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Abstract 

The manganese based ilmenite analogue pyrophanite (MnTiO3) and six other combined (Fe1-xMnx)TiyO3 oxides have been 
examined as oxygen-carrier materials for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling 
(CLOU). Particles with different compositions were manufactured by spray drying and studied by consecutive reduction and 
oxidation at 850-1050°C in a batch fluidized-bed reactor using CH4 as fuel. A fuel conversion of 80-99% could be achieved 
with most materials, with different formulations being favored at different temperature levels. The exception was pure MnTiO3 

which had very limited reactivity with CH4. The oxygen uncoupling behavior was examined by exposing the oxygen-carrier 
particles to an inert atmosphere of N2. The apparent equilibrium concentration during fluidization with pure N2 ranged from 
zero to 0.9% O2, depending on temperature and particle composition. One material (Fe0.50Mn0.50)TiO3 was selected and further 
examined by 12 h of experiments in a small continuously operating circulating fluidized-bed reactor. Up to 80% conversion of 
natural gas was achieved at 910°C, but defluidization occurred when the temperature was increased to 950°C. 
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1. Introduction 

This paper describes an experimental study examining the possibility to use combined manganese-iron-titania 
oxides as oxygen carriers for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling 
(CLOU). These are innovate processes for capturing CO2 during oxidation of hydrocarbon fuels. The ultimate goal 
with this research effort is to contribute to the development of efficient methods to reduce the emissions of the 
greenhouse gas CO2 to the atmosphere during utilization of such fuels. A thorough description of how so called 
carbon capture and storage (CCS) can contribute to reduced emissions of the greenhouse gas CO2 to the 
atmosphere can be found, for example in IPCC’s special report about the topic[1]. 

2. Background 

2.1. Chemical-looping combustion 

Chemical-looping combustion (CLC) is a method for combustion of fuels in which the fuel is oxidized in two 
separate reactor vessels, one air reactor (AR) and one fuel reactor (FR). A solid oxygen-carrier (MeOx) performs 
the task of transporting oxygen to the fuel and circulates continuously between the two reactors. In the fuel reactor, 
it is reduced by the fuel, which in turn is oxidized to CO2 and H2O according to reaction (1). In the air reactor, it is 
oxidized to its initial state with O2 from the air according to reaction (2). The sum of reactions for the reactor 
system as a whole is complete combustion of the fuel with O2, reaction (3), and the net energy released is the same 
as in ordinary combustion. 

 
CnHm(g) + (2n+½m)MeOx(s)  nCO2(g) + (½m)H2O(g)+ (2n+½m)MeOx-1(s)   (1) 
MeOx-1(s) + ½O2(g)  MeOx(s)         (2) 
CnHm(g) + (n+¼m)O2(g)  nCO2(g) + (½m)H2O(g)      (3) 
 
The expected operating temperature is in the range of 850-1050°C. A feasible design would be to utilize 

fluidized beds arranged in similar fashion as in a circulating fluidized-bed boiler (CFB), with the difference that the 
inert bed material used in such facilities would be replaced with an active oxygen-carrier material. A schematic 
description of chemical-looping combustion can be found in Figure 1. 

 

 

Fig. 1. Schematic description of chemical-looping combustion. 
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The general ideas behind chemical-looping combustion can be traced back to the middle of the past century to 
work by Lewis and Gilliland[2]. Other early work includes a study by Richter and Knoche[3], who suggested a 
fuel oxidation reaction scheme involving two intermediate reactions with a metal oxide as oxygen carrier in order 
to reduce irreversibility compared to ordinary combustion. Ishida et al.[4] came up with the name chemical-
looping combustion in 1987. A practicable design of a chemical-looping combustor arranged as a circulating 
fluidized-bed reactor was suggested by Lyngfelt et al.[5] in 2001. 

Some oxygen-carrier materials are capable of releasing gas-phase O2 directly in the fuel reactor according to 
reaction (4).  

 
MeOx(s)  MeO1-x(s) + ½O2(g)        (4) 
 
In principle, O2 will be released until thermodynamic equilibrium for reaction (4) is obtained. If there is a fuel 

present in the fuel reactor it will react directly with released O2 according to reaction (3), which will facilitate 
further O2 release until all available fuel is consumed. The reduced oxygen carrier can then be recirculated to the 
air reactor where it is reoxidized according to reaction (2).  

This alternative reaction scheme is referred to as chemical-looping with oxygen uncoupling (CLOU), see 
Mattisson et al.[6]. Here the mechanism by which the fuel is oxidized is different. In ordinary chemical-looping 
combustion, the oxidation of fuel takes place mainly via gas-solids reactions gas solids reactions (between the 
gaseous fuel and solid oxygen carrier). So if the fuel is a solid (coal, coke, biochar etc) it has to be gasified in order 
to be able to react with the oxygen carrier. In contrast, in chemical-looping with oxygen uncoupling the oxidation 
of the fuel can proceed by direct combustion. Leion et al.[7] have shown that oxidation of solid fuels can be much 
faster using this reaction scheme, compared to conventional chemical-looping combustion that relies on char 
gasification. 

Both chemical-looping combustion and chemical-looping with oxygen uncoupling provides some intriguing 
opportunities. Most importantly, fuel is not mixed with N2 from the combustion air. Hence cooling of the flue gas 
and condensation of the steam produced in the fuel reactor is sufficient to obtain almost pure CO2. There is no 
inherent energy penalty or cost associated with chemical-looping combustion, so oxidation of carbon-containing 
fuels with this method would be an ideal technology for carbon capture and storage. A comprehensive review of 
chemical-looping combustion has recently been provided by Adánez et al.[8], while materials for chemical-looping 
with oxygen uncoupling has been reviewed by Mattisson [9]. 

2.2. Combined oxides of manganese, iron and titanium oxides as oxygen carrier 

The most commonly proposed oxygen-carrier materials for chemical-looping applications are synthetic particles 
of monometallic oxides based on Fe2O3, NiO, CuO and Mn3O4. Such active phases can be used as is, or in 
composite particles together with inert support materials such as for example Al2O3, MgAl2O3 or ZrO2, see Adanez 
et al.[8] for a comprehensive review. 

Another option would be to use minerals or ores as oxygen carrier, which could be cheaper. One of the most 
extensively examined such material is ilmenite which is a common mineral with the chemical composition FeTiO3. 
The term ilmenite is also used for various iron-titanium ores rich with FeTiO3 and its oxidized counterpart 
psuedobrookite, Fe2TiO5. It is cheap, nontoxic, and the most abundant of all titanium minerals and has proven to be 
an attractive oxygen-carrier material. During chemical-looping combustion, the fully reduced state would be 
FeTiO3, corresponding to FeO+TiO2, while the fully oxidized level would be Fe2TiO5+TiO2, corresponding to 
Fe2O3+2TiO2. Ilmenite has been examined as oxygen-carrier material for chemical-looping combustion by several 
research groups using a wide range of reactors, fuels and operational conditions[10-22]. 

A detailed review of the thermodynamics involved in the use of ilmenite as oxygen carrier for chemical looping 
combustion have been presented by Luckos and den Hoed[23]. It is clear that from a thermodynamic point of view, 
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ilmenite should not be capable of releasing any gas phase O2 during temperature levels typically used for chemical-
looping combustion experiments, i.e. below 1050°C. In some experiments very minor O2 release have been 
observed but this is likely an effect of impurities in the ilmenite, see Rydén et al.[24]. Pure ilmenite should not be 
capable of providing gaseous O2 via reaction (4), which is a pity since the mechanical properties of ilmenite are 
considered as quite adequate.  

Substituting iron with manganese in ilmenite yields pyrophanite (MnTiO3), a mineral that like ilmenite is of 
trigonal rhombohedral crystal structure. It can be assumed that manganese and iron should be interchangeable 
within this structure, forming ilmentite-pyrophanite solid solutions. Substituting iron for manganese in the ilmenite 
structure could be expected to increase the propensity for O2 release in gas phase, thus obtaining an oxygen carrier 
suitable for chemical-looping with oxygen uncoupling. 

It has previously been experimentally verified that Fe2O3-Mn2O3 solid solutions exhibit vastly superior O2 
uncoupling characteristics compared to its monometallic counterparts, see Azimi et al.[25,26]. The apparent reason 
is the possibility to alter the temperature of O2 uncoupling from hausmannite (MnxFe1-x)O3 by altering the 
manganese and iron content of the solid solution, see Rydén et al.[27]. Unfortunately, Fe2O3-Mn2O3 solid solutions 
have exhibited poor durability in continuous operation, see Rydén et al.[28].  

2.3. The aim of this study 

This study reports the examination of pyrophanite (MnTiO3) and six different combined  
(Fe1-xMnx)TiyO3 oxides as oxygen-carrier materials. The aim is to show that ilmentite-pyrophanite solid solutions 
are capable of releasing gas phase O2 at conditions relevant for chemical-looping applications, while hopefully 
retaining mechanical properties similar to ilmenite. 

3. Experimental 

3.1. Manufacturing of oxygen-carrier materials 

All oxygen-carriers particles examined in this study were manufactured by VITO in Belgium by spray drying. 
The general procedure was as follows. Powder mixtures of the raw materials were dispersed in deionized water 
containing organic additives, organic binder and dispersants. The water-based suspension was continuously stirred 
with a propeller blade mixer while being pumped to a 2-fluid nozzle, positioned in the lower cone part of the 
spray-drier. Obtained particles were sieved, and the fraction within the desired size range was separated from the 
rest of the spray-dried product. Sieved particles were then calcined in air at 1100°C for 4 h. After calcination, the 
particles were sieved once more so that all particles used for experimental evaluation would be of well-defined 
size.  

A summary of manufactured materials and their physical properties can be found in Table 1. The bulk density 
was measured for particles in the size range of 125-180 μm using a graduated cylinder. The reported crushing 
strength is the average force required to fracture a single particle, as measured with a digital force gauge on 
particles in the size range of 180-250 μm. 

 Table 1. Summary of oxygen-carriers materials examined in this study. 

Sample Molar composition Bulk density (kg/m3) Crushing strength (N) 

F17MT51 (Fe0.33Mn0.67)TiOx 1430 0.7 

F25MT51 (Fe0.50Mn0.50)TiOx 1400 0.7 

F34MT50 (Fe0.67Mn0.33)TiOx 1380 0.8 

M49T MnTiOx 1100 0.7 

F31MT9 (Fe0.33Mn0.67)Ti0.1Ox 1640 0.7 

F46MT9 (Fe0.50Mn0.50)Ti0.1Ox 1380 0.8 

F61MT9 (Fe0.67Mn0.33)Ti0.1Ox 1410 0.9 
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Aside from pure pyrophanite, the materials can be divided into two main categories, namely ilmenite-

pyrophanite analogues (first three materials in Table 1), and combined iron-manganese oxides with minor addition 
of titania (last three materials). 

3.2. Experimental setup for batch experiments 

 Batch experiments were carried out in an 820 mm long quartz reactor with an inner diameter of 22 mm. A 
porous quartz plate, on which the sample of oxygen carrier and CO2 sorbent was applied, was located 370 mm 
above the bottom. During operation, the sample was fluidized by adding gas to the bottom of the reactor, and the 
porous plate acted as gas distributor. 
 The reactor temperature was measured with thermocouples located 5 mm below and 25 mm above the porous 
plate. The pressure drop over the particle bed was measured with a pressure transducer operating at a frequency of 
20 Hz. The pressure drop over a quartz plate is approximately constant for constant flows, so by measuring 
fluctuations in the pressure drop it was possible to determine if the particle bed was fluidized or not.  
 At the top of the reactor was a plug of quartz wool, in which elutriated solid fines was captured. The product 
gas was then subject to cooling and condensation of water at room temperature. After this step, the composition of 
the dry gas was measured with a gas analyser with three parallel channels. CO2, CO and CH4 were measured with 
an infrared sensor, O2 was measured with a paramagnetic sensor, and H2 was measured by a sensor based on 
thermal conductivity. A schematic description of the experimental setup is shown in Figure 2.  
 

 

Fig. 2. Schematic description of the experimental setup used for batch experiments. 

 The experimental procedure was as follows. 15 g particle in the size range 125-180 μm was placed on the 
porous plate. The reactor was then assembled and placed inside an electrically heated furnace. During heat up to 
850°C the sample was fluidized with an oxidizing gas mixture in order to ensure full oxidation.  
 The experiments were initiated by performing a few (1-5 reductions, 30-60 s each) redox cycles using 450 
ml/min of a syngas mixture consisting of 50% CO and 50% H2 at 850°C as fuel. The reason was to ensure that the 
oxygen carriers were properly reduced and oxidized a few times prior to O2 uncoupling experiments. Hence the use 
of syngas, which is perceived as considerably more reactive with oxygen-carrier materials compared to CH4. The 
preceding syngas experiments will not be further discussed. 
 Chemical-looping experiments were then conducted by switching between different fluidization gases 
according to a scheme described in Table 2. 
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 Table 2. Examination scheme for batch experiments. Each cycle constitutes reduction for a specified time period passively 
with N2 or actively with CH4, followed by oxidation until the sample is fully reoxidized. 

Cycle Temperature (°C) Reducing gas Reduction time (s) 

1-2 850 Inert (N2) 360 

3-4 850 Fuel (CH4) 20 

3-5 900 Inert (N2) 360 

6-7 900 Fuel (CH4) 20 

8-10 950 Inert (N2) 360 

11-12 950 Fuel (CH4) 20 

13-14 1000 Inert (N2) 360 

15-16 1000 Fuel (CH4) 20 

17-18 1050 Inert (N2) 360 

19-20 1050 Fuel (CH4) 20 

21-22 950 Inert (N2) 360 

23-24 950 Fuel (CH4) 20 

 
 The following gases and gas flows were used:  
 

• Oxidation: 900 ml/min with a mixture of 5% O2 and 95% N2. To simulate the expected conditions at the 
top of the air reactor in a future chemical-looping combustion facility. 

• Inert: 600 ml/min with 100% N2. To examine O2 release via reaction (4) in inert atmosphere, and also to 
flush the reactor of reactive gases for 60 s in between each fuel and oxidizing period. 

• Reduction: 450 ml/min with 100% CH4. To examine reactivity with natural gas and examine behaviour 
during deep reduction of each samples. 
 

 In this paper, the reactivity of each oxygen carrier with CH4 is quantified in terms of gas yield, CH4, defined as 
the fraction of CO2 in dry flue gas divided by the sum of the fractions of carbon containing gases, which when CH4 
is used as fuel constitutes CO2, CO and CH4.  CH4 is defined in equation (5), in which yi is the dry gas 
concentration (vol. %) of gas component i: 
 

 
COCHCO

CO
CH yyy

y

++
=

42

2

4γ
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 The mass based conversion of the oxygen carrier, , is defined as the mass of the sample, m, divided with the 
mass of the fully oxidized sample, mox, as is defined in equation (6): 

 

 oxm

m
=ω

           

(6)

 
  
 The mass based conversion of the oxygen carrier for a specific time period can be calculated by integration 
over a time interval, as is described in equation (7), in which MO is the molar mass of oxygen and out is the molar 
flow out of the reactor. Equation (7) basically describes a species balance over the reactor, and is valid only when 
CH4 is used as fuel. 
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3.3. Experimental setup for continuous operation 

The continuous experiments were carried out in a small-scale laboratory reactor made of temperature and 
deformation resistant stainless steel. The same reactor has previously been used for different kinds of experiments 
involving liquid fuels[29,30] and hydrogen generation[31]. A schematic description of the reactor is shown in 
Figure 3.  

 
Fig. 3. Schematic description of the two-compartment fluidized-bed reactor. 

 
The reactor is 300 mm high. The fuel reactor measures 25 mm × 25 mm. The base of the air reactor is 25 mm × 

42 mm, while the upper narrow part is 25 mm × 25 mm. Fuel and air enter the system through separate wind 
boxes, located in the bottom of the reactor. Porous quartz plates act as gas distributors. For the experiments 
presented in this paper, 250 g of particles in the size range 90-212 m were added to the reactor. This corresponds 
to a bed height in the air and fuel reactor of roughly 10 cm, taken into consideration that a considerable share of the 
particles was located in the downcomer during operation. 

In the air reactor the gas velocity is sufficiently high for oxygen-carrier particles to be thrown upwards. Above 
the reactor there is a particle separation box (not shown in figure 3) in which the cross-section area is increased and 
gas velocity reduced so that particles fall back into the reactor. A fraction of these particles falls into the 
downcomer, entering a J-type loop-seal. From the loop-seal, particles overflow into the fuel reactor via the return 
orifice. The fuel reactor is a bubbling bed. In the bottom particles return to the air reactor through a U-type slot and 
thus a continuous circulation of oxygen-carrier particles is obtained. The downcomer and the slot are fluidized with 
small amounts of inert gas such as argon, which is added via thin pipes perforated by holes, rather than through 
porous plates. 

The whole reactor is placed inside an electrically heated furnace. The temperature in each reactor section is 
measured with thermocouples located inside the particle beds, a few centimetres above each bottom plate. Along 
the reactor sections there are several pressure-measuring taps. By measuring differential pressures between these 
spots it is possible to estimate where particles are located in the system, and to detect abnormalities in the 
fluidization. 
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4.5. X-ray diffractometry analysis 

All fresh samples were examined by X-ray powder diffraction using a Siemens D5000 diffractometer utilizing 
copper K 1 radiation. Also particles from all successfully conducted experiments were examined. In this case the 
samples were examined in their oxidized state. The results are summarized in Table 5: 

 Table 5. Phase composition of oxygen-carriers materials examined in this study (oxidized particles). 

Sample Molar composition Phases in fresh sample 

(calcined in air 1100°C) 

Phases in used sample 

(oxidized, from batch reactor) 

F17MT51 (Fe0.33Mn0.67)TiOx (MnxFe1-x)3Ti3O10 (MnxFe1-x)3Ti3O10 

F25MT51 (Fe0.50Mn0.50)TiOx (MnxFe1-x)3Ti3O10 See discussion 

F34MT50 (Fe0.67Mn0.33)TiOx (MnxFe1-x)3Ti3O10 (MnxFe1-x)3Ti3O10 

M49T MnTiOx MnTiO3 MnTiO3 

F31MT9 (Fe0.33Mn0.67)Ti0.1Ox (Mnx,Fe1-x)2O3 (Mnx,Fe1-x)2O3 

F46MT9 (Fe0.50Mn0.50)Ti0.1Ox (Mnx,Fe1-x)2O3 See discussion 

F61MT9 (Fe0.67Mn0.33)Ti0.1Ox (Mnx,Fe1-x)2O3 (Mnx,Fe1-x)2O3 

 
Due to the formation of solid solutions it is quite difficult to characterize combined iron and manganese oxides 

using powder X-ray powder diffraction, but it is possible to draw some conclusions. It seem clear that all fresh 
ilmenite-pyrophanite analogues consisted of orthorhombic (MnxFe1-x)Ti3O10, which corresponds to  
(MnxFe1-x)3O4+3TiO2. While Fe3Ti3O10 is sometimes found in both fresh and oxidized ilmenite [12], this is 
probably not the most desired phase for chemical-looping applications. O2 uncoupling would most likely have been 
better if further oxidation to the pseudobrookite analogue (MnxFe1-x)2TiO5+TiO2 could have been achieved.  

On the contrary, all fresh samples with low Ti content consisted of bixbyite (Mnx,Fe1-x)2O3, which is the desired 
and predicted phase. No free titania could be detected in these samples. It seems reasonable to believe that it could 
be included in the bixbyite structure, but it is also possible that titania could be present in a separate phase but that 
the low concentrations makes detection by X-ray powder diffraction difficult. 

M49T was found to consist of pure pyrophanite MnTiO3. This is actually the intended reduced form, explaining 
the poor performance of this material. Obviously oxidation of MnTiO3 to higher oxidation states could not be 
performed at the experimental conditions used in this study. This seemingly disqualifies pyrophanite as oxygen 
carrier for chemical-looping applications. 

Of the used samples, all but two had essentially the same spectra as the fresh ones. The erring ones 
unfortunately had weak and blurry spectra which were hard to decipher. Used F25MT51 seems to have 
decomposed into two or more separate phases, possibly MnTiO3, FeTiO3 and Ti0.79Fe1.21O3. F46MT9 seemingly 
consisted of a combined cubic spinel phase, which was identified (by the software) as Ti0.5MnFe1.5O4. Used 
F61MT9 also had a few weak and unidentifiable peaks, possibly indicating formation of a new phase besides 
(Mnx,Fe1-x)2O3. 

5. Conclusions 

Seven combined oxide materials based on manganese, iron and titania have been examined as oxygen carrier for 
chemical-looping combustion with oxygen uncoupling. Particles with different compositions were manufactured 
by spray drying followed by calcination at 1100°C for 4 h. All fresh materials except pure pyrophanite obtained the 
desired phase composition, which was (MnxFe1-x)3Ti3O10 and (Mnx,Fe1-x)2O3 solid solutions. 

Basic performance was evaluated in a laboratory-scale fluidized-bed reactor at 850-1050°C, in which chemical 
looping was simulated by switching between oxidizing (5/95% O2/N2), inert (100% N2) and reducing (100% CH4) 
conditions. All materials were found capable of releasing minor amounts of gas phase O2 at relevant conditions. 
The equilibrium O2 concentration during fluidization with inert N2 was up to 0.9%, depending on reactor 
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temperature and particle composition. Most samples released O2 at higher concentrations at higher temperatures, 
but in one case more O2 was released at intermediate temperature. This is likely an effect of constrained oxidation 
as function of temperature. As for the reactivity with CH4, all combined (Fe1-xMnx)TiyO3 oxides worked quite 
satisfactory. A CH4 conversion of 80-99% could be achieved with most of the materials, again with different 
formulations being favored at different temperature levels. In general, fuel conversion was higher at higher 
temperatures. 

In general, the ilmenite-pyrophanite analogues (Fe0.33Mn0.67)TiO3, (Fe0.50Mn0.50)TiO3 and (Fe0.67Mn0.33)TiO3 

performed best at 1050°C, while materials with low titanium content such as (Fe0.33Mn0.67)Ti0.1O3, 
(Fe0.50Mn0.50)Ti0.1O3 and (Fe0.67Mn0.33)Ti0.1O3 worked better at lower temperature. The latter three all defluidized at 
1000°C or above. Pure pyrophanite MnTiO3 released very little gas phase O2 and hade very poor reactivity with 
CH4 and appears to be unsuitable as oxygen carrier. 

One material composition (Fe0.50Mn0.50)TiO3 was selected and further examined by experiments in a small 
circulating fluidized-bed reactor using natural gas as fuel. 12 h of operation were recorded and a CH4 conversion of 
60-80% was achieved at 910°C. The overall performance was fairly good, but perhaps not that good considering 
that similar fuel conversion have been achieved with ilmenite in a quite similar reactor setup[16]. 

It can be concluded that combined oxides obtained by partially substituting iron for manganese in the ilmenite 
structure may be feasible as oxygen carrier materials for chemical-looping combustion with oxygen uncoupling. 
Such materials are capable of releasing gas phase O2 and appear to have similar mechanical characteristics as 
ilmenite.  
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