, several
hundred thousands of sample points are necessary. The most obvious way
to find the phase as a continuous function over the occultation interval is
to make a sophisticated guess as to what it should be and then remove
this guess from the observed phase. This difference will then be (hopefully)
sampled sufficiently often for it to be unraveled directly. In order to execute
this scheme we therefore need to produce a good guess for the optical path
length of the signal at each point in the occultation region. This is most
easily done using a generic exponential refractivity profile, and employing
geometrical optics to calculate the optical path length of a whole set of rays.

6.2 Optical path length from geometrical op-

tics

The optical path length, τ , is given by the integral over the physical distance
times the refractivity at each point

τ =

∫ sr

0

nds (6.1)
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τ =

∫ rr

r0

n(r)ds (6.2)

Now we already know from section 9 that

rn(r) sinφ = a = rtnt (6.3)

At the launch of the ray from the GNSS satellite at r0 the ray moves towards
the Earth, and the angle between the ray and a radial vector drawn from the
center of the Earth is φ and smaller than π. In this case the increment in
the path is related to the increment in the radial distance as

ds = −dr/ cosφ = − nrdr√
n2r2 − a2

(6.4)

When the ray crosses the tangent point and starts moving away from the
Earth we have φ > π, which means that

cosφ < 0 ⇔ cosφ = − 1

nr

√
n2r2 − a2 (6.5)

and

ds = −dr/ cosφ =
nrdr√
n2r2 − a2

(6.6)

Combining we find

τ = −
∫ rt

r0

rn(r)2
√

n(r)2r2 − a2
dr +

∫ rr

rt

rn(r)2
√

n(r)2r2 − a2
dr (6.7)

We use x = rn(r), which means

dr =
dx

n

(

1− x

n

∂n

∂x

)

(6.8)

Inserting this yields

τ = −
∫ a

x0

x√
x2 − a2

(

1− x
∂ lnn

∂x

)

dx+

∫ xr

a

x√
x2 − a2

(

1− x
∂ lnn

∂x

)

dx

(6.9)
The first terms of the integrals can be integrated directly

τ =
√

x20 − a2 +
√

x2r − a2 +

∫ a

x0

x2√
x2 − a2

∂ lnn

∂x
dx−

∫ xr

a

x2√
x2 − a2

∂ lnn

∂x
dx

(6.10)
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Due to the fact that the refractive index goes to zero at x0 and xr we can
rewrite the integrals slightly

τ =
√

x20 − a2 +
√

x2r − a2 − 2

∫

∞

a

x2√
x2 − a2

∂ lnn

∂x
dx (6.11)

The remaining integral can be recast in the form

−2

∫

∞

a

x2√
x2 − a2

∂ lnn

∂x
dx = −2

∫

∞

a

x2 − a2√
x2 − a2

∂ lnn

∂x
dx−2

∫

∞

a

a2√
x2 − a2

∂ lnn

∂x
dx

(6.12)
And using the fact that

α = −2a

∫

∞

a

∂ lnn

∂x

dx√
x2 − a2

(6.13)

Eq. (6.12) becomes

−2

∫

∞

a

√
x2 − a2

∂ lnn

∂x
dx+ αa (6.14)

Finally by using x0 = r0, xr = rr, and the results above we can write the
optical path length as

τ =
√

r20 − a2 +
√

r2r − a2 + αa− 2

∫

∞

a

√
x2 − a2

∂ lnn

∂x
dx (6.15)

The first two terms are given directly from the geometry of the system. The
aα term can be found using the methods of section 9. The integral term
contains no singularities and can be evaluated using standard methods, such
as trapz() in Matlab. This also means that any interpolation can be used
for the refractive index in the integral. This however is of little consequence,
as the optical path length is only an aid in finding the true phase function,
and the choice of interpolation will have no effect on the final results of the
unraveling method.

6.2.1 Reducing the phase

Once the optical path has been calculated, the recorded phase in orbit can
be reduced by

v′ = v exp(−ik0τ) (6.16)
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Figure 6.1: Three different generic profiles corresponding to N0 = 330, and
Hscale = 7 km (black curve), 5 km (blue curve), and 3 km (magenta curve)
respectively. The red circles represents a real profile (case 05) that belongs
to class 4. 5000 sample points have been used for the entire occultation path.

After this proceedure the phase can be unraveled using a far lower number of
sample points than would be required to unravel the original phase. When
the correspondence between the true refractivity profile and the generic ex-
ponential profile is poor, many sample points are needed to unravel the phase
difference. Therefore, too few sample points, and a poorly matched expo-
nential profile will give rise to the same error in the unraveled phase. In fact,
the error generated by this proceedure has a very distinct appearance, which
is fortunate as it is easy to spot and fix. For this reason this error will be
investigated below. The generic profile is on the form

N(h) = N0 exp(−h/Hscale) (6.17)

where N0 = 300 − 400, and Hscale = 6 − 8 km, and the refractive index is
given by n = 1+10−6N . In Fig. 6.1 three different generic profiles are shown
along with a real class 4 profile.

In Fig. 6.2 one can see the resulting unraveled phase difference using the
three generic profiles. The error we are looking for appears in the magenta
curve representing the profile with Hscale = 3 km. Close to the middle of this
curve there is a very distinct zigzag pattern. The phenomena is reminiscent
of the type of aliasing one will find when using a video camera to film a
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Figure 6.2: The unraveled phase difference using the three generic refractivity
profiles from Fig. 6.1, and the case 05 occultation phase. One should note
that the black and blue curves are quite smooth, whereas the magenta curve
has a very distinct zigzag pattern. This is indicative of a poor match between
the generic and true refractivity profile. The straight line tangent altitude
(SLTA) on the y-axis is very commonly used, and explained in section B.

spinning wheel, and the wheel appears to go backwards, and sometime reverse
its direction of rotation, even though this does not correspond to anything
physical. These kinks and slopes disappear when the number of sample points
is high enough for the phase difference to be completely unraveled. Therefore
there are two ways of removing the error, either the number of sample points
is increased (often a very impractical option when trying to simulate the
performance of a real satellite on orbit), or the generic refractivity profile
must be made to match the true profile better. In the case above 5000
sample points is used, and judging from the results for Hscale = 5 km, it
appears that this number allows for quite poorly matched generic profiles.
In fact, extensive testing with poorly matched profiles have shown that the
method is not particularly sensitive.
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Chapter 7

Inversion through phase
matching

7.1 Introduction

Where it not for multipath, the phase of the signal received in orbit could in
principle be directly inverted to yield the impact height vs. bending angle
curve using geometrical optics. However, for most atmospheric conditions
there will be multipath, and inversion cannot be performed using such crude
methods. More sophisticated methods are available, that take into account
both the phase and amplitude of the signal. For this reason the different
methods are sometimes called radio-holographic. There is no consensus as to
which is the best method, as there are several factors to take into account, e.g.
speed vs. accuracy. There are basically three methods in use for inversion
of RO measurements, these are the canonical transform (CT) [24], the full
spectrum inversion (FSI) [25], and phase matching (PM) [26]. As for the
benefits of the different methods it is hard to say. For it would require input
from somebody that is well versed in all methods. But some things can be
stated without detailed knowledge. The CT appears to be quite complicated
mathematically, or at least the available publications are somewhat hard to
understand. FSI is generally thought to be the fastest method, as it employs
the Fourier transform, but it has the disadvantage of only working properly
for circular orbits. PM is very similar to FSI, but it has the advantage of
being easier to interpret from a physical point of view, and it works for
arbitrary orbits. It has the disadvantage of being slower than FSI. We will
be using PM in this report.
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7.2 Phase matching

The signal that is received in orbit can be represented on the form

u(Ω) = A(Ω) exp(ik0τc(Ω)) (7.1)

where τc is the composite optical path of the real signal, which for single ray
regions is simply the optical path length of one ray (Eq. (6.15)).

τ =
√

R2
0 − a2 +

√

R2
r − a2 + αa− 2

∫

∞

a

√
x2 − a2

d lnn

dx
dx (7.2)

whereas in the multipath region it is the superposition of several such rays.
The phase matching method takes a test ray, τt, subtracts it from Eq. (7.1),
and integrates over the occultation interval

U(Ω) =

∫ Ωmax

Ωmin

A(Ω) exp(ik0(τc − τt)) (7.3)

The test ray is on the form

τt =
√

R2
0 − a2t +

√

R2
r − a2t + αtat (7.4)

and α is given by

α = θ(Ω) + φr(a) + φ0(a)− π (7.5)

θ(Ω) is the angle of separation between the transmitter and receiver for a
given Ω, and φ0,r = arcsin(a/R0,r).

Since k0τc varies so rapidly, and its variation has nothing to do with the
equally rapid variation of τt, the major contribution to the integral (7.3) will
come from the region where τc ≈ τt, and the actual value of the integral will
be on the form

U(Ω) = C(Ω, at) exp(ik0(τc(Ω)− τt(Ω, at))) (7.6)

The constant C(Ω, at) has no relevance for our purposes and can be ignored.
The phase Ψ(Ω, at) = τc − τt is the relevant bit, and it is easily extracted in
Matlab. We know from geometrical optics that in single ray regions it will
be

Ψ(Ω, at) ≈ −2k0

∫

∞

at

√

x2 − a2t
d lnn

dx
dx (7.7)
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If we take the derivative with respect to at, we get according to the Leibniz
integral rule

∂Ψ(Ω, at)

∂at
≈ −2k0

(
∫

∞

at

∂

∂at

[

√

x2 − a2t
d lnn

dx

]

−
√

x2 − a2t
d lnn

dx
|x=at

)

(7.8)
Or

∂Ψ(Ω, at)

∂at
≈ 2k0

∫

∞

at

at
√

x2 − a2t

d lnn

dx
dx = −k0α(at) (7.9)

So, in single ray regions we can find the bending angle through

α(at) = − 1

k0

∂Ψ

∂at
(7.10)

The remarkable thing is that the method appears to work in multipath re-
gions as well. To the knowledge of the author nobody has documented the
exact reason for this, but a possible explanation is given in section 7.4.

7.3 Implementation in Matlab

There is one problem that appears when the method is implemented in Mat-
lab; the integral does not give behave well if the occultation signal is not
sampled sufficiently often. In fact, if one tries to use the method directly on
a real signal with some 5000 sample points the output will be horrible. Con-
sequently the signal needs to be ”up-sampled” using some suitable method.
The most obvious way to do this is to use the unraveled signal that is found
using the methods of chapter 6. The reduced phase, which is the difference
between the phase of the signal and that of an exponential generic profile,
can be unraveled, and the true phase is found by adding the difference to the
exponential phase function. Since the true phase function is known one can
easily interpolate it to a much finer vector using interp1 in Matlab. That is,
we know τ(Ω), and we interpolate it on a Ωf (which has higher resolution
than Ω) to yield τf (Ωf ). The amplitude of the signal, A(Ω), varies quite
slowly, and can be interpolated to the finer vector directly to yield Af(Ωf ).
The up-sampled signal is then given by

uf(Ωf ) = Af(Ωf ) exp(ik0τf (Ωf )) (7.11)

The number of sample points needed can be investigated simply by ob-
serving how the integral U changes as the number of sample points M is
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Figure 7.1: An illustration of how the magnitude of the integral Eq. (7.3)
depends on the number of sample points, M , for a given test ray τt.

increased. The results can be seen in figs. 7.1 and 7.2. Clearly, some 90000
points should be sufficient.

7.4 Possible explanation for the functionality

of phase matching in multipath regions

We can formulate a tentative explanation based on Fermat’s principle. It
states that ”rays of light traverse the path of stationary optical length with
respect to variations of the path”. For multipath regions there are overlap-
ping signals so that the complex signal u is given by

u =

N
∑

i=1

ui =

N
∑

i=1

Ai exp(ik0τi) (7.12)

Now, according to Fermat’s principle we have

δτi = 0 (7.13)

that is, the path is optical path length is stationary for each ray. The varia-
tion δ is somewhat arbitrary and depends on the system under scrutiny. In
our case we know that the optical path for each ray is given, to a high degree
of accuracy, by
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Figure 7.2: Same as fig. 7.1 but zoomed in to reveal the convergence for high
M .

τi =
√

R2
0 − a2i +

√

R2
r − a2i + αiai − 2

∫

∞

ai

√

x2 − a2i
d lnn

dx
dx (7.14)

and the nonmonotonic function n causes several values of ai and αi(θ, ai) to
yield rays that converge at a specific point given by θ. The variation should
thus be performed with respect to a while keeping θ fixed. For a particular
point in the occultation we thus have

∂τi
∂a

|θ(Ω) = 0 (7.15)

where the index indicates that θ(Ω) is kept fixed. When we apply the trial
ray τt and perform the integral we get something like this

U(Ω, at) = C(Ω, at) exp(ik0(
N
∑

i=1

τi − τt)) (7.16)

Since the point where the exponential varies most slowly should be the point
where the trial ray matches one of the rays in the sum, let us say ray j. The
phase function then becomes

Ψ(Ω, at) ≈
j−1
∑

i=1

τi +

N
∑

i=j+1

τi − 2

∫

∞

aj

√

x2 − a2j
d lnn

dx
dx (7.17)
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now it appears obvious that when taking the derivative with respect to at,
the contribution from all rays except j disappears on account of Eq. (7.15),
and we are left with

∂Ψ

∂at
≈ −k0αj(aj) (7.18)
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Chapter 8

Results in LEO

8.1 Introduction

The final stage in the evaluation of the entire WOP package is to make
detailed comparisons between simulations with and without noise and GO
(using the Abel transform). In the case when we add noise, RUAG has
specified how large the total discrepancy (including all sources of noise and
error) can be for different heights, and how large filters may be

• 0.5 µrad or 0.2 % of the BA over the altitude range between 35 to 80
km, (whichever value is larger)

• from 0.2 % to 0.5 % of the BA linearly in height between 35 km and
10 km

• from 0.5 % to 5 % of the BA linearly in height between 10 km and the
surface

• Any filter that is used should be compatible with the Fresnel zone width

We will try our best to reduce the discrepancy between simulations and GO
to under these levels. In order to perform detailed comparisons between
simulations and GO we first need to make sure that the same interpolation
technique for the refractivity is used in both cases, namely the cubic spline.
Then we need to check what the resolution in the refractivity vector needs to
be, and how high it must reach, to result in highly accurate Abel transforms.
After these initial steps we will compare simulations with and without noise
with GO, as well as compare simulations with and without noise with each
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other. When performing statistical analysis on the discrepancies we will use
the 55 reference atmospheres defined by ECMWF [27]. These atmospheres
have been chosen to be representative for all type of climates, covering all
seasons, including the most problematic profiles with strong moisture related
feautures that lead to ducting and super-refraction.

8.2 A better Abel transform

8.2.1 The linear vs. cubic spline interpolation

The 55 reference cases [27] have a rather course sampling distance in height.
For this reason we chose to use a linear interpolation scheme for the numerical
Abel transform (see section 9). The WOP on the other hand has employed
a cubic spline in order to produce a smooth refractive index profile. This
leads to discrepancies between the bending angle curves found from the Abel
transform and the WOP and phase matching. This discrepancy will be larger
than the tolerances stipulated by RUAG, and it has to be remedied in some
way before the accuracy of the simulation package can be evaluated. The
easiest way is to stick with the original linear interpolation in the numerical
integration used in the Abel transform, but to up-sample the refractive in-
dex to a much finer height-vector before applying the Abel transform. The
up-sampling should be performed using the cubic spline. Figs. 8.1 to 8.3
demonstrate that the error caused by the interpolation scheme goes from
significant for low heights to quite large for medium heights, and back to sig-
nificant for high heights. Clearly it is necessary to use the same interpolation
scheme for simulations and the Abel transform. The remaining question is
how high the resolution in the refractivity vector needs to be for the Abel
transform to be sufficiently accurate. In Figs. 8.4 to 8.6 the relative differ-
ence between the Abel transform using 100 m and 10 m resolution in the
up-sampled refractivity is shown. Clearly it is necessary to have a very high
resolution to yield sufficiently accurate Abel transforms. In the end 5 m was
used for the comparisons in the following sections.

8.2.2 Extending the height of the refractivity

The 55 reference cases [27] generally spans the range 0-80 km above the
Earth’s surface. If one does not extend the refractivity vector to higher
heights the integration in the Abel transform will give inaccurate results.
At high impact heights the bending angle will be very small (∼ 10−7) and
the difference might be hard to see without detailed comparisons. However,
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Figure 8.1: The relative difference between the Abel transform using pure
linear interpolation and the Abel transform using the cubic spline to generate
a smoother refractivity profile on a fine height vector. The curves are for case
01, a class 1 profile. Clearly, within this height segment (0-10 km) the relative
difference is within the specified bounds, but not insignificant.
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Figure 8.2: Same as Fig. 8.1 but for the height segment 10-35 km. The
relative difference is no longer within the specified bounds.

in the WOP it is absolutely necessary to smoothly extend the refractivity
to the height of the phase screens, and when comparing between the Abel
transform and simulations the difference can become significant indeed. For
high heights the refractivity decays exponentially, meaning
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Figure 8.3: Same as Figs. 8.1 and 8.2 but showing the absolute difference for
the height segment 35-80 km. The absolute difference is outside the specified
bounds for low heights, but decreases with height.
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Figure 8.4: The relative difference between cubic spline with 100 and 10 m
interpolation length for case 15, a class 4 profile, in the height segment 0-10
km. Only in the most critical regions is the relative difference outside the
bounds. But this illustrates the need for high resolution interpolation.

N = NE exp(−h/HE) (8.1)

where the constants NE and HE are valid above the highest point in the
reference file height vector. If the index for the final data point is if we have
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Figure 8.5: Same as Fig. 8.4 but in the height segment 10-35 km. The
relative difference is significant.
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Figure 8.6: Same as Figs. 8.4 and 8.5 but showing the absolute difference in
the height segment 35-80 km. The absolute difference is now quite insignifi-
cant.

HE =
h(if − 1)− h(if )

ln(N(if )/N(if − 1))
(8.2)

NE = N(if ) exp(h(if )/HE) (8.3)

In Figs. 8.7 and 8.8 one can see how the bending angle for high heights
depends on the final height of the refractivity data. In 8.8 it can be seen
that it is not necessary to go beyond 200 km, as the difference between the
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Figure 8.7: The bending angle around 80 km for the maximum heights being
80 km (blue line), 100 km (black line), and 150 km (magenta line).
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Figure 8.8: The bending angle around 80 km for the maximum heights being
150 km (red line), 200 km (black line), and 250 km (magenta line). The
black and magenta lines can hardly be separated, and the difference between
the bending angles is very small.

bending angle for 200 and 250 km is no larger than 10−12 rad., which is far
below the 0.5µrad. RUAG limit.
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Figure 8.9: The bending angle from simulations (blue curve) and GO (red
curve) in the height segment a =0-10 km for case 15 (class 4). On this scale
it is very hard to see any difference.

8.3 Comparisons between simulations with-

out noise and GO

When one is pleased with the resolution and accuracy of the Abel transform
(GO) one can compare it with the results of the simulations without adding
noise. This will provide us with a quick check of the accuracy of the simula-
tion software. Case 15 (class 4) is one of the most problematic profiles, and it
contains all the representative features of an interesting profile. Therefore we
will display results for this case, and assume that it is a worst case. In Fig.
8.9 we can see a comparison between the simulations (blue curve) and the
Abel transform (red curve) in the absence of noise. On this scale it is very
hard to see any difference. If we zoom in on the super-refractive region (Fig.
8.10) we see that there indeed are differences. The peaks corresponding to
the superrefractive region are slightly misaligned, and the blue curve displays
some type of ripples.

It is more useful to look at the difference between the simulations and
GO, and see how it complies with the RUAG requirements. In Fig. 8.11 the
relative difference between simulations and GO is shown within the height
segment a = 0 − 10 km. The discrepancy is within the specified bounds
everywhere except at the superrefractive region. If one goes to higher impact
heights the relative error increases rapidly, and there is no hope of staying
within the bounds without applying some kind of filtering.

In Fig. 8.12 a simple Gaussian filter has been applied to the lower segment
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Figure 8.10: Same as Fig. 8.9 but zoomed in around the super-refractive
region. The curves are now seen to be slightly misaligned, and some slight
rippling in the simulated curve can be seen.
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Figure 8.11: The relative difference between simulations and GO between
a = 0 and 10 km for case 15. Clearly the super-refractive region gives rise to
a very large local discrepancy.

of the bending angle. The filter is given by

y(x) = A exp(−x2/(2σ2)) (8.4)

where σ is the standard deviation, x a vector that has a total length given
by the window size w, and A is a normalization constant. In Fig. 8.12 the
variance was set to σ = 15 m, and the window size to w = 150 m. The noise
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Figure 8.12: Same as Fig. 8.11 but after filtering with σ = 15 m, and w = 150
m. The numerical noise is successfully suppressed everywhere except in the
super-refractive region.
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Figure 8.13: Same as in Fig. 8.12 but in the height segment 10-35 km. The
numerical noise has been suppressed to a tolerable level using a filter with
σ = 60 m and w = 600 m.

has been reduced significantly, but the discrepancy in the superrefractive
region remains. In Fig. 8.13 the segment between 10 and 35 km is shown. A
Gaussian filter with σ = 60 m, and w = 600 m. The noise has been reduced
to a tolerable level. In Fig. 8.14 the segment between 35 and 80 is shown.
Using a Gaussian filter with σ = 150 m and w = 1500 m the numerical noise
has been reduced to insignificant levels.
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Figure 8.14: Same as in Figs. 8.12 and 8.13 but showing the absolute dif-
ference in the height segment 35-80 km. The numerical noise has been sup-
pressed to an insignificant level using σ = 150 m and w = 1500 m.

8.4 Comparisons between simulations with noise

and GO

8.4.1 White noise in RO

In real occultations the signal will be full of noise coming from the receiver
etc. It is therefore vital that the procedures we are using are robust enough
not to be seriously distorted by the noise. To evaluate the capacity of the
procedures we will add noise to the signal that is received in LEO, and observe
how it affects the end result, i.e. the α vs.a-curves. We will also apply
the Gaussian filter in a partially successful attempt to reduce the difference
between simulations and GO below the prescribed limits.

The noise we add is white, meaning that it is equally strong at each fre-
quency. The amount of noise power received by the equipment is therefore
proportional to the bandwidth of the receiver. The GRAS instrument sam-
ples at a rate of fs = 250 Hz, before downconverting the sample rate to 50
Hz. The most rapidly oscillating signal that can be detected has a frequency
of fs/2, which means that the bandwidth is

B =
fs
2

=
250

2
= 125 Hz (8.5)

For the GRAS instruments the noise level for occultations with high im-
pact height is 50 dB-Hz [1]. The signal to noise ratio is given by
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SNR(dB) =
P

PN
(dB) = 10 log

P (W )

PN(W )
= 10 log

P (W )

N(W/Hz)B(Hz)
(8.6)

where N is the noise power per Hz, and B the bandwidth in Hz. We can
develop the expression

P

PN

(dB) = 10 logP (W )− 10 logN(W/Hz)− 10 logB(Hz) (8.7)

It is the term −10 logN which is 50 dB-Hz. For a signal power of unity
(which we shall henceforth use in this section) the noise power then becomes

PN = N × B = 10−5 × B = 10−5 × 125 = 1.25× 10−3 (8.8)

and the noise amplitude

AN =
√
10−5 ×B =

√
1.25× 10−3 ≈ 0.0354 (8.9)

The amplitude of the noise is supposed to be interpreted as the standard
deviation for the amplitude of the complex noise vector at any time instant.
The distribution is normal (Gaussian) and the complex noise vector, AN ,
can be generated in Matlab using

AN = AN(randn(1) + i× randn(1)) (8.10)

This complex number is simply added to the original simulated signal that is
received in orbit, and all procedures after (unraveling, phase matching) are
performed as usual.

8.4.2 Results for case 15

In Fig. 8.15 we can see the signal amplitude in orbit after addition of the
noise. Using the unraveling technique of section 6 and the phase matching of
section 7 without alteration we get the resulting bending angle curve shown in
Fig. 8.16. Clearly the noise magnitude grows with decreasing impact height.
this is not strange, for as can be seen in Fig. 8.15 the signal amplitude goes
down for low SLTA (i.e. low impact heights), and the noise-to-power ratio
goes up.

In Fig. 8.17 a Gaussian filter having σ = 20 m and w = 200 m has
been applied. The noise has been successfully suppressed below the limits
everywhere except near the super-refractive region. In Fig. 8.18 the region
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Figure 8.15: The case 15 (class 4) amplitude profile with added noise (50
dB-Hz).

0 0.01 0.02 0.03 0.04 0.05 0.06
0

5

10

15

20

25

α (rad.)

a
−
R

E
(k

m
)

Figure 8.16: The case 15 (class 4) bending angle profile with added noise (50
dB-Hz) (blue curve), vs. the GO bending angle (red curve).

between 10 and 35 km can be seen. It has been filtered using σ = 150 m
and w = 1500 m, but the curve does not stay within the boundaries except
at low impact heights. Increasing σ and w tends to increase the difference
for low heights, and decrease it for higher heights. Finally in Fig. 8.18 the
upper segment between 35 and 80 km can be seen. A filter with σ = 600 m
and w = 6000 m has been used, and it appears to be no problem keeping the
rms difference within the bounds.
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Figure 8.17: The relative difference between simulations and GO for case 15
with added noise and filtered with a Gaussian filter (σ = 20 m, w = 200 m)
in the height segment 0-10 km. The relative difference keeps roughly within
the bounds everywhere except in the super-refractive regions.
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Figure 8.18: Same as Fig. 8.17 but with σ = 150 m and w = 1500 m, and
in the height segment 10-35 km. The relative difference does not stay within
the bounds.

8.5 Statistical investigation of the 55 refer-

ence cases

What we ultimately want to know is whether the methods described in this
report are accurate enough to comply with the RUAG standard. To do this

93



−1 −0.5 0 0.5 1

x 10
−6

35

40

45

50

55

60

65

70

75

80

∆α (rad.)

a
−
R

E
(k

m
)

Figure 8.19: Same as Figs. 8.17 and 8.18 but showing the absolute difference
using a filter with σ = 600 m and w = 6000 m, in the height segment 35-80
km. The absolute difference stays mainly inside the bounds.

we will have to perform a statistical analysis of the 55 reference cases [27]. It
is quite straightforward to find the rms of the difference in bending angle. The
resulting profiles from the phase matching procedure have slightly different
start-height, but the same end-height, and the same height spacing. This
means that none of the resulting a-vectors are the same. And the same goes
for the Abel transform results. The first step is therefore to interpolate the
simulated and calculated bending angles on a common a-vector that has the
same fine height spacing as the vector from the phase matching. After this
step is done one can easily calculate the square difference for each profile
and add them. To find the average square one has to keep track of at what
height each profile starts and stops, so as not to divide with too large a
number at the height in question. After the square sum has been divided
with the appropriate number at each height one simply takes the root of the
vector to find the rms. The results can be seen in Figs. 8.20-8.23.

In Fig. 8.20 we see the lower 10 km’s. Clearly we are within the bounds
everywhere except in those places corresponding to the super-refractive re-
gions.

In Figs. 8.21 and 8.22 we are in the middle segment between 10 and 35
km. Here the filtering method seems to be inadequate, and something more
sophisticated will have to be used. It is possible that a filter having a height
dependent variance will perform better, as is indicated by the comparison
of Figs. 8.21 and 8.22, where the rms relative difference takes on markedly
different values at different heights depending on the value for the variance,
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Figure 8.20: The rms of the relative difference between simulations and GO
for the 55 cases in the segment between 0 and 10 km. The simulated bend-
ing angle was filtered with σ = 25 m, and w = 250 m. The rms relative
difference is within the bound (red dashed line) everywhere except in the
super-refractive regions.
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Figure 8.21: Same as Fig. 8.20 but in the segment 10-35 km, and the simula-
tions have been filtered with σ = 200 m, and w = 2000 m. The rms relative
difference strays outside the bound for high impact heights.

and σ = 200 m performs better for low heights, whereas σ = 400 m performs
best at high heights.

In Fig. 8.23 the upper segment between 35 and 80 km can be seen. The
rms is well within the bounds everywhere except in the very lowest bit.
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Figure 8.22: Same as Fig. 8.21 but using σ = 400 m, and w = 4000 m. The
rms relative difference behaves better for high heights and worse for low as
compared to Fig. 8.21.
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Figure 8.23: The rms of the absolute difference between simulations and
GO for the 55 cases in the segment between 35 and 80 km. The simulated
bending angle was filtered with σ = 500 m, and w = 5000 m. The rms
absolute difference is within the bound (red dashed line) everywhere except
at the very lowest impact heights.

8.6 Comparison between simulations with and

without noise

One question that arises when looking at the difference between simulations
and GO, and comparing the results with and without noise is: how is the

96



super-refractive peak influenced by the addition of noise, and does the simu-
lations with and without noise give the same results? This is a rather simple
matter to investigate. In Fig. 8.24 we can see the bending angle without noise
(blue curve), and with noise (red curve). The curves agree very nicely if one
disregards the noise. However, if we zoom in around the super-refractive
region (Fig. 8.25) we see that the curves are in great contradiction at one
specific point. The curve with noise actually reaches negative bending angles,
which is unphysical and clearly marks an error. Taking the relative difference
between the curves ((α − αnoise)/α) we get the results shown in Fig. 8.26.
It is hard to see anything relevant in this figure, as it is riddled with noise.
If we filter both signals with σ = 25 m, and w = 250 m we get the results
in Fig. 8.27. The curves are now in nice agreement except in one specific
region around 2.7 km. It is the contribution from the erroneous point in
the αnoise-vector that has been smeared out, and the difference between the
simulations with and without noise appear more dramatic than it really is.
Finally in Fig. 8.28 we see both curves after filtering. The bending angle
with noise (red) reaches a slightly lower value in the super-refractive region
than the bending angle without noise.

The super-refractive region in case 15 with noise was only affected at
one single position in the height vector. This indicates that we may be
dealing with an unlikely coincidental correlation between sharp gradients in
the bending angle and an unusually high noise peak, leading to an error
in the phase matching routine. To test this hypothesis we need to look at
more super-refractive profiles. In Fig. 8.29 the bending angles for case 5 is
shown. Case 5 is also a class 4 profile and looks almost identical to case 15
in this height segment. However looking at Fig. 8.30 we see that there is
no indication of there being a super-refractive region. This provides strong
evidence for our hypothesis.
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Figure 8.24: Simulated bending angle for case 15 with noise (red curve) and
without (blue curve).
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Figure 8.25: Simulated bending angle for case 15 with noise (red curve) and
without (blue curve), zoomed in around the super-refractive region. The red
curve is obviously erroneous at one point where the bending angle reaches
negative values.
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Figure 8.26: The difference between the simulated bending angle for case 15
with and without noise. It is hard to discern anything interesting due to
the noise, and the curves obviously need to be filtered before we can inspect
them properly.
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Figure 8.27: Same as Fig. 8.26 but both signals have been filtered using
σ = 25 m, and w = 250 m. The relative difference is rather low everywhere
except around the point shown in Fig. 8.25.
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Figure 8.28: Same as Fig. 8.24 but with both signals filtered using σ = 25
m, and w = 250 m. The curves appear to be almost identical, but a small
displacement can be seen near the point of the error in the noisy curve.
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Figure 8.29: Simulated bending angle for case 5 with noise (red curve) and
without (blue curve). The overall appearence is very similar to case 15, which
motivates a comparison between the two cases.
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Figure 8.30: The relative difference between the simulated bending angle for
case 5 with and without noise. It is almost impossible to tell that there is a
super-refractive region. This should be contrasted with Fig. 8.26.
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Chapter 9

The Abel transform in the
presence of super-refraction

9.1 Introduction

When using the inverse Abel transform to retrieve the refractive index as a
function of height, it has been noted that the method introduces a bias when
the refractive index exceeds a critical gradient, dN/dr < −157 km−1. The
basic physical mechanism behind this is the lack of occultation data from
certain height segments in the atmosphere, so-called super-refractive layers.
The rays simply pass through critical regions and provide little information
about them. Below we will go through the theory and demonstrate what
magnitude of bias we can expect.

9.2 Ray paths

In an atmosphere where the refractive index only depends on the distance
from the Earth’s center, and under conditions where geometric optics applies,
we can use Bouger’s rule to describe the path of a ray [11]

n(r)r sinφ = const. (9.1)

where n is the refractive index, r the distance from the Earth’s center, and
φ the angle between the ray path tangent and a vector projected from the
Earth’s center to the ray path, see Fig. 9.1.

A ray launched from space towards Earth starts with r = r0, and φ = φ0.
In space we have n = 1, so

const. = r0 sinφ0 ≡ a (9.2)
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Figure 9.1: The ray path, s, and the vector from Earth’s center, r, tracking
the ray. The angle φ is measured with respect to the ray tangent, and the
angle θ with respect to some arbitrary abscissa.

Where a is normally called the impact parameter [12], or the ray asymptote
miss distance [28]. The rays are then determined by the conditions at their
launch as

n(r)r sinφ = a (9.3)

If the ray enters the atmosphere with an angle that does not lead to
impact with the Earth’s surface, the ray path will be slightly bent, and have
a point of closest approach. hereafter referred to as the tangent height, to
the Earth where r = rt, and φ = π/2. In that case

n(rt)rt = a (9.4)

In this way, rays launched with different a’s will have different tangent
heights. This allows us to analyze the structure of the atmosphere by ob-
serving the bending of different rays.
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Figure 9.2: The solution to Eq. (9.6) for an atmosphere having H = 8 km,
NE = 300 (red line), an atmosphere having H = 6 km, NE = 400 (black
solid line), and one having n = 1 (black dashed line). The units on the axis
are km’s.

In an ”ideal” atmosphere we would expect a refractive index that varies
expone

n(r) = 1 + 10−6NE exp

(

−r − RE

H

)

(9.5)

where RE is the Earth radius (usually taken to be 6371 km), NE is the
refractive index at the Earth’s surface, andH is the scale height for a decrease
in the refractive index, normally around 6-8 km’s [12]. Given such a variation
we find

rt(1 + 10−6NE exp

(

−rt − RE

H
)

)

= a (9.6)

An equation which can be solved using basic numerical techniques. The
result are shown in Fig. 9.2 for some different atmospheres. There are three
interesting things to note in Fig. 9.2. First of all, for every value of a there
is a corresponding value for rt. Secondly, the lower the value of a, the lower
the ray will penetrate the atmosphere. Third, the lowest impact parameter is
around 2 km (corresponding to a tangent height equal to the Earth’s radius).

Now, Eq. (9.6) represents an ideal atmosphere. In reality there will

104



be rapid variations in the refractive index as a function of height. This
introduces some problems. The solution to Eq. (9.6) gives a monotonic
increase in a with increasing r, i.e.

da

drt
> 0 (9.7)

When this is not the case, there will be layers of local decrease in a with r.
This will result in no rays having tangent points within such layers. To see
why this is we need to think about different rays and their tangent points.
Rays with large a’s have large rt’s, and rays with lower a’s have lower rt’s.
So a ray will travel to a sufficient depth until it reaches the first point where
rn(r) is sufficiently low. It cares not about segments of local increase in
rn(r). But on the other hand, in the region of a local increase in rn(r)
with decreasing r, all rays having tangent points in that segment will not
reach such low altitudes in the first place. Hence, there will be gaps in the
information retrieval using this method. These regions of local increase in
rn(r) with decreasing r occur when

da

drt
< 0 (9.8)

and using Eq. (9.4) we find

dn

drt
< − n

rt
(9.9)

Using rt ≈ RE ≈ 6371 km, and n ≈ 1 we find a rough approximation

dn

drt
< −1.57× 10−4 km−1 (9.10)

Or using N = (n− 1) ∗ 106

dN

drt
< −157 km−1 (9.11)

Incidentally, these regions correspond to what is called super-refractive
regions. In such regions the rays have a curvature radius which is smaller
than that of the Earth. To see this is we can rewrite Eq. (9.3) slightly

sinφ =
a

rn(r)
(9.12)

Clearly, when rn(r) > a we have sin φ < 1, and φ ∈ (0, π/2) for a ray
traveling towards Earth. As the ray travels deeper into an ideal atmosphere
rn(r) comes closer and closer to a, until eventually r = rt, rn(r) = a, and
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φ = π/2. This is the point where the ray starts to move away from the
Earth. In a non-ideal atmosphere there will be areas of local increase in
rn(r) with decreasing radius. When a ray enters such a region, rn(r) will
momentarily grow, and φ will momentarily decrease. This will result in
longer ray trajectories, as these layers will have to be traversed before the
ray reaches its tangent point. When the curvature of the ray becomes smaller
than the curvature of the Earth, the trajectories can become long indeed, and
for one particular value of a it will even be infinite.

The curvature, κ, of the ray is given by

κ = |dŝ
ds

| (9.13)

where ŝ is the unit tangent vector of the ray, and ds a length segment along
the ray path. The radius of curvature, ρ, is related to the curvature through

ρ =
1

κ
(9.14)

From basic geometrical optics [11] it is known that the differential equa-
tion describing the ray paths is

d

ds
(nŝ) = ∇n (9.15)

Which means that

dŝ

ds
=

1

n

[

∇n− dn

ds
ŝ

]

(9.16)

Now given the geometry in Fig. 9.1, we have

ŝ = − cosφr̂ − sin φθ̂ (9.17)

And in the case when n is only a function of radius we have

dn

ds
=
dn

dr

∂r

∂s
= − cosφ

dn

dr
(9.18)

Using ∇n = r̂dn/dr we find

dŝ

ds
=

1

n

dn

dr

[

r̂ sin2 φ− θ̂ cosφ sinφ
]

(9.19)

Consequently

κ = |dŝ
ds

| = 1

n

dn

dr
sin φ (9.20)
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The most interesting rays are those that are just about to turn when they
enter a region of increasing rn(r). In that case sin φ ≈ 1 and

κ ≈ 1

n

dn

dr
(9.21)

Such a ray will travel with the same curvature as the Earth when |1/κ| = RE ,
or keeping in mind the geometry of the problem

1

n

dn

dr
≈ − 1

RE

⇔ dN

dr
≈ −157 km−1 (9.22)

And when

dN

dr
< −157 km−1 (9.23)

the rays will experience a curvature which is stronger than that of the Earth’s
surface.

9.3 The Abel transform

Returning to Eq. (9.19) we see that the incremental change in direction in
the ray after an incremental step is

|dŝ| = ds
1

n

dn

dr
sinφ (9.24)

Using ds = −dr/ cosφ, and Eq. (9.3) we find

dα = −1

n

dn

dr

a√
r2n2 − a2

dr (9.25)

where dα is the change in angle of the unit vector in the direction of the ray,
i.e. dα ≡ |dŝ|/|ŝ|.

Integrating dα between 0 and αt, we find the angular change of the ray
when it has reached the tangent point

∫ αt

0

dα = αt = −
∫ rt

r0

1

n

dn

dr

a√
r2n2 − a2

dr (9.26)

The angular change on the way out of the atmosphere is again αt, and it is
customary to use −2αt = α, in which case

α = −2a

∫ r0

rt

1

n

dn

dr

1√
r2n2 − a2

dr (9.27)
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Since n = 1, and dn/dr = 0 when r = r0 → ∞ we can use

α = −2a

∫

∞

rt

1

n

dn

dr

1√
r2n2 − a2

dr (9.28)

When performing the integral above there will be some numerical prob-
lems, and the integration close to the singularity rtn(rt) = a will have to
be performed with some care. One method of doing this is described in
section 9.6.1. But the peculiarities that has to do with the super-refractive
regions do not arise solely because of the singularity. We can demonstrate
this quite easily by plotting the integrand for a just above and just below
the super-refractive layer. First of all, in Fig. 9.3 one can see an example
of a refractivity profile that contains a super-refractive layer. When plotting
the refractive index, the super-refractive region appears only as a segment
where the slope is rather flat (red segment in the left panel of Fig. 9.3). On
the other hand, if one plots rn(r) as a function of r (right panel), it becomes
clear that something special will happen when a is in the region of the little
bump, indicated by the green line. One ray might have an a which is suf-
ficiently large for the integration to stop just before the bump, located at
a = aB. Whereas for a ray with a slightly lower a the integration will have to
be taken over the entire bump. This will of course result in a sudden jump in
the bending angle as a function of a. The jump will occur for all rays having
an a lower than aB, but the magnitude of the jump will certainly depend on
the proximity of a to aB, because of the singularity in the integrand of Eq.
(9.28). This is clearly demonstrated in Fig. 9.4, where one can see the effect
of the jump on the integrand. The left panel shows the integrand for the case
when a is slightly higher than aB. The integration stops at the singularity,
marked by the vertical dashed line. There is nothing surprising about the
curve in the left panel, except perhaps a certain jaggedness. This is due to
the interpolation technique. Since the data is provided only at discrete loca-
tions, marked by asterisks, to achieve a vivid picture the data in between will
have to be interpolated. In this case we have used piecewise linear interpola-
tion. The curve on the right panel on the other hand show some interesting
features. Due to the jump, and its appearance close to the location of the
singularity there is a big bump in the curve of the integrand. The dimensions
of the bump is dictated by the product of the derivative of the refractive in-
dex, and the term containing the singularity. The last term grows as 1/

√
∆,

where ∆ is the distance to the singularity, whereas the first term grows and
decays over the super-refractive region. These things combine to produce the
strange curved features of the integrand, see Fig. 9.4. Overlaid on this comes
the effect of the interpolation, which makes the curve jagged. These features
also give rise to the distinct appearance of the bending angle as a function of
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Figure 9.3: Left panel shows the refractivity vs. height for a class 4 profile
(case 15). The red segment indicates the super-refractive region. Right panel
shows the product of the refractive index and height vs. height for the same
data as in the left panel. The green segment indicates the jump that creates
the peculiarities in the bending angle profile for a super-refractive profile.

the impact parameter in the case of super-refractivity, as compared to a less
extreme refractive index profile, see Figs. 9.5 and 9.6. Looking at Fig. 9.7
it becomes clear that the peculiarities in Fig. 9.4 causes the abrupt changes
in the bending angle curve for refractivity curves containing super-refractive
regions.

9.4 The inverse Abel transform

By defining x = rn(r) we can use

dn

dr
dr =

dn

dx

dx

dr
dr =

dn

dx
dx (9.29)

and Eq. (9.28) becomes

α(a) = −2a

∫

∞

a

1

n

dn

dx

1√
x2 − a2

dx (9.30)

provided there is a one-to-one relationship between x and r. In the case of
super-refraction there is not.
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Figure 9.4: Left panel shows the integrand in Eq. (9.28) as a function of r
for a ray where a is slightly higher than aB. The right panel shows the same
thing but for an a which is slightly lower than aB. The dashed lines indicate
the singularity that appears when rn(r) → a.

If the relationship is one-to-one we can invert Eq. (9.30). To do this we
multiply by da/

√

a2 − a21 and integrate between a1 and ∞

∫

∞

a1

α(a)
√

a2 − a21
da = −

∫

∞

a1

2a
√

a2 − a21

[
∫

∞

a

1

n(x)

dn(x)

dx

1√
x2 − a2

dx

]

da

(9.31)
On the right hand side, the order of integration can be rewritten. The inte-
gration domain is bounded by a = a1 and x = a (see Fig. 9.8), which means
that the integration order can be switched according to

∫ a=∞

a=a1

. . .

[
∫ x=∞

x=a

. . . dx

]

da =

∫ x=∞

x=a1

. . .

[
∫ a=x

a=a1

. . . da

]

dx (9.32)

We end up with

∫

∞

a1

α(a)da
√

a2 − a21
= −

∫ x=∞

x=a1

1

n(x)

dn(x)

dx

[

∫ a=x

a=a1

2a
√

a2 − a21

da√
x2 − a2

]

dx

(9.33)
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Figure 9.5: Left panel shows the refractivity vs. height for a class 1 profile
(case 1). Right panel shows the bending angle (α) vs. the impact parameter
a for the same case.
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Figure 9.6: Left panel shows the refractivity vs. height for a class 4 profile
(case 15). Right panel shows the bending angle (α) vs. the impact parameter
a for the same case.
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Figure 9.7: A closer look on the region around the super-refractive segment
in Fig. 9.6.

The expression within the brackets can be integrated immediately, which
gives us

∫

∞

a1

α(a)
√

a2 − a21
da = −

∫ x=∞

x=a1

1

n(x)

dn(x)

dx

[

arcsin(
2a2 − x2 − a21

x2 − a21
)

]a=x

a=a1

dx =

(9.34)

= −π
∫ x=∞

x=a1

1

n(x)

dn(x)

dx
= π lnn(x = a1) (9.35)

Hence

n(a1) = exp

(

1

π

∫

∞

a1

α(a)
√

a2 − a21
da

)

(9.36)

So by performing the integral above we end up with n as a function of a1.
We can then use r1n(r1) = a1 to find the r-vector corresponding to n

r1 =
a1

n(a1)
(9.37)

The bias problem arises because there is no data produced by the super-
refractive layer. To perform the integral properly in the case of super-
refraction, the integral has to be split into four regions according to
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Figure 9.8: The integration domain (grey area) in Eq. (9.32).

∫

∞

a1

α(a)
√

a2 − a21
da→

∫ aa

a1

. . . da+

∫ ab

aa

. . . da+

∫ ac

ab

. . . da+

∫

∞

ac

. . . da (9.38)

where the different a’s are illustrated in Fig. 9.9. In the sections delimited by
xa, xb and xc, the function x is one-to-one with respect to r. In reality, there
is no data for α in the sections between aa and ac, unless external data is
introduced, either by using other observation methods, numerical simulation,
or educated guessing. Failure to perform these integrals correctly will lead to
an underestimation of n in the region below rc. According to Sokolovskiy [29],
the magnitude of this error can be as big as 10 %. In Fig. 9.10 one can see the
refractivity obtained through Abel transform and inversion compared to the
correct refractivity in the case of a super-refractive region (case 15). In Fig.
9.11 one can see the fractional error in the inverted refractivity for all the
class 4 cases. It appears that the maximum error is around 14 %, although
most profiles never reach that high values.
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Figure 9.9: The different segments that would be necessary to properly invert
the bending angle using the inverse Abel transform and retrieve the refractive
index in the case of super-refraction.

9.5 Mitigation

The bias problem was originally reported by Rocken et al. [30], but attributed
incorrectly to sub-refraction (dN/dz > 0). Kursinski [12, 31] claimed in his
thesis that the bias was due to super-refraction, mainly caused by moisture
gradients associated with inversion caps in the marine boundary layer. Since
then, there have been many publications on the subject [32–37], but no uni-
versal method for mitigating the bias problem seems to have been found.
The comparison of the different techniques, and the evaluation of the best
one is a big task which cannot be performed within the time-frames of the
present NRFP project.

9.6 Numerical integration

The presence of the singularities in Eqs. (9.28) and (9.36) makes the numer-
ical integration a bit problematic. However, by making certain approxima-
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Figure 9.10: The true refractivity (solid line) and the refractivity obtained
by Abel inversion (dashed line) for a class 4 profile (case 15). The inverted
curve starts to become negatively biased below the critical height.
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Figure 9.11: The fractional error in the inverted refractivity data, i.e. (N −
Ninv)/N for all class 4 cases. The error never exceeds 14 %.
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tions, good results can be achieved with little effort.

9.6.1 Forward integration

We will first look at Eq. (9.28)

α = −2a

∫

∞

rt

1

n

dn

dr

1√
r2n2 − a2

dr (9.39)

Simply using the function trapz in Matlab will give erroneous results because
of the sharp gradients close to the singularity rn(r) = a. The major problems
stem from the part of the integrand containing the square root. We start by
changing the integration variable to x = rn(r), and use Eq. (9.30)

α = −2a

∫

∞

x=a

d lnn

dx

1√
x2 − a2

dx (9.40)

In this case it is irrelevant that x and r are not one-to-one. There will be no
bending angle corresponding to the super-refractive layer, and the bending
angle curve we produce with the integral above will be accurate. Now, close
to the singularity, over a small interval in x, the fraction in the integrand will
grow violently. In fact, the term grows so rapidly due mainly to the change
in x that we can approximate everything else as constant. This means using

d lnn

dx
≈ lnn[i+ 1]− lnn[i]

x[i+ 1]− x[i]
(9.41)

where [i] indicates the i’th position in a vector representing actual discrete
data. We get

Ii =
lnn[i+ 1]− lnn[i]

x[i+ 1]− x[i]

[

arccosh

(

x[i+ 1]

a

)

− arccosh

(

x[i]

a

)]

(9.42)

with the bending angle given by

α(a) ≈ −2a

[

M
∑

i=j

Ii + A

]

(9.43)

where

A =
lnn[j]− lnn[j − 1]

x[j]− x[j − 1]

[

arccosh

(

x[j]

a

)

− arccosh

(

x[j − 1]

a

)]

(9.44)

and i = j is the point on the vector n[i]r[i] which is closest above a, and M
is the length of the vector x.
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9.6.2 Inverse integration

Now let’s look at Eq. (9.36).

n(a1) = exp

(

1

π

∫

∞

a1

α(a)
√

a2 − a21
da

)

(9.45)

It suffers from the same problems associated with the singularity as Eq.
(9.28). One easy way of handling this is to use a linear interpolation for α,
and integrate the function accordingly. The problematic integral is

I =

∫

∞

a1

α(a)
√

a2 − a21
da (9.46)

We use

α(ai ≤ a ≤ ai+1) ≈ α(ai) + (a− ai)
α(ai+1)− α(ai)

ai+1 − ai
= Ai + aBi (9.47)

where

Ai =
α(ai)ai+1 − aiα(ai+1)

ai+1 − ai
(9.48)

Bi =
α(ai+1)− α(ai)

ai+1 − ai
(9.49)

Then

Ii =

∫ ai+1

ai

Ai + aBi
√

a2 − a21
da (9.50)

which integrates to

Ii = Ai

[

arccosh

(

ai+1

a1

)

− arccosh

(

ai
a1

)]

+Bi

[

√

a2i+1 − a21 −
√

a2i − a21

]

(9.51)
And finally

I =
M−1
∑

i=j

Ii + C (9.52)

where
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C = Ajarccosh

(

aj
a1

)

+Bj

√

a2j − a21 (9.53)

where i = j is the point on the vector a[i] which is closest above a1.

118



Chapter 10

Conclusions

In this report we have gone through the theory behind and the implementa-
tion in Matlab of an end-to-end RO simulator including: the propagation of
the field through the atmosphere and into orbit using multiple phase screen
(MPS) propagation and a diffractive integral; addition of noise to the signal
in orbit; and retrieval of the bending angle and impact height through phase
matching (PM). We have compared the output of the simulator package with
those of geometrical optics (GO), through the use of the Abel transform. We
have seen that the entire simulation package delivers reliable high precision
data when compared to GO.

In the case of no added noise we were able to determine that there is
numerical noise. The exact source of this noise is not yet determined. The
simulated data show low level numerical noise appearing in the MPS, and
during the propagation to orbit. If this is not the cause, perhaps it is the
phase matching which causes it, or as seen in section 4, there are fundamental
differences between GO and wave optics that appear in the form of diffraction
patterns. In any case, this noise can be removed easily using a Gaussian
filter applied on the bending angle data. The remaining discrepancy between
simulations and GO are located to the super-refractive regions and are not
negligible. The reason for this is most likely that GO is not perfect. When
the gradients in the refractive index become very strong we should expect
some variations between the simulated results and GO. The bending angle
singularity associated with the super-refractive region appears to be located
slightly lower for the simulations than for the calculated profiles. Why this
is so is unknown at this moment.

When adding white noise to the signal we get bending angle profiles that
oscillates randomly around a smoothly varying average, with noise increasing
for lower impact heights. In the lower and upper segments the noise can be
suppressed under the specified limits using a Gaussian filter, but not in the
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middle region (10-35 km). For the filter to work properly it should have some
connection to the size of the Fresnel zone. In this middle segment the Fresnel
zone undergoes rapid growth with height, and it seems reasonable, and there
are results that indicate, that we could achieve much better noise reduction
by having a filter that changes parameters as we ascend. This will have to
be a task for the future.

In section 8.6 we look at the difference between simulations with and
without noise in the super-refractive region. The results indicate that varia-
tions between the curves above the noise floor may appear in odd cases. An
analysis showed that case 15 had one point in the bending angle vector where
the difference became significant. Since the height vector has a resolution of
1 m this indicates that we are dealing with a statistical fluke, where large
gradients in α are overlain with unusually strong noise, resulting in an error
in the phase matching routine. The same analysis performed on case 5, which
is also a class 4 profile, reveled no differences larger than the noise floor. We
can probably conclude two things from this fact. First of all, adding noise
to the simulations does not perturb the phase matching routine except in
extreme cases, when it will lead to large discrepancies between the simula-
tions with and without noise. This hypothesis will have to be verified by
studying case 15 with new noise seeds, and by studying all case 4 profiles to
see how often the error occurs. Taking such an analysis further could show
us at what noise level we will be unable to resolve super-refractive peaks
using these techniques, a problem which is interesting also from an engineer-
ing point of view, as it is related to the satellite antenna gain. Second, the
difference between GO and simulations can be attributed to one or more of
three causes. (1) Maybe there is some small error in the way we calculate the
GO bending angle that has so far gone unnoticed. (2) Perhaps there is some
small calculation error in the MPS routine and the propagation to orbit. (3)
But most likely it is due to fundamental differences between GO and the full
wave-optical treatment caused by the finite wavelength coupled with sharp
gradients in the refractive index.

In order to perform the Abel transform accurately and quickly we also
presented a numerical technique to perform the integration, and we investi-
gated the Abel transform in the case of super-refractivity. The study revealed
the fact that the technique is flawed. Certain segments of the atmosphere do
not produce any received signals, and the inverse Abel transform results in
a bias, where the lower parts of the refractivity curve are not retrieved cor-
rectly. Several techniques have been reported that are supposed to mitigate
the inversion problem, but it is unclear which (if any) technique yields the
best results. This is also a topic that could be interesting to study in the
future.
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Appendix A

Fresnel zone width

A.1 Introduction

When removing noise from the bending angle (see section 8) it is necessary
to make sure that the chosen filter width corresponds to the specifications
given for the data handling procedure. The width of the filter is determined
in relation to the Fresnel zone width for the occultation. Hence it is necessary
to find the Fresnel zone width as a function of impact height. In the thesis
by Kursinski [31] there is a derivation for the Fresnel zone width in RO based
on geometrical optics. Below we will present a slightly different derivation
that leads to the same result. We will also plot the Fresnel zone width as a
function of height for a generic profile, and find an analytical approximation
for the curve.

A.2 Derivation of Fresnel zone width based

on Fermat’s principle

The Fresnel zone is the region within which adjacent rays differ less than
half a wavelength in optical path between source and endpoint. To find the
zone radius we should find the perturbation in the impact height a which
causes half a wavelength of difference in the optical path length. If τ(a) is
the optical path length we want to find

τ(a +∆aλ/2)− τ(a) = λ/2 (A.1)

And in order to find this value for ∆aλ/2 we shall employ Fermat’s principle.
Fermat’s principle states that ”rays of light traverse the path of stationary

optical length with respect to variations of the path”. In our case we have a
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very nice formula for the optical length of the rays

τ(a) =
√

r20 − a2 +
√

r2r − a2 + αa− 2

∫

∞

a

√
x2 − a2

d lnn

dx
dx (A.2)

If we increase a slightly to a +∆a we describe a new ray that will strike at
a different point in the LEO path, with a resulting optical path length

τ(a +∆a) =
√

r20 − (a +∆a)2 +
√

r2r − (a+∆a)2 + α(a+∆a)(a +∆a)−

(A.3)

− 2

∫

∞

a+∆a

√

x2 − (a+∆a)2
d lnn

dx
dx

The first three terms in this formula describes a pure geometrical approx-
imation for the physical path of the ray, whereas the last term describes
the elongation of the optical path caused by the refractive index of the at-
mosphere, and the shortening of the optical path due to the slightly shorter
physical path taken by the ray, as compared to the path described by the first
three terms. Knowing this we should be able to construct an artificial ray
that starts and stops at the same point as τ(a), but when traveling through
the atmosphere it takes the path belonging to τ(a+∆a). To make sure that
the new ray, let us call it τx, ends up at the right point we need to keep θ
constant. θ is the angle of separation between the GNSS and LEO satellites,
and is given by

θ = π + α− φ0 − φr (A.4)

If we expand to second order in ∆a we find the required αx

αx = α(a) + ∆a

(

∂φ0

∂a
+
∂φr

∂a

)

+
1

2
∆a2

(

∂2φ0

∂a2
+
∂2φr

∂a2

)

(A.5)

The expansion for the first two terms in Eq. (A.3) can be found by taking
derivatives

∂

∂a
(
√

r20,r − a2) = − a
√

r20,r − a2
(A.6)

But since r0,r sinφ0,r = a we get
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∂

∂a
(
√

r20,r − a2) = −a∂φ0,r

∂a
(A.7)

and

∂2

∂a2
(
√

r20,r − a2) = −∂φ0,r

∂a
− a

∂2φ0,r

∂a2
(A.8)

wherefore

√

r20,r − (a+∆a)2 ≈
√

r20,r − a2 − a∆a
∂φ0,r

∂a
− 1

2
∆a2

(

∂φ0,r

∂a
+ a

∂2φ0,r

∂a2

)

(A.9)
Finally the expansion for the last term in (A.3) is most easily found taking

derivatives as well

∂

∂a

(

−2

∫

∞

a

√
x2 − a2

d lnn

dx
dx

)

= 2a

∫

∞

a

1√
x2 − a2

d lnn

dx
dx+ (A.10)

+ 2
√
x2 − a2

d lnn

dx
|a = −α

and

∂

∂a

(

−2

∫

∞

a

√
x2 − a2

d lnn

dx
dx

)

= −∂α
∂a

(A.11)

Hence

−2

∫

∞

a+∆a

√

x2 − (a +∆a)2
d lnn

dx
dx ≈ −2

∫

∞

a

√
x2 − a2

d lnn

dx
dx−α∆a−1

2
∆a2

∂α

∂a
(A.12)

We shall now use the formula for the artificial ray τx, which is

τx =
√

r20 − (a +∆a)2 +
√

r2r − (a+∆a)2 + αx(a +∆a)− (A.13)

− 2

∫

∞

a+∆a

√

x2 − (a+∆a)2
d lnn

dx
dx

We insert all the expansions we have found and get (to second order)

τx ≈ τ(a) +
1

2
∆a2

(

∂φ0

∂a
+
∂φr

∂a
− ∂α

∂a

)

= τ(a)− 1

2
∆a2

∂θ

∂a
(A.14)
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Figure A.1: The Fresnel zone width for a generic refractivity profile (N =
400 exp(−h/7000)), red line, and an analytical fit (Eq. A.17), black line.

Hence the Fresnel zone radius is

∆aλ/2 =

√

λ(
∂θ

∂a
)−1 =

√

λ

(

∂φr

∂a
+
∂φ0

∂a
− ∂α

∂a

)−1

(A.15)

and the diameter, or width of the zone, is ares = 2∆λ/2.
The expression is easily evaluated since we already have found procedures

to calculate α(a), and we can find the two other derivatives through

∂φ0,r

∂a
=

1

r0,r cos φ0,r
=

1
√

r20,r − a2
(A.16)

In Fig. A.1 we can see the Fresnel zone width for a generic profile, N =
400 exp(−h/7000), and an analytical fit to this curve given by

∆ares = 280 + 1170 erf

(

a−RE

23000

)

(A.17)

Finding the Fresnel zone width as a function of height for realistic compli-
cated profiles is not meaningful. The Fresnel zone width becomes undefined
in the case of multipath, and in the case of super-refractivity it goes to zero.
Even for refractivity profiles lacking these complications the width will fluc-
tuate wildly, and the limited number of samples used in the refractivity will
lead to great uncertainty in the ”correct” value for ∂α/∂a. Fortunately this
has no importance for the work in this report.
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Appendix B

Straight line tangent altitude
(SLTA)

B.1 The straight line tangent altitude

In the RO community the straight line tangent altitude (SLTA) is used fre-
quently. On the other hand, it’s definition, and how to find it is rarely
described. For a circular Earth there is one way to define it without ambi-
guity - the distance from the surface of the Earth to the point where a line
drawn between the GNSS and LEO and a line from the Earth’s center are
perpendicular. Using this definition we can find a compact formula for the
SLTA in the coordinate system used in this report. Using the coordinate
system in Fig. 5.2, the coordinates of the GNSS are (Y0, Z0), and the coordi-
nates of the LEO are (Yr, Zr). The equation for the line between GNSS and
LEO is

Y (Z) =

(

Yr − Y0
Z0 − Zr

)

Z +
YrZ0 − Y0Zr

Z0 − Zr
= kZ +m (B.1)

The line that is perpendicular to this one and passes through the origin
is given by

Y⊥(Z) = −1

k
Z = −

(

Z0 − Zr

Yr − Y0

)

Z (B.2)

These lines cross at

Yx,⊥(Zx) = Yx(Zx) ⇔ Zx = − mk

1 + k2
, Yx =

m

1 + k2
(B.3)

and the SLTA is given by
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SLTA =
√

Y 2
x + Z2

x −RE =
m√
1 + k2

− RE (B.4)

In the case when the ellipticity of the Earth is taken into account the
local radius of the Earth (i.e. directly underneath the crossing point) will
have to be used, and one will have to be quite careful in what one means by
the SLTA.
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