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Abstract 
 

FPGAs are becoming increasingly attractive for use in space applications due to their 
reconfiguration and signal processing capabilities, as well as their increasing speed 
and capacity. Traditional SRAM-based FPGAs, however, are highly sensitive to the 
ionising radiation environment in space, making them prone to radiation-induced 
memory upsets. In this thesis, design techniques for mitigating such upsets are 
implemented, tested and evaluated, with the purpose of enabling a replacement of 
conventional radiation-hardened or antifuse FPGAs with Xilinx commercial SRAM-
based FPGAs. 
 
A test framework using an exchangeable payload is developed for this purpose and run 
on a Xilinx Virtex-5 FPGA. A payload application is selected and used to test and 
compare the gains and costs related to different levels of redundancy and different 
FPGA configuration memory scrubbing methods. In comparing soft error mitigation 
methods, test results for availability, resource usage, mean time to failure and faults in 
time are considered. Realistic satellite orbit and radiation scenarios are considered, 
and a complete example application is presented. 
 
The product of this work is a set of recommendations regarding the use of commercial 
SRAM-based FPGAs in space applications. 
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1 Introduction 

FPGA devices, or Field Programmable Gate Arrays, have increased steadily in 
capacity and complexity over the last decade. The re-programmable and 
reconfigurable capabilities of FPGAs, their suitability for signal processing applications 
and the increasing capacity of such devices have made them increasingly attractive as 
alternatives to Application Specific Integrated Circuits (ASICs) in space applications. 
With recent Static Random Access Memory (SRAM) based FPGA devices comprising 
up to 2M logic cells and thousands of I/O pins [1], it is no longer feasible to disregard 
FPGA technology for space applications, especially when considering the high non-
recurring engineering costs (NRE) involved in developing custom ASIC designs and 
the low production volumes typical for space applications. 
 
Operating in a space environment raises a number of issues that need to be taken into 
consideration when designing a system, among them the effects on digital systems by 
the ionising radiation environment in space. Radiation can negatively impact the 
lifespan, performance and reliability of a digital system or device[2], [3]. While there are 
radiation resistant FPGA devices on the market, these are far behind in performance 
and capacity compared to standard, commercially available SRAM-based FPGAs, as 
well as being overly expensive for many projects.  
 
While packaging and manufacturing techniques are important aspects of designing 
systems for space applications, it is often not the whole solution[2], and designing for 
fault-tolerance is becoming an increasingly important factor. The level of fault-tolerance 
required differs widely from application to application, as does the timing requirements. 
For simpler types of sensors and monitoring equipment such as cameras, real-time and 
availability requirements may be more relaxed. On the other side of the spectrum, high 
levels of reliability and hard timing constraints are necessary for mission critical 
systems such as on-board computers or communication. A wide range of applications 
exist in between these extremes, where SRAM-based FPGAs can prove useful. 
  

1.1 FPGA technologies 

There are three major types of FPGA technologies on the market: SRAM-, Flash- and 
Antifuse-based. SRAM-based FPGAs are reprogrammable, in theory an infinite number 
of times. Benefiting from SRAM and CMOS-process research in other parts of the 
semiconductor industry, SRAM-based FPGAs are at the forefront of FPGA technology 
in terms of integration level. An important factor is that SRAM-based FPGAs are 
manufactured in standard CMOS processes, giving the potential for high density 
devices. This allows for a large number and variation of resources to be available on-
chip, such as memory, hard DSP blocks and embedded multipliers. SRAM-based 
FPGAs are the most common type for commercial applications and have the highest 
capacity and performance of the FPGA technologies discussed here. However, SRAM 
is a volatile storage format, and SRAM-based FPGAs need to be reprogrammed at 
power-up. This requires an off-chip storage solution for the programming bit stream, 
commonly in EEPROM or Flash on the board, adding to the number of components 
and complexity of the system. The two major manufacturers of SRAM-based FPGAs 
are Altera and Xilinx.  
 
Compared to radiation-hardened processors conventionally used in space applications, 
FPGAs can constitute a highly versatile and high-performing alternative, especially 
considering the reprogrammability and capability for parallelisation. SRAM-based 
FPGAs also have the advantage over custom ASIC to be reprogrammable thus 
avoiding all development costs associated with ASIC development. 
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Flash-based FPGAs are a non-volatile alternative to SRAM-based FPGAs, based on 
so called floating gates. The non-volatile nature of flash enables live-on-startup FPGAs 
without the need for reprogramming, and the flash technology is intrinsically more 
resistant to radiation compared to SRAM. While flash technology has the advantage of 
smaller bit storage cells, requiring only one or two transistors to implement a 
configuration bit storage element compared to the five to six transistors used in SRAM, 
it lags behind SRAM in manufacturing process technology. Fig. 1 shows the principle 
structure of a memory cell in flash technology, using an isolated floating gate. Floating 
gates are programmed by tunnel injection, and then left in a floating state. This can be 
compared to the standard SRAM cell, illustrated by Fig. 2.  One of the drawbacks of 
Flash-based FPGA technology is the gradual degradation of configuration memory 
cells due to charge build-up when reprogramming, limiting the number of times it is 
possible to reprogram the FPGA. This number, however, is in the order of hundreds of 
times, and is typically not an issue for space applications. Absorbed radiation over time 
also leads to charge build-up in the floating gate, eventually rendering the storage cell 
unusable. This means that flash-based FPGAs in general have a lower acceptable total 
accumulated radiation dose compared to SRAM-based FPGAs, which is a highly 
relevant factor for space applications. Also, charge leakage is a problem in flash-based 
FPGAs, where charge can leak from the floating gate through the insulating material 
surrounding it. 

M1

CONTROL GATE

FLOATING GATE

N+ N-N+

GATE

DRAIN SOURCE

P-TYPE SUBSTRATE

 

Fig. 1. Flash Memory Cell 

Vdd
M2

WL

M4
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Fig. 2. SRAM Cell 
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SRAM FPGAs are sensitive to radiation-induced upsets in both their configuration and 
user memory [4],[5]). This requires a different approach to upset mitigation compared 
to ASICs, where the designer only needs to consider radiation-induced upsets in 
latches and user memory cells. Flash-based FPGAs are more resistant to radiation, as 
previously mentioned, but include SRAM-based components, mainly in user memory 
such as D-type Flip-Flops, which are sensitive to upsets. As a third alternative, 
Antifuse-based FPGAs have a distinct advantage in this area. Antifuse-based FPGAs 
have traditionally been used in space applications, and are based on one-time 
programmable antifuse connections. They are less susceptible to radiation-induced 
errors since the need for configuration bits for each individual interconnect point is 
eliminated, giving a sort of intrinsic radiation hardening for the configuration. This is 
also the antifuse technology’s greatest disadvantage: once a fuse is “blown” by 
supplying a large current during programming, it cannot be reprogrammed. This makes 
antifuse-based FPGAs one-time programmable devices. Antifuse FPGAs are also 
expensive in relation to the performance they offer. 
 
Table 1 gives an overview of the features of the different FPGA technologies 
discussed, and is meant as a quick comparison of the main features, advantages and 
drawbacks of the technologies. Here, capacity refers to the density and amount of logic 
that can be synthesised onto a single FPGA. It should also be noted that standard 
COTS SRAM-based FPGAs are generally cheaper and more available in comparison 
to their capacity. The work investigates the possibility of leveraging this cost-to-capacity 
ratio of SRAM-based FPGAs in space applications by using techniques for mitigating 
radiation-induced errors. Also, in Table 1, it might seem counter-intuitive that SRAM-
based FPGAs have the largest memory cell size of the compared technologies, but at 
the same time the highest device capacity. This is mainly because of the difference in 
manufacturing process technology between the categories.  
 

Table 1. Comparison of FPGA Technologies 

Feature SRAM Flash Antifuse 

Reprogrammable Yes Yes No 

Volatile Configuration Yes No No 

Live On Startup No Yes Yes 

Memory Cell Size Large Small-Medium Small 

Radiation Sensitivity High Low-Medium Low-None 

Capacity High Medium Low 

Reprogramming Speed Fast Slow-Medium N/A 

Total Dose Tolerance Medium-High Low High 
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1.2 Problem Statement 

The core aim of the work described in this report is to investigate the feasibility of using 
Xilinx’s commercial SRAM-based FPGAs in space applications, with respect to 
radiation-induced soft-error tolerance. Soft errors will be discussed in detail later in this 
report. The potential gains from using standard, commercial SRAM-based FPGAs 
rather than radiation hardened alternatives are higher capacity, better performance and 
lower cost. While these devices are used in space applications today, they are mostly 
part of non-critical systems, where temporary loss of data or reconfiguration downtime 
is acceptable. Radiation hardened versions of Xilinx SRAM-based FPGAs are available 
for Virtex-5 devices, but not for the Virtex-6 and Virtex-7 series. Previous generations 
of radiation hardened FPGAs from Xilinx have been proven in missions, notably in the 
NASA Mars Rover mission. However, the radiation hardened Virtex-5 devices are very 
expensive components.  
 

1.3 Scope 

The focus of this work is on Xilinx devices, mainly because Xilinx FPGAs are 
essentially free from latch-up effects up to a certain dose of radiation specified for the 
specific device. SRAM-based FPGAs are, as previously mentioned, manufactured 
using standard CMOS processes, and are typically one or more generations ahead of 
Flash and Antifuse FPGAs in terms of process node. Xilinx is also currently the market-
leading vendor for SRAM-based FPGAs in general, and for aerospace grade SRAM-
based FPGAs in particular. Altera currently has no radiation hardened products on the 
market. The suitability of Xilinx SRAM-based FPGAs will vary between applications, 
depending on the required level of fault-tolerance and availability, performance 
requirements and the power, size and complexity budget of the system as a whole.  
 
In determining the feasibility of using these devices in space applications, no one single 
mission profile or target application will be specified. Instead, the aim is to evaluate 
different mitigation techniques, on their own or in combinations, to form a general 
recommendation which will then have to be adapted to the target application and 
mission. As mentioned earlier, different missions and (sub-) systems have different 
tolerances for downtime and error rates. It should be noted that some (most) of these 
techniques introduce hardware overhead. Overhead could be in the form of resource 
overhead on the FPGA, or as added overall system complexity. This may limit the 
gains in capacity and performance to be had from using SRAM-based FPGAs. This 
work will use Xilinx Virtex 5 as a starting point when discussing FPGA architecture and 
mitigation techniques for soft errors. [6] gives an excellent overview of the available 
mitigation techniques as well as an introduction to SEU related error modes in FPGA. 
  



Page 

 13 

 

 

 
 

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space 

 

  Brosser & Milh 2014 

    

2 Background and Related Work 

This section will give a background of the theory used in this report. Models and 
expressions used in this report will be explained as well.  

2.1 Radiation 

Providing radiation tolerance for microelectronics is a big challenge, and an active field 
of research. Knowledge from different engineering disciplines needs to be applied in 
order to solve the problem as efficiently as possible. An introduction to radiation is 
provided in this section to give an understanding of the terminology and methods. 

2.1.1 Radiation types and measurements 

Radiation is common in space environments. When the energy transferred by incoming 
radiation exceeds the energy of a particular electron in an atom, it is called ionising 
radiation [7]. The name comes from the fact that exposure to this type of radiation may 
ionise the electrons in an atom. 

2.1.1.1 Common types of radiation 

Radioactive elements comprise nucleus which are unstable. An unstable nucleus 
decays over time to a more stable state. When such a nucleus decays, it moves from a 
state of higher energy to a lower energy by the emission of energy. This energy is what 
is referred to as radioactivity. Radiation can be divided into three parts; α- (alpha), β- 
(beta) and γ- (gamma) radiation. 
 
α -radiation is in essence the nucleus of helium. This type of radiation is charged and is 
therefore affected by magnetic fields, such as the magnetic field surrounding Earth. 
Heavier radioactive elements are often prone to emission of α-radiation. α -radiation 
loses energy rapidly when colliding with other materials. Therefore α-radiation has a 
range of a few centimeters in air and is easily shielded against even by thin shielding 
materials. α -particles can have energy levels of up to 7 MeV. 
 
Electrons, or positrons, are what constitute β-radiation. β –radiation is also affected by 
magnetic fields since it is charged negatively in the case of electrons and positively in 
the case of positrons. The energy of a β-particle is often much smaller than that of an 
α-particle. β -particles can also have different energies depending on the neutrino 
particle, which is emitted in conjunction with the β-particle. Most β-particles have 
energy levels smaller than 1 MeV. 
 
γ -radiation differs from the aforementioned types of radiation in that it can be 
perceived as radiation consisting of particles called photons or quanta but also as 
electromagnetic waves. In the case of γ-radiation being perceived as electromagnetic 
waves, it will have a wavelength   shorter than 10pm. It should be noted that there are 
electromagnetic waves with higher wavelengths which are still considered to be 
radiation, such as ultra-violet radiation (  < 120 nm) and x-rays (  < 200 pm) [8].The 
frequency of electromagnetic radiation is dependent on wavelength according to (1) 
where   is the wavelength,   is the speed of light in vacuum and   is the frequency. 

The energy of electromagnetic radiation can be calculated according to (2) where   is 

Planck’s constant and   is the energy.  

 

   
 

 
 (1) 

      (2) 
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γ -radiation also differs in the way it is absorbed by different materials. When a γ-
particle hits a material, it is slowed down due to the photoelectric effect, electron-hole 
pair generation and Compton scattering. The latter is the process where a photon 
collides with an electron bound in an atom releasing it from its bond. The release of 
said electron is what ionises the atom. γ -radiation has the ability to penetrate materials 
much deeper than the aforementioned types. The energy of γ-radiation is defined to be 
in the interval of 0.1-1.5 MeV [9]. 
 
Radiation originating from outer space is called Galactic Cosmic Rays (GCR). Roughly 
90% of GCR are protons, or hydrogen nuclei. Approximately 9% are α-particles and an 
additional 1% comprises electrons, β-particles and a small fraction of nuclei of heavier 
elements [2]. 

2.1.1.2 Measurements of radiation 

One type of measurement used in conjunction with radiation is the absorbed dose or 
total ionising dose (TID) [10].  The absorbed dose is often measured in Gray (Gy), or 
less frequently, rad. 1 Gray of absorbed dose corresponds to an absorbed energy of 1 
Joule per Kg. Where the dose of radiation has a biological significance, it is important 
to factor in the type of radiation in addition to the energy. This is done by the use of a 

radiation weighting factor   , which yields what is called the equivalent dose, as shown 
in (3), where   is the equivalent dose in Sievert and   is the absorbed dose in Gray. 
The equivalent dose has the same dimension as Gray which makes the weighting 
factor dimensionless. A higher weighting factor implies a higher biological hazard [9]. 
 

        (3) 
 
When different types of radiation hit materials, energy is deposited from the radiation 
into the material. A common way of modelling this energy deposition is through Linear 
Energy Transfer (LET) [9]. LET is defined as the energy loss per unit length per 

density, as shown in (4). A common unit for LET is 
      

  
 . 

 

     
  

  
   (4) 

 
LET is most commonly used to describe the energy deposition in different materials, 
but also in other contexts [10]. The LET for each particle has a unique dependence on 
its energy. There are a number of different particle effects which consume energy, but 
do not contribute to LET. Effects such as displacement damage, radiative losses, 
nuclear losses and bremsstrahlung will influence the amount of energy transferred 
through LET. Increasing the energy in particles might therefore not necessarily yield a 
higher deposited energy through LET [8]. Nuclei of heavier elements and α –particles 
usually have a higher LET [10], which is why they are often referred to as High-LET 
particles [11]. Low-LET particles comprise other types of radiation such as β- and γ-
particles.  
 
Effective linear energy transfer (      ) is sometimes used to calculate the potential 

    when the characteristics have been determined with a perpendicular particle 
beam. Since length of the travelled path increases with an increased angle of incident, 
there will also be a larger energy transfer.        can be resolved as a function of     

and the angle of incident   according to (5). 
 

 

        
   

       
 (5) 
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Fluence is a flux integrated over a given time interval. The particle fluence defines the 
number of particles passing through a cross section of a sphere in a given amount of 
time [2]. Particle fluence as a function of LET is often used to describe the distribution 
of the LET values of particles in specified locations or paths in space. These graphs 
are often referred to as LET spectra. 

2.1.2 Space environment 

Earth’s atmosphere is commonly divided into troposphere, stratosphere, mesosphere, 
thermosphere and exosphere, as shown in Fig. 3. The thermosphere is exposed to the 
full radiation spectra emitted by the sun. 35% of the radiation goes to increasing the 
heat of neutral particles in the thermosphere, and an additional 20% is consumed by 
oxygen as it gets dissociated. The remaining 45% of the radiation is reradiated as ultra-
violet radiation. Because of this, there are elevated radiation levels beyond the 
thermosphere [12]. 
 

Stratosphere Mesosphere ThermosphereTroposphere

11 km

50 km

85km

600km

Exosphere Inner belt Outer belt

1000 km

6000 km

13 000 km

60 000 km

Atmosphere Van Allen Belts

 

Fig. 3. The different atmospheric layers and Van Allen belts. 

Due to the magnetic poles on Earth, a magnetic field spans around Earth from the 
magnetic North Pole to the magnetic South Pole. As most radiation particles are 
charged, many particles become trapped in the magnetic field surrounding Earth. At 
specific distances from Earth, the radiation particles gather more densely. These fields 
are called Van Allen belts. There is an outer and an inner Van Allen belt, as shown in 
Fig. 4. Due to the nature of a spherical magnetic dipole, there will be a stronger 
magnetic flux closer to Earth which decreases with the distance from Earth. The 
concentration of protons decreases with increasing distance from Earth. The inner Van 
Allen belt is therefore dominated by protons while the outer belt is dominated by 
electrons [13]. 
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Fig. 4. The inner and outer Van Allen belts following Earth magnetic fields 

As mentioned in Sec. 2.1.1.2, particle fluence as a function of LET is commonly used to 
describe particle density and particle composition at different distances and orbits. The 
LET spectrum for circular orbits at six different altitudes above Earth is given in Fig. 5. 
In Fig. 5 it is illustrated that the fluence of lower LET particles decreases with an 
increasing distance from Earth. This is due to the fact that the concentration of protons 
decreases significantly over the distances shown. Particles with a higher LET occur 
more frequently at higher altitudes, which is caused by the increasing GCR levels. 
 

 

Fig. 5. LET spectrum for circular orbits at different altitudes.  

The altitude unit is 106m. 
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2.1.3 Satellite Orbits 

Depending on its orbit, a satellite will be subjected to varying levels of radiation. All 
spacecraft and man-made objects intentionally put into orbit are included in this 
category. A simplified definition of a satellite orbit is the path of a satellite around a 
point or body in space (here: Earth) naturally curved by the gravity of the body. Satellite 
orbits follow Kepler’s laws of planetary motion, and are typically elliptical. An orbit is 
characterised by a number of orbital elements, including its semi-major axis (a), 
eccentricity, inclination (i), argument of perigee (ω), true anomaly and the right 
ascension of the ascending node (Ω). These are illustrated in Fig. 6. 
 

i

apogee

ascending 
node

orbita
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a

Ω

ω
equatorial plane

 

Fig. 6. Satellite orbit measurements. 

Satellites in Low-Earth Orbit (LEO) typically operate at altitudes of a few hundred (400-
800) km, but the range includes all satellites at altitudes from 160 to 2000 km over 
Earth’s surface. A satellite in LEO experiences drag from the Earth’s thermosphere, but 
is also to a certain degree protected from deep space radiation by Earth’s magnetic 
field and the thermosphere. Satellites in LEO are subjected to the inner Van Allen belt 
radiation at points where the radiation belt is closer to Earth, such as when passing 
through the South Atlantic Anomaly (SAA) or during intense solar flares [14]. 
 
Satellites in Geostationary Orbit (GEO) have a constant altitude of 35,786 km above 
Earth’s surface and appear to be stationary over a point on Earth. A satellite in GEO 
will not be affected by the trapped protons in the inner Van Allen belt, but is otherwise 
totally exposed to the space radiation environment. 
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2.1.4 Radiation Characteristics of Devices 

The radiation in space can affect electronic systems negatively. When charge from 
radiation particles is deposited into a device, it has the potential of altering the internal 
state of, or damaging, the device. Such occurrences are referred to as Single Event 
Effects (SEE). 

2.1.4.1 Single event effects 

Radiation particles with sufficient LET have the potential of introducing an SEE. When 
a particle with sufficient LET hits a device, it ionises the atoms along its propagation 
path, as shown in Fig. 7. This ionisation results in a deposited charge which has the 
potential to cause an SEE. It is usually nuclei that have sufficient energy and LET that 
cause direct ionisation in devices.  
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Fig. 7. A particle striking a transistor 
and creating an ionisation path 
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Fig. 8. A proton striking a transistor and 
inducing nuclear reactions 

 
Protons, which in general have a lower energy and LET than nuclei, may also cause 
SEEs, although not by direct ionisation. Protons induce nuclear reactions which in turn 
have the potential of causing an SEE, as shown in Fig. 8. When protons collide with 
atoms, there is a probability of approximately 10-5 of a nuclear reaction occurring. 
Furthermore it is estimated that protons with energy levels of approximately 20 MeV 
deposit the largest amount of energy through indirect ionisation [2]. The proton fluence 
for circular orbits at different altitudes is shown in Fig. 9 where the altitude above Earth 
is given in km. As the proton flux is larger than CGR flux for the orbits at lower altitude, 
indirect ionisation through proton strikes are the dominating cause of SEEs for such 
orbits [2]. Fig. 9 shows that the fluence for 20 MeV protons is larger at an altitude of 
4000 km compared to 2000 km and 8000 km. 
 
Different types of SEEs can occur and they can be divided into Soft errors and Hard 
errors. Hard errors are permanently damaging effects and cannot be reversed by 
resetting or power cycling the system. Single event induced burnout (SEB) and Single 
event gate rupture (SEGR) are both examples of hard errors. These errors are likely to 
cause failures, either locally or for the whole device, as CMOS logic relies on 
complementary behaviour among transistors. 
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Fig. 9. Proton energy spectrum for different altitudes. 

Soft errors, on the other hand, could indicate inverted data in storage elements or 
another reversible effect. Single event upsets (SEU) is an example of such an error 
where it indicates an inverted value in a storage element. An SEU implies that a 
memory element has got struck by a radiation particle after which the incident flips a 
bit. Vulnerable storage elements could be a variety of different kinds. It should, 
however, be noted that different types of memories have different sensitivities to SEU.  
 
A special type of SEU is the Single Event Functional Interrupt (SEFI) which takes place 
when the basic functionality of the system is interrupted due to the upset. An example 
of an SEFI would be if an upset affected the clock tree, the communication interfaces 
or other essential parts. A Single Event Transient (SET) is an event where a particle 
deposits its energy into what becomes a time-limited pulse on a signal path or a wire. 
Depending on the instance of impact, an SET may be clocked into a memory element, 
or may be harmless if not stored or noted. 
 
There is also a category of errors which are usually considered hard errors but can be 
corrected with a power cycle if current ratings are not exceeded. Single Event Induced 
Latchup (SEL) and Single Event Induced Snapback (SES) are examples of these types 
of errors [2]. The different errors mentioned are concluded in Table 2. 
 

Table 2. SEEs divided into hard and soft errors 
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2.1.4.2 Measurements in device characteristics 

Cross section, often denoted  , is a measurement of the probability of an event or 
impact often used in particle or nuclear physics. For the purposes of calculating SEU 
rates, cross section is the probability of getting an SEU. Cross section is defined 
according to (6) where   is the number of observable events and   is the particle 
fluence. As mentioned in [2], fluence is a flux integrated over a defined time interval. 

The unit for fluence is therefore per unit area, commonly 
 

   . The resulting unit of cross 

section is simply cm2.  
 
A configuration of transistors where the respective outputs are connected to the 
opposite input is called a latch. By charging or discharging a gate in a latch, data can 
be stored. This makes the latch a basic memory element. When either gate of such a 
memory element is struck by a charged particle, a charge is deposited into the gate. 
Provided that the deposited charge is large enough, it will be capable of switching the 
state of the memory element. 

 
The lower bound for the charge required to switch a memory element is referred to as a 
critical charge and is denoted   . It has been suggested that the critical charge has a 
quadratic dependence on feature size, as shown in (7), where    is resolved in pC and 

  is given in µm [2]. As the critical charge decreases, the SEU susceptibility increases. 
 

 
A critical charge measurement can be used to calculate the corresponding LET. This 
particular LET is called linear energy transfer threshold (       and can be calculated 

as shown in (8), where    is the electron-hole pair generation energy constant which is 
specific to each material.   is the material density,   is the elementary charge and   is 
the particle travel distance. 
 

 
      can be used to make a first order approximation of the cross section. This type of 
approximation is known as the critical charge method. The principle of the critical 
charge method is to model the cross section as a step function according to (9) [15]. 
Alternatively, a more detailed cross-section data collection can be used in which all of 
the data points can be used. The latter method is often referred to as the integral flux 
method [2]. A comparison between the cross section of the two methods is shown in 
Fig. 10. It should be mentioned that similar methods exist which apply similar 
calculations but have different names. Among these are the methods which include the 
approximation of sensitive volumes. Sensitive volumes indicate what fraction of the 
device is susceptible to SEUs [2]. 
 

 

   
 

 
 (6) 

            (7) 

        
    

   
 (8) 

  
           
            

  (9) 
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Fig. 10. Typical cross section characteristics used in approximations. 

Regardless of which cross section model is used, the SEU rate can be calculated 

according to (10).   represents the number of SEU for the LET spectrum described by 
    .      represents the cross section of the device and the limits    and      define 
the interval for which LET needs to be considered. There are several other formulations 
to calculate the SEU rate similar to (10), for example the Bradford, Pickel and Adams 
formulations [2]. 
 

              

    

  

 (10) 

 

2.1.5 Total Ionising Dose 

The consequences of radiation are not solely limited to SEE. Over time an 
accumulative dose of radiation degrades the transistors of a CMOS circuit. 

2.1.5.1 Positive oxide-trap charge 

Standard MOSFETs are affected negatively by radiation. Radiation yields not only 
ionisation in transistors but also the creation of electron-hole pairs. Recombination of 
the electron-hole pairs occurs in parallel but a fraction remains nevertheless. This 
fraction is referred to as the electron-hole charge yield. Whenever electron-hole pairs 
emerge in an N-type MOSFET, the holes drift towards the channel at the         
interface while the electrons are drawn to the gate. The accumulated amount of holes 
in combination with a positive gate bias forms a positive oxide-trap charge. Trapped 
charges will influence the transistor channel by biasing it to conduct, increasing the 
static leakage current as illustrated in Fig. 11.  
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Fig. 11. Positive charge trapped in a positive oxide trap. 

2.1.5.2 Displacement damage 

Apart from the aforementioned possible effects, it is also possible for the crystalline 
silicon structure to take damage. Displacement damage is accumulated over time and 
means that atoms in the lattice structure are knocked out to leave vacancies and 
interstitial atoms behind. The consequence of displacement damage is the reduction in 
minority carrier mobility and lifetime. 
 
Non-ionising energy loss (NIEL) is defined as the rate of energy loss due to 
displacements of atoms. NIEL is a common measurement when discussing 
displacements effects. Included in NIEL are the nuclear elastic collisions, the Coulomb 

elastic collisions and the inelastic collisions. Displacement-damage dose (   ) is 
another metric with the unit of energy per weight, the same as Gray. The displacement-
damage dose can be calculated as the product of NIEL and particle fluence [16]. 
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2.2 FPGA Architecture and Sensitive Structures 

In Xilinx FPGAs, the basic building blocks are CLBs, Configurable Logic Blocks. In 
Virtex 5 devices, the CLBs are made up of two logic slices which are independently 
connected to the general routing on the FPGA and to a carry chain structure [17]. 
There are two types of logic slices in Virtex 5, SLICEL and SLICEM. SLICEL can be 
seen as the basic logic slice type, and contains four 5-input look-up-tables, or LUTs, 
together with four D-type flip-flops(DFFs) and multiplexers for routing purposes. The 
LUTs can implement any 5-input logic function. SLICEM slices contain shift register 
functionality and provide the option of using the LUTs as distributed user RAM, as well 
as the basic resources described for SLICEL slices. When used as distributed RAM, 
LUTs are configured as memories for user data storage. 
 
Other resources on the FPGA include Digital Clock Managers (DCM), Phase-Locked 
Loops (PLL), Block RAMs, DSP blocks, I/O blocks (IOBs) and buffers for connecting 
package pins. The FPGA resources are connected together by a configurable routing 
matrix. A common way of describing FPGAs is as configurable logic “islands” 
connected together by a “sea” of configurable routing paths. 
 
When synthesising an FPGA design, the circuit function defined by the designer is 
mapped to these resources by synthesis tools. This mapping makes up the 
configuration of the device, and is stored in the SRAM-based configuration memory. 
The configuration memory defines the function and operation of all the described 
resources as well as the routing and connections on the FPGA, and can be seen as an 
underlying device definition layer. Fig. 12 gives an overview of a generic FPGA island-
style architecture. The fold-out illustrates a simplified LUT-DFF pair inside a slide, 
inside a CLB. In this particular example the LUT implements an XOR function. 
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Fig. 12. FPGA Architecture Overview 
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Fig. 13 illustrates a LUT as a 4:16 decoder, and shows an illustration of the underlying 
configuration memory with each LUT bit stored in an SRAM cell.  
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Fig. 13. LUT Configuration 

The routing matrix and CLB-internal routing structures are made up of switchboxes, 
multiplexers, buffers and programmable interconnect points (PIP). All of these routing 
resources are configured by the corresponding bits in the configuration memory. Fig. 
14 shows a section of the FPGA with four CLBs and their local interconnect matrix. The 
top fold-out shows an example of a connection box, with the crosses representing 
active, “on”, PIPs. Each PIP is configured to be active or inactive by a single bit in the 
configuration memory. The bottom fold-out shows a switchbox, with fully configurable 
connections between all vertical and horizontal connection lines. 
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Fig. 14. Interconnect Matrix 
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SRAM-based FPGAs are programmed using a binary bit-stream, usually stored off-
chip. For space applications, this off-chip configuration storage is usually in the form of 
a radiation-hardened EEPROM or Flash. Since the SRAM-based configuration memory 
is volatile, the bit stream has to be reprogrammed onto the FPGA on startup and 
power-cycling.  The programming logic is responsible for writing the configuration 
memory via one of the configuration interfaces. The configuration interfaces allows 
programming, erasing, reading and verifying of the configuration memory, as well as 
performing functional and status tests on the FPGA. In Xilinx architectures, these 
configuration interfaces include JTAG, SelectMAP and ICAP [18]. 
 
JTAG is a serial, external interface available on almost all FPGA devices, commonly 
used for programming and debugging purposes. While JTAG is a comparatively slow, 
low bandwidth interface, it is easy to use and included in most IC debugging workflows. 
SelectMAP is a type of external parallel configuration port found on Xilinx FPGAs, and 
can provide a higher bandwidth compared to JTAG by using an 8- or 32-bit interface. 
Finally, ICAP, or Internal Configuration Access Port, is an internal configuration 
interface, similar to SelectMAP. ICAP can only be accessed by internal FPGA 
structures. 
 
In order to program, modify or access the configuration memory, instructions are sent 
through a programming interface to configuration registers on the FPGA. All types of 
reconfigurations are hence being made through instructions sent to the configuration 
registers as shown in Fig. 15. 

Configuration memory

Configuration registersConfiguration 
interface

FPGA

 

Fig. 15. Configuration Flow 

 
There are 20 configuration registers in a Virtex 5 where each register has a unique 
purpose. The registers linked to the fundamental functions of the configuration interface 
comprise the Command Register (CMD), the Frame-Address Register (FAR) and the 
Frame-Data Input- and Output Registers (FDRI, FDRO). Whenever a request is made 
or when a command is sent, it is sent to the CMD. When reading or writing to the 
configuration memory, the frame address is specified in FAR. Data is written to FDRI 
and read from FDRO.  
 
Every instruction sent to the configuration registers is made out of 32-bit words. 
Instructions can be sent as a type-1 or type-2 packet. A type-1 packet comprises a 1-
word header followed by a varying number of data words. A type-2 packet is only sent 
after a preceding type-1 packet, as shown in Fig. 16. Type-2 packets are used 
whenever a large number of words are sent. 



Page 

 26 

 

 

 
 

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space 

 

  Brosser & Milh 2014 

    

Type-1 Header

Type-1 Data

Type-1 Header

Type-2 Header

Type-2 Data

Type-1 Packet Type-2 Packet

 

Fig. 16. Configuration Packet Types 

 
In addition to the programming interface itself, it will be necessary to have a bit file and 
a PC compatible file downloader. After the design has been compiled, synthesised, 
placed and routed a bit file can be generated. The bit file contains all the data words, in 
sequence, required to program the FPGA through type-1 and type-2 packets. The 
largest packet in the bit file is a type-2 packet addressed to the FDRI containing all of 
the configuration frames. 
 
ICAP_VIRTEX5 is a Virtex 5 primitive that makes it possible to access the configuration 
registers from inside the FPGA. The signals included in the ICAP interface are shown 
in Fig. 17. There are two ICAP ports available in the Virtex 5 FPGA. Such ports are 
available from the FPGA and can be instantiated to gain access to the configuration 
registers. 
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Fig. 17. ICAP Interface 

 
The configuration memory in a Xilinx FPGA is divided into frames. Each frame 
corresponds to a portion of the programmable logic and routing, and is protected by a 
12-bit error correcting code (ECC). A 32-bit Cyclic-Redundancy-Check value (CRC) is 
used to verify the integrity of the whole configuration memory. A single frame would 
typically correspond to a configurable logic slice, with surrounding routing resources. 
When programming, each frame can be individually addressed. In Xilinx Virtex 5, a 
configuration frame consists of 41 data words (a word is 32 bits).  
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Xilinx FPGAs can utilise Dynamic Partial Reprogramming, DPR, to reprogram a portion 
of the configuration memory during normal operation, without interrupting the operation 
of remaining parts of the system. DPR can be used to reprogram the device on frame 
level, using the frame-level addressing mentioned earlier. The ability to use DPR offers 
great flexibility and gives FPGAs a unique advantage over ASICs and traditional 
microprocessors. As the content of each frame can be read back and verified by Error 
Detection and Corection (EDAC) circuitry, it is possible to detect errors in the 
configuration memory by using the ECC fields. ECC is further elaborated in Sec. 2.4.4. 
It should be noted that only the subset of the configuration memory corresponding to 
actually utilised resources will be significant for the design, with the remainder 
essentially being treated as don’t care. The device utilisation level is likely to be <100% 
for most applications. The used configuration bits and frames are referred to as 
sensitive bits and sensitive frames, respectively.  
 
Xilinx Virtex 5 FPGAs contain dedicated DSP circuitry, in the form of DSP48E slices. 
Fig. 18 shows a simplified view of a DSP48E slice, featuring a 25x18 multiplier, internal 
pipelining registers and an arithmetic unit. DSP blocks are hard ASIC blocks embedded 
in the FPGAs array of programmable logic, and are much more area efficient compared 
to soft logic implementations of the same functionality [19]. As such, DSP blocks are 
not defined by an underlying configuration layer. The DSP48E is well suited for 
common DSP operations such as multiply-accumulate. An interesting feature of 
DSP48E is its run-time configurability, allowing the DSP slice functionality to be 
modified during operation, and even from cycle to cycle, through a set of control 
vectors (OPMODE and ALUMODE). These can not only be set at design time, but 
rather changed dynamically during run-time. The configuration vectors can be 
synthesised as constants or as signals originating from other parts of the system.  DSP 
slices are arranged on the FPGA so that they can be cascaded through the use of fixed 
carry and shift lines to create wider operators than what would fit into a single DSP 
slice. 
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Fig. 18. DSP48E Slice  
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Block RAM, or BRAM, in Virtex 5 are made up of 36 kB SRAM memory blocks. These 
blocks can be cascaded and divided into a number of different configurations. For 
example, a single 36kB block can be used as a 36kx1 RAM, or as two functionally 
separate 18kx1 RAMs. It is also possible to create wider or larger RAM blocks by 
cascading BRAMs together. Fig. 19 shows a block diagram of a BRAM. An interesting 
feature is that the BRAM is dual-port, allowing access to both ports individually with 
each port having its own clock, address and enable signals. 
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Fig. 19. 36kB BRAM 

The FPGA resources of a design can be grouped into categories roughly according to 
the division discussed earlier. In this work, a distinction is made between Configuration, 
User Data and Architectural elements. The configuration group comprises all logic 
functions and routing controlled by bits in the configuration memory, such as LUT 
content, PIP connections and MUX control signals. This group determines the function 
of the FPGA as programmed by the designer. 
 
User data is the dynamic memory content of storage elements, and is commonly read 
and written during normal operation. The content of these elements is user defined 
during operation, rather than programmed into the configuration memory. This includes 
DFF content, BRAM content and distributed RAM synthesised as LUTs.  
 
Finally, architectural elements are the group of FPGA control elements mentioned 
earlier, including programming logic (JTAG, SelectMAP, ICAP), clock distribution and 
management, reset circuitry and PLLs. These functions are essential for the operation 
of the FPGA.  
 
The majority of bits in an FPGA design mapping are configuration bits. The exact ratio 
of configuration to user data bits will depend on the application implemented in the 
FPGA. The amount of user data bits will depend on the utilisation of DFFs, BRAMs and 
distributed RAM in the application. A majority of the configuration bits will correspond to 
PIP and MUX control bits; in [20], [21]) this fraction is estimated to 80%, and in [22] to 
90%. 
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Certain FPGA elements overlap between categories. For example, DSP48E slices in 
Virtex 5 would be considered here as partially belonging to configuration and partially 
to user data. This is because cascading and routing of DSP slices is defined by the 
configuration memory, while control signals and internal pipeline register contents are 
user memory. 
 
Fig. 20 gives a graphical representation of the described FPGA element grouping. 
Specific SEU error modes for each of these categories will be discussed in Sec. 2.3. 
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Fig. 20. FPGA Resource Groups 
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2.3 Single Event Upsets in SRAM-based FPGA 

As with all SRAM-based electronics, SRAM-based FPGAs are susceptible to radiation-
induced upsets [4]. The FPGA resources discussed in the previous section are all 
vulnerable to radiation-induced upsets. In this work, focus is put on soft errors, namely 
SEU and SET effects. For the purposes of this work, an SEU can be defined as a 
radiation-induced upset that causesx§ the state of a memory cell to change, from 1 to 0 
or from 0 to 1. This is also informally known as a bit-flip. SETs are transient glitches on 
transmission lines or in combinatorial logic. Depending on the duration and amplitude 
of these glitches, they may lead to errors. SEUs are unpredictable and random by 
nature [2]. While one can estimate the approximate SEU rate, there is no way of 
predicting exactly when an SEU will occur. This section will discuss and categorise the 
different possible SEU error modes in Virtex 5 FPGAs, using the same notations and 
classifications as found in [6] and [4]. 
 
SEUs can result in a number of error modes in different parts of the FPGA. It should be 
noted, as discussed earlier, that not all SEUs will lead to errors, depending on the 
device utilisation level. Even in an application that uses 100% of the resources, not all 
configuration bits will be significant. In [23], the authors present a configuration memory 
sensitivity analysis for a typical FPGA application, comprising a soft-core processor, a 
bus structure and peripherals. The application uses 46% of the slices in the FPGA. It is 
found that for the example application discussed, only 14.16% of the configuration bits 
are sensitive bits with respect to SEUs, but that 84.93% of the configuration frames are 
used. This suggests that a majority of the configuration frames are under-utilised, 
which likely depends on the synthesis and Place and Route (PAR) tools optimising for 
performance. The authors also find that, for the particular application discussed, a 
majority of the sensitive configuration bits control interconnects and routing, as 
expected.   
 

2.3.1 Configuration Memory Upsets 

Configuration upsets occur when there is an SEU in an FPGA configuration memory 
bit, affecting the LUT content, I/O or routing. Upsets in the configuration memory are 
the dominant issue when discussing SEUs for FPGAs, with the majority of significant 
SEUs affecting the configuration memory [20]. This can be explained by the simple fact 
that there are a larger number of configuration bits compared to user data and 
architectural element bits.  
 
Configuration upsets are static errors, as they will not disappear without repairing the 
configuration memory. Repairs are carried out by reconfiguring the frame containing 
the error. Three types of configuration memory upsets are discussed here: Routing, 
Logic and I/O errors. The sensitivity of the configuration memory is highly dependent 
on the application and the PAR policies applied. As the majority of configuration 
memory bits control routing, routing errors are likely to be the most common SEU effect 
[20]. The exact ratio will depend on the application implemented in the FPGA and the 
resources used. 
 

2.3.1.1 Routing Upsets 

SEUs can affect three categories of routing elements: PIPs, MUXes and Buffers [4].  
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2.3.1.1.1 PIP Errors 

PIPs are simple on/off wire connections between two end-points. The on or off state of 
a PIP is controlled by a single configuration bit. An SEU affecting a PIP configuration 
can create an unwanted open or shortened circuit. An open circuit may disconnect two 
significant modules in the design, while a shortened circuit can create bridging effects, 
connecting together two modules that are designed to be logically separate. Fig. 21 
illustrates an SEU that causes a shortened PIP connection.  

B
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Original PIP Configuration

B

1

ON

A

Upset (Shortened) PIP

 

Fig. 21. Shortened PIP Error 

2.3.1.1.2 MUX Select Errors 

Multiplexers are widely used in FPGAs, for example to route signals within CLBs. Each 
MUX is controlled by select signals which are defined in the configuration memory. An 
SEU in a configuration memory cell defining a MUX control signal will cause a MUX 
routing error. Fig. 22 shows an example of an SEU in a MUX control signal.  
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Fig. 22. MUX Select Error 
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2.3.1.1.3 Buffer Control Errors 

Buffers can be seen as on/off switches to control if the input drives the output wire or 
not, and are often used for clock nets, I/O pads and bidirectional connections. An SEU 
in a buffer control configuration bit can lead to I/O direction errors or potentially driving 
two signals onto the same internal wire. 
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Fig. 23. Buffer Control Error 

 

2.3.1.2 Logic Upsets 

Logic upsets in the configuration memory are SEUs affecting the LUT content or 
control bits. This category also includes control bits for hard blocks such as DSP slices 
or BRAM.  
 

2.3.1.2.1 LUT Content Errors 

LUTs are used to implement common combinatorial logic. When implementing a logic 
function, a LUT functions as a mapping from the inputs to a single binary value stored 
in the configuration cell corresponding to the pointed-out value. This is the common 
use of LUTs. An upset in the configuration memory defining the LUT content will give 
an incorrect output when the inputs to the LUT are set to access the affected bit. This 
causes the logic function implemented in the LUT to be something different than the 
function specified by the configuration bit stream. Fig. 24 illustrates an SEU in a 4-input 
LUT implementing an XOR function. 4-input LUTs are used here for simplicity and 
illustrational purposes. After the upset, the particular input combination corresponding 
to the upset bit will no longer produce the correct output. However, the remaining 
unchanged bits will still produce the correct values. This can make LUT content errors 
difficult to detect based only on their output. In practice, this will manifest as an 
incorrect value produced by the combinatorial logic, which may later be clocked into a 
synchronous element as user data, be used as a control signal to another FPGA 
element or be used as an output signal from the FPGA. 
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Fig. 24. LUT Content Error 

2.3.1.2.2 Control Errors 

Control bits are used to determine the usage of multi-functional blocks, such as LUTs 
and DSP slices, for cascading structures and internally in CLBs. For example, as 
mentioned earlier, LUTs can be used to implement combinatorial logic, shift registers or 
distributed RAM. The behaviour of a particular LUT is set by control bits in the 
configuration memory. For example, an SEU in a control bit can cause the LUT to be 
reconfigured from combinatorial logic to a distributed user RAM. It should be noted that 
not all LUTs can be configured as distributed RAM or shift registers [17]. In Xilinx Virtex 
5, SLICEM logic slices can be configured in this way, while SLICEL lack this flexibility. 
BRAMs are also controlled by a number of control bits determining the behaviour of the 
BRAM, and can for example make the BRAM inaccessible, or reconfigure the BRAM to 
use a different access width.  
 
In this work, we also consider upsets in fixed DSP block control signals and in carry 
chain structures to be control bit errors. The arithmetic carry chains are generally not 
accessible by the user from a high-level HDL description, but rather inferred by the 
synthesis tools. DSP control signals can be fixed by the configuration or, in the case of 
Xilinx DSP48, be set dynamically by the user.   

2.3.1.3 I/O Upsets 

As FPGA I/O blocks (IOB in Xilinx terminology) are configurable to work as inputs, 
outputs or bidirectional buffers, they make use of configuration bits that are sensitive to 
SEUs. A faulty I/O block configuration can lead to incorrect I/O behaviour as seen from 
outside the FPGA, or it can potentially have damaging effects on the system. In Xilinx 
IOBs, a single-bit error will not cause a damaging error. 
 

2.3.2 User Data Upsets 

User Data upsets are non-permanent (transient) errors in user data bits, such as SEUs 
in DFF, BRAM or distributed RAM content. As these errors occur in memory that is 
naturally read and written during normal operation, they may be overwritten before 
propagating further by introducing incorrect data into later stages. If the stored user 
data is used as control signals to other components in the FPGA, such as a DSP48E 
slice, it can also corrupt the soft configuration of those components. As user data is not 
defined by the configuration bit stream, upsets may be difficult to detect, as it may not 
be possible to distinguish between a computational error and a user data SEU.  
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2.3.2.1 DFF Upsets 

The basic error mode for DFFs is a change in the state of the bit held by the DFF, later 
potentially propagating through the data path. As DFFs are used in basic design 
elements, this can also cause incorrect behaviour in for example clock transitions, shift 
registers or FIFO structures. SETs can cause user data errors if they occur on a 
transmission line or in combinatorial logic and later are clocked into a DFF. Fig. 25 
shows an example of an SET affecting a transmission line in combinatorial logic, 
resulting in a glitch which is later clocked into a DFF. In this example, the output of the 
DFF is incorrectly changed to a logic 1. 
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Fig. 25. Single Event Transient 

 
 
There is a possibility of an SET input causing a glitch that violates the setup and hold 
times of the DFF. In a worst-case scenario, this results in the DFF being put in a meta-
stable state. Not all SETs are propagated and clocked into synchronous elements, as 
logical, electrical and clock window masking effects apply. That is, a glitch on a 
transmission line may be logically masked by the combinatorial logic, it may be too low 
in amplitude or width to be significant, or it may not overlap with a positive clock edge 
on the synchronous element. 

2.3.2.2 RAM Upsets 

RAM upsets are SEUs in BRAM or distributed RAM, resulting in incorrect data being 
stored. There is also a possibility of SETs on enable or select lines which may result in 
corrupted data being clocked into user memory. No separation is made here between 
SEUs directly affecting a user data bit and SETs resulting in incorrect user data. User 
memory in RAM blocks can be protected by the use of ECC, as will be discussed in 
Sec. 2.4.4.3. 
  



Page 

 35 

 

 

 
 

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space 

 

  Brosser & Milh 2014 

    

2.3.3 Architectural Upsets 

The case of an SEU affecting configuration bits corresponding to system-critical FPGA 
control elements is called SEFI, as mentioned in Sec. 2.1.4.1. SEFIs are SEUs that 
affect the basic functionality of the FPGA, and include SEUs in programming logic 
(JTAG, SelectMAP and ICAP controllers), reset nets and clock resources, as well as 
their associated control registers. An SEFI can render the device unusable. SEFIs 
usually require a full reset and reconfiguration of the FPGA [4]. Since these system-
critical structures are small in area and use few configuration bits compared to the rest 
of the sensitive bits in the FPGA, SEFIs are far less common than configuration and 
user data upsets.  
 
If the programming functionality is affected by an SEFI, it can produce incorrect reads 
from or writes to the configuration memory, or prevent programming all together. SEFIs 
can occur in the control state machines or in routing of a programming interface. Since 
the programming interfaces have functionality to disable I/O blocks while 
reprogramming, this may affect outputs from the FPGA. SelectMap, JTAG and ICAP 
are all susceptible to SEUs. An SEU in a Delay Locked Loop (DLL) can make the clock 
signal unsynchronised with respect to output signals from the FPGA or lead to internal 
clock skew. The clock net in general is susceptible to SEUs. For example, an SET on 
the clock net or clock buffers may cause unwanted or incorrect clocking of the circuit. 
Keeper circuits are used to generate constant 1’s or 0’s used in the design, and are 
included as fixed circuitry in the FPGA architecture, utilising unused inputs to a logic 
block. An SEU can flip the value held by a keeper. An SEU (or SET) in the reset net of 
an FPGA can lead to a deconfiguration of the device, or an inadvertent or unexpected 
reset. In a worst-case scenario, it may affect the whole reset functionality of the FPGA. 
 
The control elements of a Xilinx Virtex 5 FPGA use a number of control and status 
registers. All commands executed when programming, reading and checking the status 
of a device are made through these registers. These include among others general 
control registers, CRC registers for readback, Frame Address Register and Watchdog. 
An SEU in these registers may affect the ability to perform readback from the device, 
cause configuration bits to be written to an incorrect frame address, or cause a reset of 
the device. A full list of the available configuration registers and their function is 
provided in [18]. As these registers are architectural features whose implementation is 
not under the direct control of the user, errors may be difficult to detect other than via 
the observation of incorrect behaviour from outside the device. 
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2.4 SEU Mitigation Techniques 

The concept of fault tolerance is a wide topic with many different combinations of 
implementations. In order to understand the concepts involved in fault tolerance, it is 
necessary to understand the chain of events that lead to a failure, as shown in Fig. 26.  

2.4.1 Fault tolerance definitions and concepts 

A Fault is the cause of an error. It could be an event, a bug, a faulty circuit connection 
etc. An Error is what is directly affected by the fault such as an erroneous output, a 
non-functioning module or a faulty state. A Failure is when a service is not delivered or 
when it does not comply with the specification. A program which fails to deliver a value 
or a circuit which fails to write an output are both examples of failures. There are a 
number of different failure modes which are commonly used: 
 

 Value failure – An incorrect value is delivered by the service 

 Signalled failure – A failure signal is provided by the service 

 Timing failure – A result is delivered too early or too late by the service 

 Silent failure – No result is delivered by the service 
 
 

Fault Error Failure

 

Fig. 26. Failure Chain 

 
Two different concepts emerge when talking about fault tolerance. Fault tolerance is to 
avoid failures through the tolerance of errors. This means that the fault tolerance needs 
not to avoid faults itself but to stop errors from causing failures. Error masking is a 
common implementation used to provide fault tolerance. Fault prevention, however, is 
to prevent or limit the occurrence of faults. There is therefore no inherent tolerance 
when talking about fault prevention. 
 
There are a number of different ways to implement fault tolerance. The most common 
method is to use some type of redundancy which can be further divided into three 
categories: 

 Voting redundancy  

 Standby redundancy 

 Active redundancy 
 

Voting redundancy is when errors are masked through majority voting. The most 
common type of voting redundancy is Triple Modular Redundancy (TMR). TMR for 
SRAM-based FPGAs will be discussed in detail in later sections. Majority voting 
requires      units to tolerate   simulataneous faults. It is possible to run the system 
without an interrupt in the presence of a fault. Voting redundancy also has no 
requirements regarding failure mode, due to the fact that a differing result will be 
masked out regardless of failure cause. Voting redundancy leads to a relatively large 
added area overhead. Since the overhead area from added error mitigation circuitry in 
SRAM-based FPGAs itself is sensitive and has a failure rate, the overall gained 
reliability is reduced. This is an important aspect to consider when selecting a fault-
tolerance scheme. In fact, some mitigation approaches for FPGA actually increase the 
overall SEU sensitivity, as discussed in [24].  
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Standby redundancy is the concept of having one primary unit and several spare units 
in standby. This type of redundancy works under the condition that the active unit 
becomes subject to a detectable value failure, a signalled failure or a silent failure. 
There is a delay during reconfiguration since all of the tasks need to be relayed to a 
spare unit. Standby redundancy requires     units to tolerate   simultaneous faults. 
 
Active redundancy is the configuration in which two or more active units work in parallel 
to produce replicated results. This configuration will also only work for a detectable 
value failure, a signalled failure or a silent failure. Similarly to standby redundancy, 
active redundancy setups require     units to tolerate   simultaneous faults. 
 
In the case of a fault induced error, the error may either propagate to adjacent parts or 
stay contained. Parts of a system which are capable of causing a failure for the whole 
system are called single points of failure. A typically desirable property of fault tolerant 
systems is a minimal number of such points of failure. A part of the system which is not 
a single point of failure can therefore be faulty without causing the system to fail. This 
means that the fault is limited to the node or component. The part of a system to which 
the fault is confined is called a fault containment region. It is of importance to have 
small fault containment regions in order to tolerate faults efficiently. 
 
When looking at a system as a whole it is often useful to be able to model and simulate 
the reliability and behaviour. This is important when planning and designing a system 
to be able to implement the most efficient fault tolerant method. With known component 
failure distributions, it is possible to calculate metrics such as mean time to failure 
(MTTF) and the probability of the system working at a given time.  
 
The lifetime of a component can often be modelled by the use of known distribution 
functions. More specifically, a probability density function describes the relative 
probability of an event. The probability density function is often denoted     . A 
distribution function, also referred to as accumulative distribution function, is defined 
according to (11). The density function describes the probability that a stochastic 

variable   will have a value equal or smaller than a variable  , as shown in (11).  
 

 
An application where the mentioned functions are used is when modelling lifetimes of 
components. Assume the probability density function describes the probability of a 
failure as a function of time with a known distribution. The distribution function can then 
be used to calculate the probability of a failure having occurred at a given time. 
 
The reliability function, or survival function, is defined according to (12). The reliability 

function is the probability that a stochastic variable   has a value greater than the 
variable  . As shown by (12), the reliability function can simply be resolved by 
calculating the remaining probability of a distribution function for the same variable. 
Using the earlier component lifetime application, the reliability function would return the 
probability of a failure not having occurred at a given time. 
 

 

             

 

  

        (11) 

                    (12) 
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In the case where the failure rate is described by a distribution, a probability density 
function can be used to resolve information as well. In this case,      is nothing but 
the expected value      of the same probability density function, which is defined 

according to (13).      is frequently used as a metric when describing fault-tolerant 
systems. Mean time to repair (MTTR) describes the rate at which a unit is repaired, 
replaced or reset. It can also be used when calculating the availability of a system. 
 

 

The failure rate, denoted     , is the frequency of failures per unit time. It is defined 
according to (14) as the ratio between the probability density function and reliability 
function. It is commonly expressed as failures per hours, which is another frequently 
occurring metric. Mean time between failures (MTBF) can be resolved as the inverted 
failure rate according to (14), but also as the sum of MTTF and MTTR as shown in (15). 
 

 
The ratio between the downtime and running time of the system is the definition of 
availability. It can also be calculated using MTTF and MTTR as shown in (16). A 
common availability standard for critical systems is the “five-nines” standard , indicating 
an availability of 99.999% [25]. 
 

 
A common metric used when measuring fault tolerance is Failures in Time (FIT). FIT is 
the number of failures during one billion hours for one device and is calculated as 
shown in (18). 
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2.4.2 Triple modular redundancy 

TMR is the most common implementation of voting redundancy. Due to its masking 
properties it has become a popular method used to provide fault tolerance. 
 

Unit 1

Unit 2

Unit 3

VoterInputs Output

 

Fig. 27. Three parallel units in a TMR configuration. 

The basic concept of TMR is to run three identical, redundant computation paths in 
parallel, running the same processes with the same inputs, as shown in Fig. 27. All 
units compute the same outputs, running the same processes. The outputs from each 
stage are compared with the parallel stages by the use of a majority voter. If the 
outputs of any unit deviate from the remaining two, the voter still produces the right 
output. There are a number of different approaches and versions of TMR 
implementations. Many attributes of the implementation can be varied in order to tailor 
the TMR implementation to available resources and the target application [25]. 
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Fig. 28. Two different types of faults occurring in a TMR system. 

 
A fundamental limitation of a TMR system is that one fault at the most can be tolerated 
per voter stage. Two types of multiple SEUs are shown in Fig. 28. The red 
disturbances indicate multiple errors taking place at two different stages. These errors 
will be masked out due to majority voting. The blue disturbances, however, indicate 
multiple errors taking place at the same stage. TMR will not be able to mask the fault 
since the majority is incorrect. This property makes voter stage partitioning and level of 
implementation an important part of the TMR design process. TMR is often used in 
conjunction with techniques that prevent errors from accumulating within one voter 
stage over time, such as scrubbing, as will be discussed in greater detail in Sec. 2.4.3. 
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SEUs can also occur in the configuration bits that define the interconnect matrix. In this 
case it is possible for a node of one redundant unit to become connected to another 
redundant unit in the same voter stage. This particular case is known as a domain 
crossing event and needs to be taken into consideration when modelling the overall 
availability of a system [26]. 

2.4.2.1 Level of implementation 

TMR can be implemented on different system levels. A design can be triplicated within 
an FPGA, which is the common case. The design can also be triplicated on a higher 
level, for example by using redundant FPGAs on a device-level. 
 
The most frequently occurring implementation is using a triplicated design within an 
FPGA[27], [28], [29], [30], [20]. The overall strategy in this case is to triplicate parts of 
the design or the whole design within a single FPGA. This is only possible if the single 
design fits within less than one third of the FPGA resources. A TMR system 
implemented within an FPGA will have several voter stages in the design. Such a 
system will therefore be able to tolerate at least one SEU in the triplicated parts of the 
design. In addition, multiple SEUs can be tolerated if they occur at different voter 
stages within a design. The way in which voter stage partitioning affects the fault 
tolerance will be discussed in Sec. 2.4.2.2. 
 
Where the synthesised design equals or exceeds one third of the available FPGA 
resources, partial TMR may be a suitable implementation. Partial TMR implies that 
parts of the design will be implemented using TMR. A method of assigning TMR to 
selected parts of a design is presented in [27] where priority is given to sequential logic. 
The motivation for giving priority to sequential logic is due to the fact that sequential 
logic is harder to reconfigure and reset. Registers keeping track of internal states are 
implemented in sequential logic. Reconfiguring register content in the event of an SEU 
is difficult without resetting the system. Avoiding reconfiguration of sequential logic is 
therefore important. Second priority is given to nodes that output signals to a larger 
number of nodes. Signals which are connected to many nodes will have a greater 
significance and are therefore worth protecting. 
 
Another presented suggestion is that TMR is implemented on FPGA level [31]. Such a 
configuration would consist of three FPGAs with an additional radiation hardened ASIC 
managing voting and configuration. A disadvantage with this implementation is that 
additional FPGAs result in additional overhead due to the peripherals associated with 
each additional FPGA. Furthermore, such a solution would increase the power 
dissipation and the required circuit-board area. An advantage with this solution is that 
the external scrubber and voter unit will be implemented on an independent radiation-
hardened ASIC. The configuration and voter unit will also not require any allocation in 
any FPGA, which is sensitive to SEUs. When implementing scrubbing and voting on 
the FPGA, the fact that the scrubber and voters themselves can fail needs to be taken 
into account.  

2.4.2.2 Voter partitioning 

Voter partitioning is an important consideration in a TMR system. Depending on the 
density of voter units, different properties can be achieved. Increased partitioning is not 
necessarily beneficial. Increased power dissipation and area overhead will follow as 
more voter stages are included. Moreover it is important to take the increased logic into 
account, which itself will also have a failure rate. 
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In [20], a study is conducted for an FIR-filter implementation where partitioning is done 
to different degrees The different partitioning steps are evaluated by injecting faults in 
the configuration bits for all the designs respectively. The percentages of failures are 
then recorded together with the area overhead. The most interesting conclusion drawn 
by the authors in [20] is that the densest partitioning scheme does in fact not yield the 
best resilience to the faults inserted. Instead, a medium-density voter partitioning gives 
the best results. This suggests that the increase in configuration bits for the densest 
partitioning may result in a decrease in fault tolerance if the additional voters are not 
used efficiently enough. This is likely due to the fact that increasing the partitioning will 
also increase the number of SEU-sensitive configuration bits. The increase in number 
of slices varied from 217% for the least dense partitioning to 273% for the densest 
partitioning. 
 
In [30], another similar study is conducted for a multiplier. A reference design with 
voters at the end is compared with the same design with additional voter stages. The 
number of slices occupied and the possible faults combinations covered are compared 
for all increments. An interesting observation is that the medium partition is the most 
efficient when calculating increase in area overhead per increase in fault coverage. 
Another interesting observation is that the increase in number of slices was more than 
200% for all TMR implementations in this study. Furthermore, it is calculated in [30] 
that the densest voter partitioning would lead to a slice increase of 314%. 

2.4.2.3 Voter structure 

Voters can be implemented in a number of different ways. The simplest implementation 
is showed in Fig. 29. This type of voter could be implemented by simply using a 
majority voter for each bit, as shown in Fig. 30. This type of voter, however, is a single 
point of failure. If this particular voter fails, it will render all redundant stages useless. 

Unit 1

Unit 2

Unit 3

Unit 1

Unit 2

Unit 3

Majority 
voter

 

Fig. 29. Simple voter implementation comprising one majority voter. 
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Input 1

Input 2
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Output

 

Fig. 30. Possible implementation of a three-input majority voter. 

 
An improvement from the simpler voter is the setup shown in Fig. 31, using three 
parallel voter stages. Similarly, a bit-wise voter could be used to implement such a 
function. The triplicated voter stage requires more resources, but will not necessarily 
increase the critical timing path. This means that both voter types would have the same 
timing since the voters are parallel to each other. 
 

Unit 1

Unit 2

Unit 3

Unit 1

Unit 2

Unit 3
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Majority 
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Majority 
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Fig. 31. Triplicated voter implementation comprising three majority voters. 

 

2.4.2.4 Method of implementation 

There are a number of different methods the designer can use in order to implement a 
TMR system. The designer can rely on synthesis tools to triplicate the design and to 
insert voters. Another option would be for the user to manually incorporate the 
redundancy in the HDL.  
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By relying on a synthesis tool, the designer will have to spend less time implementing 
the TMR. The designer might even be able to omit redundancy considerations 
completely when designing, instead treating the design as a normal design without the 
fault tolerance. A commonly used tool for TMR implementation is XTMR from Xilinx [32]. 
The XTMR tool applies TMR to the netlist output by the synthesis tool. Running the tool 
will triplicate all inputs including clock nets and combinatorial logic. Furthermore it will 
triplicate sequential logic and insert majority voters on feedback signals. Lastly it will 
triplicate output signals with minority voters to trigger and disable faulty outputs. This 
method of implementation requires minimal effort to make sure TMR is implemented. 
On the other hand, changing attributes of the TMR implementation becomes difficult; 
partial TMR, for instance, is not supported. 
 
If full customisation is a requirement, it is also possible to implement TMR manually in 
the HDL description of a design.  [28] presents a set of guidelines to be used in high-
level HDL implementation of TMR. The approach is called functional TMR (FTMR). 
Introducing redundancy in HDL can be troublesome since synthesis tools may optimise 
the design for performance or area, taking away the redundancy in the process. The 
FTMR method gives full customisation possibilities to the designer and the possibility to 
tailor the implementation by, for instance, limiting it to certain parts. FTMR will therefore 
be a viable method of implementation when partial TMR, for instance, is considered.  
 

2.4.3 Configuration Memory Scrubbing 

The term scrubbing refers to a category of error mitigation techniques that prevent error 
build-up by refreshing and restoring configuration memory cells to a known-good state. 
SRAM-based FPGAs are volatile, and therefore may require off-chip memory to store 
their configuration. By making use of a radiation-hardened off-chip memory (usually 
EEPROM or Flash) for this purpose, it can be used as a golden reference. Since SEUs 
in FPGA configuration memory bits are persistent errors, they will not disappear until 
repaired by reprogramming and overwriting the faulty bit with the correct configuration. 
Over time, configuration memory SEUs in a system without this repair capability will 
cause error build-up. Error build-up will eventually break other SEU mitigation 
techniques, such as TMR, by introducing multiple errors inside a single fault 

containment region [33]. Knowing the golden-reference bit stream, the configuration 
memory can be monitored and repaired by a configuration manager, or scrubber. 
Scrubbing is an important technique, as it repairs errors to prevent accumulation, rather 
than preventing, masking and tolerating errors like the other techniques discussed 
here. This makes the use of scrubbing practically mandatory in fault-tolerant FPGA 
systems. Error detection and error correction are two concepts important to scrubbing 
that will be discussed in later sections. 
 
Scrubbers, or configuration managers, are in essence the same type of circuit that is 
responsible for the initial configuration of the FPGA, making use of the programming 
interfaces of the FPGA (JTAG, SelectMAP or ICAP). Through these interfaces, the 
configuration memory can be written or read back with a frame-level resolution. 
Scrubbing can be done by full or partial reconfiguration of the device. Using the 
dynamic partial reconfiguration features of Xilinx FPGAs, configuration memory repairs 
can be made without interrupting the operation of the whole device.  
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Scrubbing is a widely used technique, and considered in the literature as a vital part of 
implementing fault-tolerance for FPGAs. It is often used in conjunction with other 
mitigation techniques, as it only repairs existing errors rather than masking them when 
they arise. Scrubbing in conjunction with TMR is the most commonly applied 

combination for SEU mitigation, and gives an overall very effective solution [34]. There 
are a variety of techniques and implementation schemes for scrubbers, as will be 
discussed in detail in this section.  

2.4.3.1 Scrubbing Techniques 

Scrubbing can be done with device- or frame-level reconfiguration, corresponding to a 
full reconfiguration and dynamic partial reconfiguration, respectively. Device-level 
reconfiguration will invariably lead to some down-time, and may not be feasible for 
some applications. In Xilinx Virtex 5, scrubbing based on dynamic partial 
reconfiguration can be configured not to overwrite user data stored in shift registers 
and distributed RAM implemented as LUTs. Error detection is optional and varies in 
level between scrubbing schemes, as does the scrubbing rate. The scrubbing rate can 
be fixed or variable, depending on the scrubber implementation and complexity. 
 
The most basic and least complex form of scrubbing is a simple periodic 
reconfiguration of the FPGA without error detection. This is known as blind scrubbing, 
preventive scrubbing, or in Xilinx terminology Scheduled Maintenance [35]. With blind 
scrubbing and frame-level dynamic reconfiguration, the FPGA is scrubbed from start to 
end, frame by frame. This is done periodically and without error detection. That is, 
frames are scrubbed regardless of whether an error has occurred in the frame or not. 
The scrubber will be in write mode during the time it is actively rewriting the 
configuration, and in idle (read) mode otherwise. The ratio between the scrubber time 
spent in read and write mode depends on the scrubbing rate. Blind scrubbing has the 
advantage of avoiding the extra complexity introduced by error detection, but can also 
be seen as an inefficient use of scrubber time as it will scrub uncorrupted frames as 
well as corrupted ones. Furthermore, the unnecessary time spent in write mode is a 
vulnerability as errors in the bit stream, frame addressing register or programming 
interface may cause a corrupted value to be written to a frame. 
 
Readback scrubbing is an alternative to blind scrubbing. As the name suggests, 
readback scrubbers operate by reading back the configuration from the FPGA in order 
to determine if an error exists or not. In Xilinx terminology, this technique is known as 
Running Repairs [35]. The error detection is facilitated by the use of configuration 
frame-level ECC and CRC values calculated for the whole configuration memory. The 
scrubber can continuously read the configuration memory CRC value and compare it to 
that of the golden reference. If an error exists, frame ECC can be used to localise the 
corrupted frame. The corrupted frame is read back in whole to the scrubber and 
corrected by overwriting with the correct configuration from the golden reference. This 
error detection and correction (EDAC) mechanism works on single upsets within a 
frame, relying on the improbability that a multiple bit upset will occur in a single frame 
within the time it takes to correct an error. Readback can also be based on simple 
comparison with the reference memory, using a bit mask.  
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It is possible for a single SEU to affect two bits located in adjacent configuration 
memory frames. In this case, it will be seen by the readback scrubber as two distinct 
single-bit errors and corrected accordingly. Readback scrubbing has the advantage of 
being in read-mode most of the time, only ever going into write mode when an error is 
detected. It is also a more time-efficient use of active scrubbing by avoiding the 
reconfiguration of uncorrupted frames, but introduces complexity in terms of error 
detection and localisation logic. Fig. 32 provides an illustration of the operation and 
Time To Repair (TTR) of blind versus readback scrubbing. In this example, the blind 
scrubber does not make use of error detection, instead simply reconfiguring the FPGA 
periodically and frame by frame from start to end. 

Idle IdleWr

Error Corrected

Scrub Cycle

Read

Error Corrected

ReadWr

Error Detected

IdleWr IdleWr

TTR

TTR
 

Fig. 32. Blind vs. Readback Scrubbing 

 
A system may also benefit from employing a combination or compromise between 
these two distinct approaches, as discussed in [36]. For example, blind scrubbing may 
be supplemented by coarse-grain error detection based on the CRC value for the 
whole configuration memory. Upon detecting an error somewhere in the system, the 
next scheduled scrubbing round can be moved up to be performed as soon as 
possible. This reduces the time to repair the specific error. However, a blind scrubber 
still has no information about which frame to repair, meaning that a normal start to end 
scrubbing of the whole configuration memory has to be started. Readback scrubbing 
can also benefit from periodical scrubbing of the whole device, even if no error has 
been detected. This is to protect against the event of a multiple bit upset inside a single 
frame, which may otherwise have gone undetected by the EDAC mechanism. 
 
More advanced scrubbing schemes can be implemented that take into account the 
sensitivity and criticality of individual modules or parts of the configuration memory, 
such as those discussed in [37]. The system might benefit from prioritising the 
scrubbing of certain critical modules. As described earlier, the basic blind scrubber will 
scrub the configuration memory from start to end. This is not necessarily the best 
approach. By modifying the frame sequence to be scrubbed, the critical modules can 
be set to be scrubbed more often.  In [36] this approach is presented as 2D Scrubbing 
or Selective Scrubbing. This method requires extra effort by the designer in 
implementing the scrubber, both in recognising the sensitive modules and in setting up 
the frame sequence as used by the scrubber. 
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If periodical scrubbing is employed, a scrubbing rate needs to be set according to the 
estimated SEU rate such that errors will be corrected before building up or causing 
multiple upsets within a module which may break fault-masking strategies. Commonly, 
a scrubbing rate of 10x the estimated SEU rate is used, as noted in [36]. Depending on 
how advanced the scrubber implementation is, the scrubber can use a fixed or variable 
scrubbing rate. A variable scrubbing rate can be useful when a mission experiences 
peaks in SEU rate when passing through specific sections of its orbit, for example the 
South Atlantic Anomaly in LEO. Reducing the scrubbing rate during low-SEU-rate 
periods can help save power. 

 

2.4.3.2 Scrubbing Implementation 

As previously mentioned, there are a variety of approaches to implementing the 
scrubbing techniques discussed in the previous section. Typically, a scrubber is placed 
in a rad-hard auxiliary device external to the FPGA, and interfaced with the FPGA 
through JTAG or SelectMAP. The auxiliary device, or external scrubber, is then 
responsible for error detection and correction, as well as handling the non-volatile 
reference memory.  The external scrubber can be placed in an auxiliary rad-hard FPGA 
or microprocessor, or an ASIC. Using an external scrubber setup has the advantage of 
separating scrubber and target FPGA, allowing the scrubber to be implemented in a 
device that is radiation hardened by process [38]. The purpose of this is to make the 
scrubber itself immune, or at least much less susceptible, to SEUs. However, the 
programming interfaces on the target FPGA, for example SelectMAP, are still 
susceptible to SEUs. By using a dedicated scrubber and by storing pre-calculated CRC 
and ECC values in its internal memory, scrubbing performance can be increased.  
 
Scrubbers can also be internal to the FPGA, meaning that the scrubber is implemented 
in logic and placed in the target FPGA itself, and is therefore self-hosting. While 
reducing overall system complexity, this has the obvious disadvantage of being 
susceptible to SEUs in the scrubber logic. Also, there is still a need for an off-chip, non-
volatile memory and memory controller for the initial programming of the FPGA. Some 
internal scrubber implementations feature the possibility of self-scrubbing, where the 
scrubber can scrub portions of itself using dynamic partial reprogramming. A 
comparison between an internal and an external scrubber implementation is made in 

[39]. The authors come to the conclusion that the internal scrubber implementation 
examined is less reliable and efficient compared to the external implementation. Fig. 33 
shows simplified block diagrams of example internal and external scrubber setups. 
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Fig. 33. External and Internal Scrubbers 

 
The configuration manager (the scrubber itself) can be primarily software-based or 
completely hardware-based. A pure hardware approach, either internally in the FPGA 
or implemented on an external host module, can be efficient both in terms of 
performance and interfaces to the reference memory and target FPGA. This is the 
common approach used in the literature [40]. With a hardware-based scrubber, the 
scrubbing algorithm is fixed, typically based on a state machine.  
 
Using a software-based scrubber running on a rad-hard microprocessor is an 
alternative that allows for greater flexibility in the scrubbing algorithm which can be 
based on more sophisticated schemes. However, a software-based scrubber this is 
typically significantly slower than a pure hardware approach, as it requires the 
execution of the scrubbing algorithm program in the microprocessor, as well as 
interfacing the microprocessor with the reference memory and the target FPGA. 
Employing a compromise between the two alternatives can be an efficient approach, 
for example by implementing the scrubber in an auxiliary FPGA with a soft-core 
processor. This allows fast interfacing and data processing by the FPGA logic (e.g. 
CRC calculations), while the soft-core handles the high-level algorithm.  
 
In systems where one (external) scrubber is responsible for scrubbing multiple devices, 
the hardware-software-hybrid approach may be suitable due to the number of interface 
pins required, and the usually more sophisticated scrubbing schemes. The scrubber 
can also be used in device-redundant systems to detect errors manifested as 
discrepancies between the outputs of the redundant devices. 
 
Since scrubbers require continuous use of the programming interfaces of the FPGA, 
special techniques need to be implemented in order to update the reference 
configuration during operation and make use of dynamic partial reconfiguration. In [41], 
the authors suggest a scheme for circumventing this problem, making use of a partially 
reprogrammable memory to store the reference configuration. 
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Xilinx provides a macro for soft error detection and correction. The SEU Controller, or 
SEU_cntrl, is self-hosted by the target FPGA. SEU_cntrl can access the Internal 
Configuration Access Port (ICAP). It uses the frame ECC and the Configuration 
Memory CRC to detect errors and automatically correct them in a Single Error 
Correction, Double Error Detection (SECDED) scheme, which can be seen as a form of 
scrubbing. It can also access the SelectMAP port [42]. Fig. 34 shows a block diagram 
of the SEU_cntrl macro.  
 

CLK
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END_OF_SCAN

INITIALIZING

BUSY

SEU_DETECT

CRC_ERROR

MBE

SIMULATE_SEU_ACK

UART_TX

ACM_MODE

SIMULATE_SEU_SBE

SIMULATE_SEU_MBE

UART_16_X_BAUD

UART_RX

SEU_CNTRL

 

Fig. 34. Xilinx SEU Controller Macro 

 
A useful feature of the SEU_cntrl macro is the ability to simulate SEUs for the purpose 
of testing mitigation schemes. The macro can inject errors (bit-flips) in the configuration 
memory, either randomly or in locations defined by the user. This allows for a 
predictable and controlled testing method when evaluating SEU mitigation schemes, 
and will be used later on in this work. Featuring a standard UART connection, the 
macro can interface with a PC for error injection and logging. Internally, the macro uses 

a Pico-blaze core, an 18kB BRAM block and an ICAP controller [42]. 
 
The SEU controller macro is itself susceptible to SEUs. Specifically, there are two 
types of errors that can cause the SEU_cntrl to fail: Multiple Bit Upsets (MBUs) in the 
same frame, and SEUs in the configuration memory or user memory of the SEU 
Controller itself. Some of these (less critical ones) may be corrected, as the SEU_cntrl 
has the ability to scrub itself. Errors in the programming interface (ICAP) or frame ECC 
errors may lead to the SEU Controller writing incorrect frames to the FPGA 
configuration memory. In Virtex 6 and newer Virtex devices, the SEU Controller is 
known as the SEM Core (Soft Error Mitigation Core). The SEM is an IP Core that can 
be generated through Xilinx CoreGen. 
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2.4.3.3 System Context and Limitations 

In selecting a scrubber implementation scheme, the scrubber has to be put into context 
and in relation to the system as a whole. This includes an assessment of the SEU rate 
and potential risks, as well as considering the fault-tolerant techniques that are used in 
conjunction with the scrubber, in order to achieve the desired reliability levels. Overall 
power consumption, system complexity and by extension cost, are other factors in 
selecting the scrubber implementation scheme. The added system complexity by an 
external scrubber may be infeasible for some applications. Watchdog and configuration 
register scrubbing can be implemented by the configuration manager to protect against 
cases in which the target device experiences an SEFI that disrupts critical control 
elements. This may require a full reconfiguration of the FPGA, and assumes that the 
scrubber is not itself affected by the SEFI. Control registers in the FPGA can be polled 
periodically by an external circuit or external scrubber. As a minimum, a system for 
space applications employing scrubbing needs to implement an off-chip memory, a 
configuration manager, a scrubber (here the two are separated to highlight the 
difference between the initial programming circuitry and the continuous scrubbing) and 
a watchdog timer [38]. Table 3 gives an overview of the scrubbing classifications and 
implementation options discussed in this section. 
 

Table 3. Scrubber Variations 

Implementation Aspect Alternatives 

 
Scrubbing Approach 

Readback 
Blind 

Blind with basic Error Detection 
 
Implementation 

Hardware (FSM) 
Software (Soft-core) 

Hybrid 
Placement External 

 Internal 
Multiple Devices One-device scrubber 

N-device scrubber 
 
Scrubbing Frequency 

Periodical 
Variable 

Watchdog Timeout 
 On Error Detection 

 
Error Detection 

Frame ECC 
Memory CRC 

Direct Compare 
 
Error Correction 

Full 
Partial 

Frame-level SECDED 
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During scrubbing, power is dissipated in the scrubber circuitry and in the programming 
interface of the FPGA. A more complex scrubber implementation with readback and 
compare naturally leads to a higher power consumption, which has to be put in relation 
to the overall system power consumption. Using the variable scrubbing rate briefly 

discussed earlier, power consumption can be reduced [36]. 
 
Scrubbing can be seen as complementary technique to fault-masking or fault-tolerance 
techniques such as TMR. It is also important to understand the limitations of the 
selected scrubbing scheme, as the scrubber may not be able to scrub all parts of the 
system (although depending on the application this may not be necessary), and may 
itself be susceptible to SEUs. 
 

2.4.4 Error Correcting Codes 

Error Correcting Codes, ECC, are additional bits added to a data sequence in order to 
detect and potentially correct errors in that data sequence, according to some algorithm. 
ECC can be used to verify data integrity in fault-tolerant FPGA designs. In this section, 
the use of ECC for protection of user data, configuration memory and state machine 
states is discussed. 

2.4.4.1 State Machine Encoding 

State machines are common design elements in both ASIC and FPGA designs. A state 
machine is defined by its inputs, outputs, state, state transitions and initial state, and 
can be written as                . The current state,  , is stored in DFFs and 
encoded as a binary value. Selecting the state encoding scheme with respect to SEUs 
is important to avoid risking the state machine going into an undefined, potentially 
unrecoverable state. As a basic rule, all states possible with the selected encoding 
scheme need to be defined, and there must be no potential hang state where the state 
machine is stuck indefinitely. Different encoding schemes exist for state machines, 
including Gray coding (using a hamming distance of 1), One-Hot and general Hamming 
codes (Hamming distance of >1). One-Hot encoding uses as many flip-flops as it has 
states, which is a resource-costly approach. However, it also has the advantage of 
simple combinatorial logic for state transitions. In [43], the authors provide a set of 
criteria for fault-tolerance encoding schemes for state machines. The authors go on to 
compare Gray coding, One-hot, Hamming-2 and Hamming-3 encoding. It is found that 
Hamming-3 provides the best fault tolerance with respect to SEUs. However, it is also 
the slowest and most resource-demanding encoding scheme. 
 

2.4.4.2 Configuration Memory ECC 

As mentioned in Sec. 2.2, the configuration memory of a Virtex 5 FPGA is protected 
using ECC on a frame-level and a CRC value for the whole configuration memory. The 
error correction scheme and details described here are specific for Virtex devices, but 
the principles are general. In Virtex 5, each frame is protected by a 12-bit ECC value 
using Hamming code, calculated by the FPGA design tools when generating the bit-
stream file. An ECC macro, named FRAME_ECC_VIRTEX5, can be instantiated by the 
user for error detection as part of a SECDED scheme. A configuration frame is read 
back through one of the available programming interfaces and stored by the SECDED 
circuitry. The ECC and the frame content are used to calculate a syndrome value [18], 
which indicates the existence of an error as well as the location within the frame. The 
identified bit can be inverted, and the whole frame can be written back, correcting the 
error. This applies for a single-bit error within a frame. Multiple bit errors can be 
detected, but not located, making a reconfiguration of the entire frame necessary. 
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The syndrome value is a 12-bit vector, where the MSB indicates the presence of an 
error, and the remaining 11 bits are used to locate the error within the frame. As a 
configuration frame in Virtex 5 consists of 1,312 bits, 11 bits are sufficient to address 
any bit in the frame. If no error exists, the syndrome value should consist of all zeroes. 
In case the MSB is 0, but the 11 location bits are not all zeroes, this indicates the 
presence of a multiple bit error [18]. 
 
The whole configuration memory is protected by a 32-bit CRC value. This value is 
calculated for the original configuration and stored by a configuration manager. When 
reading back the configuration memory, the configuration manager can calculate the 
CRC value and compare it with the original. If there is a discrepancy between the 
calculated and the original CRC values, an error is present somewhere in the 
configuration memory [18]. 

2.4.4.3 User Data Protection 

Given the variable nature of user data in FPGA, there is no golden reference with 
which to compare, as discussed in Sec. 2.2. Using the two user data error modes 
defined in Sec. 2.2 as a starting point, we discuss the use of error correcting codes to 
protect the contents of DFFs, distributed RAM and BRAM. Single DFFs need to be 
protected by redundancy, for example using the approach in [44]. For registers or 
arrays of DFFs, it is possible to implement error correcting code in logic, although this 
is not commonly done.  
 
The 32kB Block RAMs in Xilinx Virtex-5 can be protected by enabling the built-in 64-bit 
ECC, which is able to detect and correct single-bit errors, and to detect double bit 
errors. This requires the (dual-port) BRAM to be configured as a 512x64 bit memory 
block, where the two ports work as dedicated read and write ports, respectively [17]. 
The ECC is based on Hamming code and uses eight parity bits to implement SECDED. 
If a single-bit error is detected, it will be automatically corrected. This will be signalled 
by an output signal. Double bit errors cannot be automatically corrected, but they can 
be detected, which is also signalled by an output. Internally, the BRAM ECC module 
consists of an encoder and a decoder, as well as the required MUX structure. This is 
illustrated by Fig. 35. The module interfaces with the BRAM block, working as an 
intermediate between the BRAM block and the user. The addition of an ECC module 
will typically not be directly noticeable from the BRAM user’s point of view, but it will 
affect timing. The encoder and decoder blocks can be configured to be used 
individually. In [45], the authors present an EDAC setup and calculations of the EDAC 
Word Error rate for BRAM blocks in a radiation-hardened version of Xilinx Virtex 5. 
 



Page 

 52 

 

 

 
 

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space 

 

  Brosser & Milh 2014 

    

USER ECC MODULE BRAM

Encode

Decode and
Correct

DIP

WRADDR

RDADDR

PARITY

DI

DO

DBITERR

SBITERR

DOP

M
U

X
in

g

ADDRA

ADDRB

DIPB

DIPA

DIA

DOA

DOPA

 

Fig. 35. ECC Protected BRAM 

 

2.4.5 Checkpointing and Rollback 

Checkpointing is the technique of periodically saving the (known-good) state of a 
circuit, in what is commonly known as a snapshot. This allows the system to revert 
(Rollback) to the last checkpoint when detecting an error, to recover from the error and 
continue execution from a known-good state. Checkpointing has been commonly 
implemented in software in fault-tolerant processor systems[23], [46], [47], but can also 
be applied to general logic or to soft-core processors in programmable logic. Applying 
hardware checkpointing is aimed at reducing the overhead effects of more expensive 
fault-tolerant techniques such as TMR. The concept of checkpointing requires 
mechanisms to store system states, detect errors through scrubbing readback, and to 
perform rollback to restore the system state. This inevitably introduces some time 
losses, as the error is not masked in the same way as for TMR implementations, but 
this may be feasible for some applications. Checkpointing can be implemented on-chip 
or in external circuitry. Fig. 36 illustrates the checkpointing principle. 
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Fig. 36. Checkpointing and Rollback Principle 

In FPGA, internal checkpoint saving can be made very efficient by leveraging the high 
on-chip bandwidth capabilities. However, the checkpointing structures are themselves 
susceptible to SEUs, and checkpointing may not be trivial or suitable to implement for 
all types of applications. When implementing a soft-core processor based system on 
FPGA, checkpointing can be a low-cost alternative to TMR [48]. As checkpointing only 
restores the system state, it should be combined with error correction and build-up 
prevention techniques (Configuration Scrubbing). The frequency of checkpoint storing 
has to be weighed against scrubbing frequency and timing requirements. The scrubber 
has to be able to scrub the entire memory between checkpoints, setting an upper limit 
to the frequency. Checkpointing with a low frequency, on the other hand, leads to 
potentially long recovery latencies due to the required re-execution [47]. As 
checkpointing is well suited for soft-core processor systems, it may be a good idea to 
combine checkpointing for suitable modules in the system with TMR for more critical 
parts, as well as normal configuration memory scrubbing being performed in parallel. 
Checkpointing must, however, be synchronised with the scrubber’s readback and 
repair activities to be meaningful [48].  

2.4.6 Temporal Redundancy 

Temporal redundancy differs from spatial redundancy techniques such as TMR, in that 
calculations are repeated in time instead of being performed in parallel redundant paths. 
While temporal redundancy has the potential for lower area overhead compared to 
TMR, there are some obvious disadvantages [24]. Firstly, since all computations have 
to be repeated (commonly three times), there is obviously an increase in the execution 
time for a task. Also, if there is a permanent error in the configuration memory, all the 
time-redundant computations will exhibit the same error in their outputs. This makes 
temporal redundancy mainly useful for mitigating transient errors only.  
 
Another type of temporal redundancy utilises clock skew on sequential elements to 
mitigate SETs. By using, for instance, three separate clock signals skewed by 90°, 
combined with voting circuitry, transient glitches on input signals from combinatorial 
logic can be masked. As for the technique of repeating calculations in time, clock 
skewing does not offer protection against configuration errors, and provides a rather 
weak alternative for SEU mitigation for space applications. 
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2.4.7 Tool-Level Techniques 

Certain SEU mitigation and prevention techniques for FPGA can be implemented on a 
design tool level, and are focused on generating an inherently more robust 
configuration bit stream. This can be done in several different ways. SEU-aware Place 
And Route (PAR) techniques incorporate metrics and weight functions into the PAR 
algorithm to optimise the placement and routing of resources on the FPGA with respect 
to error avoidance [49]. Traditional FPGA design tools often try to optimise for speed or 
area, potentially removing intentional redundancy and sabotaging the fault-tolerant 
design techniques employed by the designer. There are also vendor-supplied 
redundancy tools, such as the previously mentioned XTMR tool from Xilinx, which are 
specifically targeted at automatically adding redundancy to the design. The efficiency 
and customisation opportunities of such designs may be limited, or at least not in line 
with what the designer wants, so there may be a trade-off between engineering effort 
and redundancy efficiency. 
 
When focusing on SEU mitigation, it is typically of interest to try to optimise the 
placement of resources for scrubbing purposes. This can mean packing logic into fewer 
configuration frames and utilising each frame more to reduce the number of sensitive 
frames, even if it makes less sense when optimising for performance alone. Having 
fewer sensitive frames to scrub can help reduce the MTTR, provided that the sensitive 
frame map is available to the scrubber, or incorporated into the scrubbing sequence. 
 
When using voting redundancy, such as TMR, it may be beneficial to place the 
redundant paths physically apart on the chip to reduce the possibility of a single fault 
affecting multiple redundant paths. This, however, introduces a degree of routing 
overhead and potential timing issues when routing signals from the redundant paths to 
connect them in voter stages.  
 
For SET prevention, retiming algorithms can be applied on the tool-level to prevent the 
propagation of SETs, as discussed in [50]. A low-overhead method was presented in 
[51], which utilises restructuring of the logic expressions and LUT contents in 
combination with spare logic in the CLBs in Xilinx Virtex FPGAs to provide some 
degree of error masking. This method will here be referred to as Logic Decomposition, 
Logic Restructuring (LD+LR). 
 

2.4.7.1 SEU-Aware PAR 

The basic goals of FPGA PAR tools are to provide a physical allocation of the 
synthesised design modules onto the FPGA resources, to provide routing paths in an 
efficient and minimal way, and to if possible meet the timing constraints set by the 
designer. Traditional PAR tools are based on the concept of simulated annealing, 
where design blocks are placed randomly in the initial placement stage, then iteratively 
improving the placement through the swapping of blocks. In determining whether two 
blocks should swap places or not, a cost function is used. The placement cost function 
weighs the wiring and timing costs, and determines the improvement value of the swap 
by computing a delta value between the old and the new placement. As the PAR 
algorithm progresses, in simulated annealing referred to as lowering the temperature, 
the algorithm accepts less and less bad swaps. The idea of starting at a high 
temperature is to allow some bad swaps to take place in order to overcome local 
minima, where less sophisticated greedy PAR algorithms risk getting stuck. A simplified 
version of a cost function is given by (18), as defined in [52] and used in [49]. Here,   is 
a user-defined weight constant, and the Previous Cost refers to the previous 
temperature step. 
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 (18) 

 
In [49], the authors suggest adding an SEU-sensitivity component to the cost function, 
using the VPR tool [53]. The modified placement cost function as presented in [49] is 
given by (19). Here,   is a user-set constant similar to  . 
 
 

 
       

            

                    
      

            

                    
       

   
         

                 
 

(19) 

 
The authors go on to define three wiring fault categories, similar to what was discussed 
in Sec. 2.3.1.1: Shortened, Open or Bridging faults. When employing a TMR scheme, 
bridging effects can effectively break the redundancy by bridging together two of the 
redundant paths. The basic principle for avoiding short and open wiring faults in PAR is 
simple: shorter wires mean fewer PIPs to upset. Bridging faults are more complex to 
avoid, and generally involve placing sensitive modules so that they do not share 
connection points more than necessary. For routing, the authors of [49] include an SEU 
cost component similarly to what is done for placement. 
 
 A PAR algorithm specifically targeted at keeping TMR implementations robust is 
presented in [22]. The algorithm, named RoRA for Reliability-Oriented place and Route 
Algorithm by the authors, attempts to route the signals between the redundant paths so 
that upsets cannot affect both paths.  
 
While SEU-Aware PAR algorithms on their own do not mask or prevent errors, they 
assist to a degree in avoiding routing errors and errors affecting multiple modules, 
without inferring much overhead in terms of area and power. For instance, the authors 
in [49] present a 22% improvement (reduction) in SEU-susceptibility at a cost of 5% 
critical path delay and 8% increased power consumption when using SEU-aware 
placement and routing. 

2.4.7.2 LD+LR 

In[54], [21], [51], low-overhead fault masking techniques that are discussed utilises 
LUT content restructuring combined with spare logic in the CLBs of a Xilinx Virtex 
device. The proposed methods are quite similar in nature, and offer a degree of fault 
masking where the area overhead will depend on LUT utilisation. This is an attempt to 
reduce the massive area and power penalties imposed by TMR. The basic idea is to 
utilise the fact that in (Xilinx and Altera) FPGAs, the n-input LUTs are made up of two 
(n-1) input LUTs (for example, a 6-input LUT in recent Xilinx Virtex FPGAs consists 
internally of two 5-input LUTs, here denoted as sub-LUTs for simplicity). If less than all 
inputs to a LUT are used, there will be a free sub-LUT, giving the possibility to duplicate 
the LUT content into the two sub-LUTs. The technique presented in [51], called LD+LR, 
is a post-PAR design step that extracts the LUT information from the bit stream and 
attempts to perform logical restructuring on the LUT content to maximise the number of 
0’s or 1’s in a LUT. To facilitate this, logic expressions may need to be broken down 
into components implemented in different LUTs.  
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Fault masking is achieved by using spare logic gates in the CLB on the outputs of the 
internally duplicated LUTs. A     error can be masked by an AND operation on the 

outputs of the LUTs, and similarly a     error is masked by an OR operation. Fig. 37 
shows an example where a 5-input logic function is duplicated inside a 6-LUT, the 

number of 0’s maximised in the LUT content, and the outputs AND-ed to mask     
faults. In [51], the authors achieve an 85% fault masking level with only a 7% increase 
in slice usage on a Xilinx Virtex 6. This requires additional steps in the design flow, as 
the LD+LR algorithm is applied post-PAR and then resynthesised.  
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3 Method 

Testing SEU mitigation techniques requires some form of testing method that allows 
the introduction of SEUs in the design and observation of the behaviour. The obvious 
approach is to subject an FPGA with the implemented design to actual radiation, using 
a particle beam with known characteristics. This is known as in-beam testing. While in-
beam testing may offer the most realistic testing environment, it also requires access to 
a radiation source and advanced equipment. The test process is both expensive and 
time-consuming. For certain important numbers, such as TID tolerance, vendors 
commonly supply in-beam testing results for their devices. 
 
Gate-level simulation may be used as normal, with the addition of introducing so called 
stuck-at errors to fix a bit to a logical 1 or 0. While it is not particularly useful for testing 
the overall susceptibility of a system, it can allow detailed analysis of fault propagation, 
as the designer can trace signals through the system in a predictable way. Analysing 
the configuration bit stream can give an idea of what stuck-at errors to simulate and 
trace. 
 
Another alternative, fault injection, refers to the method of injecting faults into the 
configuration bit stream or user data. This can be achieved in a number of ways, for 
example by intentionally programming an FPGA with an incorrect bit stream, or to use 
dynamic partial reconfiguration to introduce faults. Fault injection can be implemented 
in hardware or software, and there are fault-injection software suites available for 
FPGA, most notably FLIPPER, discussed in [55]. The Xilinx SEU Controller Macro 
discussed earlier includes functionality to inject single or multiple bit errors into the 
design, at a user specified or random frame address [42]. How fault injection is 
implemented is an important aspect in designing an evaluation method for fault-tolerant 
techniques, and will be discussed further in Sec. 3.3.3.  
 
While frame-level fault injection might not be quite as realistic as in-beam testing, it can 
certainly be very close when used in conjunction with a good SEU-rate estimate. Fault-
injection techniques also offer several advantages. It is far less time consuming and 
costly compared to in-beam testing, and offers good error-logging possibilities, as well 
as a predictable behaviour for studying specific parts of the design or specific error 
modes. One drawback is that it is not possible to simulate some SET effects. A 
combination of using fault injection and gate-level simulation can prove very efficient for 
evaluating SEU mitigation techniques, and will be used in this work. This section 
describes the implementation and use of an FPGA-based test platform for evaluating 
SEU mitigation techniques, with focus on TMR and Scrubbing implementations. 
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3.1 Test Platform 

In order to test and evaluate the mitigation techniques introduced in the previous 
chapters, a test platform has been implemented. The purpose and aim of the FPGA 
test platform is to provide a common base structure on which different test payloads 
can be implemented and tested. In designing the test platform, a few basic functions 
were identified: a platform needs to provide fault injection, fault detection and logging, 
and an exchangeable payload. To facilitate this, and to be practically implementable on 
an FPGA board, the test platform also needs to provide interfaces to off-chip resources, 
such as memory.  
 
Since the test platform is implemented to test and evaluate mitigation techniques on 
the FPGA, test data and results needs to be collected and stored. In order to provide 
easy controllability and to send back test data, communication with a PC is required. 
Also, it is desirable to move complexity from hardware (on the FPGA) to software (on a 
PC) in order to improve data logging capability and to reduce the time and effort 
required in developing. This subsection describes the test platform and the board it is 
implemented on. 

3.1.1 Board 

The platform is implemented on a Virtex-5 LX50 Evaluation Board from AvNet [56]. The 
board is based around a Xilinx Virtex-5 FPGA (XC5VLX50) and includes two DDR2 
memory modules (totalling 64MB), a 16 MB flash memory, a 32 MB xcf32p Xilinx 
Platform Flash and connectors for RS232, Ethernet and USB. The board is also 
equipped with a JTAG connector for programming, a small LCD display, generic I/O 
pins, a clock synthesiser, as well as push buttons and LEDs for user interaction. A 100 
MHz oscillator provides the base clock to the FPGA. Fig. 38 shows the evaluation 
board. A block diagram of the most important components is presented in Fig. 39. 

 

 

Fig. 38. Virtex 5 Evaluation Board 
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Fig. 39. Virtex 5 Evaluation Board, Block Diagram 

  
The Virtex-5 LX50 has a fixed speed grade of -1 and is implemented in an FF676 
package.  Table 4 gives an indication of the number of the most important resource 
types available on the FPGA. 
 

Table 4. XC5VLX50 Resources 

 
Resource Number / Amount 

 
Logic Slices 

 
7,200 

Block RAM  1,728 kB 

Xtreme DSP Slices 128 

DSP48E Slices 48 

DCMs 12 

 

3.1.2 FPGA Test Platform 

The FPGA Test Platform architecturally consists of three main parts: A bus structure 
and system framework, a test structure, and the payload itself. By keeping the payload 
separate from the rest of the test framework, it can easily be replaced and acts as a 
Device under Test, DUT. Fig. 40 gives an overview of the FPGA platform, its off-chip 
memory interfaces and the PC communication. 
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Fig. 40. FPGA Test Platform 

 

3.1.2.1 Bus Structure and System Framework 

The bus structure includes a bus-master, DMA handling and several peripheral units 
connected to the central bus network. The bus network consists of a memory access 
bus (for DMA) and a register bus. Peripheral units include a UART receiver/transmitter, 
an LCD interface, a DDR2-SDRAM interface and a Flash memory interface. Units 
connected to the π-bus can access configuration registers and DMA channels through 
access requests to the bus master. When a unit on the bus makes a DMA request or 
register access, the bus master acts as an arbiter, handling all mapping and interfacing 
to the off-chip memories. The system framework handles all the underlying pin 
mappings and clock management. The system and bus structure are run on a 40 MHz 
clock derived from the on-board 100 MHz oscillator. 
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3.1.2.2 Test Structure 

The test structure handles fault injection, result checking, error logging and 
scrubbing/reconfiguration. The test structure consists of three parts: SEU Controller, 
SEU Monitor and Reconfiguration Manager.  

3.1.2.2.1 SEU Controller 

The SEU Controller is an instantiation of the Xilinx SEU Controller Macro described 
earlier, and implements SECDED functionality and fault injection capability through the 
use of Frame ECC and ICAP primitives. An UART interface enables communication 
with a PC through a set of commands and status send-backs. The controller is able to 
detect and correct (single-bit) configuration-memory errors, and can detect and indicate 
multiple bit errors. 

3.1.2.2.2 SEU Monitor 

The SEU Monitor is a module responsible for testing the DUT and storing the results in 
the memory. Test vectors are kept by the monitor and sent as inputs to the DUT, which 
then sends the computed results back to the monitor to be compared with the expected 
result. The monitor then stores a status vector to memory, indicating any errors that 
may have occurred in the DUT. Similarly to the controller, the monitor implements an 
UART interface for receiving commands from a PC and sending back the logs when 
requested. The monitor’s set of commands does not overlap with those of the controller, 
allowing both units to listen to the same UART receive channel at the same time. 
Commands that are not recognised are simply ignored. The monitor can store test log 
data to an internal BRAM, or to the 16MB off-chip flash memory through DMA requests 
on the bus. The flash memory option is included for tests that require reconfiguration of 
the whole FPGA, in which case the test logs need to be kept in a non-volatile off-chip 
location. BRAM is the default storage location for the test logs. Fig. 41 shows an 
example of a test run.  
 
The communication between the SEU Monitor and the DUT consists of the input and 
output data, as well as run and done signals. These allow the Monitor to control when a 
test is started through the DUT. Having as few signals to and from the DUT as possible 
is important to maximise the separation between test framework and payload. 
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Fig. 41. Example Test Run 

 
In this example, a TMR implementation of the DUT is tested. A fault is inserted in the 
DUT through the SEU Controller, which in this example has hit one of the redundant 
branches, TMR 2. The monitor then receives a command from the PC telling it to run 
the test, and proceeds with sending the test vector inputs to each of the three TMR 
branches. The injected error causes TMR2 to produce an incorrect output. The monitor 
logs all outputs from the redundant branches as well as from the voter stage, and 
stores a log word to BRAM, indicating that one of the redundant branches has 
produced an incorrect output, but that the voter stage has managed to mask the error. 
Upon receiving another command from the PC telling the monitor to send the log data, 
the entire log stored in BRAM is sent over UART to the PC in a raw hex format. The log 
data is received and saved by software on the PC. 
 
The raw log format stored in memory by the monitor uses 16 bits for each test run. The 
meaning of each of these bits will depend on the test points used in the DUT and will 
have to be interpreted accordingly. As an example, when testing a TMR design with 
tripled voters, one would typically wish to log the status (correct or incorrect) of the 
outputs of each of the TMR branches and of each of the voters. An example is shown 
in Table 5. 
  



Page 

 63 

 

 

 
 

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space 

 

  Brosser & Milh 2014 

    

Table 5. Log Line Example 

              Unused                                  
Bit         [16:9] 8 7 6 5 4 3 2 1 0 

                 - 1 1 1 1 1 1 0 1 1 

 
In this example, TMR0-2 indicates correct output on the redundant branches, 

   indicates correct output from Voter n, and     indicates that Voter n correctly 
identified if it has a majority result or not. This particular log line, corresponding to a 
single test run, would indicate that an incorrect output has been detected from TMR 
branch 2 as a result from the injected fault, but that the error was masked by the 
voters. This log line is logged by the SEU Monitor as 0xFFFB.  
 

3.1.2.2.3 Reconfiguration Manager 

Interfacing to the configuration memory is done through an ICAP interface instantiated 
in the reconfiguration manager. The reconfiguration manager is responsible for 
scrubbing, either in the form of dynamic partial reconfiguration, or as a simple full 
reconfiguration that can be triggered by the monitor module. A full reconfiguration is 
triggered by setting a single trigger signal from the test framework, which triggers a 
state machine sending a sequence of commands to the ICAP interface. The 
reconfiguration manager, or the Scrubber, can be modelled as internal or external. This 
is done by including or excluding the configuration frames corresponding to the 
scrubber in the fault insertion frame list, respectively.  
 

3.1.2.3 Payload 

The payload represents the actual device under test. The payload can easily be 
exchanged, depending on what needs to be tested. A payload has a set of test points 
which depends on the application. In the monitor example given in 3.1.2.2.2, the output 
from each of the TMR branches is a separate test point, as well as the output from the 
voter stage. 
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3.1.2.4 Selecting a Payload/DUT Application 

 
For evaluating mitigation techniques, a 128-bit AES application has been selected. The 
AES, or Advanced Encryption Standard[57], block takes as input a 128-bit key and a 
128-bit plaintext to be encrypted. Output consists of a 128-bit encrypted text. The 
application was chosen partly because of its extensive documentation and practical 
applications, partly because of the computational properties: because each step in the 
computation depends on the previous steps, an error somewhere in the computation 
chain is likely to propagate through to the output. Using an AES block implementation 
for testing is also a good match for testing both gate-level and module-level 
redundancy techniques, as well as being suitable for dynamic partial reconfiguration. 
Furthermore, output data is easy to verify, and there are a large number of test vectors 
available. For each test that is run by the monitor, a total of 283 test vectors are run 
and compared with an expected, pre-computed result. These test vectors are specified 
in the AES standard. 
 
The AES-128 block used here do not make use of BRAM or DSP slices on the FPGA, 
instead using only logic and sequential elements. A set of constant values are used for 
the so called sbox in the AES implementation. The AES algorithm will not be discussed 
in detail here. Instead, readers are referred to the standard, given by [57].  
 
An FIR filter application has also been implemented and tested. However, due to time-
consuming test sequences and lack of time, this report puts focus on the AES 
application. Two other DUT applications were used in preliminary testing stages: a 
simple shift register chain, and a telemetry decoding module. These were abandoned 
in favour of the AES block. The shift register chain offers simple observability, for 
example by shifting an XOR-pattern, but does not use the logic resources in an efficient 
manner with respect to fault injection. Furthermore, the huge shift register needed to 
make up a feasible target for fault injections makes up a very unrealistic application. 
The telemetry decoder module on the other hand is a highly realistic and usable 
application. However, it lacks obvious testing points, making it difficult to set up a fault 
model for analysis, and it is too big to be conveniently contained and monitored by the 
test framework. 
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3.1.2.5 VHDL Implementation 

The test platform is implemented as a configurable VHDL model, following the RUAG 
Space coding and design standards. The design follows (although not strictly) a flat 
hierarchy approach. Records, code blocks and local signals are used where 
appropriate. The implementation follows the same module composition as shown in 
Fig. 40, and is largely built around the bus structure. Table 6 shows the resource usage 
of the test framework, not including the DUT instance.  

Table 6. Test Framework Resource Usage 

 
Slice 

 
Slice Reg 

 
LUT 

 
LUTRAM 

 
BRAM 

 
DSP48E 

 
DCM 

 
2,089 

 
2,789 

 
3,844 

 
108 

 
15 

 
3 

 
2 

 
The 40 MHz internal bus clock is used to clock all modules attached to the bus. The 
SEU Controller is clocked at 50 MHz, deriving its clock signal directly from the 100 MHz 
clock. The DDR2 memory makes use of a 200 MHz clock signal to communicate with 
the DDR2 on the board. Fig. 42 illustrates the bus structure. The blocks shown in the 
figure correspond to VHDL entities. As the SEU controller operates in a different clock 
region compared to the rest of the system, asynchronous interfaces are implemented 
where signals cross the clock domains. The clock management and buffers are defined 
in an underlying layer, together with pin assignments. 
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Fig. 42. Test Framework Bus Structure 

 
The UART arbiter controls which UART module has access to the transmission line (Tx) 
on the board. The three modules that implement UART interfaces (UART-to-Bus 
interface, SEU Monitor, SEU Controller) can request the outgoing Tx line, and the 
arbiter assigns it according to what mode the test platform is in. The peripherals box 
included in Fig. 42 represents the Ethernet, SAM, LVDS and LCD Display modules.  
 
For Synthesis, a normal Synplify flow is used. The netlist (.edf) file created by Synplify 
is then imported to Xilinx PlanAhead for PAR. Sec. 3.3.1 mentions more on the PAR 
approach used. A user constraints (.ucf) file is used in PlanAhead for pin mappings and 
clock signal constraints.  
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3.1.3 PC Communication and Software 

Communication with a PC is achieved through the on-board RS232 interface, using a 
fixed baud rate of 115,200 kbps. In total, the test platform implements three separate 
UART receivers/transmitters. The first UART interface connects the PC to the bus 
structure, allowing the PC to read and write data to registers and memories through the 
bus master. The second and third UART interfaces belong to the SEU Controller and 
Monitor, respectively. An UART arbiter decides which UART receiver/transmitter is 
allowed to write to the outgoing UART transmission pin. This setup allows the PC to 
send commands that switch between register/memory mode and test mode. 
Furthermore, it gives the possibility to move some of the complexity of the test 
procedures to software on the PC side. 
 
The host PC runs a Tcl/Tk application to monitor and control the test platform and test 
runs. By using the Tcl application, tests can be automated and scaled easily. Fig. 43 
shows a screenshot of the application during running tests. 
 

 

Fig. 43. Monitor Application 

 
When in register/memory mode, the application can access and modify the internal 
FPGA registers as well as any Flash or DDR content, through the π-bus structure. 
In test mode, the PC interfaces with the test framework on the FPGA. The SEU 
Controller and SEU Monitor listen to the same receiver channel from the PC, and the 
transmission channel (to the host PC) can be set by sending certain commands from 
the PC. A list of commands is given below. The list of commands includes all the SEU 
Controller commands as specified in Table 7 as well as the SEU Monitor commands. 
Some of the commands require additional arguments, as indicated in the table. 
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Table 7. Test Platform UART Commands 

Command Target Description 

> S Controller SEU Controller Status Report 
> D Controller Set SEU Controller in Detection Only Mode 
> A Controller Set SEU Controller in Auto Correction Mode 
> 1 Controller Simulate Random SBU 
> 2 Controller Simulate Random MBU 
> R 
> #FrameAddress 

Controller Read and display specified configuration frame 

> Q 

> #FrameNumber 
Controller Query frame address for specified frame number 

> T 

> #FrameAddress 

> #BitNumber 

Controller Toggle configuration bit at specified location 

> Z Monitor Run all test vectors and log result 
> Y Monitor Print entire log from memory to UART channel 
> X Monitor Trigger reconfiguration sequence 
> K Monitor Give UART control to Controller 
 
 
The Tcl application has functionality to load a set of frame addresses corresponding to 
the DUT, in order to be able to randomly insert configuration bit upsets in the DUT only. 
It also includes functionality to load a Matlab-generated fault-injection pattern, storing 
logs, saving command sequences and programming the flash memory. How these 
Matlab fault injection patterns and DUT frame mappings are generated, is discussed in 
detail in Sec. 3.3.3. The Tcl application also supports running fully automated test 
sequences. These sequences are discussed in Sec. 3.3.10. 
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3.2 Implementing Mitigation Technique Candidates 

The focus of this work has been put on evaluating TMR and Scrubbing techniques. 
This section describes the different versions of TMR and Scrubbing implemented. 
These implementations are then used as payloads in the test platform.  

3.2.1 TMR Implementations 

Four TMR variants have been implemented, based on the AES block. By setting 
generics in the VHDL code, the same AES payload entity can be configured for 
different levels of TMR. The AES payloads are made up of AES-128 encryption blocks 
and voter stages where applicable. The available TMR implementations are listed 
below. 
 
Reference: A reference design that consists of a single AES block without any TMR 
protection. Output consists of a single 128-bit vector containing the encrypted result. 
This design is used as a baseline reference with which to compare the mitigated 
designs. All injected faults leading to errors will propagate through the reference design 
and cause an incorrect output. Only one test point is logged for the reference design, 
namely the output correctness. 
 
Single Voter TMR: A module-level TMR design with a single voter stage. Output 
consists of the majority result and a majority indicator from the voter stage. A single 
voter design can mask errors on a single TMR branch (one of the AES modules), but 
will produce an incorrect output if an error occurs in multiple branches or in the voter 
itself. Five test points are used in the single voter design. These are the individual 
outputs from the redundant encryption blocks, as well as the result and majority 
indicator from the voter stage. 
 
Triple Voter TMR: A module-level TMR design where the voter stage is itself tripled. 
The output consists of three sets of result and majority indicator signals, one pair from 
each of the voter stages. The output from each of the TMR branches is fed to each of 
the voter stages. This design is able to mask errors in the voter stage, as opposed to 
the single voter version. However, multiple TMR branch errors (the so called Bridging 
Errors) will still cause an error on the outputs. The test points used in the triple voter 
design are similar to the single voter ones, with the addition of two voter result and 
majority pairs. In total, nine test points are used. 
 
Synplify TMR: A tool-level TMR design, where the reference design is synthesised 
using Synplify Premier. The synthesis tool applies TMR protection at a lower level than 
the single and triple voter TMR implementations. The interfaces look the same as the 
reference design from the outside. This is achieved by setting the Synplify attribute  
radhardlevel = distributed_tmr in the Synplify constraints file. The single test point 
taken from the Synplify TMR implementation is the correctness of the output. Letting 
the design tools apply TMR to a design removes the need for a designer to change the 
RTL code, thereby saving design time and effort. 
 
To prevent the synthesis tool from removing redundant modules and paths, the inputs 
to the redundant branches are kept as separate ports in the VHDL entity. Synplify 
attributes syn_keep and syn_preserve are used on all signals and instances, 
respectively, in the AES payload. Not applying these will cause the synthesis tool to 
remove all redundancy. By passing a VHDL generic to the SEU Monitor instance, it will 
check for and log errors based on the test points for the specified design. 
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Fig. 44 shows block diagrams of the TMR implementations. Clockwise from the upper 
left diagram, these are: Single Voter TMR, Reference design, Synplify-applied TMR, 
Triple Voter TMR. The test points of each design are indicated in the diagrams. 
 

Result   Majority

Result, Majority Result, Majority Result, Majority

Result

Input Input Input

InputInputInputInput

Result

Input

AES0 AES1 AES2

AES0 AES1 AES2

Voter
0

Voter
1

Voter
2

AES

AES

Voter

 

Fig. 44. TMR Implementations 
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3.2.2 Scrubber Implementations 

This section describes the different scrubbing approaches implemented. These 
scrubbing implementations make up the Reconfiguration Manager module. Five 
different scrubbing approaches have been implemented, as listed below. Each of these 
scrubbing implementations can be combined with any of the TMR implementations. 
Also, by keeping the scrubber inside or outside the payload of the test platform, it can 
represent an internal or external scrubber implementation, respectively. This is 
illustrated in Fig. 45. 
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Fig. 45. External vs. Internal Scrubber 

 
Blind Scrubbing: Using the Blind Scrubbing approach, scrubbing is done by fully or 
partially reconfiguring the FPGA periodically according to a fixed rate. In this report, full 
reconfiguration is used. This approach eliminates the need for error detection circuitry, 
but is not responsive to errors in the same way as scrubbing on error detection. Blind 
Scrubbing is referred to as Scheduled Maintenance in [35]. In terms of additional 
hardware required when implementing an internal scrubber on the FPGA, blind 
scrubbing is relatively cheap. A cycle counter and scrubbing-configuration register is 
required on-chip, as well as an ICAP controller. The counter can periodically trigger an 
FSM, sending a reprogramming command to the FPGAs configuration registers and 
triggering a read from an off-chip PROM/Platform Flash. 
 
CRC-Based Error Detection: This type of scrubber performs a full reconfiguration upon 
detecting an error in the configuration memory CRC. CRC error detection is fast, but 
the scrubber is unable to pinpoint in which frame the error has occurred. In the design 
presented here, the CRC error signal originates from the Xilinx Virtex-5 FrameECC 
primitive. This is known as Emergency Maintenance in [35]. Apart from the FrameECC 
primitive with some supporting logic, an ICAP controller and a reprogramming 
command FSM are needed. 
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Frame ECC-Based Error Detection: Frame ECC-based scrubbing makes use of the 
same primitive as CRC-based scrubbing, but instead of triggering on the CRC for the 
whole configuration memory, the Frame-level ECC is used. This allows the scrubber to 
trigger a partial reconfiguration for that particular frame when an error is detected. 
Using partial reconfiguration allows scrubbing individual modules without interrupting, 
which may be beneficial in conjunction with some TMR implementations. For example, 
a Triple Voter design has no single point of failure (on a module level), and any one of 
the TMR branches or tripled voters can be down for scrubbing without interrupting the 
operation of the TMR’ed section. The downside to dynamic partial reconfiguration 
(DPR), however, is the overhead from a DPR manager block, and the buffering 
required. 
 
Combination Scrubbing: The combination scrubbing option represents a mix of partial 
and full reconfiguration. It makes use of the SEU Controller macro for correcting single 
bits, using the macro’s SECDED bit-toggling functionality. If a multi-bit error occurs, or 
if the SEU Controller is not able to correct an error, a full reconfiguration is triggered. 
This combines the method described in [58] and adds MBE correction by full 
reconfiguration. Fig. 45 shows a block diagram comparison of an external (left) versus 
an internal (right) scrubber implementation using the Frame ECC-based error detection 
method. The hardware overhead when using this approach consists of the SEU 
Controller macro, together with an ICAP controller and reprogramming FSM for full 
reconfigurations when an MBE is detected. 
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3.3 Test Method  

3.3.1 FPGA Partitioning 

As the DUT and the required framework will be implemented on the same FPGA it will 
be necessary to distinguish the test framework from the actual DUT. As faults will be 
inserted in a random manner, it is important that the DUT is isolated at a known interval 
of frame addresses. By having a known frame-address interval, containing solely the 
DUT, it will be possible to insert faults at random into the DUT only. Partitioning the 
FPGA in this way allows for realistic SEU simulations in the DUT, while keeping the 
test framework outside of the fault injection range. The partitioning starts at the VHDL 
description where it is important that the DUT can be contained within one or more 
component instances from the same level in the hierarchy. Declaring the DUT 
instances from the same layer will make it possible to easily partition the complete 
design into two p-blocks; one for the DUT and one for the framework. The modules 
belonging to the DUT and the test framework are placed inside two separate VHDL 
block structures. Once the design has been structured in this way it is synthesised, 
producing a netlist in the Xilinx .edf format. 
 
With the netlist available, the actual physical partitioning on the FPGA can be made. 
PlanAhead is used for this task. PlanAhead facilitates Physical Block (p-block) 
partitioning by the use of a GUI and a blueprint of the target FPGA, documented in [59]. 
To separate the DUT, all of the involved instances are partitioned into a new p-block. 
This p-block is then placed on the device by picking an area on the device. Next, the 
remaining framework is put into a second p-block which is placed at a different location 
on the FPGA. Regard is taken to what resources are connected to which addresses to 
make sure that the design fits into the least number of frames possible. Fig. 46 
illustrates the described separation of DUT and test framework. As can be seen from 
the figure, the DUT partition (highlighted upper right) is tightly packed and constrained, 
while the rest of the design is more relaxed with respect to resource allocation. The 
borders of the p-blocks are marked with purple lines. 
 
Selecting the number of slices for the p-blocks is an important detail in the partitioning 
process. In order to maximise the probability of an SEU actually inducing a fault within 
a given frame interval (the DUT), p-blocks have to be as small as possible. By making 
the p-blocks as small as possible, a worst case scenario is tested. The smallest 
number of frames can be found by iteratively making the p-block smaller until the tool is 
no longer able to successfully partition it. Once the design is mapped and placed-and-
routed a bit-file can be generated through the bitgen function in PlanAhead. Identifying 
the frame addresses that correspond to the DUT is done through a set of Python 
scripts. From the bitgen process in PlanAhead, a logic allocation (.ll) is generated. 
Table 8 shows an example excerpt from an .ll file. 
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Table 8. Logic Allocation File Excerpt 

Bit Frame Bit Slice Latch Net 

. . . 
1067778 

 
0x00000a9f 

 
126 

 
X33Y61 

 
DQ 

 
AesI_B.Aes1I/.. 

1067815 0x00000b1f 1182 X35Y77 CQ AesI_B.Aes2I/.. 

1067838 0x00000b1f 1187 X35Y77 DQ AesI_B.Aes2I/.. 

1067843 0x00000b1f 1309 X34Y78 AQ AesI_B.Aes2I/.. 

1067902 0x00000b1f 1310 X34Y79 DQ AesI_B.Aes2I/.. 

1067932 0x00000b9e 66 X37Y61 BQ AesI_B.Aes2I/.. 

 
The logic allocation file contains information about what configuration frame addresses 
are mapped to each of the VHDL design entities. A Python script is used to parse out 
and list all the frame addresses corresponding to the DUT. The resulting list of frames 
makes up a sensitive frame map. This mapping is then loaded into the Tcl application 
on the PC, as described earlier. Being able to target the test platform to only inject 
faults into the part of the FPGAs configuration memory corresponding to the DUT is a 
basic requisite for this type of testing to work. As the DUT communicates with the SEU 
Monitor, there is a possibility of an injected error affecting the run and done signals of 
the DUT, or the input/output data signals to/from the DUT. This is however an unlikely 
scenario, and tests that are affected by this can simply be re-run.  
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Fig. 46. FPGA Partitioning 

 
A frame number to frame address mapping can be obtained by sending queries to the 
SEU Controller using the “Q” command and iterating over the whole range of frame 
numbers. This has to be done once only, since the relationship between frame number 
and frame address is fixed for a given FPGA.  
 
Other scripts that are used include a Python script that can introduce errors into the 
binary .bit file, creating an incorrect bit stream. For this purpose, the method for 
obtaining frame addresses from frame numbers, as described above, is used. This can 
be used to test the impact of upsets in specific configuration bits on the DUT. 
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3.3.2 Timing Constraints 

For a design to work after the place-and-route step it is important that essential timing 
constraints are met. Often the designer is responsible for identifying and setting these 
timing constraints. Some of the constraints are not set by default and will need to be 
defined manually. Unfulfilled timing constraints, however, might become apparent first 
once the margins in the PAR step become smaller.  
 
An example of a scenario where the place-and-route-step margins become small is 
when a design is partitioned into p-blocks. In the specific case described in this report, 
the DUT is compressed as much as possible in a p-block. During this process, many of 
the timing problems emerge. The first step of the solution is to identify the parts of the 
DUT that stop working. The second step is to introduce sufficient timing constraints for 
identified instances. For this specific test application, timing constraints were 
introduced for all signals involved with the ICAP interface. Furthermore signals 
connected to the UART interface were constrained as well. The constraints were set 
using the timing constraint tool available in PlanAhead. The timing constraint used was 
maximum path delay. Each timing constraint was gradually decreased until the 
implementation was working as intended. A set of default timing constraints, used in 
each consecutive implementation, was compiled in this manner.  
 

3.3.3 Fault Injection 

Being able to inject faults in an efficient, controllable and consistent manner is a key 
factor in obtaining good test results and performance estimates for SEU mitigation 
techniques. By having good random number generation and an accurate SEU 
distribution, the tests can also be representative for real SEUs.  
 
Fault injection is done through the SEU Controller. The controller is able to insert single 
or multi-bit faults at random locations in the configuration memory using the commands 
“1” and “2”, as described in Table 7. Using the “T” command, it is also possible to 
specify exactly which frame address and bit number within that frame to upset. Using 
the sensitive frame mapping described in Sec. 3.3.1, the Tcl application on the PC can 
request single bit upsets in those specific frames corresponding to the DUT. The exact 
bit number within the selected frame to be upset is generated by the Tcl application. 
Fig. 47 shows a graphical illustration of 1000 random fault insertions (coloured bars) 
into a DUT comprising 64 configuration frames (each frame consists of 1312 bits). The 
colour scale is for visualisation purposes only, and bears no further meaning. The 
figure shows that the fault insertion is acceptably random and evenly distributed over 
the range of frames and bits in the DUT. 
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Fig. 47. Distribution of inserted faults where the x-axis represents frame and the 
y axis represents the bit.  

 
To simulate randomly incoming SEUs, Matlab is used to generate sequences of SEU 
injections. The time between two consecutive SEUs in the sequence follows a 
Gaussian distribution where the mean, μ, is decided by the expected SEU rate. The 
time between two fault injections in the generated sequence is scaled with a time 
factor, depending on the SEU rate, later on. This allows the scaling of results according 
to SEU rate. Generating fault injection sequences in this manner ensures both 
repeatability and consistency with current SEU rate parameters. 
 
Fig. 48 shows the fault-insertion mechanism. All faults are injected through the SEU 
Controller macro using ICAP. The separation between DUT and test structure is made 
by partitioning using p-blocks in PlanAhead as mentioned in the previous section.  
 
Several other fault-injection approaches have been suggested in the literature: In [60], 
the authors suggest a non-intrusive fault-injection approach. The fault-injection method 
described in this report shares some similarities with the fault-injection proposed in 
[60], with some key differences. In this report, faults are injected by sending commands 
to the SEU Controller, which uses ICAP, whereas the system described in [60] makes 
use of JTAG. 
  
In the test platform described in this report, the test framework and fault-injection 
mechanism are synthesised, placed and routed together with the DUT. This makes 
fault injection through the SEU Controller an intrusive fault injection method, as its 
presence in the system affects the way the DUT is implemented on the FPGA. Using 
the partitioning of the FPGA as described in the previous section, however, an 
assessment has been made that the intrusiveness of the fault-injection mechanism 
should not affect results in a significant way.  
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Fig. 48. Fault-Insertion Mechanism 

 
 
In [61], the authors list a few criteria for fault-injection systems used to evaluate fault 
tolerant techniques. The authors go on to propose an external SEU generator 
approach, which similarly to [60] makes use of JTAG to inject errors. 
 
The performance bottleneck in the fault-injection system proposed in this report is the 
RS-232 communication between the test framework and the host application on the PC.  
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3.3.4 Static Tests 

In this report, a separation is made between static and dynamic testing. This section 
describes the static testing method. In static testing, single bit upsets are tested in 
isolation to see their impact on the function of the circuit. A fault is randomly injected in 
the DUT. After the fault injection, the DUT is tested by running a large number of test 
vectors through the DUT, with the SEU Monitor checking the result for each test vector. 
The reason for using a large number of test vectors is the possibility that certain test 
vectors mask certain faults in the DUT. By using a set of test vectors that together offer 
a good coverage, the risk of a fault going undetected is minimised.  
 
An error is considered to have occurred when one or more of the test vectors cause the 
DUT to produce an incorrect result. It should again be noted that even when inserting 
faults (bit-flips) only in the configuration frames corresponding to the DUT, not all 
inserted fault will be noticeable as errors on the output (not all bits are sensitive, as 
discussed earlier). After running the test vectors, any errors are logged and stored to 
memory by the monitor. The fault is then corrected by the controller, regardless of 
whether or not the fault caused an observable error. Each one of these steps is run by 
sending a command from the Tcl application on the PC. These steps together are 
considered as one test run for a single fault injection. The log line stored for each such 
test run gives an indication of whether or not the injected fault had an effect on the 
DUT. A test set, or test campaign, is made up of a number of test runs. In this report, 
4,000 fault injections make up a test campaign. This number was chosen to provide a 
reasonable statistical confidence. By analysing the logs from an entire test campaign, 
statistics are obtained for the static testing of the specific DUT being tested. As 
mentioned earlier, this approach tests the effects of single fault injections in isolation, 
giving a sense of how a single bit-flip can affect the DUT.  
 
Static testing is useful for evaluating the masking capabilities of a mitigation technique, 
for example TMR. The test process is managed by the Tcl application running on the 
PC. A fault injection campaign comprising X test runs can be visualised as in the 
flowchart in Fig. 49, seen from the PC’s point of view. 
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Fig. 49. Static Testing Flow 
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3.3.5 Dynamic Tests 

Dynamic tests differ from static tests in that errors are not corrected between each fault 
insertion. This allows the analysis of dynamic processes, such as error build-up, and 
the effect of scrubbing. With this type of test, the system is running normally rather than 
being paused in between each isolated test as it is in static testing. In dynamic testing, 
the DUT is continuously run and fed with data. The Tcl application on the PC controls 
all commands sent to the FPGA for error logging, fault insertion, reconfiguration and 
UART control. By keeping the test sequence completely in software on the PC, tests 
can be easily changed, and more advanced logging capability is possible.  
 
By using the fault injection technique described in Sec. 3.3.3, the Tcl Application can 
simulate a specific SEU rate with the appropriate level of randomness. A dynamic test 
could for example be as simple as injecting faults according to such a distribution into a 
TMR enabled DUT, in order to see how many errors, on average, that particular TMR 
implementation can handle before being broken by error build-up. Dynamic testing is 
useful for seeing how a system or technique performs over time, or for testing 
scrubbing techniques. From dynamic testing, numbers for Availability, MTTF, MTTR 
and performance over time can be obtained. Therefore, dynamic testing is more of a 
simulation of a real scenario, rather than simple isolated, single error testing as in static 
tests. With dynamic testing, different scrubber implementations and scrubbing rates 
can be tested for effectiveness, as well as testing the robustness of different TMR 
implementations. The dynamic testing procedure is based on events in the Tcl 
Application. Each event can be seen as a slot, where a single event can take place. 
This event can be a fault insertion, a reconfiguration or an idle slot.  
 
All event slots are considered to take the same amount of time, referred to here as a 
‘tick’. When running the actual tests, different types of commands sent to the FPGA 
from the Tcl Application will take different amounts of time, mainly due to the RS232 
communication. As the RS232 is the bottleneck in the test system with respect to 
delay, it is desirable to design a test approach that eliminates or masks the 
communications related real-time delays. In a real FPGA system operating in space, an 
SEU can be seen as an instantaneous event. 
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Fig. 50 illustrates a simple dynamic test simulating a periodical scrubbing approach 
combined with random SEU insertion, given a certain average SEU rate. The control 
sequence, managed by the Tcl Application, uses the (Matlab-generated) fault-injection 
sequence to determine at which ticks to inject faults. The DUT frame mapping file 
contains information on where in the FPGA to inject errors. Scrubbing, or 
reconfiguration, commands are sent periodically according to the programmed 
scrubbing rate. The R1-R3 slots in the figure represent reconfiguration events, and F1-
F3 represent fault injections. Empty slots are idle. Each fault injection event consists of 
an error injection, running all the test vectors for that error, logging and printing the 
result, then giving control of the UART back to the SEU Controller. The triangle shapes 
in the figure represent testing of the DUT and printing back results to the PC. In  this 
particular example, the DUT was able to mask F1, but produced an error (purple 
triangle in the log line) after F2 due to error build-up. In this example, TTR would be 2 
ticks (half the time between two scheduled scrubbing events, measured in discrete time 
points).  
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Control
Sequence

Log
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Fault Injection

Sequence Tcl Application on PC
DUT Frame 

Mapping

 

Fig. 50. Basic Dynamic Testing 

By using this method, tests are easily scalable to whichever SEU and Scrubbing rates 
need to be tested. The fault injection sequence generated by Matlab only needs to 
provide a good-enough resolution, as the actual fault injection time stamps used by the 
Tcl Application can be scaled.  There are two time measurements that cannot be 
scaled using this method. The first one is the time it takes to fully reconfigure the FPGA 
(for the Virtex-5 test platform used here, this time is about 500ms). The other one is the 
time it takes to detect a configuration error, when using a scrubber based on error 
detection. These times need to be measured and converted to the Tick-timescale.  The 
time of one tick needs to be scaled according to the SEU rate.  
 
As an example, given a resolution of 100 for the fault injection sequence, and an 

expected SEU rate of  
    

      
, the tick duration would be        

 

            
 

 
          

   
  

 

 
       . 

 
Using this tick time, a reconfiguration event would cause the circuit to be unavailable 
for 5 ticks. This type of measurement is used later when calculating availability, which 
is the primary measurement for comparing SEU mitigation techniques. 
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3.3.6 Measuring Power 

As the evaluation board used lacks current sense resistors and circuitry for measuring 
power consumption, measurements have to be made at the board master power 
supply. An alternative would be to physically modify the board by replacing the DC-DC 
regulators for VccInt, VccAux and VccO with regulators equipped with power 
measurement circuitry. However, besides from being difficult, this not be done without 
damaging the board and so will not be considered here.  
 
Measuring power consumption at the external power supply is not an entirely accurate 
method, as measurements are made on the whole board and not only the FPGA itself. 
This method was indeed applied in this work, but the differences in power consumption 
between mitigation technique implementations proved to be too small to measure. This 
is mainly because the power dissipated by the board as a whole is large compared to 
the power drawn by the FPGA, and losses in voltage regulators are likely to dominate. 
During power measurements, variations were recorded depending on a number of 
factors such as temperature. Because of this, power measurements were abandoned. 
Fig. 51 shows a screenshot from the oscilloscope used for the attempted power 
measurements. 
 

 

Fig. 51. Power Measurements 
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3.3.7 Measuring Availability 

Availability in a context of fault tolerance represents how often the system is functional 
and delivering its service. The availability can therefore be calculated as described in 
Eq. 16. In our case, however, there will be another contribution to the down time of the 
system apart from the system producing the wrong result. Whenever the system is 
being scrubbed it is also unavailable and therefore unable to fulfil its purpose. 
Availability, as used hereafter in this report, is therefore calculated according to Eq. 19. 
  

             
                                        

        
 

            

        
 (19) 

 
From Eq.19 it is apparent that availability represents the ratio of correct ticks to all ticks. 
Correct ticks comprise ticks where the right end result is produced by the 
implementation and no scrubbing is in progress. Number of correct ticks is calculated 
by deducting the ticks where the DUT produces the wrong result and the number of 
ticks where the DUT is occupied by scrubbing, as shown in Eq.19.  
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3.3.8 Measuring Area 

Area measurements are read from the Map Report File generated by PlanAhead. The  
-details command is supplied to the MAP stage in PlanAhead, generating a detailed 
resource usage report in Section 13 of the .mrp file, as documented in [62].   
 
Table 9 presents an example of an excerpt from an .mrp file generated during mapping 
of a triple voter TMR implementation. The instances Aes0-2 represent the redundant 
AES modules, and Voter0-2 the tripled voter stages. Using this method it is possible to 
compare the areas of different payloads, without the underlying test framework. 
 

Table 9. Map Report File Excerpt 

Module                         Slices  Slice Reg       LUTs           

 

LUTRAM         

. . .         

 +Payload.AesTmr      3/1298          4/1603          3/4224          0/0            

 ++AesI_B.Aes0               349/349         404/404         1143/1143       0/0            

 ++AesI_B.Aes1                367/367         404/404         1143/1143       0/0            

 ++AesI_B.Aes2                366/366         404/404         1141/1143       0/0            

 ++Voter_B.Voter0             71/71           129/129         264/264         0/0            

 ++Voter_B.Voter1             71/71           129/129         264/264         0/0            

 ++Voter_B.Voter2             71/71           129/129         264/264         0/0            

 +TestStructure.BaudDivider   12/12           10/10           24/24           0/0            

 +TestStructure.ReconfMgr  15/15           16/16           31/31           0/0            

 +TestStructure.SeuCtrl       77/183          194/314         96/328          0/86           

 +TestStructure.SeuMon        323/380         89/159          1049/1174       0/0            

 +TestStructure.UartArb        12/12             0/0             24/24             0/0            

      
While the AES blocks are all equal in size, there may be a slight difference in the 
number of slices used. This will vary with the PAR approach used by PlanAhead. 
Looking at the number of Slice Registers first, and the number of LUTs second, gives a 
good approximation of how big the module is. Other resources such as DSP blocks, 
DCMs and BRAMs are not shown here. Note that in the example shown in Table 9, the 
Reconfiguration Manager (TestStructure.ReconfMgr) is not a part of the Payload. This 
means that the scrubber is not included in area measurements, and no faults are 
inserted in the scrubber. Keeping the scrubber outside of the payload in this manner 
represents having an external scrubber implementation. 
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3.3.9  Tool and Language Versions 

 
Table 10 gives a summary of the tools and languages used in this project, as well as 
the version used. Note that editors, supporting applications and individual scripts are 
not listed here. 
 

Table 10. Tools and Languages 

 
Tool / Language Version Vendor Used For 

 

Synplify Pro / Premier 

 

H-2013.03 

 

Synopsys 

 

Synthesis 

PlanAhead 14.4 Xilinx Floor-planning, PAR 

Tcl 8.6  In-tool scripting, test manager 

Python 3.3.2  General scripting, text parsing 

Perl 5.18.2  General scripting, text parsing 

Matlab R2012a Mathworks Data analysis, statistics 

iMPACT 14.5 Xilinx FPGA / PROM Programming 

VHDL -93  HDL 

OMERE 3.6.3.0 TRad Orbit and SEU calculations 

SPENVIS 4.6.7  SEU calculations (CREME’96) 

ModelSim 10.2a Mentor Simulations 
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3.3.10 Test Toolchain and Plan  

Fig. 52 shows the complete test toolchain from VHDL code to test results file. The input 
to the toolchain is a VHDL model of the DUT and an estimated SEU rate. As output 
from the entire chain, complete test run statistics are generated. 
 

.edf

Synthesis
[ SYNPLIFY ]

Frame Analysis
[ PYTHON ]

VHDL Model

ngdbuild
[ PLANAHEAD ]

.fdc

.ll

.bit

Statistics

.framelog

Fault Sequence
[ MATLAB ]

Test Platform
[ XC5VLX50 ] 

Tcl Application
[ Tcl ]

Data Analysis
[ MATLAB ]

.filog

.testlog

Map
[ PLANAHEAD ]

PAR
[ PLANAHEAD ]

BitGen
[ PLANAHEAD ]

Pre-Map
[ SYNPLIFY ]

PROM Gen
[ iMPACT ]

.mrp

.ucf

Timing Analysis
[ TRCE ]

.twx

 

Fig. 52. Complete Test Toolchain 
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The Tcl Application will run different test sequences and log different log data on the 
FPGA depending on the type of test and the type of DUT used. As mentioned earlier, a 
test campaign in this report consists of 4,000 fault injections. These test sequences 
consist of a series of commands sent via RS232 to the SEU Controller and SEU 
Monitor. Fig. 53 and Fig. 54 contain pseudo-code representations of the test 
sequences for blind scrubbing implementations and static testing, respectively.  
 
The sensitive frame list used is generated by the Python script as seen in Fig. 52 
(.framelog file). The fault insertion log (.filog file) is generated by Matlab as described 
earlier. When the tick count matches a fault insertion point as stated in the fault 
insertion list, a fault is inserted. In the blind scrubbing test sequence, reconfigurations 
are requested by sending the command “X” periodically with the scrubbing rate that is 
to be tested. Using a μ-value of 100 ticks for the fault insertion, a scrubbing rate of 5 
would, for example, correspond to sending a reconfiguration command every 20 ticks. 
Output consists of a .testlog file. The Xilinx tool TRCE is run for timing analysis [63]. 
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SFL  := Read Sensitive Frame List 

  RFIL := Read Fault Insertion List 

  

       while i<4000 loop 

    

 

if (nextReconfiguration) then 

  

  

Command "X" 

  
# Reconfigure 

  

Command "*"  

   

  

Command "D"  

   

 

elseif (nextFaultInjection) then 

 

  

FrameAddr := $SFL(random) 

 

  

BitNumber := random(0,1312) 

 

  

Command "T" 

  
# Inject Error in… 

  

Send $FrameAddr 

  
# Frame Address 

  

Send $BitNumber 

  
# Bit Number 

  

Command "Z" 

  
# Run Test 

  

Command "Y" 

  
# Print Test Result 

  

Log 

   
# Print to Log File 

  

Command "K" 

  
# Return UART 

 

end if 

     

 

Tick $delay 

   
# Tick forward 

end loop 

     
Fig. 53. Blind Scrubbing Test Sequence 

 

SFL  := Read Sensitive Frame List 

  
 

  while i<4000 loop 

     Command "D"  # Detection Mode 

 

FrameAddr := $SFL(random)  

 

 

BitNumber := random(0,1312)  

 

 

Command "T"  

  
# Inject Error in… 

 

Send $FrameAddr  

  
# Frame Address 

 

Send $BitNumber  

  
# Bit Number 

 

Command "Z"  

  
# Run Test 

 

Command "Y"  

  
# Print Test Result 

 

Log   
  

# Print to Log File 

 

Command "A"  

  
# Correction Mode 

 Await Correction    # Wait for Correction 

 

Tick $delay 

   
# Tick forward 

end loop 

     
Fig. 54. Static Testing Sequence 
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Using the test tools and mitigation techniques available, a test plan has been created in 
order to catch as many relevant trends as possible. In particular, the test plan is 
designed to investigate scrubbing rate versus availability. 
Fig. 55 shows a summary of the dynamic tests (scrubbing tests).  
 

Scrubbing Technique TMR Implementation Scrubber Location 
   

Blind Scrubbing 

Reference 
Internal 

External 

Synplify TMR 
Internal 

External 

Single Voter 
Internal 

External 

Triple Voter 
Internal 

External 

Scrubbing on  
CRC Error 

Reference 
Internal 

External 

Synplify TMR 
Internal 

External 

Single Voter 
Internal 

External 

Triple Voter 
Internal 

External 

Scrubbing on  
Frame ECC Error 

Reference 
Internal 

External 

Synplify TMR 
Internal 

External 

Single Voter 
Internal 

External 

Triple Voter 
Internal 

External 

SECDED + scrubbing 
on MBE 

Reference 
Internal 

External 

Synplify TMR 
Internal 

External 

Single Voter 
Internal 

External 

Triple Voter 
Internal 

External 

Fig. 55. Scrubbing Test Plan 

 
For blind scrubbing, different scrubbing rates are tested. The scrubbing rate is always 
stated in relation to the expected SEU rate. In the test plan presented here, the rates 
tested are: 0.01, 0.1, 0.5, 1, 2, 5, and 10 times the SEU rate. This means that for the 
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lowest scrubbing rate, an average of 100 faults are injected between scrubbing events. 
For the fastest scrubbing rate, the FPGA is scrubbed on average 10 times between 
each fault injection.  
 
Detection-based scrubbing techniques, on the other hand, perform scrubbing only upon 
detecting an error. This means that a ‘scrubbing rate’ has no meaning for detection-
based scrubbers, and therefore only one test is conduced per combination of detection 
method, TMR implementation and scrubber placement. 
 
For the static testing, only the different TMR implementations are tested (it would not 
make sense to test a scrubbing implementation with the static testing method as 
described in this report). Fig. 56 shows an overview of the static tests conducted. 

TMR Implementation 

Reference 

Synplify TMR 

Single Voter 

Triple Voter 

Fig. 56. Static Testing Plan 

 
The purpose of the dynamic (scrubbing) tests is to provide information on MTTF, MTTR 
and Availability, as well as to simulate a “real” scenario to see how TMR 
implementations hold up to errors over time. Static tests are performed with the 
purpose of testing the masking capabilities of different TMR implementations only.  
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3.3.11 Test Data Analysis  

As mentioned in Sec. 3.1.2.2.2, the SEU monitor is used to test and monitor the DUT to 
make sure that it is working properly. Apart from knowing that a failure has occurred, it 
is also interesting to see in what part of the DUT failed. For this purpose multiple 
signals, as shown in Table 5, are logged by the SEU monitor. For each combination of 
logged status bits it is possible to categorise a fault. Since this task can be done 
afterwards, it is done in a post-processing script.  
 
The constructed MATLAB script starts by importing the log for the constructed Tcl log. 
It then proceeds to identify the status bits by searching for the request command. 
Depending on what implementation mode is used (Reference, Single Voter, Triple 
Voter or Synplify TMR) the script interprets the status bits differently. Depending on the 
combination of status bits, the script calculates if the result is correct, what category the 
error belongs to and if the scrub can be done in parallel.  
 
The available result categories are: Correct result, Voter error, Single TMR Error, Error 
in 2 TMR units (Bridge Effect) and Multiple Errors. A Voter error is any combination of 
errors where each AES unit outputs a correct value while one or more voters output an 
incorrect value. A Single TMR Error is an error where one AES unit outputs an 
incorrect value while the remaining DUT functions as intended. A Bridge Effect error is 
an occurrence where two of the AES outputs are incorrect while the rest of the DUT is 
working correctly. Finally, Multiple Errors indicate that at least one AES unit and one 
voter are erroneous. Once all errors have been categorised, statistics are concluded 
and metrics are calculated.  
 
The MATLAB script also calculates the scrubbing metrics such as the availability, 
MTTF and MTTR. For blind scrubbing, all the instances for scrubbing and fault 
insertion can be calculated from the fault injection file and based on the specified 
scrubbing rate. For the blind scrubbing mode the script therefore only extracts the 
status bits for each fault insertion. 
 
For CRC triggered scrubbing, frame ECC triggered scrubbing and SECDED the 
MATLAB script also extracts the detection and scrubbing durations. In this case 
availability, MTTR and MTTF is based on the extracted detection duration and the 
scrubbing duration. These are calculated by the PC application and saved in the log. 
All compiled metrics for each run are saved in summary reports. 
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4 Results 

In this section, the results from the static and dynamic testing campaigns are presented. 
Sec. 5 provides a discussion of the results. 
 

4.1 Evaluating TMR Implementations 

The static tests are performed as described in Sec. 3.3.4, and are used to give an 
indication of how well the different TMR implementations can mask errors. Table 11 
gives a summary of the static testing results.  
 

Table 11. Static Testing Results 

TMR                       Injected Errors Observable Errors Failures           Failures(%) 

Reference     4000 1084 1084 27.1 

Single Voter 4000 697 34 0.85 

Triple Voter 4000 714 14 0.35 

Synplify TMR 4000 10 10 0.25 

 
In the reference AES design, all observable errors will also be failures, as they lead to 
an incorrect output. This gives a failure rate of 27.1%, meaning that 27.1% of SEUs 
affecting the configuration memory will result in an incorrect output.  Observable errors 
in this report are defined as errors that produce an incorrect output from an AES block 
or a voter stage 
 
 Table 12 shows a breakdown of the observed errors in each of the tested TMR 
implementations. 
 

 

Table 12. Observable Errors, Static Testing 

TMR Single Errors Bridge Errors Voter Errors Multiple Total 

Reference     1084 (100.0%) N/A N/A N/A 1084 

Single Voter 663 (95.1%) 10 (1.4%) 20 (2.9%) 4 (0.6% ) 697 

Triple Voter 674 (94.4%) 6 (0.8%) 32 (4.5%) 2 (0.3%) 714 

Synplify TMR 10 (100.0%) N/A N/A N/A 10 

 
The categories bridge errors, voter errors and multiple errors are not applicable to the 
reference design or to the Synplify TMR design. A single error is defined as an error 
affecting the output of a single TMR branch. In the reference design, this means an 
error has occurred in the (one and only) AES encryption block, and therefore an 
incorrect output is noted.  
Looking at the resources used for each of the TMR implementations, Table 13 shows 
the relative resource usage on an XC5VLX50 FPGA. The designs are synthesised 
using Synplify Premier (H-2013.03).  
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Table 13. TMR Implementations, Resources 

TMR Slices Slice Regs LUTs LUT-DFF-Pairs Relative 

Reference     291  408 1143 1143 1 

Single Voter 1354 1345 3698 3698 3.24 x 

Triple Voter 1472 1603 4224 4224 3.87 x 

Synplify TMR 2275 1224 5436 5436 4.76 x 

 

4.2 Evaluating Scrubbing Methods 

By running dynamic, continuous tests on TMR systems and employing different 
scrubbing methods, statistics can be obtained for the efficiency of the scrubbing 
methods. These methods also have to be put into relation with the area overhead and 
added complexity they bring to the system.  
 

4.2.1 Availability 

In this section, results for availability are depicted as a function of SEU rate, and in the 
case of blind scrubbing also Scrubbing rate. The scrubbing rate is defined as the 
frequency of scrubbing divided by the frequency of SEUs. Sweeping the SEU rate in 
this manner corresponds to comparing the performance of a scrubber at different levels 
of radiation.  
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4.2.1.1 Blind Scrubbing 

Fig. 57 shows the availability of four different systems, all using blind scrubbing, but 
with different TMR implementations. In this plot, the mean time between SEUs is fixed 
at 1 SEU per minute. The scrubbing rate is varied to illustrate how scrubbing more or 
less often affects the system’s availability. The x-axis (scrubbing frequency) is varied 
from 0.01 to 10. These values correspond to a periodical scrubbing performed 100x 
slower to 10x faster than the expected SEU rate.  
 

 

 

Fig. 57. Availability, Blind Scrubbing (at SEU Rate 1/min) 

 
In  
Fig. 58, results for blind scrubbing availability are presented in four different graphs for 
the different TMR implementations and reference case. In this figure, the scrubbing 
rate as well as the mean time between SEUs is varied. The black line represents the 
maximum availability value at each SEU rate. The colour coding represents the level of 
availability. 
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Fig. 58. Availability, Blind Scrubbing 

Fig. 59 illustrates this by showing the percentage of downtime (when the system is not 
available) when the system is busy with reconfiguration. The inverse of the plotted 
values correspond to the percentage of the total downtime the system is producing an 
incorrect output. 
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Fig. 59. Cause of Downtime, Blind Scrubbing 
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Fig. 60 shows the cause of downtime for blind scrubbing, similarly to Fig. 59, but fixed 
at an SEU rate of 1 SEU per minute.  

 

Fig. 60. Cause of Downtime, Blind Scrubbing (at SEU rate 1/min) 

Fig. 61 shows a plot of Availability/LUT as a function of scrubbing rate for the different 
TMR implementations and the reference case.  

 

 

Fig. 61. Availability per LUT, Blind Scrubbing (at SEU Rate 1/min)  

 
Fig. 62 shows Availability/LUT for the three TMR implementations in combination with 
blind scrubbing, again as a function of the mean time between SEUs and the scrubbing 
rate. The reference design is not included here. 
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Fig. 62. Availability per LUT, Blind Scrubbing 
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4.2.1.2 Error Detection-based Scrubbers 

For the implemented scrubbers that make use of error detection methods (CRC, ECC, 
SECDED), the concept of scrubbing rate has no meaning, as scrubbing is done only 
after detection, and not periodically as for blind scrubbing.. Table 14 shows availability 
for the three detection-based scrubbing methods when varying the SEU rate from 1 per 
second to 1 per day.  
  

Table 14. Detection-based Scrubbers 
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4.2.2 Resource Usage 

Table 15 presents a comparison of the resource usage for the different implemented 
scrubbing methods. The numbers presented for the case with no scrubber 
implementation can be seen as not having a scrubber at all, or keeping the scrubber 
externally. The numbers for CRC, ECC and SECDED scrubbers represent the case of 
having the scrubber internally on the FPGA. Relative overhead percentages are 
presented for each combination of TMR and Scrubbing, with the no-scrubber case as a 
reference case for each TMR implementation. 
 

Table 15. Scrubber Implementations, Resources 

Scrubber TMR Slices Slice Regs LUTs Relative 

None 

Reference 291 408 1143 100% 

Single Voter 1354 1345 3698 100% 

Triple Voter 1472 1603 4224 100% 

Synplify TMR 2275 1224 5436 100%  

CRC 

Reference 315 424 1179 104% 

Single Voter 1373 1361 3634 101% 

Triple Voter 1491 1619 4241 101% 

Synplify TMR 2294 1240 5472 101% 

ECC 

Reference 746 1042 2051 255% 

Single Voter 1809 1979 4606 147% 

Triple Voter 1843 2237 5125 140% 

Synplify TMR 2730 1858 6344 152% 

SECDED 

Reference 505 734 1526 180% 

Single Voter 1596 1671 3607 124% 

Triple Voter 1687 1933 4598 120% 

Synplify TMR 2490 1550 5819 127% 

 
Fig. 63 shows a graphical representation of the relative resource usage for each of the 
implemented scrubbing methods, normalised to reference (the resource usage of 
reference is 1.0). In Fig. 63, the TMR implementations’ names are shortened as SV 
(Single Voter), TV (Triple Voter) and Synp (Synplify TMR).  
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Fig. 63. Relative Resource Usage for Different Scrubbing Methods 
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4.2.3 Mean Time to Failure 

 
For a lot of applications, Mean Time to Failure (MTTF) numbers can be more relevant 
and give more information than availability. Fig. 64 shows MTTF as a function of 
scrubbing rate for blind scrubbing systems, again using a fixed mean time between 
SEUs of 1 min. 
 

 

Fig. 64. MTTF, Blind Scrubbing (at SEU Rate 1/min) 

 
Note that the y-axis in Fig. 64 is given in hours and on a logarithmic scale. Note the 
asymptotic tendency for each TMR implementation.   
 
Fig. 65 and Fig. 66 show MTTF and MTTF per LUT as functions of the SEU rate for 
blind scrubbing. It should be noted that the z-axis is not normalised in Fig. 65.  
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Fig. 65. MTTF, Blind Scrubbing 

 
 

 

Fig. 66. MTTF per LUT, Blind Scrubbing 

 
Fig. 67 shows MTTF as a function of SEU rate for the three error detection-based 
scrubbing methods: CRC, ECC and SECDED, given in hours.  
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Fig. 67. MTTF, Error Detection-based Scrubbing 
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Fig. 68 shows MTTF per LUT as a function of SEU rate for each of the TMR 
implementations for the detection-based scrubbing methods.  

 

Fig. 68. MTTF per LUT, Error Detection-based Scrubbing 
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4.3 Faults In Time 

Depending on implementation there will be difference in availability, MTTF and FIT. 
The relation between these metrics and how they are derived is described in 2.4.1. 
Systems with the CRC, ECC and SECDED implementation will yield a high availability. 
In these specific cases, the availability comes close to 1 and the difference between 
the implementations will be negligible. A plot showing the different availabilities will 
therefore not be a fair comparison. MTTF and FIT will be shown for all combinations 
instead. Fig. 69 shows MTTF for the error-detection based scrubbing methods, similar 
to Fig. 67, but over an extended x-axis. 
 
Using these numbers, by a simple rescaling of MTTF according to Eq. 17, a FIT value 
is obtained. Fig. 70 show FIT values for the error detection-based scrubbing methods. 
 

 

 

Fig. 69. MTTF, Error Detection-based Scrubbing (extended x-axis) 
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Fig. 70. FIT, Error Detection-based Scrubbing  
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4.4 Example LEO and GEO Scenarios 

In order to provide realistic and complete examples of the feasibility of SRAM-based 
FPGAs in space, two common satellite orbits have been selected. One Low Earth Orbit 
(LEO) and one Geosynchronous Orbit (GEO) are used, as they represent the most 
common cases for commercial satellites.  This section will present a complete example, 
weighing in device characteristics, satellite orbit parameters and radiation models, 
finally arriving at a FIT value for each orbit, for the particular FPGA type.  

4.4.1 Device Characteristics and Test Application 

The FPGA used throughout the experiments detailed in this report is the XC5VLX50. 
However, the XC5VLX50 is a commercial, non-rad-hard FPGA, and so no radiation 
testing results are available from the manufacturer. Because of this, calculations will be 
made using the device characteristics published for another Virtex-5 series FPGA, the 
Virtex-5QV FX130T (XQR5VFX130T). The Virtex-5QV FPGA is a radiation-hardened 
version for space applications [64], for which radiation testing results are available. The 
FX130T has a larger capacity than the VLX50 FPGA. In [65], extensive radiation test 
results for the Virtex-5QV FX130T are presented.  
 

 

 

Fig. 71. Cross Section, Heavy Ions 

 

 

Fig. 72. Cross Section, Protons 

 
Fig. 71 and Fig. 72 show the cross section of the FX130T device for heavy ions and 
protons, respectively. The Weibull parameters used are from [65]. 
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The test application is the same 128-bit AES encryption application used in the 
previously described experiments, but scaled up to fill the entire FPGA. For the 
purpose of calculating SEU rates, all the configuration cells are considered as being 
used, along with all user flip-flops. No DSP48E slices are used. Two different versions 
of the test application for each orbit will be used: a version with 5% BRAM usage, and 
another version where 50% of the available BRAM is used. Using the resource usage 
report from the .mrp files generated by PlanAhead post-PAR and the resources 
available on the FX130T as stated in [64], the numbers for functional flip-flops and 
device usage percentage are calculated. 
 
Available on the FX130T are 20,480 slices, 320 DSP48E slices, 596x18kB BRAM and 
298x36kB BRAM. 
 
In Table 16, the FX130T FPGA has been filled with as many AES blocks as will fit. The 
level of BRAM used is fixed at 5% of the total available memory. As a measure of the 
size of the application, and for easy comparison with ASIC designs, the measurement 
Functional D-Flip-Flops is used. This measurement is the number of DFFs that add to 
the functionality to the system, and does not include redundant flip-flops. For example, 
a reference design AES block and a TMR AES block has the same number of 
functional DFFs, as they perform the same function.  
 
A characteristic of the AES block is that it is logic-dominated, meaning that LUT 
resources will be the bottleneck when scaling the design to fill the whole FPGA. These 
numbers are highly application specific. The total number of DFFs available is 81,920. 
Theoretically, all of these could be used in an application (see Table 17). 
 

Table 16. Functional DFFs, AES Application in FX130T FPGA 

TMR Functional DFFs BRAM Device Usage AES Blocks 

Reference     28,968 512 kB 99.1% 71 

Single Voter 8,976 512 kB 99.3% 22 

Triple Voter 7,752 512 kB 98.0% 19 

Synplify TMR 6,120 512 kB 99.5% 15 

 

Table 17. Functional DFFs, Theoretical Maximum in FX130T FPGA 

TMR Functional DFFs 

Reference     81,920 

Single Voter 25,380 

Triple Voter 21,920 

Synplify TMR 17,320 
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4.4.2 Satellite Orbits and Radiation Profiles 

The example Low-Earth Orbit is specified by the parameters in Table 18, and its 
ground track is illustrated in Fig. 73. 

 Table 18. LEO Parameters 

Altitude     800km  

Inclination 98° 

RAAN 20° 

Argument of Perigee 0° 

True Anomaly 0° 

 

Fig. 73. LEO Satellite Groundtrack 

This represents a standard sun-synchronous orbit with a retrograde inclination, typical 
for example for a remote sensing / Earth observation satellite. Aluminium shielding of 
thickness 0.100” is included in the calculations in this chapter. Table 19 presents the 
orbital parameters for the Geostationary (GEO) orbit used, illustrated in Fig. 74. 

Table 19. GEO Parameters 

Altitude     35,786 km 

Longitude -55° 

 

 

Fig. 74. GEO Satellite Groundtrack 

 
The LET spectrum for the LEO is shown in Fig. 75 and the LET spectrum for GEO is 
shown in Fig. 76.  
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Fig. 75. LET Spectrum, LEO 

 
 

 

Fig. 76. LET Spectrum, GEO 
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4.4.3 FITs 

The expected SEU periods for the two examples orbits are derived from Fig. 75 and 
Fig. 76. The corresponding SEU rates for each of these cases are shown as vertical 
lines in Fig. 77 and Fig. 78. Furthermore, FIT is calculated for LEO and GEO for the 
SECDED implementation. These values are presented in Table 20. 
 
MTTF values for the different implementations are presented in Fig. 77. The x axis 
shows the SEU period in seconds. The FIT for all detection based-scrubbing 
combinations as a function of SEU period is shown in Fig. 78. 
 

Table 20. FIT, Example Orbits using SECDED Scrubbing 

Orbit BRAM Usage Reference Single Voter Triple Voter Synplify TMR 

LEO 

0% 4.835E+04 2.016E+03 
 

5.635E+02 
 

4.515E+02 
 

5% 1.146E+07 4.778E+05 
 

1.336E+05 1.070E+05 

50% 1.142E+08 4.760E+06 
 

1.331E+06 1.066E+06 

GEO 

0% 1.108E+05 4.618E+03 1.291E+03 1.034E+03 

5% 1.948E+07 8.122E+05 2.270E+05 1.819E+05 

50% 1.938E+08 8.081E+06 2.259E+06 1.810E+06 
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Fig. 77. MTTF, Error Detection-based Scrubbing 

 
  

2
4

6
8

1
0

x
 1

0
4

0

5
0
0
0

1
0
0
0
0

C
R

C
 trig

g
ered

1
/fS

E
U

MTTF [h]
2

4
6

8
1
0

x
 1

0
4

0

5
0
0
0

1
0
0
0
0

MTTF [h]

F
ram

e E
C

C
 trig

g
ered

1
/fS

E
U

2
4

6
8

1
0

x
 1

0
4

0

5
0
0
0

1
0
0
0
0

MTTF [h]

S
E

C
D

E
D

1
/fS

E
U

 

 

R
eferen

ce (N
o

 T
M

R
)

S
in

g
le V

o
ter

T
rip

le V
o

ter

S
y
n

p
lify

 T
M

R

O
n

e m
o

n
th

V
irtex

-5
Q

V
 L

E
O

 o
rb

it 5
%

 B
R

A
M

V
irtex

-5
Q

V
 G

E
O

 o
rb

it 5
%

 B
R

A
M

V
irtex

-5
Q

V
 L

E
O

 o
rb

it 5
0

%
 B

R
A

M

V
irtex

-5
Q

V
 G

E
O

 o
rb

it 5
0

%
 B

R
A

M



Page 

 113 

 

 

 
 

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space 

 

  Brosser & Milh 2014 

    

Fig. 78. FIT, Error Detection-based Scrubbing  
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5 Discussion and Recommendations 

This section provides a discussion of the method and results, and also gives a set of 
general recommendations for the use of Xilinx commercial SRAM-based FPGAs in 
space applications. 

5.1 Relevance and Limitations of Test Method and Results 

The results presented in this report apply to the selected test application, the 128-bit 
AES encryption block. While the techniques discussed are general, the results, and 
therefore the optimal mitigation strategy, will vary widely depending on the application. 
Using an AES application gives the tests a high level of observability, since an error 
anywhere in the encryption chain is likely to propagate through to the output. The AES 
application is rather logic-heavy, in that it uses a lot of logic rather than sequential 
elements. The AES application has no feedback or dependency on earlier encryptions, 
so the results presented in this report will not take feedback effects into considerations. 
In many real applications, there is feedback or strong state dependencies that may 
exhibit different error patterns when incorrect state or data is introduced into the system. 
The test method only tests upsets in the configuration memory. It does not test user 
data upsets or single event transients (SETs). 
  
The AES application used here does not make use of BRAM or DSP blocks. It is a 
conscious choice to make the application as scalable and as placement-independent 
as possible, by using only fabric resources. Also, it allows for tighter packing into a p-
block than might otherwise have been possible. This means that the AES application 
can be duplicated to fill up the entire FPGA with a high degree of resource utilisation, 
with respect to logic slices. A scaled-up version of the system, using multiple instances 
of the AES application, shows a similar hit percentage of SEUs. Overall, the application, 
and therefore the results, can be scaled to fit any size of FPGA, while retaining its 
behaviour. 
 
As this report aims to investigate the feasibility of using non-rad-hard, COTS SRAM-
based FPGAs in space, the AES block represents a realistic application. This type of 
FPGA would typically not be used in critical applications such as On Board Computers. 
Therefore, a microprocessor application is not selected. Applications such as the AES 
block would typically be found in communication modules or payload instruments, 
where commercial SRAM-based FPGAs could be considered. 
  
While the test platform and method have some limitations and error sources, overall 
they produce reliable results that are representative of a real FPGA application in a 
space scenario. By running tests on an actual FPGA and injecting errors in a 
predictable and controlled manner in the configuration memory, the test method covers 
all the possible error modes, given a large enough number of fault injections. 
  
The fault injection method and error logging used in this project are intrusive, in the 
sense that they are implemented, synthesised, placed and routed on the FPGA side-
by-side with the DUT. Because of this, the test framework will unavoidably affect the 
DUT. While communications and interactions between the DUT and the test framework 
are kept to a minimum, there are some shared connection points. This may affect the 
statistics and results slightly. However, these effects are unlikely to have any significant 
impact on the trends shown by the results. The tests do show some variations from test 
run to test run. By using a large number of injected faults (tens of thousands), these 
variations are averaged out. 
  
Looking at the test platform itself, the major bottleneck in terms of test performance is 
the serial UART communication between the host PC and the test FPGA. Also, the 
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Xilinx SEU Controller macro used for fault injection has an upper limit on how often 
faults can be injected. The “tick” system that the Tcl application on the host PC uses 
allows for the UART communication time to be excluded from the ticks and therefore 
scaling of the SEU period without re-running tests. This is because all times are 
measured in ticks, which is a unit-less measurement that can then be scaled by a time 
factor according to the SEU period. Only reconfiguration events and detection times 
are measured in absolute time, and have to be converted to ticks. Using this method, 
the calculations do not have to take the communication latency between the host PC 
and the test FPGA into consideration, as all communication events are considered to 
take place inside of a single tick slot. 
  
Some possible sources of errors during test runs are single event upsets that affect the 
communication between the SEU Monitor and the DUT. It has been noted during some 
tests that this may cause the test system to time-out while waiting for a response from 
the DUT. In case this happens, it is logged by the SEU Monitor as an error. This 
however was corrected by modifying the monitor to exclude a non-responding AES unit 
and log the test vector anyway. 
 

5.2 Trends in Result Data 

Some important trends and tendencies have been observed during the test data 
analysis. First of all, it should be clear to designers that an availability of 100% cannot 
be achieved and, in fact, should not be the goal of a design process. The higher the 
availability is, the costlier it will be to improve it further, in terms of resources and 
system complexity. Where the threshold is between what is feasible, in terms of 
availability per resource, will depend on the application. 

 
Overall, cost is an important aspect of fault-tolerance. Fault-tolerance carries a cost 
either in terms of resources or in terms of (down-) time. Triple Modular Redundancy 
introduces a considerable resource overhead. Depending on the implementation, this 
overhead is somewhere in the range of 200% - 400% of the original implementation. 
This can be clearly seen in Table 13, and is supported by the literature ([30], [20]). 
Depending on how the application is placed and routed on the FPGA, and on what 
special resources it uses, the effective overhead could be even greater. If the resource 
cost of applying TMR to the whole application is too great, it can be useful to consider 
partial TMR, applying redundancy only to critical parts of the application (as discussed 
in 2.4.2), such as feedback loops or the circuitry in finite state machines keeping track 
of the state. 

 
Scrubbing circuitry can be placed internally on the FPGA, or externally. Internal 
scrubbing logic uses resources on the FPGA, introducing overhead, as seen in Table 
14. Depending on which scrubbing method is used and the device utilisation, resource 
overhead from using an internal scrubber may be significant or not, or may even be the 
dominant part of the design resource-wise.  
Again looking at Table 14, it is shown that different scrubbing methods vary widely in 
their implementation size. The numbers in Table 14 are for single AES blocks: scaling 
the application to fill the entire FPGA would make the scrubber implementation 
overhead much smaller in comparison.  
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It is important to note that scrubbing circuitry itself is susceptible to radiation-induced 
upsets. A malfunctioning scrubber can cause a lot of damage by writing incorrect frame 
data, writing to the wrong frames, or scrubbing unexpectedly. Scrubbers and fault-
tolerance monitoring circuitry can be protected by TMR just as the payload application. 
The advantage of keeping a scrubber internally on the FPGA is that overall system 
complexity is reduced, and that the scrubber can easily access error detection signals 
with after a shorter delay. However, internal scrubbers also have the disadvantages of 
being susceptible to SEUs, as well as taking up resources on the FPGA. External 
scrubbers can be implemented as radiation-hardened ASICs. This adds to the overall 
system complexity, but may prove to be a better solution since the scrubber’s target 
system and the scrubber are completely separated. 

5.2.1 TMR implementation 

In implementing TMR, it can be useful to consider the observability of errors. As an 
example, the Synplify TMR implementation used in this project offers no way of 
observing partial errors, as only errors on the output from a module can be seen. In the 
Triple Voter TMR design on a module-level, on the other hand, errors on separate TMR 
branches and voters can be observed. This can be used in error detection, if the 
application allows it. 
 
An important and very generally applicable concept is that adding redundancy also 
adds area to the application, thereby adding more resources susceptible to SEUs. That 
is, the redundancy overhead also has a failure rate. This can be seen as making the 
target for SEUs bigger, but at the same time more robust. The same concept also 
applies when scaling an application. Going from a design comprising 1,000 functional 
DFFs to the same design scaled to 10,000 functional DFFs will cause MTTF to scale 
linearly, and FIT to scale accordingly, with the area increase, when considering the 
whole system. Simply put, more functionality means more SEU-susceptible flip-flops. 

 
The static testing results in Table 11 give a good sense of how good the different TMR 
implementations are at masking errors. The reference design is provided as a baseline, 
and gives an estimate of how large a percentage of injected errors will cause actual 
observable errors. Throughout the experiments conducted and described in this report, 
about 25% of the injected errors give an observable error somewhere in the system. 
For the Single Voter and Triple Voter TMR designs in Table 11, there are about 700 
observable errors per 4000 injected errors. However, most of these errors affect single 
TMR branches, and are masked by the voter stage. For the Synplify TMR 
implementation, only failures are observable using the method described in this report. 
As Synplify TMR applies TMR on a much lower level than the single and triple voter 
module-level TMR designs, only the actual output from the whole AES block can be 
observed. 

 
Comparing the different TMR implementations, it can be seen that the Triple Voter and 
Synplify TMR designs offer a similar level of masking, while the Single Voter design 
has a slightly higher failure rate. This is because the voter stage in the Single Voter 
design represents a single point of failure. An SEU affecting the voter output itself 
cannot be masked by the Single Voter design. Triple Voter and Synplify TMR on the 
other hand, can deal with such errors. None of the designs, however, can protect 
against the case where a single bit upset affects two separate TMR branches (a so 
called bridge error). These bridge errors are the primary cause of failure in the Triple 
Voter design. 
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Different TMR implementations will yield different numbers and types of errors, as can 
be seen in Table 12. For the Single Voter, bridge errors, voter errors and multiple 
errors cause incorrect output results, while single errors are masked. As single errors 
make up the majority of observed errors, the single voter design is indeed able to mask 
a large portion of the observed errors. The reason why the amount of single errors is so 
much greater than bridge, voter and multiple errors is quite simply explained by the fact 
that the AES modules occupy more resources compared to the voter, whose size is 
almost negligible in comparison. Bridge errors are rare, because they can only occur 
when two separate TMR branches erroneously become connected and therefore share 
an error. As noted earlier, the single voter is susceptible to voter errors, as it is a single 
point of failure for the design. The increased amount of voter errors for the Triple Voter 
TMR design compared to the Single Voter design can again be explained by the simple 
fact that three voters make a bigger target than one. 

 
Overall, the Triple Voter design sees only a slightly higher number of total observable 
errors compared to the Single Voter design, which is roughly proportional to the size 
difference. It should be noted that there is an increased number of voter errors 
observed due to the larger amount of resources occupied by voters, but that these can 
in most cases be masked out by the triplicated voters. In the case of the Synplify TMR 
design, it is not possible to observe errors other than correct or incorrect output. 
 

5.2.2 Scrubbing implementation 

The relative-area-column of Table 14 shows some interesting results. Out of the 
implemented scrubbing methods, Frame ECC-based detection with dynamic partial 
reconfiguration is the most expensive in terms of resources. A SECDED scrubber 
making use of the Xilinx SEU Controller is a slightly more economical option. CRC-
based full reconfiguration presents little overhead. Together, these observations give 
an idea of the area overhead for each scrubbing method, to be kept in mind while 
looking at MTTF and FIT numbers. 

 
The performance of blind scrubbing has been extensively researched in this work. In 
particular, the relation between scrubbing frequency and SEU rate has been studied. 
Looking at Fig. 57, the Synplify TMR system consistently performs better than the other 
TMR implementations, up to a scrubbing rate of 1 (scrubbing at the same speed as 
expected SEUs). The plot in Fig. 57 is fixed at an SEU Rate of 1 SEU per minute. An 
interesting thing to note in this plot is that availability seems to drop after scrubbing rate 
1. The scrubbing rate, at which this happens, varies widely with the mean time between 
SEUs. For longer mean time between SEUs, a higher scrubbing frequency to SEU 
frequency ratio will result in a better availability. 
 
Looking at the same trend, but also varying the SEU rate, gives Fig. 58. In Fig. 58, a 
sharp drop is seen for all TMR implementations when the SEU and scrubbing 
frequencies are both high. This is because the system is trying to scrub faster than 
what is possible. A full reconfiguration takes a certain amount of time (~500 ms).  
Trying to perform a full reconfiguration (scrubbing) at 10x the expected SEU frequency, 
if the mean time between SEUs is 1 second, will result in the system being down for 
scrubbing 100% of the time. Fig. 59 shows this behaviour by plotting the scrubbing rate 
and SEU rate versus the portion of the total system downtime that is caused by 
scrubbing. A reasonable conclusion from these figures is that scrubbing more often 
does not always lead to better availability, and can in fact be directly harmful to the 
availability of a system, if done too often. In addition to this, power and system 
complexity concerns should be added. 
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The black line drawn for each TMR implementation in Fig. 58 gives the optimal 
scrubbing rate for a given SEU rate. Comparing the four implementations, it can be 
seen that the reference design can be scrubbed more often in relation to the SEU rate, 
without losing in availability. This is because the time spent in scrubbing mode is quite 
small compared to the time the circuit is producing an incorrect output, as the reference 
design is so sensitive to errors in the first place. The Synplify TMR implementation is 
much more fault-tolerant. 

 
In Fig.60, the SEU rate (mean time between SEUs) has been fixed at 1 SEU / minute 
to visualise more clearly the cost of scrubbing in terms of downtime. These graphs 
show that there is a point where the dominating contributor to system downtime shifts 
from being wrong result on output to scrubbing. The higher the masking rate of the 
TMR implementation, the most sudden this shift will be. The main thing to note in Fig. 
60 is the difference between the reference design and the TMR designs. The reference 
design gradually shifts over, while the TMR designs shift more suddenly. In the 
reference design, a much larger proportion of the downtime is caused by having an 
incorrect circuit, producing an incorrect output. As mentioned earlier, the scrubbing rate 
at which the switch of dominant factor from wrong output to scrubbing occurs depends 
on the mean time between SEUs. 

 
For a sense of how area-efficient the tested SEU mitigation techniques are, Fig. 61 
shows used resources per availability, at a fixed SEU rate of 1 SEU / minute. As for the 
previous pairs of graphs, this is accompanied by Fig. 62, where the SEU rate is varied. 
An interesting thing to note here is that redundancy implementations with high levels of 
availability are (un-proportionally) expensive in terms of resources. The reference 
design is not included in Fig. 62, as it would show much higher values than the TMR 
implementations. 

 
The first row of Table 14, CRC scrubbing with an SEU rate of 1/second, is interesting. 
Given that a full reconfiguration takes about 500ms, the system will be performing 
reconfigurations half of its total operational time. This gives a low availability, of around 
0.5. For the reference, Frame ECC-based detection scrubber with SEU rate 1/second, 
availability is much higher. This is due to the fact that even if Frame ECC is slower than 
CRC to detect errors, repairs are made much faster, as only a partial reconfiguration of 
a single frame has to be made, rather than a full reconfiguration. 

 
Looking at resource usage for the TMR implementations, as illustrated by Fig. 63, three 
distinct area profiles emerge. The Triple Voter design uses the most slice registers, but 
comparing overall resource usage in LUT-DFF-Pairs used, Synplify TMR is the most 
expensive implementation in terms of area. The LUTs are the bottleneck in these TMR 
implementations. The Single Voter, Triple Voter and Synplify TMR use roughly a factor 
3, 4 and 5 times more area than the unprotected reference design, respectively. 
 
A combination of a low SEU rate and a high scrubbing-rate-to-SEU-rate ratio results in 
high MTTF. The first thing to note is that Synplify TMR is consistently the best-
performing TMR implementation. Secondly, it can be seen from Fig. 67 that the Triple 
Voter and Synplify TMR designs benefit more from using partial reconfiguration than 
the Single Voter TMR design does. As mentioned earlier, this is due to the fact that the 
Single Voter design has a single point of failure, the voter. The green line is placed at 
730 hours, which is equal to one month. 
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Looking at Fig. 68, an interesting tendency to note in this figure is that the Triple Voter 
and Synplify TMR designs are almost exactly as area-efficient. Also, comparing Fig. 68 
to Fig. 62 shows that while the unprotected reference design may give the highest 
availability-per-LUT ratio, it is much worse when looking at the MTTF-to-LUT ratio. 
 
Ticks, which are used in calculations by MATLAB, are scaled with SEU period. 
However, some duration are counted as absolute values, such as scrubbing duration 
and error detection times, although these absolute times are negligible in comparison 
to the ticks which are scaled. This gives MTTF a linear relation to the SEU period, 
which is illustrated by Fig. 77. 
 
When MTTR<<MTTF, which is true in the presented example, then MTTF ~ MTBF. 
From this information it is expected that FIT as a function of SEU period resembles an 
f(x) = 1/x curve. Synplify TMR has the highest MTTF for all SEU periods which yields 
the lowest FIT for each SEU period, as shown in Fig. 76. The FIT is calculated as a 
function of MTTF as shown in Eq. (17). 
 

5.3 Orbit example calculations 

As the two different orbits differ severely in altitude, it is expected that the LET 
spectrum for the two respective orbits are different. An observable difference between 
the two spectrums is that the particle fluence is higher for all LET levels in the GEO 
spectrum. This is expected as LEO is on a much lower altitude and therefore under the 
influence of Earth’s protective magnetic field. 
 
FIT is a common figure of merit used in conjunction with fault tolerance. When a 
system designer specifies a required fault tolerance value, this number is often given in 
FIT. The estimated requirements can be used in two different ways when assessing 
fault tolerance. The first approach is to start at a given FIT value. For this required FIT 
value, each of the detection scrubbing implementations will give a value for the 
maximum tolerable SEU period. This can be seen graphically where a FIT corresponds 
to a horizontal line, as is seen in Fig. 77 and Fig. 78. This horizontal line will intersect 
with the different implementations at different SEU rates. The shorter the SEU period, 
the smaller the radiation constraints have to be on the target FPGA. 
 
Another approach is to pick a target FPGA, run radiation tests for this particular FPGA 
and resolve an SEU rate by integrating it with particle fluence for the orbit of interest. 
With these parameters, the SEU period can be used to find which implementation 
yields the lowest number of FIT. The SEU period can be represented graphically as a 
vertical line where the resolved number of FIT will be where the respective curves 
intersect with said vertical line, as is done in Fig. 77 and Fig. 78. 
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5.4 Protecting User Data 

In this report, focus has been on mitigation techniques for SEUs in the configuration 
memory. Protecting user data is also an important aspect in providing fault tolerance. 
This problem, however, exists in ASIC development as well, so coding standards and 
design considerations are well established. Using the fault-tolerance mechanisms 
described in this report will help guarantee the function of the implemented logic, which 
is a requisite for user data protection schemes. Deploying triple modular redundancy 
schemes for all user data flip-flops is an efficient mitigation strategy for user data 
upsets, but drastically reduces the number of functional flip-flops available to the 
designer. As for configuration memory upset mitigation techniques, when designing 
systems employing redundancy to protect user data, special care has to be taken to 
making sure that the synthesis and design tools do not optimise away or inadvertently 
breaks the redundancy. 
 
There are a few basic rules when designing robust applications. State Machines should 
be designed without deadlock states, and using dummy states where necessary. This, 
of course, depends on the designer being able to trust the underlying logic 
configuration. State machine encodings can be chosen for robustness, for example 
employing Hamming-3 coding as discussed in Sec. 2.4.4.1. 
 
Errors in user data can be difficult to detect, if the data is not protected by CRC. The 
only other way to detect such errors is by comparing and detecting errors in output 
data. If this type of error detection mechanism is implemented in a system, it can for 
example trigger a reconfiguration of the affected module. However, reconfiguring and 
resetting a module will cause it to lose its state, and resynchronising with other parts of 
the system may take a long time. 
 
Synthesis and PAR tools play a role in minimising the susceptibility to user data upsets. 
In designing redundant, fault-tolerant systems, it is often important to keep track of 
what is allowed for the tools to optimise and what is to remain untouched to achieve the 
desired level of redundancy. Considering constant-value flip-flops, these must be 
synthesised as constant signals or un-clocked flip-flops. During the experiments 
described in this report, unexpected errors were encountered due to incorrect values 
being clocked into flip-flops which were intended to hold constant values. Constant 
values can be considered as user data or as configuration memory, following the 
division presented in Fig. 20. In [66], the authors provide an interesting discussion on 
how to approach SEU susceptibility for constant values in FPGAs. 
 
DSP slices pose a challenge in that their internal pipelining registers and configuration 
vectors cannot be protected by TMR, yet are still susceptible to upsets. Possible 
solutions are temporal redundancy, or tripling DSP slices on a module level. 
 
In conclusion, user data protection is very much up to the designer to implement and 
keep in mind. Normal, robust coding and design work for state machine designs should 
be applied for FPGAs just as for ASIC designs. Larger memory or register blocks such 
as BRAM can be protected by error correcting codes. Indeed, in space applications, 
RAM is almost always protected by EDAC. In [63], the authors present results for ECC 
protected BRAM for the radiation-hardened Xilinx XQR5VFX130 FPGA. Flip-flops may 
also be tripled and voted. The role of configuration memory SEU protection is to 
guarantee the integrity of the logic function implemented in the circuit. 

  



Page 

 121 

 

 

 
 

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space 

 

  Brosser & Milh 2014 

    

6 Conclusion 

The results presented in this report suggest that standard, commercial SRAM-based 
FPGAs from Xilinx can indeed be used in space applications for standard LEO and 
GEO missions. The suitability of such devices, however, depends fully on the mission 
profile, the target device and on the application itself. For suitable applications, the type 
of FPGA discussed can provide a very cost-to-area-efficient alternative to conventional 
ASICs, radiation hardened FPGAs and antifuse FPGAs.  
 
It is recommended to implement TMR for most applications. TMR needs to be 
combined with some type of scrubbing in order to be efficient. For certain applications, 
duplication with comparison or some other error detection method may be feasible, 
given that the application can afford the downtime while repairing and rerunning. 
 
When implementing redundancy, tool-inferred TMR constitutes a convenient and safe 
method of implementation, as no changes have to be made in the RTL code. In Xilinx 
TMR tool and in Synplify Pro, TMR can be applied simply by setting a flag or setting 
synthesis attributes.  
 
Error detection-based scrubbing is most often superior in performance and response-
time compared to blind scrubbing. In the case of blind scrubbing, the scrubbing rate 
needs to be adapted to the expected SEU rate. Scrubbing more often does not always 
lead to better availability for the system. Blind Scrubbing, however, still serves a 
purpose if done as maintenance in an adaptive manner for instance whenever the 
system is idle. 
 
The Xilinx SEU Controller Macro / SEM (SECDED) represent an area-efficient and 
effective single error correction method. Combined with full or partial reconfiguration 
upon double error detection, the method is an efficient scrubbing method. Partial 
reconfiguration is in general better than full reconfiguration when combined with TMR, 
as it allows module-level reconfiguration without interrupting the function of the circuit. 
However, partial reconfiguration requires extra hardware, and is significantly more 
complicated than simply triggering a full reconfiguration from an external PROM. 
 

6.1 Other Recommendations 

It should be noted that the use of on-chip RAM and DSP slices greatly affects the 
overall susceptibility to radiation, which in turn increases the SEU rate experienced by 
the device. BRAM and DSP slices. 

 
It is recommended that each application where a non rad-hard device is considered is 
evaluated thoroughly. All normal considerations regarding protection of user data, FSM 
states and block RAM that apply to ASIC and rad-hard FPGA designs should be 
applied to designs in SRAM-based FPGAs as well. This type of FPGA should be 
considered for non-critical systems only, such as instruments, image processing 
applications and non-time-critical communication links. Mission-critical, safety-critical or 
real-time systems should not be implemented in standard commercial SRAM-based 
FPGAs. Mission length will also need to be factored in the decision of whether or not to 
use an SRAM-based commercial FPGA. For longer missions, system designers need 
to make sure the selected FPGA has a high enough tolerated TID. 
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Certain applications are more suitable for implementation in SRAM-based FPGAs than 
others. Some applications can afford to rerun computations or transmissions, or may 
have a natural downtime, such as communication links that are only active for short 
periods. In these applications, scrubbing can be performed by taking advantage of the 
natural window of downtime. This type of application load-based scrubbing relies on 
the implemented fault masking to mask any errors during heavy workloads, and 
scrubbing to correct errors when the application is free.  
 
If redundancy is implemented in RTL code (represented by the module-level single and 
triple voter TMR designs in this report), special case has to be taken to ensure that the 
synthesis tool does not remove the intentionally designed redundancy by optimising. In 
general, the designer needs to pay attention to what the design tools are doing to the 
code, in order to make sure that the intended fault-tolerant techniques are kept. 
Synthesis attributes to preserve redundancy are available in XST and Synplify, and 
should be used. It is usually a good idea to keep a critical stance towards the design 
tools. Even if no errors or warnings are reported, the tools may not produce what the 
designer expects. Also, the designer should make sure that the synthesis tool does not 
remove unreachable FSM states, as they may be important for robustness. In Synplify 
Pro, it is recommended that the designer specifies the attributes syn_keep, 
syn_preserve and syn_encoding for signals, components and state machines, 
respectively. 
 
If observability can be implemented for an application, at a feasible hardware cost, it is 
often beneficial. Errors can be observed at module-level internally in the FPGA, or at a 
device-level in the system. On a system level, it may be efficient to implement a single, 
radiation-hardened scrubbing ASIC tasked with scrubbing multiple FPGAs. In case one 
of the FPGAs in a system encounters an error, a system alarm type of signal can be 
triggered, allowing the other FPGAs to adapt their workload while the faulty FPGA is 
being repaired. 
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7 Future Work 

Building upon the work presented in this report, several extensions are possible that 
would add to the quality of the results. Using an application with feedback or strong 
state dependence as a payload would allow the study of fault propagation and 
persistence. It would also be a good platform for studying the efficiency of partial TMR, 
for example by protecting only vital feedback loops with redundancy. An FIR filter 
application was implemented during this project, but was never fully tested due to a 
lack of time. 
 
The test platform and host PC application show some unexpected behaviour from time 
to time, most likely due to bugs. Adapting the platform to other FPGA architectures 
than Virtex-5, and running tests to compare different FPGA families, would be a highly 
interesting experiment.  
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