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We introduce a two-channel tunneling model to generalize the widely used BTK theory of point-contact
conductance between a normal metal contact and superconductor. Tunneling of electrons can occur via localized
surface states or directly, resulting in a Fano resonance in the differential conductance G = dI/dV. We present
an analysis of G within the two-channel model when applied to soft point contacts between normal metallic
silver particles and prototypical heavy-fermion superconductors CeColns and CeRhlns at high pressures. In the
normal state the Fano line shape of the measured G is well described by a model with two tunneling channels and
a large temperature-independent background conductance. In the superconducting state a strongly suppressed
Andreev reflection signal is explained by the presence of the background conductance. We report Andreev signal
in CeColns consistent with standard d,2_2-wave pairing, assuming an equal mixture of tunneling into [100] and
[110] crystallographic interfaces, whereas in CeRhlns at 1.8 and 2.0 GPa the signal is described by a d,2_,2-wave
gap with reduced nodal region, i.e., increased slope of the gap opening on the Fermi surface. A possibility is that
the shape of the high-pressure Andreev signal is affected by the proximity of a line of quantum critical points that
extends from 1.75 to 2.3 GPa, which is not accounted for in our description of the heavy-fermion superconductor.
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I. INTRODUCTION

There has been considerable work exploring the complex
phase diagram of the heavy fermion CeRhlns [1-12]. As
function of pressure the antiferromagnetism (AFM) is sup-
pressed toward a quantum-critical state and superconductivity
(SC) appears. Early on it has been speculated that a quantum
critical point (QCP) is at the heart of electron pairing mediated
by strong magnetic fluctuations [13—16]. This scenario could
explain that above a critical pressure of about 1.75 GPa in
CeRhlIns specific heat and NQR measurements find a pure
superconducting phase, while below the AFM and SC coexist
[5.8].

The observation of power-law temperature dependence of
the spin-lattice relaxation rate and thermodynamic properties
down to 0.3 K in CeRhlns at high pressures has been taken as
evidence for nodal quasiparticle states and firmly established
the similarity between CeRhIns and CeColns [2—4]. In fact,
recent scanning tunneling spectroscopy measurements provide
direct evidence for nodal states in agreement with a d,>_,»-
wave superconducting order parameter in CeColns [17,18].
The additional observation of field-angle-dependent fourfold
oscillations in the specific heat of CeRhIns [11], similar to
CeColns [19-21], has been interpreted in favor of a d,>_,»-
wave gap. While the observation of fourfold oscillations and
sign reversal of the oscillation amplitude in the specific heat are
consistent with the d,2_,2-wave gap scenario for CeColns and
CeRhlIns within a two-band model of superconductivity, the
unique identification of d,2_>-wave symmetry at temperatures
above roughly one-fifth of the superconducting transition
temperature is complicated due to the competing effects of
Fermi surface anisotropy [22].

Unambiguous determination of the symmetry of an un-
conventional superconducting order parameter is difficult.
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However, one can obtain crucial information about the su-
perconducting gap from point-contact spectroscopy (PCS).
Under favorable conditions the line shape of an Andreev
reflection signal or zero-bias conductance peak may allow
further differentiation between possible pairing symmetries.
In many heavy-fermion materials this is further complicated
due to asymmetric Fano-like line shapes in the normal-
state conductance on top of a strongly suppressed Andreev
reflection signal [23-26]. This has been especially true for the
heavy-fermion superconductor (HFS) CeColns [27-32].

Phase coherence and Andreev reflection are considered
hallmarks of superconductivity, because they require the
existence of a Cooper pair condensate. Andreev reflection
occurs only when a quasiparticle retroreflects off a normal-
superconducting (NS) interface as a quasihole, while momen-
tum and charge are conserved and carried across the interface
by the Cooper pair. Thus detection of an Andreev signal is
a property unique to superconductors. The Blonder-Tinkham-
Klapwijk (BTK) theory describes the d1/dV curve in con-
ventional NS junctions by invoking a dimensionless barrier
strength parameter, which depends on the barrier potential
and the mismatch ratio of Fermi velocities [33]. However, for
HFS this formula predicts that normal-HFS (NHFS) junctions
are in the tunneling limit (low transparency), where Andreev
reflection cannot occur, contrary to experimental observations.
Nevertheless, the BTK formula has been widely applied to this
unphysical regime due to the lack of alternative expressions.
Numerous attempts have been proposed to correct the BTK
formula, but with limited success [34-38]. In Ref. [39]
we proposed a multichannel tunneling model for PCS to
circumvent the inherent shortcomings of the BTK theory. With
this multichannel model a consistent description of normal-
and superconducting state PCS data was possible in the HFS
CeColns.
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Recently, we developed a technique to measure the differ-
ential tunneling conductance G = d1/dV of a superconductor
at high pressure by PCS. Since the contact is formed gently
with a coating of silver particles, this technique is also called
in the literature soft point-contact spectroscopy (SPCS) to
distinguish it from conventional metal tip PCS (see, e.g.,
the review Ref. [40] and references within). This novel
SPCS technique allows the study of the pressure-dependent
electronic properties of normal metals and superconductors
as characterized by the dI/dV curve. In superconductors
it provides crucial information about the opening of the
excitation gap of Cooper pairs, where the PCS technique is
often the first measurement to determine the magnitude of the
superconducting gap.

In this paper, we use SPCS to address the question of
the pairing symmetry in CeRhIns. We ask if the pairing
symmetry is the same across the pressure phase diagram and
if it is the same d-wave symmetry as in the sister compound
CeColns. A direct measurement of the superconducting gap
structure near the coexistence region and deeper into the
superconducting dome might provide the necessary answers
toward the importance of the QCP around P = 1.75 GPa.

The paper is organized as follows. In Sec. II we introduce
the point-contact tunneling theory and two-channel tunneling
formulas for the normal and superconducting state. In Sec. III
we present theoretical results of three typical tunneling
regimes relevant to point contacts and analyze the SPCS
data of CeColns and CeRhlIns. The spectra are discussed and
interpreted in light of our two-channel model. We conclude
our results in Sec. IV.

II. POINT-CONTACT TUNNELING THEORY

We follow closely our earlier work in Ref. [39], except with
the simplification that here we consider only a single band
of itinerant electrons in the HFS, even though de Haas—van
Alphen measurements and electronic structure calculations
reveal several Fermi surface sheets [41—43]. The itinerant
electrons are characterized by Fermi surface parameters and
the localized surface states have a single energy level Ey. We
choose the Fermi level Ey = 0. One may justify the existence
of localized surface states through the mechanical process of
contact making between any metallic object and the system
of interest, since such a contact deforms the surface and thus
breaks its translational symmetry, or through the presence of
impurities. Finally, we allow the itinerant electrons to condense
into a superconducting ground state.

The standard tunneling Hamiltonian of the point contact
with a conductor, and in particular a heavy-fermion system
Huyr, is the combination of the tip (contact) and the transfer
(tunneling) processes between them: H = Hyr + Hip + Hr.
The tip is given by normal conduction electrons in the contact
and the tunneling Hamiltonian Hy describes all possible
transfers. In addition to the standard overlap integral between
the conduction band in the point contact and the itinerant
band of the conductor, ¢, there is finite overlap from the
point contact to localized states, #j,.. Weak interaction between
localized surface electrons and itinerant electrons is accounted
for through the scattering (hybridization) term v. The model
is illustrated in Fig. 1(a) and a detailed description is given
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FIG. 1. (Color online) (a) Cartoon of all contributions to the
standard tunneling Hamiltonian of a point contact with overlap
integrals (7,%0c,v). (b) Schematics of surface defects generated by the
PCS contact with atomically rough metallic tip and corresponding
wave function amplitudes |W,|*> of “sharp” and “broad” localized
defect states. The tunneling conductance will be governed by the
stronger overlap between the wave functions of the tip and sharp
defect states compared to broad surface states. Here we suggest that
the radial wave function of sharp localized states extends further
into the open space, normal to the surface of the (heavy-fermion)
superconductor.

in the Appendix. Finally, in order to attain a Fano resonance
in the conductance one needs to include quantum interference
between different tunneling paths, e.g., interference between
an electron from the metal tip to the localized state and on to
the itinerant electrons in the conductor versus a direct pathway
between contact and itinerant electrons [44].

A. Normal state point-contact tunneling

In Ref. [39] we derived an analytic expression for the
multiband tunneling current using the standard Green’s func-
tion method [45,46]. We showed that in Keldysh notation
the tunneling current of the point contact can be written in
a compact notation (see Appendix for further details):

e . v . v
(V)= ﬁTr 23[floc © Gloc,c - t]T)C o Gc,loc

+70Ghe —1 0 Geplk. 1))

Here the trace (Tr) is a shorthand notation for summation
over momentum k and spin o. The o-product indicates a
folding over common arguments, €.g., fioc © (V}loc,c(k,k/) =
D tloc,kk/(v;locyc(k’,k”), and [ ]¥ denotes the Keldysh com-
ponent of the matrix Green’s function. Notation for matrices
is as follows: a “hat” (%) denotes a Nambu matrix, while a
“check” (¥) represents a Keldysh matrix. In Eq. (1), Cv?i, j are
Green’s function components of the full matrix in reservoir
space (c =point contact, # =heavy conduction band of the
HFS, and “loc” is the localized surface state). The components
of G straddle the interface (e.g., éc,hvéc,lom etc.) and were
determined previously in the presence of a voltage bias across
the interface [39]. In the remainder of this work, we will use
these previously derived solutions.

In addition to proposing localized surface states in Ref. [39],
we hypothesized that the differential conductance of a PCS
contact is made of many quantum channels with sharp and
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smeared out localized states, as illustrated in Fig. 1(b). The
sharp localized states superpose to give the Fano line shape,
while the broad localized states contribute to the weakly
voltage-dependent background conductance. This approxima-
tion led us to the Fano expression within the tunneling model.
In this work we build on the results of Ref. [39] and start
with the general expression for the differential conductance,

G= dV’
2
] K(p,e)+ Go(V).

/ / —sech|: v
ns-p<0 2T
2

The momentum integration is performed over the half space
ns - p <0 with the superconductor’s surface normal ng
and Fermi surface momentum p. The parameter C, and
background function Gy(V) are determined by the large-
voltage scale of the conductance of the contact. The factor
Cy is proportional to the transparency D and the quantum
conductance of the single tunneling channel (G = 2¢?/h =
0.07748 1/kS2) times the total number of quantum channels of
the point contact. In SPCS experiments potentially more than
10* [~Go(0)/ G o] conductance channels contribute, though
far fewer, namely on the order of 10% (~C, /G ), dominate
the low-voltage tunneling d1/dV characteristics. In principle,
these unknowns could be obtained from a microscopic theory
of the distribution of sharp and broad localized tunneling
channels. However, for simplicity, we treat them as fit param-
eters and fit functions. Other contributions to the background
conductance Go(V) might come from additional conduction
bands, which are weakly coupled to the metal tip, or from
a strongly energy-dependent density of states near the Fermi
level. For simplicity, we will not consider these possibilities in
order to keep the problem tractable.

Following the notation of Ref. [39] the normal-state
conductance kernel is momentum independent and can be
written as

(grT + & — E)?
M4+ —-E?’°

where E is now the tunneling-renormalized value of the
localized energy level E, I is the half-width of the resonance,
and g is the Fano quantum interference parameter that con-
trols the Fano resonance line shape. These phenomenological
parameters can be extracted from the PCS experiment and
determine our microscopic model parameters,

K(p,e) = 3

412
R @
2t0c VT
E_E°_1+t2’ (%)
12+ v?
= —"l’c e (6)
focv? 1 —12
TR @

In Ref. [39], we compactified our notation and moved the
density-of-states factors into the tunneling elements [47]. Thus
the new and renormalized tunneling element 7 is dimension-
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less, while #,. and v have dimension ,/energy. This treatment
is equivalent to saying that the density of states at the Fermi
level is flat in both metal tip and heavy-fermion conductor.
While this approximation is typically justified for normal
metals, it is not obvious why it should hold for heavy fermions
with narrow f bands. This shortcoming can be overcome by
incorporating the energy dependence of the density of states in
the HFS following the work of Ref. [45]. However, we would
have to pay the price of losing the transparency and simplicity
of the normal-state conductance kernel in Eq. (3). Note that
in the limit of + — O the Fano kernel in Eq. (3) reduces to
that of a Lorentzian, which is maximum for resonant (Ey = 0)
tunneling.

In our analysis of the PCS conductance we use the formula
in Eq. (2) with the normal-state kernel in Eq. (3) to extract the
temperature-dependent phenomenological model parameters
and the temperature-independent background function Go(V)
from a set of PCS measurements at different temperatures.
Once the parameters in Eqgs. (4)—(7) have been fit, we map
them onto the corresponding microscopic model parameters.
Since D is only proportional to Cy times an unknown contact
area or number of quantum tunneling channels, the mapping
between (I',gr, E) and (t,#0c,v, Ep) at any given temperature
is not unique until the Andreev reflection signal is measured
in the superconducting state.

Another interesting aspect of the normal-state conductance
kernel in Eq. (2) is its invariance under the exchange of the
tunneling parameters #,. and v. Since the Eqs. (4)—~(7) are
symmetric under f,. <> v, it is impossible to distinguish an
adatom or impurity on the contact tip from one on the sample
surface.

B. Superconducting state point-contact tunneling

Entering the superconducting state the conductance is
significantly changed and highly nonlinear in voltage, as well
as depends on momentum p. However, it is still possible to
generalize the normal-state expression in Eq. (3) to include
superconductivity. After tedious but straightforward regroup-
ing of terms in the expression of the tunneling current, the
superconducting conductance kernel can be written in compact
form,

K(p,e) = (1 +|R,)grT. + & — E.)?
D; —D_(1-D)|R,|

, 8
“TALA +(1—D)R,BB_|? ®)
where we introduced the coefficients
2f10c Ut .+ 02
A =ex | Ey— ¢
+ =8 (o 112 +ll+t2
=e¢+E,+il,, )
20Ut 2. =7
B =¢x | E oc
e (0 1—12 e
=ex+ E,+ily, (10)
b 2.+ 02 2+ E 2110001 \
= )
* 1+ 72 FiEp
=T%,, + €+ Een), (11)
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and the momentum-dependent Andreev reflection probability

R[) = V(pinag));(poutag)’ (12)

which carries information about the superconducting conden-
sate via the coherence factors

—A(p)
,€) = s 13
Ve = A= Py (1
A*(p) "

7(p.€) = .
P e iVIAE - P

Here p is a momentum on the Fermi surface and A(p) is the
gap function. In the usual convention, pj, is the momentum
of a quasiparticle moving into the NS interface coming from
the superconductor and p,, describes the opposite process.
Since we assume specular reflection in all our calculations, the
“in” and “our” momenta are related by pout = pin — 215 * Pins
with the superconductor’s surface normal ng. At first sight
it appears that the conductance kernel K(p,e) diverges at
t — 1 because of coefficients B+ and Dy. However, this is
not the case because the factor (1 — D) = [(1 — 2)/(1 + t*)]?
regularizes the perceived divergence. Note that for A(p) =0
the superconducting kernel in Eq. (8) reduces to the normal-
state kernel in Eq. (3).

Unlike in the normal state the conductance kernel in the
superconducting state in Eq. (8) breaks the symmetry 1o, <> v,
because of the coefficients By or more precisely because of
the damping term I';,. Thus in principle it might be possible
to distinguish between an adatom or impurity on the contact
tip versus one on the sample surface by analyzing in detail the
width of the line shape of the Andreev reflection signal.

The scattering processes at the NS interface are illustrated
in Fig. 2. When transmission is not perfect, an incoming
electron from the metal tip with energy below the gap can
be reflected or retroreflected as a hole. The latter process
gives rise to excess conductance also known as Andreev
reflection signal, while the former accounts for the suppression
of the Andreev signal. Only the momentum parallel to the

reflected electron

p;
retro-reflected hole/ — " Rout

incoming electron

>
L

FIG. 2. (Color online) Cartoon of the quasiparticle scattering
processes at the NS interface between the metal tip and the
superconductor (a). Note that the velocity of the retroreflected hole is
antiparallel to that of the incoming electron, while both have the same
momentum (direction of arrow). The importance of the sign change of
the gap function, connecting trajectories of the scattered quasiparticle
in S with momenta p;, and poy, is shown for (b) isotropic s, (c) d,,,
and (d) d,2_,» wave gap functions A(p) relative to the surface normal
ng.
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interface is conserved (as indicated by the dotted lines) in
the scattering process. In addition, the momenta of the in-
and outgoing scattering quasiparticle in the superconductor
are related through the specular (perfect mirror) reflection
condition. It is this condition that can connect positive and
negative lobes of the superconducting gap function resulting
in a sign change of the Andreev reflection probability R ,. For
the given surface normal ng only the d,>_,> gap in Fig. 2(d)
is maximal pair breaking at the interface and leads to a sign
change in R, with significantly altered PCS conductance line
shape compared to s and d,, gap functions.

We wish to emphasize that up to this point the formulation
of our two-channel tunneling model is applicable to any
point contact between a metal tip and superconductor in the
presence of localized surface states and is not restricted to
heavy-fermion superconductors. However, we believe that in
compounds with d and in particular with f electrons the role
of localized surface states may be more prominent than usual,
because the radial wave functions of atoms with occupied d and
f orbitals extend much further into space than, for example,
when only lower shells are filled. In Secs. IITE and IIIF, we
will apply this general tunneling model to the Ce-115 family
of heavy fermions.

III. RESULTS AND DISCUSSION

The general conductance formula in Eq. (8) of the two-
channel tunneling model includes the three widely studied
regimes of (1) direct tunneling between the metal contact and
superconductor, (2) tunneling through the localized state into
the superconductor, and (3) interference tunneling through the
localized state and directly into the superconductor. The three
qualitatively different tunneling regimes will be discussed in
more detail below. In Figs. 4, 6, and 8 we plot the conductance
as stated in Eq. (2) setting the background G((V) = 0 when
we discuss the generic d1/dV at absolute zero temperature.

A. BTK line shape regime

For fi,c = v = Ey = 0, the expression in Eq. (8) reduces to
the standard conductance formula of BTK [33] and is equiv-
alent to Eq. (17) of Ref. [48] (after setting their parameters
0s = 6y = 0). The basic tunneling process is illustrated in
Fig. 3. The two extreme tunneling limits of low (D < 1 or
t <« 1) and high (D =1 ort = 1) transparency are shown for

PCS

SC

FIG. 3. (Color online) Cartoon of point-contact tunneling pro-
cess in the BTK regime with tunneling overlap integral 7.
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FIG. 4. (Color online) BTK differential conductance at T = 0 is
plotted for high ( = 1.0) and low (0.1) transparency with s-wave gap
Ay = 0.2 and in the normal state with Ay = 0 (dashed red line).

an s-wave superconductor in Fig. 4 as baseline for further
comparison with the more general tunneling cases below.

B. Lorentzian line shape regime

For ¢t = 0, the expression in Eq. (8) reduces to tunneling
through a localized state into the superconductor with a
Lorentzian line shape of the differential conductance. The
localized state can be either an adatom (impurity) of the su-
perconductor or the metal contact or in between. This scenario
is similar to tunneling into a single nonmagnetic impurity on
a metal surface, which has been studied before with scanning
tunneling spectroscopy [49]. The basic tunneling processes are
illustrated in Fig. 5, where three limits (a) v/, < 1 (adatom
or impurity atom on contact), (b) v = fi,. (impurity between),
and (c) v/t > 1 (impurity on SC) are shown. In contrast
to the BTK tunneling conductance curves in Fig. 4, we see
in Fig. 6 the effects of the Lorentzian line shape for both
resonant (Ey = 0) and off-resonant (Ey) = 3 > I') tunneling
into an s-wave superconductor. For resonant tunneling the
differential conductance is maximum and symmetric around
the zero voltage bias. The main results of the Lorentzian line

o E, tioc > tioc >
e,
¥ v @,
\"
SC SC SC

FIG. 5. (Color online) Cartoon of PCS tunneling through the
localized state with energy level E, into the superconductor (SC)
for the Lorentzian line shape regime with t = 0. We show tunneling
limits (@) foc > v, (b) fioe ~ v, and (¢) o K V.
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FIG. 6. (Color online) Lorentzian differential conductance at
T = 0 for resonant £y = 0 (top) and off-resonant Ey = 3 (bottom)
localized state with s-wave gap A = 0.2 (black solid line) and
normal state Ay = 0 (dashed red line). The columns depict from
left to right three characteristic parameter sets, i, = 1.38,v = 0.32,
toe = v = 1.0, and 1, = 0.32,v = 1.38.

shape are that (1) the position of the localized state cannot be
differentiated between the impurity close to the PCS contact
or close to the superconductor and (2) that significant Andreev
reflection (100%) is only possible for close to resonant
tunneling, Ey = 0, when £, ~ v. Otherwise, the differential
conductance curves exhibit the low-transparency or tunneling
limit with the BCS coherence peaks at the gap edge Ag.

We find by plotting the conductance curves in Fig. 6 that
the broken symmetry in the superconducting state, due to
the exchange of £, <> v, is most likely too subtle to be
detected within the range of parameters. The line shapes of the
conductance in the left and right columns of Fig. 6 are nearly
indistinguishable, and hence would require high-precision
measured PCS conductance curves to assign with confidence
the localized state to an impurity on either the tip or sample.

C. Fano line shape regime

The Fano resonance arises from the quantum mechanical
interplay between interfering tunneling paths via the localized
state and a continuum of itinerant states. Here we allow all
model parameters to vary. However, we limit our discussion
of Fano tunneling to the most relevant cases for PCS
measurements in HFSs. This scenario is similar to the Kondo
resonance, which has been studied by tunneling into a single
magnetic impurity on a metal surface [50]. In Fig. 8, we see
that significant Andreev reflection (100%) is only possible for
close to resonant tunneling and when direct tunneling is weak
compared to tunneling via the localized state 7 < fjoc ~ v.
Otherwise, the differential conductance curves are dominated
by the line shape of the Fano resonance with asymmetric BCS
coherence peaks at A.

In a series of theoretical works [51-55] the question of the
observed Fano line shape in d1/dV tunneling spectra of heavy
fermions URu,Si, and CeColns was addressed [18,56-59]. In
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FIG. 7. (Color online) Cartoon of PCS tunneling through the
localized state with energy level Ej into the superconductor (SC)
for the Fano line shape regime with # # 0. We show tunneling limits
(a) foc > U, (b) fioc ™~ U, and (C) foe K V.

particular, Wolfle and co-workers argued that hybridization
between itinerant conduction electrons and localized f elec-
trons will always generate a hybridization gap and that the
d1/dV characteristic will not show a Fano line shape, unless
strong correlations broaden the heavy quasiparticle states. In
that case, the inclusion of an electron self-energy fills in the
gap and results in a Fano-like line shape similar to a Kondo
impurity as observed in the scanning tunneling experiments.

On the other side, Yang [52] used the slave-boson mean-
field approximation to calculate the PCS conductances of
CeColns and CeRhlIns. Since he assumed a constant density
of states for both electrons in the normal metal tip and in
the hybridized light and heavy bands of the heavy-fermion
compound, he circumvented the hybridization gap dilemma
and found a Fano resonance. However, in order to fit the
experimental PCS conductances he then was forced to invoke
a complex Fano factor with an unphysically large imaginary
part. This model fit motivated us to construct a minimal PCS
tunneling model that shows both a Fano line shape and on top
of that Andreev reflection in the superconducting state.

D. Soft PCS measurements

In recent years it has been demonstrated that the soft
point-contact spectroscopy can be adapted to a high-pressure
environment [60,61]. Instead of the conventional PCS method
with a sharp metal tip, SPCS contacts used here are made by
dipping the end of a 25-um-diameter platinum wire into Ag
epoxy and attaching it to the [001] surface of the crystal. This
method has been successfully implemented for the study of the
superconducting order parameter of various superconductors
at ambient pressure (see the review Ref. [40] and references
within), as well as the hidden order and antiferromagnetic
phases of URu,Si, at high pressure [60,61], with the advantage
of reliable stability over a large temperature range.

Here we extend the SPCS technique to study the heavy-
fermion superconductor CeColns at ambient pressure as well
as perform pressure studies of CeRhlns. The single crystals
were mounted in a teflon capsule of a clamped toroidal
pressure cell, filled with glycerine-water fluid (3:2) as pressure
transmitting medium, which provides a very nearly hydrostatic
environment. The pressure at low temperature was determined
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FIG. 8. (Color online) Fano differential conductanceat 7 = 0 for
resonant £y = 0 (top) and off-resonant £y = 3 (bottom) localized
state with s-wave gap Ay = 0.2 (black solid line) and normal state
Ay = 0 (dashed red line). The columns depict three characteristic
parameter sets with increasing direct tunneling ¢ from left to right,
t =0.1,0.3,1.0 and #,,c = v = 1.0 otherwise.

from the resistively measured change in the superconducting
transition temperature of Pb. The differential conductance
G =d1/dV as afunction of bias voltage V was recorded by a
standard lock-in technique, with the sample biased positively
for all the measurements.

The superconducting transition temperatures of the single
crystals measured are T, = 2.3 K for CeColns, and T, ~ 2 K
for both CeRhlns at 1.8 and 2.0 GPa.

A visual inspection of the asymmetric line shape of the
SPCS conductances in Figs. 9 and 10 suggests that the point
contacts of both crystals are in the ballistic regime. In the
case of CeColns the in-plane resistivity is p ~ 3 ©2 cm and

AW———T——T 7T T T T T

dl/dVv [1/kQ]

FIG. 9. (Color online) Fitting the Fano line shape of CeColns
at ambient pressure in the normal state. The transparency D =
0.210 is in the tunneling rather than high transparency limit. The
solid (black) lines are fits with constant background conductance
Gy = 282.6 (k2)~!, which is shown as red-shaded background. The
contact’s pin code is (7, fioc, v, Eo) = (0.243,0.066 +/eV, —0.055 VeV,
—0.53 meV).
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FIG. 10. (Color online) Fitting the Fano line shape of CeRhln;
at 1.8 GPa in the normal state. The transparency D = 0.532 is
in the intermediate transparency limit. The solid (black) lines are
fits with background conductance G,(V), which is shown as red-
shaded background. The contact’s pin code is (0.270, 0.066 eV,
—0.065 VeV, 3.29 meV).

the mean-free path was estimated as £ ~ 81 nm [62], whereas
for CeRhlns the in-plane resistivity is p ~ 1 uQcm at 1.8
and 2.0 GPa [12]. Lacking an estimate for the mean-free
path in CeRhlns, we assume the same value as for CeColns.
Finally, we can verify that the contacts are in the ballistic
regime by using the definition of the Sharvin resistance
Rs = 16p£/(3md*) [63], which is given by Rs = 1/G.
The extracted diameters of the PCS contacts are d = 34
nm for CeColns, d = 19 nm for CeRhlns at 1.8 GPa, and
d =39 nm at 2.0 GPa. In summary, for all cases the ratio
(d/€)> < 1 is consistent with the assumption of ballistic
contacts. In particular, the characterization of our SPCS contact
for CeColns is in good agreement with conventional PCS
measurements by Park et al. [27], who reported the Sharvin
limit with an estimated upper size of d = 46 nm.

E. Normal state analysis

We begin by fitting the phenomenological model parame-
ters of the SPCS data sets for a series of different temperatures
to extract the temperature-independent background function
Go(V). A simple and plausible choice is Go(V) = Gy —
G tanh (V/V*). While an asymmetric background conduc-
tance is rare to occur in point-contact measurements with
conventional metals [64], it has also been reported for other
correlated electron systems like the high-temperature iron-
based [65—68] and cuprate superconductors [69,70].
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The phenomenological model parameters for CeColns and
CeRhlIns are given in Table I and the corresponding spectra are
shown in Figs. 9 and 10. For each individual d1/dV curve we
are able to obtain a good fit to a Fano resonance over the entire
measured voltage window. However, we note that the d1/dV
curves of CeRhIns at 1.8 GPa are only well fit within the
chosen voltage window when a voltage-dependent background
conductance Go(V) = Gg — Gitanh V/V* is assumed with
fit parameters G; = 11.0 (mV k2)~! and a rather large V* =
55.0 mV. Alternatively, a simple linear background function
would fit the data as well, as can be seen by the red-shaded
background curve in Fig. 10.

From this fit procedure we find that the Fano parameter g
and the line broadening I" are similar for both materials, while
the renormalized energy levels E of the surface state differ
significantly. Quantitatively similar parameters were obtained
for CeColns with conventional PCS metal tips analyzed in
Ref. [39]. In contrast, the PCS data by Rourke et al. [71] for
CeColns were most likely not in the ballistic regime, which
would explain the significantly different line shape of their
dl1/dV curves. Assuming a constant background conductance
for CeColns, we found the following in Ref. [39] at T ~ 5 K
for a gold tip: (E ~ 2 meV, I' ~ 13 meV, gr ~ —2.1, Cy ~
5.6 1/k€2, and Gy ~ 163 1/k2), and for a platinum tip: (E ~
2.5meV,I" ~ 17meV, qr ~ —1.8,Cy ~ 2.0 1/k2, and G ~
41 1/k€2); for details see Table I and Fig. 5 of Ref. [39].
The origin of the larger zero-bias background conductance
Gy ~ 282 1/kQ for SPCS contacts compared to 163 or 41
1/k€2 for conventional PCS contacts is unknown, but could be
due to a larger contact area of the micrometer-sized particles
in the silver paint, which is also expressed in the larger values
of C 0-

In the following analysis of point-contact differential
conductances, we introduce a pin code to describe each SPCS
fit at the lowest measured temperature. Ideally the pin code is
aunique sequence of tunneling model parameters (¢, oc,V, Eg)
characteristic of each point-contact tunnel junction. A similar
pin code scheme was introduced to characterize the number
of current carrying channels of one-atom sized contacts [72].
From the phenomenological model parameters in Table I we
extract at each temperature the microscopic model parameters
in the form of overlap integrals and the energy level of the local-
ized state by using Egs. (4)—(7). Unfortunately, in the normal
state the microscopic parameters ¢ and E are correlated; see,
e.g., Fig. 7in Ref. [39]. A unique determination is only possible
by fitting the Andreev signal in the superconducting state. The
unique pin codes of our samples are given in Table II with
the corresponding phenomenological fit parameters in Table 1.

TABLE 1. Fitting the phenomenological model parameters to the SPCS curves. Data for CeColns are obtained at ambient pressure and
T =1.31 K; CeRhIns at P =1.8 GPaand T = 1.16 K, and for P = 2.0 GPa and T = 1.18 K. For CeColns and CeRhlIns at 2.0 GPa the
background G((V) was modeled to be constant, while for CeRhlns at 1.8 GPa the functional dependence Go(V) = Gy — G, tanh (V/V*) was

assumed.

P E r Co Gy G, v
SPCS (GPa) (meV) (meV) qr [1/(k2)] [1/(k2)] [1/(mV k)] (mV)
CeColns ~0 1.1 6.9 —-1.9 21.7 282.6 0
CeRhlns 1.8 54 8.0 —-1.7 3.70 261.4 11.0 55.0
CeRhlns 2.0 5.8 14.0 —1.8 24.9 1117.1 0
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TABLEIIL. Pin codes of the soft point contacts. The uniqueness of
the microscopic parameters was determined by fitting to the Andreev
signal in the superconducting state, since in the normal state the
parameters ¢ and E, are correlated.

P Hoc v EO
SPCS (GPa) t (veV) (weV) (meV)
CeColns ~0 0.243 0.066 —0.055 —0.53
CeRhlns 1.8 0.270 0.066 —0.065 3.29
CeRhlns 2.0 0.253 0.096 —0.075 2.36

While the pin codes are quite similar for all three cases, we
cannot discern a simple trend with applied pressure or between
CeColns and CeRhlns. For example, we have no explanation
in terms of the bulk heavy-fermion state to why the tunneling
parameter ¢ decreases in CeRhlns from 1.8 to 2.0 GPa, while
hoe and v increase, or why the localized state Eq in CeColns
lies below the Fermi level in contrast to CeRhIns. On the other
hand, these apparent random changes in microscopic tunneling
model parameters corroborate our hypothesis that localized
surface states cause the Fano line shape in the d1/dV curves.
Whenever a point contact is formed surface defects are created
randomly leading to the scatter in model parameters observed.

F. Superconducting state analysis

In the superconducting state one can use the nonlinear
voltage dependence of the conductance to extract further
information about the remaining undetermined microscopic
model parameter, e.g., D (transparency) or ¢ (tunneling overlap
integral). This now uniquely determines all microscopic
parameters of the two-channel tunneling model.

As already discussed in Ref. [39], the PCS conductance
is sensitive to the transparency D and the position of the
localized state relative to the Fermi level. Tunneling through
the resonant state, £y = 0, enhances the effective transparency
of the junction, so that a contact with D < 1 has a conductance
similar to the BTK conductance of transparency D ~ 1.
Another crucial result of the two- or multichannel models is
that the conductance enhancement due to Andreev reflection
can be tuned to only a few percent relative to the normal-state
conductance versus the conventional 100% of the single-
channel BTK model. Note that the suppression of the Andreev
reflection signal in the HFS comes naturally about by including
the poorly understood background conductance Go(V).

In Fig. 11 we see good agreement between the measured
Andreev reflection signal and our calculation for CeColns
assuming d,>_,2-wave pairing with equal mixture of tunneling
into [100] (0°) and [110] (45°) interface orientations. An
s-wave gap cannot describe the measured differential conduc-
tance, nor can a d-wave with a five times steeper gap slope.
The angle dependence of the d-wave gap is shown in the inset.
The fitted gap amplitude of Ag = 0.6 meV of the standard d
wave is in excellent agreement with conventional PCS results
[39].

The equal-mixture approximation for tunneling into the
[100] and [110] crystal orientations needs some further
explanations. First, the conductance line shape is inconsistent
with dominantly tunneling along the [001] direction in the
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FIG. 11. (Color online) Fitting the Andreev signal of CeColns in
the superconducting state at ambient pressure and at 1.31 K with 7, =
2.3 K. We assumed isotropic s-wave gap (left) and d-wave gap (right).
The d wave is plotted for standard (black) and five times steeper (red)
slope of the gap at nodes with equal weight of tunneling into [100]
(0°) and [110] (45°) surface orientations. Inset: angle dependence of
gap function.

low transparency limit; see Fig. 4. Second, even with the soft
PCS method a metal tip or silver particle is pressed into the
sample, thereby creating sideway tunneling channels along all
possible in-plane interfaces. Third, since neither pure [100]
nor [110] conductance calculations agree with the dI/dV
curves (not shown), we performed a minimalist’s average over
all possible interface orientations by averaging only the two
extreme cases. For the [100] orientation no pair breaking of
the superconducting order parameter occurs at the interface,
while pair breaking is maximal for the [110] orientation. Of
course, more realistic tunneling models would have to include
an average over all possible orientations as well as the restricted
size of the tunneling cone. Since our simplifications already
result in good fits, we do not expect to see much quantitative
improvement by incorporating these details.

The situation is different for CeRhIns. In Fig. 12 we show at
the pressure of 1.8 GPa and at the temperature of 7 = 1.16 K
(T. ~ 2 K) a somewhat flatter Andreev reflection signal with
large gap Ao = 1.76 meV. The plateaulike shape of the d1/dV
curve appears to be more consistent with an isotropic s-wave
gap or modified d-wave gap with a five times steeper gap
opening than the standard d,_ 2-wave gap function. The angle
dependence of the d-wave gap is shown in the inset. Such a
modified d wave has a reduced nodal quasiparticle region,
but has the advantage that it still results in low-temperature
power laws compared to the fully gapped s-wave scenario. We
speculate that the reason for this Andreev reflection signal is
due to the proximity to a quantum critical state at this pressure.
At the pressure of 2.0 GPa and at T = 1.18 K (7. ~ 2 K),
where we are now deeper into the SC dome, we see in Fig. 13
that the Andreev reflection signal is rather more peaked, though
there is more scatter in the data around the zero-voltage bias.
Given the scatter in the conductance the Andreev reflection
signal is consistent with all three model calculations for either
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FIG. 12. (Color online) Fitting the Andreev signal of CeRhlns
in the superconducting state at 1.8 GPa and at 1.16 K with T, ~
2.0 K and Ay = 1.76 meV. We assumed isotropic s-wave gap (left)
and d-wave gap (right). The d wave is plotted for standard (black) and
five times steeper (red) slope of the gap at nodes with equal weight
of tunneling into [100] and [110] surface orientations. Inset: angle
dependence of gap function.

s-wave or standard or modified d-wave pairing symmetry with
large gap Ay = 1.38 meV.

A line of field-induced quantum criticality in CeRhlns
extends from 1.75 GPa in the zero-magnetic-field limit to
2.3 GPa at the superconducting upper critical field boundary
and may influence the Andreev signal. Since both CeColns
and CeRhlns are inherently multiband heavy-fermion super-
conductors, additional bands may play a more prominent
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FIG. 13. (Color online) Fitting the Andreev signal of CeRhlIns in
the superconducting state at 2.0 GPa and at 1.18 K with 7. ~ 2.0 K
and Ay = 1.38 meV. The contact’s transparency is D = 0.253, which
is in the tunneling rather than high transparency limit. We assumed
isotropic s-wave gap (left) and d-wave gap (right). The d wave is
plotted for standard (black) and five times steeper (red) slope of the
gap at nodes with equal weight of tunneling into [100] and [110]
surface orientations. The contact’s pin code is (0.253, 0.096 v/eV,
—0.075 vV, 2.36 meV). Inset: angle dependence of gap function.
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role due to the fine-tuning of Fermi surface nesting of spin
fluctuations. While our two-channel tunneling model can
account for the Fano resonance, its single conduction band
cannot fully capture the intricate interplay between AFM
and SC in a truly multiband picture. However, as we have
shown, within a single-band picture a d-wave gap function
with a modified slope at the nodes is sufficient to describe
the Andreev reflection signal in CeRhlns at high pressure.
Irrespective of the specific gap function chosen, we find
consistently for CeRhlns a gap amplitude A, that is more
than twice as large as in CeColns, thus placing CeRhIns into
the very strong-coupling regime with Ag/7, ~ 6 compared
to Ag/T, ~ 2.14 of a weak-coupling superconductor with
d-wave gap symmetry.

The effects of quantum criticality on the superconducting
pairing correlations are often discussed in the context of an
antiferromagnetic QCP within the Landau theory of order
parameter fluctuations [14,73,74]. More recently an alternative
scenario of local quantum criticality, namely, the critical
destruction of the Kondo effect, has been proposed to describe
w/T scaling and a jump in the Fermi surface volume of
several heavy fermions, for example, CeRhlns [75-77]. Such
a Kondo-destruction QCP was shown to lead to enhanced
superconductivity within a Bose-Fermi Anderson model and
therefore might hold the explanation for the drastically
enhanced superconducting gap amplitude A, in CeRhlns at
high pressures compared to CeColns.

IV. CONCLUSION

In summary, we have derived an analytic formula for
the point-contact differential conductance of a two-channel
tunneling model in the normal and superconducting state. Our
generalized two-channel tunneling model has the well-known
limits of point contacts both in the normal and superconducting
state. It is applicable to a wide class of materials and not
limited to heavy fermions. In the normal state the two
channels of localized surface states and itinerant electrons
interfere to create the Fano resonance. When direct tunneling
between the metal tip and (heavy-fermion) superconductor
vanishes and instead occurs via the localized state a symmetric
Lorentzian line shape is recovered. In the superconducting
state an Andreev reflection signal on top of the asymmetric
Fano resonance, which is on top of an additional large but
temperature-independent background conductance, is found
for model parameters in the low transparency regime. Low
transparency is expected between materials with large Fermi
velocity mismatch, as is the case for tunneling between normal
metals and heavy fermions. On the other hand, the low
transparency contact does not yield an Andreev reflection
signal in the widely used BTK theory.

We have also shown that the SPCS spectra are in quan-
titative agreement with conventional metal tip PCS data for
CeColns, further validating the application of soft point con-
tacts to heavy-fermion superconductors. Finally, in CeRhlIns
we found that superconductivity is consistent with model cal-
culations of single-band d,>_ ,»-wave symmetry, but the open-
ing of the gap at the nodes is drastically modified both near the
AFM-SC coexistence region and deeper inside the SC dome.
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The SPCS technique opens up the exciting possibility of
studying in detail the evolution of electronic gaps across a
quantum critical point with pressure as the control parameter.
Because of the intricate interplay between magnetism and
superconductivity in the coexistence region, as well as the
superconductivity at high pressures, yet in close proximity to
a QCP, a consistent and quantitative analysis of d1/dV curves
will require the inclusion of electron correlation effects into the
multiorbital, low-energy model Hamiltonian of heavy-fermion
superconductors.
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APPENDIX

In this Appendix we briefly construct the tunneling Hamil-
tonian of a point contact and derive the expressions for current
and differential conductance. A detailed derivation can be
found in Ref. [39]. From the outset we wish to emphasize that
our model is general and not limited to heavy-fermion systems,
although the importance of localized surface states caused by
the tip, when pressed into the sample, is most likely only found
in correlated electron systems with d and f electrons. On the
other hand, localized states due to adatoms on the surface or
impurities on the tip can be present in any experimental setup
either by design or accidentally.

Equation (1) is derived assuming the following Hamiltonian
describing the point-contact setup shown in Fig. 1(a):

Hiot = Hur + Hip + Hioe + Ht + Hiyp, (A1)
where

Hir = Y Enk)ch i + ARl l_, + He,
k,o

(A2)

describes the (heavy-fermion) superconductor including sur-
face scattering processes. We consider the correlated normal
state through an effective band dispersion &, (k) with renormal-
ized heavy electron masses and a possible superconducting
state with the order parameter A(k). For simplicity, we
approximate the HF by a constant density of states at the Fermi
level. This approximation can be relaxed if needed, but would
lead to more complicated expressions for the conductance.
The point-contact material is described by a metallic tip of
noninteracting electrons

7_{tip = Z Stip(k)e;ig €ko -

k,o

(A3)

We assume the tip to be a simple metal described by a
featureless density of states at the Fermi level. To capture
the Fano line shape seen in the conductance, we introduce a

PHYSICAL REVIEW B 90, 104512 (2014)

single localized surface state at ¢ = E(, which is described by

Hioe = Eo ) _dld,. (A4)

A generalization to many localized states with many different
energy levels can also be considered, but does not change the
key result of the existence of a Fano or Lorentz resonance. In
this model it is sufficient to treat the single localized state as

weakly coupled to the itinerant electrons in the heavy-fermion
conductor via

Hiyp = Z[vk,(,c,;d(7 + U;,g,a'dickaL (AS)
k,o
Finally, the tunneling Hamiltonian
Hr = Z[tk,ac;igeka + t/:geltgck(r]
k,o
+ ) Thockodl ko + by s0lodo] (A6
k,o

describes the tunneling from the tip into either the heavy-
fermion material or onto the localized state. We assume
for simplicity that momentum and spin are conserved
in a tunneling event. If needed, this constraint may be
relaxed.
The current across the contact can be calculated as
lippr = eWNappr) = & (Fr Niyuel), (A7)
where /\Aftip /HF 1s the number operator in the tip or in the heavy-
fermion material and e = —|e| is the electron charge. It is
straightforward to evaluate the commutator for the current
into the tip

Fip(t.1) = == 3 Mtk (el (D)t 1)
k,o

+ foesk.o (€], (D (1)) — Hoc.

The expectation values define the nonequilibrium Green’s
functions

(A8)

Gy plko K'a't.t)) = ilch 1, (Dcpua @), (A9)

where indices («,) enumerate the different reservoirs, i.e.,
heavy-fermion or tip material or localized state. The equal-time
current is then cast in terms of the Green’s functions

e v x . y
Lip(t) = ~7 Z[fk,aan,hf(kU;l) + fock,o Giploc(ko 5 1)
k,o

— 1 Grtaiplkos 1) — iy, Groe.ip(kos DIX. (A10)

This is the Fourier transform of the current equation (1) in the
main text. We include the Nambu-Keldysh-space to include
superconductivity; hence the checks on the Green’s functions
and tunneling matrices.

As the expression for the current involves Green’s functions
with arguments on either side of the point contact, we need
to evaluate these by knowing the Green’s functions in either
contact or reservoir or tunneling matrix elements. This is
usually done by writing a formal perturbation theory in
the tunneling elements and summing to infinite order. The
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summation is performed in the noncrossing approximation,
i.e., neglecting interference between distinct quasiparticle-
tunneling events by solving the Dyson equation in reservoir
space (the tilde on the Green’s function):

(A11)

The o product is shorthand notation for summation or inte-
gration over intermediate arguments (energy and momentum)
of the Green’s functions. This method is described in detail
in textbooks; see, e.g., Refs. [45,46] and for the current case
Ref. [39].
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It is important to stress that both the Fano line shape
of the conductance, Eq. (3), and the Andreev signal of the
conductance, Eq. (8), are results of the summation to infinite
order in tunneling processes and cannot be obtained in second
order perturbation theory. Formulating the charge transport
within the noncrossing approximation of the perturbation
theory allows us to go from the tunneling limit (second
order) to the open point-contact case (infinite order). Since
point-contact experiments considered in the main text involve
several hundreds to thousands of contacts in parallel, we
assume that they are uncorrelated and noninteracting. Finally,
the total current or conductance is computed as an average
over all possible tunneling channels.
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