

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2014

SEU Mitigation Techniques for
Advanced Reprogrammable FPGA in
Space

Master’s thesis in Embedded Electronic System Design

FREDRIK BROSSER
EMIL MILH

Page

 2

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space Brosser & Milh 2014

The Authors grants to Chalmers University of Technology the non-exclusive right to publish the
Work electronically in a non-commercial purpose making it accessible on the Internet. The
Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law. The Author shall, when
transferring the rights of the Work to a third party (for example a publisher or a company),
acknowledge the third party about this agreement. If the Author has signed a copyright
agreement with a third party regarding the Work, the Author warrants hereby he/she has
obtained any necessary permission from this third party to let Chalmers University of
Technology store the Work electronically and make it accessible on the Internet.

Fredrik Brosser, Emil Milh
© Fredrik Brosser, June 2014.
© Emil Milh, June 2014.
Examiner: Per Larsson-Edefors
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone + 46(0)31-772 1000
Department of Computer Science and Engineering
Gothenburg, Sweden June 2014

Page

 3

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space Brosser & Milh 2014

Abstract

FPGAs are becoming increasingly attractive for use in space applications due to their
reconfiguration and signal processing capabilities, as well as their increasing speed
and capacity. Traditional SRAM-based FPGAs, however, are highly sensitive to the
ionising radiation environment in space, making them prone to radiation-induced
memory upsets. In this thesis, design techniques for mitigating such upsets are
implemented, tested and evaluated, with the purpose of enabling a replacement of
conventional radiation-hardened or antifuse FPGAs with Xilinx commercial SRAM-
based FPGAs.

A test framework using an exchangeable payload is developed for this purpose and run
on a Xilinx Virtex-5 FPGA. A payload application is selected and used to test and
compare the gains and costs related to different levels of redundancy and different
FPGA configuration memory scrubbing methods. In comparing soft error mitigation
methods, test results for availability, resource usage, mean time to failure and faults in
time are considered. Realistic satellite orbit and radiation scenarios are considered,
and a complete example application is presented.

The product of this work is a set of recommendations regarding the use of commercial
SRAM-based FPGAs in space applications.

Page

 4

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space Brosser & Milh 2014

Table of Contents

Acronyms 6

List of Figures 7

List of Tables 8

1 Introduction .. 9
1.1 FPGA technologies .. 9
1.2 Problem Statement .. 12
1.3 Scope .. 12

2 Background and Related Work .. 13
2.1 Radiation ... 13
2.1.1 Radiation types and measurements .. 13
2.1.2 Space environment ... 15
2.1.3 Satellite Orbits ... 17
2.1.4 Radiation Characteristics of Devices ... 18
2.1.5 Total Ionising Dose.. 21
2.2 FPGA Architecture and Sensitive Structures 23
2.3 Single Event Upsets in SRAM-based FPGA 30
2.3.1 Configuration Memory Upsets ... 30
2.3.2 User Data Upsets .. 33
2.3.3 Architectural Upsets .. 35
2.4 SEU Mitigation Techniques ... 36
2.4.1 Fault tolerance definitions and concepts 36
2.4.2 Triple modular redundancy .. 39
2.4.3 Configuration Memory Scrubbing .. 43
2.4.4 Error Correcting Codes ... 50
2.4.5 Checkpointing and Rollback .. 52
2.4.6 Temporal Redundancy .. 53
2.4.7 Tool-Level Techniques .. 54

3 Method .. 57
3.1 Test Platform ... 58
3.1.1 Board .. 58
3.1.2 FPGA Test Platform .. 59
3.1.3 PC Communication and Software .. 66
3.2 Implementing Mitigation Technique Candidates 68
3.2.1 TMR Implementations ... 68
3.2.2 Scrubber Implementations ... 70
3.3 Test Method .. 72
3.3.1 FPGA Partitioning ... 72
3.3.2 Timing Constraints .. 75
3.3.3 Fault Injection .. 75
3.3.4 Static Tests ... 78
3.3.5 Dynamic Tests .. 79
3.3.6 Measuring Power .. 81
3.3.7 Measuring Availability .. 82
3.3.8 Measuring Area ... 83
3.3.9 Tool and Language Versions ... 84
3.3.10 Test Toolchain and Plan .. 85
3.3.11 Test Data Analysis .. 90

4 Results .. 91
4.1 Evaluating TMR Implementations .. 91
4.2 Evaluating Scrubbing Methods .. 92
4.2.1 Availability ... 92

Page

 5

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space Brosser & Milh 2014

4.2.2 Resource Usage ... 99
4.2.3 Mean Time to Failure .. 101
4.3 Faults In Time .. 105
4.4 Example LEO and GEO Scenarios .. 107
4.4.1 Device Characteristics and Test Application 107
4.4.2 Satellite Orbits and Radiation Profiles 109
4.4.3 FITs ... 111

5 Discussion and Recommendations .. 114
5.1 Relevance and Limitations of Test Method and Results 114
5.2 Trends in Result Data .. 115
5.2.1 TMR implementation ... 116
5.2.2 Scrubbing implementation ... 117
5.3 Orbit example calculations ... 119
5.4 Protecting User Data ... 120

6 Conclusion ... 121
6.1 Other Recommendations ... 121

7 Future Work ... 123

8 Acknowledgements .. 124

9 Bibliography ... 125

Page

 6

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Acronyms

AES Advanced Encryption Standard
ASIC Application Specific Integrated Circuit
BRAM Block Random Access Memory
CLB Configurable Logic Block
CMOS Complementary Metal-Oxide Semiconductor
COTS Commercial Off-The-Shelf
CRC Cyclic Redundancy Check
CREME Cosmic Ray Effects on Micro-Electronic Circuits
DDR Double Data Rate
DFF D-type Flip-Flop
DLP Delay-Locked Loop
DPR Dynamic Partial Reprogramming
DSP
DUT

Digital Signal Processing
Design Under Test

DWC Duplication With Comparison
ECC Error Correcting Code
EDAC Error Detection and Correction
EEPROM Electrically Erasable Programmable Read-Only Memory
FIT Faults In Time
FPGA Field-Programmable Gate Array
GEO Geostationary Orbit
I/O Input/Output
ICAP Internal Configuration Access Port
JTAG Joint Test Action Group (IEEE 1149.1 Standard)
LD+LR Logic Decomposition, Logic Restructuring
LEO Low Earth Orbit
LET Linear Energy Transfer
LUT Look-Up Table
MBU Multiple Bit Upset
MTBF Mean Time Between Failures
MTTF Mean Time To Failure
MTTR Mean Time To Repair
NRE Non-Recurring Engineering
PAR Place And Route
PIP Programmable Interconnect Point
PLL Phase-Locked Loop
SBU Single Bit Upset
SEB Single Event Burnout
SECDED Single Error Correction, Double Error Detection
SEE Single Event Effect
SEFI Single Event Functional Interrupt
SEGR Single Event Gate Rupture
SEL Single Event Latch-up
SET Single Event Transient
SEU Single Event Upset
SPENVIS Space Environment Information System
SRAM Static Random Access Memory
TID Total Ionising Dose
TMR Triple Modular Redundancy
UART Universal Asynchronous Receiver/Transmitter
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit

Page

 7

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

List of Figures

Fig. 1. Flash Memory Cell ... 10
Fig. 2. SRAM Cell ... 10
Fig. 3. The different atmospheric layers and Van Allen belts. 15
Fig. 4. The inner and outer Van Allen belts following Earth magnetic fields 16
Fig. 5. LET spectrum for circular orbits at different altitudes. 16
Fig. 6. Satellite orbit measurements. ... 17
Fig. 7. A particle striking a transistor and creating an ionisation path 18
Fig. 8. A proton striking a transistor and inducing nuclear reactions 18
Fig. 9. Proton energy spectrum for different altitudes. ... 19
Fig. 10. Typical cross section characteristics used in approximations. 21
Fig. 11. Positive charge trapped in a positive oxide trap. .. 22
Fig. 12. FPGA Architecture Overview ... 23
Fig. 13. LUT Configuration .. 24
Fig. 14. Interconnect Matrix... 24
Fig. 15. Configuration Flow ... 25
Fig. 16. Configuration Packet Types ... 26
Fig. 17. ICAP Interface .. 26
Fig. 18. DSP48E Slice .. 27
Fig. 19. 36kB BRAM ... 28
Fig. 20. FPGA Resource Groups .. 29
Fig. 21. Shortened PIP Error ... 31
Fig. 22. MUX Select Error ... 31
Fig. 23. Buffer Control Error .. 32
Fig. 24. LUT Content Error .. 33
Fig. 25. Single Event Transient ... 34
Fig. 26. Failure Chain .. 36
Fig. 27. Three parallel units in a TMR configuration. ... 39
Fig. 28. Two different types of faults occurring in a TMR system............................... 39
Fig. 29. Simple voter implementation comprising one majority voter. 41
Fig. 30. Possible implementation of a three-input majority voter. 42
Fig. 31. Triplicated voter implementation comprising three majority voters. 42
Fig. 32. Blind vs. Readback Scrubbing ... 45
Fig. 33. External and Internal Scrubbers ... 47
Fig. 34. Xilinx SEU Controller Macro ... 48
Fig. 35. ECC Protected BRAM .. 52
Fig. 36. Checkpointing and Rollback Principle .. 53
Fig. 37. LD+LR Masking ... 56
Fig. 38. Virtex 5 Evaluation Board ... 58
Fig. 39. Virtex 5 Evaluation Board, Block Diagram .. 59
Fig. 40. FPGA Test Platform ... 60
Fig. 41. Example Test Run.. 62
Fig. 42. Test Framework Bus Structure ... 65
Fig. 43. Monitor Application... 66
Fig. 44. TMR Implementations .. 69
Fig. 45. External vs. Internal Scrubber .. 70
Fig. 46. FPGA Partitioning .. 74
Fig. 47. Distribution of inserted faults where the x-axis represents frame and

the y axis represents the bit. .. 76
Fig. 48. Fault-Insertion Mechanism ... 77
Fig. 49. Static Testing Flow ... 78
Fig. 50. Basic Dynamic Testing ... 80
Fig. 51. Power Measurements .. 81

Page

 8

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 52. Complete Test Toolchain ... 85
Fig. 53. Blind Scrubbing Test Sequence ... 87
Fig. 54. Static Testing Sequence .. 87
Fig. 55. Scrubbing Test Plan ... 88
Fig. 56. Static Testing Plan ... 89
Fig. 57. Availability, Blind Scrubbing (at SEU Rate 1/min) ... 93
Fig. 58. Availability, Blind Scrubbing ... 94
Fig. 59. Cause of Downtime, Blind Scrubbing ... 95
Fig. 60. Cause of Downtime, Blind Scrubbing (at SEU rate 1/min) 96
Fig. 61. Availability per LUT, Blind Scrubbing (at SEU Rate 1/min) 96
Fig. 62. Availability per LUT, Blind Scrubbing ... 97
Fig. 63. Relative Resource Usage for Different Scrubbing Methods 100
Fig. 64. MTTF, Blind Scrubbing (at SEU Rate 1/min) .. 101
Fig. 65. MTTF, Blind Scrubbing .. 102
Fig. 66. MTTF per LUT, Blind Scrubbing ... 102
Fig. 67. MTTF, Error Detection-based Scrubbing .. 103
Fig. 68. MTTF per LUT, Error Detection-based Scrubbing 104
Fig. 69. MTTF, Error Detection-based Scrubbing (extended x-axis) 105
Fig. 70. FIT, Error Detection-based Scrubbing .. 106
Fig. 71. Cross Section, Heavy Ions ... 107
Fig. 72. Cross Section, Protons .. 107
Fig. 73. LEO Satellite Groundtrack.. 109
Fig. 74. GEO Satellite Groundtrack ... 109
Fig. 75. LET Spectrum, LEO ... 110
Fig. 76. LET Spectrum, GEO .. 110
Fig. 77. MTTF, Error Detection-based Scrubbing .. 112
Fig. 78. FIT, Error Detection-based Scrubbing .. 113

List of Tables

Table 1. Comparison of FPGA Technologies .. 11
Table 2. SEEs divided into hard and soft errors .. 19
Table 3. Scrubber Variations ... 49
Table 4. XC5VLX50 Resources .. 59
Table 5. Log Line Example ... 63
Table 6. Test Framework Resource Usage ... 65
Table 7. Test Platform UART Commands ... 67
Table 8. Logic Allocation File Excerpt ... 73
Table 9. Map Report File Excerpt.. 83
Table 10. Tools and Languages .. 84
Table 11. Static Testing Results ... 91
Table 12. Observable Errors, Static Testing .. 91
Table 13. TMR Implementations, Resources .. 92
Table 14. Detection-based Scrubbers ... 98
Table 15. Scrubber Implementations, Resources .. 99
Table 16. Functional DFFs, AES Application in FX130T FPGA 108
Table 17. Functional DFFs, Theoretical Maximum in FX130T FPGA 108
Table 18. LEO Parameters ... 109
Table 19. GEO Parameters ... 109
Table 20. FIT, Example Orbits using SECDED Scrubbing 111

file:///C:/Users/Emil/Documents/Dropbox/Workspace%20Master%20thesis/Report%20Chalmers/ReportChalmers_v1_2.docx%23_Toc390170550

Page

 9

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

1 Introduction

FPGA devices, or Field Programmable Gate Arrays, have increased steadily in
capacity and complexity over the last decade. The re-programmable and
reconfigurable capabilities of FPGAs, their suitability for signal processing applications
and the increasing capacity of such devices have made them increasingly attractive as
alternatives to Application Specific Integrated Circuits (ASICs) in space applications.
With recent Static Random Access Memory (SRAM) based FPGA devices comprising
up to 2M logic cells and thousands of I/O pins [1], it is no longer feasible to disregard
FPGA technology for space applications, especially when considering the high non-
recurring engineering costs (NRE) involved in developing custom ASIC designs and
the low production volumes typical for space applications.

Operating in a space environment raises a number of issues that need to be taken into
consideration when designing a system, among them the effects on digital systems by
the ionising radiation environment in space. Radiation can negatively impact the
lifespan, performance and reliability of a digital system or device[2], [3]. While there are
radiation resistant FPGA devices on the market, these are far behind in performance
and capacity compared to standard, commercially available SRAM-based FPGAs, as
well as being overly expensive for many projects.

While packaging and manufacturing techniques are important aspects of designing
systems for space applications, it is often not the whole solution[2], and designing for
fault-tolerance is becoming an increasingly important factor. The level of fault-tolerance
required differs widely from application to application, as does the timing requirements.
For simpler types of sensors and monitoring equipment such as cameras, real-time and
availability requirements may be more relaxed. On the other side of the spectrum, high
levels of reliability and hard timing constraints are necessary for mission critical
systems such as on-board computers or communication. A wide range of applications
exist in between these extremes, where SRAM-based FPGAs can prove useful.

1.1 FPGA technologies

There are three major types of FPGA technologies on the market: SRAM-, Flash- and
Antifuse-based. SRAM-based FPGAs are reprogrammable, in theory an infinite number
of times. Benefiting from SRAM and CMOS-process research in other parts of the
semiconductor industry, SRAM-based FPGAs are at the forefront of FPGA technology
in terms of integration level. An important factor is that SRAM-based FPGAs are
manufactured in standard CMOS processes, giving the potential for high density
devices. This allows for a large number and variation of resources to be available on-
chip, such as memory, hard DSP blocks and embedded multipliers. SRAM-based
FPGAs are the most common type for commercial applications and have the highest
capacity and performance of the FPGA technologies discussed here. However, SRAM
is a volatile storage format, and SRAM-based FPGAs need to be reprogrammed at
power-up. This requires an off-chip storage solution for the programming bit stream,
commonly in EEPROM or Flash on the board, adding to the number of components
and complexity of the system. The two major manufacturers of SRAM-based FPGAs
are Altera and Xilinx.

Compared to radiation-hardened processors conventionally used in space applications,
FPGAs can constitute a highly versatile and high-performing alternative, especially
considering the reprogrammability and capability for parallelisation. SRAM-based
FPGAs also have the advantage over custom ASIC to be reprogrammable thus
avoiding all development costs associated with ASIC development.

Page

 10

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Flash-based FPGAs are a non-volatile alternative to SRAM-based FPGAs, based on
so called floating gates. The non-volatile nature of flash enables live-on-startup FPGAs
without the need for reprogramming, and the flash technology is intrinsically more
resistant to radiation compared to SRAM. While flash technology has the advantage of
smaller bit storage cells, requiring only one or two transistors to implement a
configuration bit storage element compared to the five to six transistors used in SRAM,
it lags behind SRAM in manufacturing process technology. Fig. 1 shows the principle
structure of a memory cell in flash technology, using an isolated floating gate. Floating
gates are programmed by tunnel injection, and then left in a floating state. This can be
compared to the standard SRAM cell, illustrated by Fig. 2. One of the drawbacks of
Flash-based FPGA technology is the gradual degradation of configuration memory
cells due to charge build-up when reprogramming, limiting the number of times it is
possible to reprogram the FPGA. This number, however, is in the order of hundreds of
times, and is typically not an issue for space applications. Absorbed radiation over time
also leads to charge build-up in the floating gate, eventually rendering the storage cell
unusable. This means that flash-based FPGAs in general have a lower acceptable total
accumulated radiation dose compared to SRAM-based FPGAs, which is a highly
relevant factor for space applications. Also, charge leakage is a problem in flash-based
FPGAs, where charge can leak from the floating gate through the insulating material
surrounding it.

M1

CONTROL GATE

FLOATING GATE

N+ N-N+

GATE

DRAIN SOURCE

P-TYPE SUBSTRATE

Fig. 1. Flash Memory Cell

Vdd
M2

WL

M4

M1 M3

M6

M5

BLBL

Fig. 2. SRAM Cell

Page

 11

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

SRAM FPGAs are sensitive to radiation-induced upsets in both their configuration and
user memory [4],[5]). This requires a different approach to upset mitigation compared
to ASICs, where the designer only needs to consider radiation-induced upsets in
latches and user memory cells. Flash-based FPGAs are more resistant to radiation, as
previously mentioned, but include SRAM-based components, mainly in user memory
such as D-type Flip-Flops, which are sensitive to upsets. As a third alternative,
Antifuse-based FPGAs have a distinct advantage in this area. Antifuse-based FPGAs
have traditionally been used in space applications, and are based on one-time
programmable antifuse connections. They are less susceptible to radiation-induced
errors since the need for configuration bits for each individual interconnect point is
eliminated, giving a sort of intrinsic radiation hardening for the configuration. This is
also the antifuse technology’s greatest disadvantage: once a fuse is “blown” by
supplying a large current during programming, it cannot be reprogrammed. This makes
antifuse-based FPGAs one-time programmable devices. Antifuse FPGAs are also
expensive in relation to the performance they offer.

Table 1 gives an overview of the features of the different FPGA technologies
discussed, and is meant as a quick comparison of the main features, advantages and
drawbacks of the technologies. Here, capacity refers to the density and amount of logic
that can be synthesised onto a single FPGA. It should also be noted that standard
COTS SRAM-based FPGAs are generally cheaper and more available in comparison
to their capacity. The work investigates the possibility of leveraging this cost-to-capacity
ratio of SRAM-based FPGAs in space applications by using techniques for mitigating
radiation-induced errors. Also, in Table 1, it might seem counter-intuitive that SRAM-
based FPGAs have the largest memory cell size of the compared technologies, but at
the same time the highest device capacity. This is mainly because of the difference in
manufacturing process technology between the categories.

Table 1. Comparison of FPGA Technologies

Feature SRAM Flash Antifuse

Reprogrammable Yes Yes No

Volatile Configuration Yes No No

Live On Startup No Yes Yes

Memory Cell Size Large Small-Medium Small

Radiation Sensitivity High Low-Medium Low-None

Capacity High Medium Low

Reprogramming Speed Fast Slow-Medium N/A

Total Dose Tolerance Medium-High Low High

Page

 12

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

1.2 Problem Statement

The core aim of the work described in this report is to investigate the feasibility of using
Xilinx’s commercial SRAM-based FPGAs in space applications, with respect to
radiation-induced soft-error tolerance. Soft errors will be discussed in detail later in this
report. The potential gains from using standard, commercial SRAM-based FPGAs
rather than radiation hardened alternatives are higher capacity, better performance and
lower cost. While these devices are used in space applications today, they are mostly
part of non-critical systems, where temporary loss of data or reconfiguration downtime
is acceptable. Radiation hardened versions of Xilinx SRAM-based FPGAs are available
for Virtex-5 devices, but not for the Virtex-6 and Virtex-7 series. Previous generations
of radiation hardened FPGAs from Xilinx have been proven in missions, notably in the
NASA Mars Rover mission. However, the radiation hardened Virtex-5 devices are very
expensive components.

1.3 Scope

The focus of this work is on Xilinx devices, mainly because Xilinx FPGAs are
essentially free from latch-up effects up to a certain dose of radiation specified for the
specific device. SRAM-based FPGAs are, as previously mentioned, manufactured
using standard CMOS processes, and are typically one or more generations ahead of
Flash and Antifuse FPGAs in terms of process node. Xilinx is also currently the market-
leading vendor for SRAM-based FPGAs in general, and for aerospace grade SRAM-
based FPGAs in particular. Altera currently has no radiation hardened products on the
market. The suitability of Xilinx SRAM-based FPGAs will vary between applications,
depending on the required level of fault-tolerance and availability, performance
requirements and the power, size and complexity budget of the system as a whole.

In determining the feasibility of using these devices in space applications, no one single
mission profile or target application will be specified. Instead, the aim is to evaluate
different mitigation techniques, on their own or in combinations, to form a general
recommendation which will then have to be adapted to the target application and
mission. As mentioned earlier, different missions and (sub-) systems have different
tolerances for downtime and error rates. It should be noted that some (most) of these
techniques introduce hardware overhead. Overhead could be in the form of resource
overhead on the FPGA, or as added overall system complexity. This may limit the
gains in capacity and performance to be had from using SRAM-based FPGAs. This
work will use Xilinx Virtex 5 as a starting point when discussing FPGA architecture and
mitigation techniques for soft errors. [6] gives an excellent overview of the available
mitigation techniques as well as an introduction to SEU related error modes in FPGA.

Page

 13

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2 Background and Related Work

This section will give a background of the theory used in this report. Models and
expressions used in this report will be explained as well.

2.1 Radiation

Providing radiation tolerance for microelectronics is a big challenge, and an active field
of research. Knowledge from different engineering disciplines needs to be applied in
order to solve the problem as efficiently as possible. An introduction to radiation is
provided in this section to give an understanding of the terminology and methods.

2.1.1 Radiation types and measurements

Radiation is common in space environments. When the energy transferred by incoming
radiation exceeds the energy of a particular electron in an atom, it is called ionising
radiation [7]. The name comes from the fact that exposure to this type of radiation may
ionise the electrons in an atom.

2.1.1.1 Common types of radiation

Radioactive elements comprise nucleus which are unstable. An unstable nucleus
decays over time to a more stable state. When such a nucleus decays, it moves from a
state of higher energy to a lower energy by the emission of energy. This energy is what
is referred to as radioactivity. Radiation can be divided into three parts; α- (alpha), β-
(beta) and γ- (gamma) radiation.

α -radiation is in essence the nucleus of helium. This type of radiation is charged and is
therefore affected by magnetic fields, such as the magnetic field surrounding Earth.
Heavier radioactive elements are often prone to emission of α-radiation. α -radiation
loses energy rapidly when colliding with other materials. Therefore α-radiation has a
range of a few centimeters in air and is easily shielded against even by thin shielding
materials. α -particles can have energy levels of up to 7 MeV.

Electrons, or positrons, are what constitute β-radiation. β –radiation is also affected by
magnetic fields since it is charged negatively in the case of electrons and positively in
the case of positrons. The energy of a β-particle is often much smaller than that of an
α-particle. β -particles can also have different energies depending on the neutrino
particle, which is emitted in conjunction with the β-particle. Most β-particles have
energy levels smaller than 1 MeV.

γ -radiation differs from the aforementioned types of radiation in that it can be
perceived as radiation consisting of particles called photons or quanta but also as
electromagnetic waves. In the case of γ-radiation being perceived as electromagnetic
waves, it will have a wavelength shorter than 10pm. It should be noted that there are
electromagnetic waves with higher wavelengths which are still considered to be
radiation, such as ultra-violet radiation (< 120 nm) and x-rays (< 200 pm) [8].The
frequency of electromagnetic radiation is dependent on wavelength according to (1)
where is the wavelength, is the speed of light in vacuum and is the frequency.

The energy of electromagnetic radiation can be calculated according to (2) where is

Planck’s constant and is the energy.

 (1)

 (2)

Page

 14

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

γ -radiation also differs in the way it is absorbed by different materials. When a γ-
particle hits a material, it is slowed down due to the photoelectric effect, electron-hole
pair generation and Compton scattering. The latter is the process where a photon
collides with an electron bound in an atom releasing it from its bond. The release of
said electron is what ionises the atom. γ -radiation has the ability to penetrate materials
much deeper than the aforementioned types. The energy of γ-radiation is defined to be
in the interval of 0.1-1.5 MeV [9].

Radiation originating from outer space is called Galactic Cosmic Rays (GCR). Roughly
90% of GCR are protons, or hydrogen nuclei. Approximately 9% are α-particles and an
additional 1% comprises electrons, β-particles and a small fraction of nuclei of heavier
elements [2].

2.1.1.2 Measurements of radiation

One type of measurement used in conjunction with radiation is the absorbed dose or
total ionising dose (TID) [10]. The absorbed dose is often measured in Gray (Gy), or
less frequently, rad. 1 Gray of absorbed dose corresponds to an absorbed energy of 1
Joule per Kg. Where the dose of radiation has a biological significance, it is important
to factor in the type of radiation in addition to the energy. This is done by the use of a

radiation weighting factor , which yields what is called the equivalent dose, as shown
in (3), where is the equivalent dose in Sievert and is the absorbed dose in Gray.
The equivalent dose has the same dimension as Gray which makes the weighting
factor dimensionless. A higher weighting factor implies a higher biological hazard [9].

 (3)

When different types of radiation hit materials, energy is deposited from the radiation
into the material. A common way of modelling this energy deposition is through Linear
Energy Transfer (LET) [9]. LET is defined as the energy loss per unit length per

density, as shown in (4). A common unit for LET is

 .

 (4)

LET is most commonly used to describe the energy deposition in different materials,
but also in other contexts [10]. The LET for each particle has a unique dependence on
its energy. There are a number of different particle effects which consume energy, but
do not contribute to LET. Effects such as displacement damage, radiative losses,
nuclear losses and bremsstrahlung will influence the amount of energy transferred
through LET. Increasing the energy in particles might therefore not necessarily yield a
higher deposited energy through LET [8]. Nuclei of heavier elements and α –particles
usually have a higher LET [10], which is why they are often referred to as High-LET
particles [11]. Low-LET particles comprise other types of radiation such as β- and γ-
particles.

Effective linear energy transfer () is sometimes used to calculate the potential

 when the characteristics have been determined with a perpendicular particle
beam. Since length of the travelled path increases with an increased angle of incident,
there will also be a larger energy transfer. can be resolved as a function of

and the angle of incident according to (5).

 (5)

Page

 15

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fluence is a flux integrated over a given time interval. The particle fluence defines the
number of particles passing through a cross section of a sphere in a given amount of
time [2]. Particle fluence as a function of LET is often used to describe the distribution
of the LET values of particles in specified locations or paths in space. These graphs
are often referred to as LET spectra.

2.1.2 Space environment

Earth’s atmosphere is commonly divided into troposphere, stratosphere, mesosphere,
thermosphere and exosphere, as shown in Fig. 3. The thermosphere is exposed to the
full radiation spectra emitted by the sun. 35% of the radiation goes to increasing the
heat of neutral particles in the thermosphere, and an additional 20% is consumed by
oxygen as it gets dissociated. The remaining 45% of the radiation is reradiated as ultra-
violet radiation. Because of this, there are elevated radiation levels beyond the
thermosphere [12].

Stratosphere Mesosphere ThermosphereTroposphere

11 km

50 km

85km

600km

Exosphere Inner belt Outer belt

1000 km

6000 km

13 000 km

60 000 km

Atmosphere Van Allen Belts

Fig. 3. The different atmospheric layers and Van Allen belts.

Due to the magnetic poles on Earth, a magnetic field spans around Earth from the
magnetic North Pole to the magnetic South Pole. As most radiation particles are
charged, many particles become trapped in the magnetic field surrounding Earth. At
specific distances from Earth, the radiation particles gather more densely. These fields
are called Van Allen belts. There is an outer and an inner Van Allen belt, as shown in
Fig. 4. Due to the nature of a spherical magnetic dipole, there will be a stronger
magnetic flux closer to Earth which decreases with the distance from Earth. The
concentration of protons decreases with increasing distance from Earth. The inner Van
Allen belt is therefore dominated by protons while the outer belt is dominated by
electrons [13].

Page

 16

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Outer
radiation

belt

Inner
radiation

belt

Fig. 4. The inner and outer Van Allen belts following Earth magnetic fields

As mentioned in Sec. 2.1.1.2, particle fluence as a function of LET is commonly used to
describe particle density and particle composition at different distances and orbits. The
LET spectrum for circular orbits at six different altitudes above Earth is given in Fig. 5.
In Fig. 5 it is illustrated that the fluence of lower LET particles decreases with an
increasing distance from Earth. This is due to the fact that the concentration of protons
decreases significantly over the distances shown. Particles with a higher LET occur
more frequently at higher altitudes, which is caused by the increasing GCR levels.

Fig. 5. LET spectrum for circular orbits at different altitudes.

The altitude unit is 106m.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-15

10
-10

10
-5

10
0

10
5

10
10

LET [MeVcm
2
/mg]

P
ar

ti
cl

e
fl

u
en

ce
 [

#
/c

m
2
]

2

5

8

10

20

36

Page

 17

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.1.3 Satellite Orbits

Depending on its orbit, a satellite will be subjected to varying levels of radiation. All
spacecraft and man-made objects intentionally put into orbit are included in this
category. A simplified definition of a satellite orbit is the path of a satellite around a
point or body in space (here: Earth) naturally curved by the gravity of the body. Satellite
orbits follow Kepler’s laws of planetary motion, and are typically elliptical. An orbit is
characterised by a number of orbital elements, including its semi-major axis (a),
eccentricity, inclination (i), argument of perigee (ω), true anomaly and the right
ascension of the ascending node (Ω). These are illustrated in Fig. 6.

i

apogee

ascending
node

orbita
l plane

line of apsides

vernal equinox

perigee
a

Ω

ω
equatorial plane

Fig. 6. Satellite orbit measurements.

Satellites in Low-Earth Orbit (LEO) typically operate at altitudes of a few hundred (400-
800) km, but the range includes all satellites at altitudes from 160 to 2000 km over
Earth’s surface. A satellite in LEO experiences drag from the Earth’s thermosphere, but
is also to a certain degree protected from deep space radiation by Earth’s magnetic
field and the thermosphere. Satellites in LEO are subjected to the inner Van Allen belt
radiation at points where the radiation belt is closer to Earth, such as when passing
through the South Atlantic Anomaly (SAA) or during intense solar flares [14].

Satellites in Geostationary Orbit (GEO) have a constant altitude of 35,786 km above
Earth’s surface and appear to be stationary over a point on Earth. A satellite in GEO
will not be affected by the trapped protons in the inner Van Allen belt, but is otherwise
totally exposed to the space radiation environment.

Page

 18

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.1.4 Radiation Characteristics of Devices

The radiation in space can affect electronic systems negatively. When charge from
radiation particles is deposited into a device, it has the potential of altering the internal
state of, or damaging, the device. Such occurrences are referred to as Single Event
Effects (SEE).

2.1.4.1 Single event effects

Radiation particles with sufficient LET have the potential of introducing an SEE. When
a particle with sufficient LET hits a device, it ionises the atoms along its propagation
path, as shown in Fig. 7. This ionisation results in a deposited charge which has the
potential to cause an SEE. It is usually nuclei that have sufficient energy and LET that
cause direct ionisation in devices.

N+

GATEDRAIN SOURCE

P-TYPE SUBSTRATE

N+

+

+

+
+

+

+

+

+

+
+

+

+

-

-
-

-

-
-

- -

-

-

-

-

Heavy Ion

+ -

Depletion Region

Fig. 7. A particle striking a transistor
and creating an ionisation path

N+

GATEDRAIN SOURCE

P-TYPE SUBSTRATE

N+

Proton

Nuclear reactions

+
-

+
+

+
+

- -

--

-

Fig. 8. A proton striking a transistor and
inducing nuclear reactions

Protons, which in general have a lower energy and LET than nuclei, may also cause
SEEs, although not by direct ionisation. Protons induce nuclear reactions which in turn
have the potential of causing an SEE, as shown in Fig. 8. When protons collide with
atoms, there is a probability of approximately 10-5 of a nuclear reaction occurring.
Furthermore it is estimated that protons with energy levels of approximately 20 MeV
deposit the largest amount of energy through indirect ionisation [2]. The proton fluence
for circular orbits at different altitudes is shown in Fig. 9 where the altitude above Earth
is given in km. As the proton flux is larger than CGR flux for the orbits at lower altitude,
indirect ionisation through proton strikes are the dominating cause of SEEs for such
orbits [2]. Fig. 9 shows that the fluence for 20 MeV protons is larger at an altitude of
4000 km compared to 2000 km and 8000 km.

Different types of SEEs can occur and they can be divided into Soft errors and Hard
errors. Hard errors are permanently damaging effects and cannot be reversed by
resetting or power cycling the system. Single event induced burnout (SEB) and Single
event gate rupture (SEGR) are both examples of hard errors. These errors are likely to
cause failures, either locally or for the whole device, as CMOS logic relies on
complementary behaviour among transistors.

Page

 19

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 9. Proton energy spectrum for different altitudes.

Soft errors, on the other hand, could indicate inverted data in storage elements or
another reversible effect. Single event upsets (SEU) is an example of such an error
where it indicates an inverted value in a storage element. An SEU implies that a
memory element has got struck by a radiation particle after which the incident flips a
bit. Vulnerable storage elements could be a variety of different kinds. It should,
however, be noted that different types of memories have different sensitivities to SEU.

A special type of SEU is the Single Event Functional Interrupt (SEFI) which takes place
when the basic functionality of the system is interrupted due to the upset. An example
of an SEFI would be if an upset affected the clock tree, the communication interfaces
or other essential parts. A Single Event Transient (SET) is an event where a particle
deposits its energy into what becomes a time-limited pulse on a signal path or a wire.
Depending on the instance of impact, an SET may be clocked into a memory element,
or may be harmless if not stored or noted.

There is also a category of errors which are usually considered hard errors but can be
corrected with a power cycle if current ratings are not exceeded. Single Event Induced
Latchup (SEL) and Single Event Induced Snapback (SES) are examples of these types
of errors [2]. The different errors mentioned are concluded in Table 2.

Table 2. SEEs divided into hard and soft errors

Hard Errors Soft Errors

SEGR SEFI
SEB SEU
(SEL) SET
(SES)

10
-1

10
0

10
1

10
2

10
3

10
-2

10
0

10
2

10
4

10
6

10
8

Energy [MeV]

P
ro

to
n

 f
lu

en
ce

 [
#

/c
m

2
]

500

1000

2000

4000

8000

Page

 20

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.1.4.2 Measurements in device characteristics

Cross section, often denoted , is a measurement of the probability of an event or
impact often used in particle or nuclear physics. For the purposes of calculating SEU
rates, cross section is the probability of getting an SEU. Cross section is defined
according to (6) where is the number of observable events and is the particle
fluence. As mentioned in [2], fluence is a flux integrated over a defined time interval.

The unit for fluence is therefore per unit area, commonly

 . The resulting unit of cross

section is simply cm2.

A configuration of transistors where the respective outputs are connected to the
opposite input is called a latch. By charging or discharging a gate in a latch, data can
be stored. This makes the latch a basic memory element. When either gate of such a
memory element is struck by a charged particle, a charge is deposited into the gate.
Provided that the deposited charge is large enough, it will be capable of switching the
state of the memory element.

The lower bound for the charge required to switch a memory element is referred to as a
critical charge and is denoted . It has been suggested that the critical charge has a
quadratic dependence on feature size, as shown in (7), where is resolved in pC and

 is given in µm [2]. As the critical charge decreases, the SEU susceptibility increases.

A critical charge measurement can be used to calculate the corresponding LET. This
particular LET is called linear energy transfer threshold (and can be calculated

as shown in (8), where is the electron-hole pair generation energy constant which is
specific to each material. is the material density, is the elementary charge and is
the particle travel distance.

 can be used to make a first order approximation of the cross section. This type of
approximation is known as the critical charge method. The principle of the critical
charge method is to model the cross section as a step function according to (9) [15].
Alternatively, a more detailed cross-section data collection can be used in which all of
the data points can be used. The latter method is often referred to as the integral flux
method [2]. A comparison between the cross section of the two methods is shown in
Fig. 10. It should be mentioned that similar methods exist which apply similar
calculations but have different names. Among these are the methods which include the
approximation of sensitive volumes. Sensitive volumes indicate what fraction of the
device is susceptible to SEUs [2].

 (6)

 (7)

 (8)

 (9)

Page

 21

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 10. Typical cross section characteristics used in approximations.

Regardless of which cross section model is used, the SEU rate can be calculated

according to (10). represents the number of SEU for the LET spectrum described by
 . represents the cross section of the device and the limits and define
the interval for which LET needs to be considered. There are several other formulations
to calculate the SEU rate similar to (10), for example the Bradford, Pickel and Adams
formulations [2].

 (10)

2.1.5 Total Ionising Dose

The consequences of radiation are not solely limited to SEE. Over time an
accumulative dose of radiation degrades the transistors of a CMOS circuit.

2.1.5.1 Positive oxide-trap charge

Standard MOSFETs are affected negatively by radiation. Radiation yields not only
ionisation in transistors but also the creation of electron-hole pairs. Recombination of
the electron-hole pairs occurs in parallel but a fraction remains nevertheless. This
fraction is referred to as the electron-hole charge yield. Whenever electron-hole pairs
emerge in an N-type MOSFET, the holes drift towards the channel at the
interface while the electrons are drawn to the gate. The accumulated amount of holes
in combination with a positive gate bias forms a positive oxide-trap charge. Trapped
charges will influence the transistor channel by biasing it to conduct, increasing the
static leakage current as illustrated in Fig. 11.

0 1 2 3 4 5 6 7 8 9 10
10

-10

10
-9

10
-8

10
-7

10
-6

10
-5

LET [MeVcm
2
/mg]


 [

cm
2
]

Typical cross section

Step function approximation

Page

 22

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

N+N+
+ + + + + +

Trapped charge

Fig. 11. Positive charge trapped in a positive oxide trap.

2.1.5.2 Displacement damage

Apart from the aforementioned possible effects, it is also possible for the crystalline
silicon structure to take damage. Displacement damage is accumulated over time and
means that atoms in the lattice structure are knocked out to leave vacancies and
interstitial atoms behind. The consequence of displacement damage is the reduction in
minority carrier mobility and lifetime.

Non-ionising energy loss (NIEL) is defined as the rate of energy loss due to
displacements of atoms. NIEL is a common measurement when discussing
displacements effects. Included in NIEL are the nuclear elastic collisions, the Coulomb

elastic collisions and the inelastic collisions. Displacement-damage dose () is
another metric with the unit of energy per weight, the same as Gray. The displacement-
damage dose can be calculated as the product of NIEL and particle fluence [16].

Page

 23

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.2 FPGA Architecture and Sensitive Structures

In Xilinx FPGAs, the basic building blocks are CLBs, Configurable Logic Blocks. In
Virtex 5 devices, the CLBs are made up of two logic slices which are independently
connected to the general routing on the FPGA and to a carry chain structure [17].
There are two types of logic slices in Virtex 5, SLICEL and SLICEM. SLICEL can be
seen as the basic logic slice type, and contains four 5-input look-up-tables, or LUTs,
together with four D-type flip-flops(DFFs) and multiplexers for routing purposes. The
LUTs can implement any 5-input logic function. SLICEM slices contain shift register
functionality and provide the option of using the LUTs as distributed user RAM, as well
as the basic resources described for SLICEL slices. When used as distributed RAM,
LUTs are configured as memories for user data storage.

Other resources on the FPGA include Digital Clock Managers (DCM), Phase-Locked
Loops (PLL), Block RAMs, DSP blocks, I/O blocks (IOBs) and buffers for connecting
package pins. The FPGA resources are connected together by a configurable routing
matrix. A common way of describing FPGAs is as configurable logic “islands”
connected together by a “sea” of configurable routing paths.

When synthesising an FPGA design, the circuit function defined by the designer is
mapped to these resources by synthesis tools. This mapping makes up the
configuration of the device, and is stored in the SRAM-based configuration memory.
The configuration memory defines the function and operation of all the described
resources as well as the routing and connections on the FPGA, and can be seen as an
underlying device definition layer. Fig. 12 gives an overview of a generic FPGA island-
style architecture. The fold-out illustrates a simplified LUT-DFF pair inside a slide,
inside a CLB. In this particular example the LUT implements an XOR function.

Block RAM

Delay-Locked Loop

I/O Block

Phase-Locked Loop

DSP Slice Configurable Logic Block (CLB)

M

LUT

M

M
P P P P

1 0 1 0

0 10 1

0 1 01

0 1 0 1

Lookup Table (LUT)

LUT DFFDFF

Fig. 12. FPGA Architecture Overview

Page

 24

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 13 illustrates a LUT as a 4:16 decoder, and shows an illustration of the underlying
configuration memory with each LUT bit stored in an SRAM cell.

D
E

C
O

D
E

 4
:1

6

0

1

1

0

Vdd
M2

WL

M4

M1 M3

M6

M5

BLBL

. . .

Fig. 13. LUT Configuration

The routing matrix and CLB-internal routing structures are made up of switchboxes,
multiplexers, buffers and programmable interconnect points (PIP). All of these routing
resources are configured by the corresponding bits in the configuration memory. Fig.
14 shows a section of the FPGA with four CLBs and their local interconnect matrix. The
top fold-out shows an example of a connection box, with the crosses representing
active, “on”, PIPs. Each PIP is configured to be active or inactive by a single bit in the
configuration memory. The bottom fold-out shows a switchbox, with fully configurable
connections between all vertical and horizontal connection lines.

SWM

C

CLB CLB

CLB CLB

CC

C

B

M

ON / OFF
A

Configuration Bit

MM

M M

M

M

Fig. 14. Interconnect Matrix

Page

 25

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

SRAM-based FPGAs are programmed using a binary bit-stream, usually stored off-
chip. For space applications, this off-chip configuration storage is usually in the form of
a radiation-hardened EEPROM or Flash. Since the SRAM-based configuration memory
is volatile, the bit stream has to be reprogrammed onto the FPGA on startup and
power-cycling. The programming logic is responsible for writing the configuration
memory via one of the configuration interfaces. The configuration interfaces allows
programming, erasing, reading and verifying of the configuration memory, as well as
performing functional and status tests on the FPGA. In Xilinx architectures, these
configuration interfaces include JTAG, SelectMAP and ICAP [18].

JTAG is a serial, external interface available on almost all FPGA devices, commonly
used for programming and debugging purposes. While JTAG is a comparatively slow,
low bandwidth interface, it is easy to use and included in most IC debugging workflows.
SelectMAP is a type of external parallel configuration port found on Xilinx FPGAs, and
can provide a higher bandwidth compared to JTAG by using an 8- or 32-bit interface.
Finally, ICAP, or Internal Configuration Access Port, is an internal configuration
interface, similar to SelectMAP. ICAP can only be accessed by internal FPGA
structures.

In order to program, modify or access the configuration memory, instructions are sent
through a programming interface to configuration registers on the FPGA. All types of
reconfigurations are hence being made through instructions sent to the configuration
registers as shown in Fig. 15.

Configuration memory

Configuration registersConfiguration
interface

FPGA

Fig. 15. Configuration Flow

There are 20 configuration registers in a Virtex 5 where each register has a unique
purpose. The registers linked to the fundamental functions of the configuration interface
comprise the Command Register (CMD), the Frame-Address Register (FAR) and the
Frame-Data Input- and Output Registers (FDRI, FDRO). Whenever a request is made
or when a command is sent, it is sent to the CMD. When reading or writing to the
configuration memory, the frame address is specified in FAR. Data is written to FDRI
and read from FDRO.

Every instruction sent to the configuration registers is made out of 32-bit words.
Instructions can be sent as a type-1 or type-2 packet. A type-1 packet comprises a 1-
word header followed by a varying number of data words. A type-2 packet is only sent
after a preceding type-1 packet, as shown in Fig. 16. Type-2 packets are used
whenever a large number of words are sent.

Page

 26

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Type-1 Header

Type-1 Data

Type-1 Header

Type-2 Header

Type-2 Data

Type-1 Packet Type-2 Packet

Fig. 16. Configuration Packet Types

In addition to the programming interface itself, it will be necessary to have a bit file and
a PC compatible file downloader. After the design has been compiled, synthesised,
placed and routed a bit file can be generated. The bit file contains all the data words, in
sequence, required to program the FPGA through type-1 and type-2 packets. The
largest packet in the bit file is a type-2 packet addressed to the FDRI containing all of
the configuration frames.

ICAP_VIRTEX5 is a Virtex 5 primitive that makes it possible to access the configuration
registers from inside the FPGA. The signals included in the ICAP interface are shown
in Fig. 17. There are two ICAP ports available in the Virtex 5 FPGA. Such ports are
available from the FPGA and can be instantiated to gain access to the configuration
registers.

FPGA Configuration registers

Out[31:0]

Busy

ICAP

Clk

CE

Write

In[31:0]

Fig. 17. ICAP Interface

The configuration memory in a Xilinx FPGA is divided into frames. Each frame
corresponds to a portion of the programmable logic and routing, and is protected by a
12-bit error correcting code (ECC). A 32-bit Cyclic-Redundancy-Check value (CRC) is
used to verify the integrity of the whole configuration memory. A single frame would
typically correspond to a configurable logic slice, with surrounding routing resources.
When programming, each frame can be individually addressed. In Xilinx Virtex 5, a
configuration frame consists of 41 data words (a word is 32 bits).

Page

 27

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Xilinx FPGAs can utilise Dynamic Partial Reprogramming, DPR, to reprogram a portion
of the configuration memory during normal operation, without interrupting the operation
of remaining parts of the system. DPR can be used to reprogram the device on frame
level, using the frame-level addressing mentioned earlier. The ability to use DPR offers
great flexibility and gives FPGAs a unique advantage over ASICs and traditional
microprocessors. As the content of each frame can be read back and verified by Error
Detection and Corection (EDAC) circuitry, it is possible to detect errors in the
configuration memory by using the ECC fields. ECC is further elaborated in Sec. 2.4.4.
It should be noted that only the subset of the configuration memory corresponding to
actually utilised resources will be significant for the design, with the remainder
essentially being treated as don’t care. The device utilisation level is likely to be <100%
for most applications. The used configuration bits and frames are referred to as
sensitive bits and sensitive frames, respectively.

Xilinx Virtex 5 FPGAs contain dedicated DSP circuitry, in the form of DSP48E slices.
Fig. 18 shows a simplified view of a DSP48E slice, featuring a 25x18 multiplier, internal
pipelining registers and an arithmetic unit. DSP blocks are hard ASIC blocks embedded
in the FPGAs array of programmable logic, and are much more area efficient compared
to soft logic implementations of the same functionality [19]. As such, DSP blocks are
not defined by an underlying configuration layer. The DSP48E is well suited for
common DSP operations such as multiply-accumulate. An interesting feature of
DSP48E is its run-time configurability, allowing the DSP slice functionality to be
modified during operation, and even from cycle to cycle, through a set of control
vectors (OPMODE and ALUMODE). These can not only be set at design time, but
rather changed dynamically during run-time. The configuration vectors can be
synthesised as constants or as signals originating from other parts of the system. DSP
slices are arranged on the FPGA so that they can be cascaded through the use of fixed
carry and shift lines to create wider operators than what would fit into a single DSP
slice.

X

25 x 18

A1 A1

B1 B2

C

M

Y

Z

P
+

-1

0

0

0

=

OPMODE ALUMODE CASCADE

CASCADE

Fig. 18. DSP48E Slice

Page

 28

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Block RAM, or BRAM, in Virtex 5 are made up of 36 kB SRAM memory blocks. These
blocks can be cascaded and divided into a number of different configurations. For
example, a single 36kB block can be used as a 36kx1 RAM, or as two functionally
separate 18kx1 RAMs. It is also possible to create wider or larger RAM blocks by
cascading BRAMs together. Fig. 19 shows a block diagram of a BRAM. An interesting
feature is that the BRAM is dual-port, allowing access to both ports individually with
each port having its own clock, address and enable signals.

Cascade Signals

Cascade Signals

DOA
DOPA

DOB
DOPB

DIA
DIPA

ADDRA
WEA

ENA
SSRA
CLKA

REGCEA

DIB
DIPB

ADDRB
WEB

ENB
SSRB
CLKB

REGCEB

PORT A

PORT B

Fig. 19. 36kB BRAM

The FPGA resources of a design can be grouped into categories roughly according to
the division discussed earlier. In this work, a distinction is made between Configuration,
User Data and Architectural elements. The configuration group comprises all logic
functions and routing controlled by bits in the configuration memory, such as LUT
content, PIP connections and MUX control signals. This group determines the function
of the FPGA as programmed by the designer.

User data is the dynamic memory content of storage elements, and is commonly read
and written during normal operation. The content of these elements is user defined
during operation, rather than programmed into the configuration memory. This includes
DFF content, BRAM content and distributed RAM synthesised as LUTs.

Finally, architectural elements are the group of FPGA control elements mentioned
earlier, including programming logic (JTAG, SelectMAP, ICAP), clock distribution and
management, reset circuitry and PLLs. These functions are essential for the operation
of the FPGA.

The majority of bits in an FPGA design mapping are configuration bits. The exact ratio
of configuration to user data bits will depend on the application implemented in the
FPGA. The amount of user data bits will depend on the utilisation of DFFs, BRAMs and
distributed RAM in the application. A majority of the configuration bits will correspond to
PIP and MUX control bits; in [20], [21]) this fraction is estimated to 80%, and in [22] to
90%.

Page

 29

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Certain FPGA elements overlap between categories. For example, DSP48E slices in
Virtex 5 would be considered here as partially belonging to configuration and partially
to user data. This is because cascading and routing of DSP slices is defined by the
configuration memory, while control signals and internal pipeline register contents are
user memory.

Fig. 20 gives a graphical representation of the described FPGA element grouping.
Specific SEU error modes for each of these categories will be discussed in Sec. 2.3.

A
R

C
H

IT
EC

TU
R

A
L

U
SE

R
 D

A
TA

C
O

N
FI

G
U

R
A

TI
O

N

PIP, MUX Select, LUT Logic

I/O DSP Blocks

BRAM, DFF, Distributed RAM

Clock Net

Constants

Programming Circuitry, POR Net

Fig. 20. FPGA Resource Groups

Page

 30

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.3 Single Event Upsets in SRAM-based FPGA

As with all SRAM-based electronics, SRAM-based FPGAs are susceptible to radiation-
induced upsets [4]. The FPGA resources discussed in the previous section are all
vulnerable to radiation-induced upsets. In this work, focus is put on soft errors, namely
SEU and SET effects. For the purposes of this work, an SEU can be defined as a
radiation-induced upset that causesx§ the state of a memory cell to change, from 1 to 0
or from 0 to 1. This is also informally known as a bit-flip. SETs are transient glitches on
transmission lines or in combinatorial logic. Depending on the duration and amplitude
of these glitches, they may lead to errors. SEUs are unpredictable and random by
nature [2]. While one can estimate the approximate SEU rate, there is no way of
predicting exactly when an SEU will occur. This section will discuss and categorise the
different possible SEU error modes in Virtex 5 FPGAs, using the same notations and
classifications as found in [6] and [4].

SEUs can result in a number of error modes in different parts of the FPGA. It should be
noted, as discussed earlier, that not all SEUs will lead to errors, depending on the
device utilisation level. Even in an application that uses 100% of the resources, not all
configuration bits will be significant. In [23], the authors present a configuration memory
sensitivity analysis for a typical FPGA application, comprising a soft-core processor, a
bus structure and peripherals. The application uses 46% of the slices in the FPGA. It is
found that for the example application discussed, only 14.16% of the configuration bits
are sensitive bits with respect to SEUs, but that 84.93% of the configuration frames are
used. This suggests that a majority of the configuration frames are under-utilised,
which likely depends on the synthesis and Place and Route (PAR) tools optimising for
performance. The authors also find that, for the particular application discussed, a
majority of the sensitive configuration bits control interconnects and routing, as
expected.

2.3.1 Configuration Memory Upsets

Configuration upsets occur when there is an SEU in an FPGA configuration memory
bit, affecting the LUT content, I/O or routing. Upsets in the configuration memory are
the dominant issue when discussing SEUs for FPGAs, with the majority of significant
SEUs affecting the configuration memory [20]. This can be explained by the simple fact
that there are a larger number of configuration bits compared to user data and
architectural element bits.

Configuration upsets are static errors, as they will not disappear without repairing the
configuration memory. Repairs are carried out by reconfiguring the frame containing
the error. Three types of configuration memory upsets are discussed here: Routing,
Logic and I/O errors. The sensitivity of the configuration memory is highly dependent
on the application and the PAR policies applied. As the majority of configuration
memory bits control routing, routing errors are likely to be the most common SEU effect
[20]. The exact ratio will depend on the application implemented in the FPGA and the
resources used.

2.3.1.1 Routing Upsets

SEUs can affect three categories of routing elements: PIPs, MUXes and Buffers [4].

Page

 31

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.3.1.1.1 PIP Errors

PIPs are simple on/off wire connections between two end-points. The on or off state of
a PIP is controlled by a single configuration bit. An SEU affecting a PIP configuration
can create an unwanted open or shortened circuit. An open circuit may disconnect two
significant modules in the design, while a shortened circuit can create bridging effects,
connecting together two modules that are designed to be logically separate. Fig. 21
illustrates an SEU that causes a shortened PIP connection.

B

0

OFF

A

Original PIP Configuration

B

1

ON

A

Upset (Shortened) PIP

Fig. 21. Shortened PIP Error

2.3.1.1.2 MUX Select Errors

Multiplexers are widely used in FPGAs, for example to route signals within CLBs. Each
MUX is controlled by select signals which are defined in the configuration memory. An
SEU in a configuration memory cell defining a MUX control signal will cause a MUX
routing error. Fig. 22 shows an example of an SEU in a MUX control signal.

1 0 1 1

Original Configuration Upset Configuration

Fig. 22. MUX Select Error

Page

 32

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.3.1.1.3 Buffer Control Errors

Buffers can be seen as on/off switches to control if the input drives the output wire or
not, and are often used for clock nets, I/O pads and bidirectional connections. An SEU
in a buffer control configuration bit can lead to I/O direction errors or potentially driving
two signals onto the same internal wire.

ENB
BA

0

ENB
BA

1

Original Configuration Upset Configuration

ActiveInactive

Fig. 23. Buffer Control Error

2.3.1.2 Logic Upsets

Logic upsets in the configuration memory are SEUs affecting the LUT content or
control bits. This category also includes control bits for hard blocks such as DSP slices
or BRAM.

2.3.1.2.1 LUT Content Errors

LUTs are used to implement common combinatorial logic. When implementing a logic
function, a LUT functions as a mapping from the inputs to a single binary value stored
in the configuration cell corresponding to the pointed-out value. This is the common
use of LUTs. An upset in the configuration memory defining the LUT content will give
an incorrect output when the inputs to the LUT are set to access the affected bit. This
causes the logic function implemented in the LUT to be something different than the
function specified by the configuration bit stream. Fig. 24 illustrates an SEU in a 4-input
LUT implementing an XOR function. 4-input LUTs are used here for simplicity and
illustrational purposes. After the upset, the particular input combination corresponding
to the upset bit will no longer produce the correct output. However, the remaining
unchanged bits will still produce the correct values. This can make LUT content errors
difficult to detect based only on their output. In practice, this will manifest as an
incorrect value produced by the combinatorial logic, which may later be clocked into a
synchronous element as user data, be used as a control signal to another FPGA
element or be used as an output signal from the FPGA.

Page

 33

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

1 0 1 0

1010

1 0 1 0

1010

1 0 1 1

1010

1 0 1 0

1010

Original Configuration Upset Configuration

Fig. 24. LUT Content Error

2.3.1.2.2 Control Errors

Control bits are used to determine the usage of multi-functional blocks, such as LUTs
and DSP slices, for cascading structures and internally in CLBs. For example, as
mentioned earlier, LUTs can be used to implement combinatorial logic, shift registers or
distributed RAM. The behaviour of a particular LUT is set by control bits in the
configuration memory. For example, an SEU in a control bit can cause the LUT to be
reconfigured from combinatorial logic to a distributed user RAM. It should be noted that
not all LUTs can be configured as distributed RAM or shift registers [17]. In Xilinx Virtex
5, SLICEM logic slices can be configured in this way, while SLICEL lack this flexibility.
BRAMs are also controlled by a number of control bits determining the behaviour of the
BRAM, and can for example make the BRAM inaccessible, or reconfigure the BRAM to
use a different access width.

In this work, we also consider upsets in fixed DSP block control signals and in carry
chain structures to be control bit errors. The arithmetic carry chains are generally not
accessible by the user from a high-level HDL description, but rather inferred by the
synthesis tools. DSP control signals can be fixed by the configuration or, in the case of
Xilinx DSP48, be set dynamically by the user.

2.3.1.3 I/O Upsets

As FPGA I/O blocks (IOB in Xilinx terminology) are configurable to work as inputs,
outputs or bidirectional buffers, they make use of configuration bits that are sensitive to
SEUs. A faulty I/O block configuration can lead to incorrect I/O behaviour as seen from
outside the FPGA, or it can potentially have damaging effects on the system. In Xilinx
IOBs, a single-bit error will not cause a damaging error.

2.3.2 User Data Upsets

User Data upsets are non-permanent (transient) errors in user data bits, such as SEUs
in DFF, BRAM or distributed RAM content. As these errors occur in memory that is
naturally read and written during normal operation, they may be overwritten before
propagating further by introducing incorrect data into later stages. If the stored user
data is used as control signals to other components in the FPGA, such as a DSP48E
slice, it can also corrupt the soft configuration of those components. As user data is not
defined by the configuration bit stream, upsets may be difficult to detect, as it may not
be possible to distinguish between a computational error and a user data SEU.

Page

 34

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.3.2.1 DFF Upsets

The basic error mode for DFFs is a change in the state of the bit held by the DFF, later
potentially propagating through the data path. As DFFs are used in basic design
elements, this can also cause incorrect behaviour in for example clock transitions, shift
registers or FIFO structures. SETs can cause user data errors if they occur on a
transmission line or in combinatorial logic and later are clocked into a DFF. Fig. 25
shows an example of an SET affecting a transmission line in combinatorial logic,
resulting in a glitch which is later clocked into a DFF. In this example, the output of the
DFF is incorrectly changed to a logic 1.

DFF

0
0

0
0

BA

A

B

CLK

Q

CLK

Q

Glitch

Fig. 25. Single Event Transient

There is a possibility of an SET input causing a glitch that violates the setup and hold
times of the DFF. In a worst-case scenario, this results in the DFF being put in a meta-
stable state. Not all SETs are propagated and clocked into synchronous elements, as
logical, electrical and clock window masking effects apply. That is, a glitch on a
transmission line may be logically masked by the combinatorial logic, it may be too low
in amplitude or width to be significant, or it may not overlap with a positive clock edge
on the synchronous element.

2.3.2.2 RAM Upsets

RAM upsets are SEUs in BRAM or distributed RAM, resulting in incorrect data being
stored. There is also a possibility of SETs on enable or select lines which may result in
corrupted data being clocked into user memory. No separation is made here between
SEUs directly affecting a user data bit and SETs resulting in incorrect user data. User
memory in RAM blocks can be protected by the use of ECC, as will be discussed in
Sec. 2.4.4.3.

Page

 35

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.3.3 Architectural Upsets

The case of an SEU affecting configuration bits corresponding to system-critical FPGA
control elements is called SEFI, as mentioned in Sec. 2.1.4.1. SEFIs are SEUs that
affect the basic functionality of the FPGA, and include SEUs in programming logic
(JTAG, SelectMAP and ICAP controllers), reset nets and clock resources, as well as
their associated control registers. An SEFI can render the device unusable. SEFIs
usually require a full reset and reconfiguration of the FPGA [4]. Since these system-
critical structures are small in area and use few configuration bits compared to the rest
of the sensitive bits in the FPGA, SEFIs are far less common than configuration and
user data upsets.

If the programming functionality is affected by an SEFI, it can produce incorrect reads
from or writes to the configuration memory, or prevent programming all together. SEFIs
can occur in the control state machines or in routing of a programming interface. Since
the programming interfaces have functionality to disable I/O blocks while
reprogramming, this may affect outputs from the FPGA. SelectMap, JTAG and ICAP
are all susceptible to SEUs. An SEU in a Delay Locked Loop (DLL) can make the clock
signal unsynchronised with respect to output signals from the FPGA or lead to internal
clock skew. The clock net in general is susceptible to SEUs. For example, an SET on
the clock net or clock buffers may cause unwanted or incorrect clocking of the circuit.
Keeper circuits are used to generate constant 1’s or 0’s used in the design, and are
included as fixed circuitry in the FPGA architecture, utilising unused inputs to a logic
block. An SEU can flip the value held by a keeper. An SEU (or SET) in the reset net of
an FPGA can lead to a deconfiguration of the device, or an inadvertent or unexpected
reset. In a worst-case scenario, it may affect the whole reset functionality of the FPGA.

The control elements of a Xilinx Virtex 5 FPGA use a number of control and status
registers. All commands executed when programming, reading and checking the status
of a device are made through these registers. These include among others general
control registers, CRC registers for readback, Frame Address Register and Watchdog.
An SEU in these registers may affect the ability to perform readback from the device,
cause configuration bits to be written to an incorrect frame address, or cause a reset of
the device. A full list of the available configuration registers and their function is
provided in [18]. As these registers are architectural features whose implementation is
not under the direct control of the user, errors may be difficult to detect other than via
the observation of incorrect behaviour from outside the device.

Page

 36

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.4 SEU Mitigation Techniques

The concept of fault tolerance is a wide topic with many different combinations of
implementations. In order to understand the concepts involved in fault tolerance, it is
necessary to understand the chain of events that lead to a failure, as shown in Fig. 26.

2.4.1 Fault tolerance definitions and concepts

A Fault is the cause of an error. It could be an event, a bug, a faulty circuit connection
etc. An Error is what is directly affected by the fault such as an erroneous output, a
non-functioning module or a faulty state. A Failure is when a service is not delivered or
when it does not comply with the specification. A program which fails to deliver a value
or a circuit which fails to write an output are both examples of failures. There are a
number of different failure modes which are commonly used:

 Value failure – An incorrect value is delivered by the service

 Signalled failure – A failure signal is provided by the service

 Timing failure – A result is delivered too early or too late by the service

 Silent failure – No result is delivered by the service

Fault Error Failure

Fig. 26. Failure Chain

Two different concepts emerge when talking about fault tolerance. Fault tolerance is to
avoid failures through the tolerance of errors. This means that the fault tolerance needs
not to avoid faults itself but to stop errors from causing failures. Error masking is a
common implementation used to provide fault tolerance. Fault prevention, however, is
to prevent or limit the occurrence of faults. There is therefore no inherent tolerance
when talking about fault prevention.

There are a number of different ways to implement fault tolerance. The most common
method is to use some type of redundancy which can be further divided into three
categories:

 Voting redundancy

 Standby redundancy

 Active redundancy

Voting redundancy is when errors are masked through majority voting. The most
common type of voting redundancy is Triple Modular Redundancy (TMR). TMR for
SRAM-based FPGAs will be discussed in detail in later sections. Majority voting
requires units to tolerate simulataneous faults. It is possible to run the system
without an interrupt in the presence of a fault. Voting redundancy also has no
requirements regarding failure mode, due to the fact that a differing result will be
masked out regardless of failure cause. Voting redundancy leads to a relatively large
added area overhead. Since the overhead area from added error mitigation circuitry in
SRAM-based FPGAs itself is sensitive and has a failure rate, the overall gained
reliability is reduced. This is an important aspect to consider when selecting a fault-
tolerance scheme. In fact, some mitigation approaches for FPGA actually increase the
overall SEU sensitivity, as discussed in [24].

Page

 37

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Standby redundancy is the concept of having one primary unit and several spare units
in standby. This type of redundancy works under the condition that the active unit
becomes subject to a detectable value failure, a signalled failure or a silent failure.
There is a delay during reconfiguration since all of the tasks need to be relayed to a
spare unit. Standby redundancy requires units to tolerate simultaneous faults.

Active redundancy is the configuration in which two or more active units work in parallel
to produce replicated results. This configuration will also only work for a detectable
value failure, a signalled failure or a silent failure. Similarly to standby redundancy,
active redundancy setups require units to tolerate simultaneous faults.

In the case of a fault induced error, the error may either propagate to adjacent parts or
stay contained. Parts of a system which are capable of causing a failure for the whole
system are called single points of failure. A typically desirable property of fault tolerant
systems is a minimal number of such points of failure. A part of the system which is not
a single point of failure can therefore be faulty without causing the system to fail. This
means that the fault is limited to the node or component. The part of a system to which
the fault is confined is called a fault containment region. It is of importance to have
small fault containment regions in order to tolerate faults efficiently.

When looking at a system as a whole it is often useful to be able to model and simulate
the reliability and behaviour. This is important when planning and designing a system
to be able to implement the most efficient fault tolerant method. With known component
failure distributions, it is possible to calculate metrics such as mean time to failure
(MTTF) and the probability of the system working at a given time.

The lifetime of a component can often be modelled by the use of known distribution
functions. More specifically, a probability density function describes the relative
probability of an event. The probability density function is often denoted . A
distribution function, also referred to as accumulative distribution function, is defined
according to (11). The density function describes the probability that a stochastic

variable will have a value equal or smaller than a variable , as shown in (11).

An application where the mentioned functions are used is when modelling lifetimes of
components. Assume the probability density function describes the probability of a
failure as a function of time with a known distribution. The distribution function can then
be used to calculate the probability of a failure having occurred at a given time.

The reliability function, or survival function, is defined according to (12). The reliability

function is the probability that a stochastic variable has a value greater than the
variable . As shown by (12), the reliability function can simply be resolved by
calculating the remaining probability of a distribution function for the same variable.
Using the earlier component lifetime application, the reliability function would return the
probability of a failure not having occurred at a given time.

 (11)

 (12)

Page

 38

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

In the case where the failure rate is described by a distribution, a probability density
function can be used to resolve information as well. In this case, is nothing but
the expected value of the same probability density function, which is defined

according to (13). is frequently used as a metric when describing fault-tolerant
systems. Mean time to repair (MTTR) describes the rate at which a unit is repaired,
replaced or reset. It can also be used when calculating the availability of a system.

The failure rate, denoted , is the frequency of failures per unit time. It is defined
according to (14) as the ratio between the probability density function and reliability
function. It is commonly expressed as failures per hours, which is another frequently
occurring metric. Mean time between failures (MTBF) can be resolved as the inverted
failure rate according to (14), but also as the sum of MTTF and MTTR as shown in (15).

The ratio between the downtime and running time of the system is the definition of
availability. It can also be calculated using MTTF and MTTR as shown in (16). A
common availability standard for critical systems is the “five-nines” standard , indicating
an availability of 99.999% [25].

A common metric used when measuring fault tolerance is Failures in Time (FIT). FIT is
the number of failures during one billion hours for one device and is calculated as
shown in (18).

 (13)

 (14)

 (15)

 (16)

(17)

Page

 39

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.4.2 Triple modular redundancy

TMR is the most common implementation of voting redundancy. Due to its masking
properties it has become a popular method used to provide fault tolerance.

Unit 1

Unit 2

Unit 3

VoterInputs Output

Fig. 27. Three parallel units in a TMR configuration.

The basic concept of TMR is to run three identical, redundant computation paths in
parallel, running the same processes with the same inputs, as shown in Fig. 27. All
units compute the same outputs, running the same processes. The outputs from each
stage are compared with the parallel stages by the use of a majority voter. If the
outputs of any unit deviate from the remaining two, the voter still produces the right
output. There are a number of different approaches and versions of TMR
implementations. Many attributes of the implementation can be varied in order to tailor
the TMR implementation to available resources and the target application [25].

Unit 1

Unit 2

Unit 3

Inputs

Unit 1

Unit 2

Unit 3

V
o

te
r

V
o

te
r

Unit 1

Unit 2

Unit 3

V
o

te
r

Fig. 28. Two different types of faults occurring in a TMR system.

A fundamental limitation of a TMR system is that one fault at the most can be tolerated
per voter stage. Two types of multiple SEUs are shown in Fig. 28. The red
disturbances indicate multiple errors taking place at two different stages. These errors
will be masked out due to majority voting. The blue disturbances, however, indicate
multiple errors taking place at the same stage. TMR will not be able to mask the fault
since the majority is incorrect. This property makes voter stage partitioning and level of
implementation an important part of the TMR design process. TMR is often used in
conjunction with techniques that prevent errors from accumulating within one voter
stage over time, such as scrubbing, as will be discussed in greater detail in Sec. 2.4.3.

Page

 40

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

SEUs can also occur in the configuration bits that define the interconnect matrix. In this
case it is possible for a node of one redundant unit to become connected to another
redundant unit in the same voter stage. This particular case is known as a domain
crossing event and needs to be taken into consideration when modelling the overall
availability of a system [26].

2.4.2.1 Level of implementation

TMR can be implemented on different system levels. A design can be triplicated within
an FPGA, which is the common case. The design can also be triplicated on a higher
level, for example by using redundant FPGAs on a device-level.

The most frequently occurring implementation is using a triplicated design within an
FPGA[27], [28], [29], [30], [20]. The overall strategy in this case is to triplicate parts of
the design or the whole design within a single FPGA. This is only possible if the single
design fits within less than one third of the FPGA resources. A TMR system
implemented within an FPGA will have several voter stages in the design. Such a
system will therefore be able to tolerate at least one SEU in the triplicated parts of the
design. In addition, multiple SEUs can be tolerated if they occur at different voter
stages within a design. The way in which voter stage partitioning affects the fault
tolerance will be discussed in Sec. 2.4.2.2.

Where the synthesised design equals or exceeds one third of the available FPGA
resources, partial TMR may be a suitable implementation. Partial TMR implies that
parts of the design will be implemented using TMR. A method of assigning TMR to
selected parts of a design is presented in [27] where priority is given to sequential logic.
The motivation for giving priority to sequential logic is due to the fact that sequential
logic is harder to reconfigure and reset. Registers keeping track of internal states are
implemented in sequential logic. Reconfiguring register content in the event of an SEU
is difficult without resetting the system. Avoiding reconfiguration of sequential logic is
therefore important. Second priority is given to nodes that output signals to a larger
number of nodes. Signals which are connected to many nodes will have a greater
significance and are therefore worth protecting.

Another presented suggestion is that TMR is implemented on FPGA level [31]. Such a
configuration would consist of three FPGAs with an additional radiation hardened ASIC
managing voting and configuration. A disadvantage with this implementation is that
additional FPGAs result in additional overhead due to the peripherals associated with
each additional FPGA. Furthermore, such a solution would increase the power
dissipation and the required circuit-board area. An advantage with this solution is that
the external scrubber and voter unit will be implemented on an independent radiation-
hardened ASIC. The configuration and voter unit will also not require any allocation in
any FPGA, which is sensitive to SEUs. When implementing scrubbing and voting on
the FPGA, the fact that the scrubber and voters themselves can fail needs to be taken
into account.

2.4.2.2 Voter partitioning

Voter partitioning is an important consideration in a TMR system. Depending on the
density of voter units, different properties can be achieved. Increased partitioning is not
necessarily beneficial. Increased power dissipation and area overhead will follow as
more voter stages are included. Moreover it is important to take the increased logic into
account, which itself will also have a failure rate.

Page

 41

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

In [20], a study is conducted for an FIR-filter implementation where partitioning is done
to different degrees The different partitioning steps are evaluated by injecting faults in
the configuration bits for all the designs respectively. The percentages of failures are
then recorded together with the area overhead. The most interesting conclusion drawn
by the authors in [20] is that the densest partitioning scheme does in fact not yield the
best resilience to the faults inserted. Instead, a medium-density voter partitioning gives
the best results. This suggests that the increase in configuration bits for the densest
partitioning may result in a decrease in fault tolerance if the additional voters are not
used efficiently enough. This is likely due to the fact that increasing the partitioning will
also increase the number of SEU-sensitive configuration bits. The increase in number
of slices varied from 217% for the least dense partitioning to 273% for the densest
partitioning.

In [30], another similar study is conducted for a multiplier. A reference design with
voters at the end is compared with the same design with additional voter stages. The
number of slices occupied and the possible faults combinations covered are compared
for all increments. An interesting observation is that the medium partition is the most
efficient when calculating increase in area overhead per increase in fault coverage.
Another interesting observation is that the increase in number of slices was more than
200% for all TMR implementations in this study. Furthermore, it is calculated in [30]
that the densest voter partitioning would lead to a slice increase of 314%.

2.4.2.3 Voter structure

Voters can be implemented in a number of different ways. The simplest implementation
is showed in Fig. 29. This type of voter could be implemented by simply using a
majority voter for each bit, as shown in Fig. 30. This type of voter, however, is a single
point of failure. If this particular voter fails, it will render all redundant stages useless.

Unit 1

Unit 2

Unit 3

Unit 1

Unit 2

Unit 3

Majority
voter

Fig. 29. Simple voter implementation comprising one majority voter.

Page

 42

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Input 1

Input 2

Input 3

Output

Fig. 30. Possible implementation of a three-input majority voter.

An improvement from the simpler voter is the setup shown in Fig. 31, using three
parallel voter stages. Similarly, a bit-wise voter could be used to implement such a
function. The triplicated voter stage requires more resources, but will not necessarily
increase the critical timing path. This means that both voter types would have the same
timing since the voters are parallel to each other.

Unit 1

Unit 2

Unit 3

Unit 1

Unit 2

Unit 3

Majority
voter

Majority
voter

Majority
voter

Fig. 31. Triplicated voter implementation comprising three majority voters.

2.4.2.4 Method of implementation

There are a number of different methods the designer can use in order to implement a
TMR system. The designer can rely on synthesis tools to triplicate the design and to
insert voters. Another option would be for the user to manually incorporate the
redundancy in the HDL.

Page

 43

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

By relying on a synthesis tool, the designer will have to spend less time implementing
the TMR. The designer might even be able to omit redundancy considerations
completely when designing, instead treating the design as a normal design without the
fault tolerance. A commonly used tool for TMR implementation is XTMR from Xilinx [32].
The XTMR tool applies TMR to the netlist output by the synthesis tool. Running the tool
will triplicate all inputs including clock nets and combinatorial logic. Furthermore it will
triplicate sequential logic and insert majority voters on feedback signals. Lastly it will
triplicate output signals with minority voters to trigger and disable faulty outputs. This
method of implementation requires minimal effort to make sure TMR is implemented.
On the other hand, changing attributes of the TMR implementation becomes difficult;
partial TMR, for instance, is not supported.

If full customisation is a requirement, it is also possible to implement TMR manually in
the HDL description of a design. [28] presents a set of guidelines to be used in high-
level HDL implementation of TMR. The approach is called functional TMR (FTMR).
Introducing redundancy in HDL can be troublesome since synthesis tools may optimise
the design for performance or area, taking away the redundancy in the process. The
FTMR method gives full customisation possibilities to the designer and the possibility to
tailor the implementation by, for instance, limiting it to certain parts. FTMR will therefore
be a viable method of implementation when partial TMR, for instance, is considered.

2.4.3 Configuration Memory Scrubbing

The term scrubbing refers to a category of error mitigation techniques that prevent error
build-up by refreshing and restoring configuration memory cells to a known-good state.
SRAM-based FPGAs are volatile, and therefore may require off-chip memory to store
their configuration. By making use of a radiation-hardened off-chip memory (usually
EEPROM or Flash) for this purpose, it can be used as a golden reference. Since SEUs
in FPGA configuration memory bits are persistent errors, they will not disappear until
repaired by reprogramming and overwriting the faulty bit with the correct configuration.
Over time, configuration memory SEUs in a system without this repair capability will
cause error build-up. Error build-up will eventually break other SEU mitigation
techniques, such as TMR, by introducing multiple errors inside a single fault

containment region [33]. Knowing the golden-reference bit stream, the configuration
memory can be monitored and repaired by a configuration manager, or scrubber.
Scrubbing is an important technique, as it repairs errors to prevent accumulation, rather
than preventing, masking and tolerating errors like the other techniques discussed
here. This makes the use of scrubbing practically mandatory in fault-tolerant FPGA
systems. Error detection and error correction are two concepts important to scrubbing
that will be discussed in later sections.

Scrubbers, or configuration managers, are in essence the same type of circuit that is
responsible for the initial configuration of the FPGA, making use of the programming
interfaces of the FPGA (JTAG, SelectMAP or ICAP). Through these interfaces, the
configuration memory can be written or read back with a frame-level resolution.
Scrubbing can be done by full or partial reconfiguration of the device. Using the
dynamic partial reconfiguration features of Xilinx FPGAs, configuration memory repairs
can be made without interrupting the operation of the whole device.

Page

 44

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Scrubbing is a widely used technique, and considered in the literature as a vital part of
implementing fault-tolerance for FPGAs. It is often used in conjunction with other
mitigation techniques, as it only repairs existing errors rather than masking them when
they arise. Scrubbing in conjunction with TMR is the most commonly applied

combination for SEU mitigation, and gives an overall very effective solution [34]. There
are a variety of techniques and implementation schemes for scrubbers, as will be
discussed in detail in this section.

2.4.3.1 Scrubbing Techniques

Scrubbing can be done with device- or frame-level reconfiguration, corresponding to a
full reconfiguration and dynamic partial reconfiguration, respectively. Device-level
reconfiguration will invariably lead to some down-time, and may not be feasible for
some applications. In Xilinx Virtex 5, scrubbing based on dynamic partial
reconfiguration can be configured not to overwrite user data stored in shift registers
and distributed RAM implemented as LUTs. Error detection is optional and varies in
level between scrubbing schemes, as does the scrubbing rate. The scrubbing rate can
be fixed or variable, depending on the scrubber implementation and complexity.

The most basic and least complex form of scrubbing is a simple periodic
reconfiguration of the FPGA without error detection. This is known as blind scrubbing,
preventive scrubbing, or in Xilinx terminology Scheduled Maintenance [35]. With blind
scrubbing and frame-level dynamic reconfiguration, the FPGA is scrubbed from start to
end, frame by frame. This is done periodically and without error detection. That is,
frames are scrubbed regardless of whether an error has occurred in the frame or not.
The scrubber will be in write mode during the time it is actively rewriting the
configuration, and in idle (read) mode otherwise. The ratio between the scrubber time
spent in read and write mode depends on the scrubbing rate. Blind scrubbing has the
advantage of avoiding the extra complexity introduced by error detection, but can also
be seen as an inefficient use of scrubber time as it will scrub uncorrupted frames as
well as corrupted ones. Furthermore, the unnecessary time spent in write mode is a
vulnerability as errors in the bit stream, frame addressing register or programming
interface may cause a corrupted value to be written to a frame.

Readback scrubbing is an alternative to blind scrubbing. As the name suggests,
readback scrubbers operate by reading back the configuration from the FPGA in order
to determine if an error exists or not. In Xilinx terminology, this technique is known as
Running Repairs [35]. The error detection is facilitated by the use of configuration
frame-level ECC and CRC values calculated for the whole configuration memory. The
scrubber can continuously read the configuration memory CRC value and compare it to
that of the golden reference. If an error exists, frame ECC can be used to localise the
corrupted frame. The corrupted frame is read back in whole to the scrubber and
corrected by overwriting with the correct configuration from the golden reference. This
error detection and correction (EDAC) mechanism works on single upsets within a
frame, relying on the improbability that a multiple bit upset will occur in a single frame
within the time it takes to correct an error. Readback can also be based on simple
comparison with the reference memory, using a bit mask.

Page

 45

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

It is possible for a single SEU to affect two bits located in adjacent configuration
memory frames. In this case, it will be seen by the readback scrubber as two distinct
single-bit errors and corrected accordingly. Readback scrubbing has the advantage of
being in read-mode most of the time, only ever going into write mode when an error is
detected. It is also a more time-efficient use of active scrubbing by avoiding the
reconfiguration of uncorrupted frames, but introduces complexity in terms of error
detection and localisation logic. Fig. 32 provides an illustration of the operation and
Time To Repair (TTR) of blind versus readback scrubbing. In this example, the blind
scrubber does not make use of error detection, instead simply reconfiguring the FPGA
periodically and frame by frame from start to end.

Idle IdleWr

Error Corrected

Scrub Cycle

Read

Error Corrected

ReadWr

Error Detected

IdleWr IdleWr

TTR

TTR

Fig. 32. Blind vs. Readback Scrubbing

A system may also benefit from employing a combination or compromise between
these two distinct approaches, as discussed in [36]. For example, blind scrubbing may
be supplemented by coarse-grain error detection based on the CRC value for the
whole configuration memory. Upon detecting an error somewhere in the system, the
next scheduled scrubbing round can be moved up to be performed as soon as
possible. This reduces the time to repair the specific error. However, a blind scrubber
still has no information about which frame to repair, meaning that a normal start to end
scrubbing of the whole configuration memory has to be started. Readback scrubbing
can also benefit from periodical scrubbing of the whole device, even if no error has
been detected. This is to protect against the event of a multiple bit upset inside a single
frame, which may otherwise have gone undetected by the EDAC mechanism.

More advanced scrubbing schemes can be implemented that take into account the
sensitivity and criticality of individual modules or parts of the configuration memory,
such as those discussed in [37]. The system might benefit from prioritising the
scrubbing of certain critical modules. As described earlier, the basic blind scrubber will
scrub the configuration memory from start to end. This is not necessarily the best
approach. By modifying the frame sequence to be scrubbed, the critical modules can
be set to be scrubbed more often. In [36] this approach is presented as 2D Scrubbing
or Selective Scrubbing. This method requires extra effort by the designer in
implementing the scrubber, both in recognising the sensitive modules and in setting up
the frame sequence as used by the scrubber.

Page

 46

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

If periodical scrubbing is employed, a scrubbing rate needs to be set according to the
estimated SEU rate such that errors will be corrected before building up or causing
multiple upsets within a module which may break fault-masking strategies. Commonly,
a scrubbing rate of 10x the estimated SEU rate is used, as noted in [36]. Depending on
how advanced the scrubber implementation is, the scrubber can use a fixed or variable
scrubbing rate. A variable scrubbing rate can be useful when a mission experiences
peaks in SEU rate when passing through specific sections of its orbit, for example the
South Atlantic Anomaly in LEO. Reducing the scrubbing rate during low-SEU-rate
periods can help save power.

2.4.3.2 Scrubbing Implementation

As previously mentioned, there are a variety of approaches to implementing the
scrubbing techniques discussed in the previous section. Typically, a scrubber is placed
in a rad-hard auxiliary device external to the FPGA, and interfaced with the FPGA
through JTAG or SelectMAP. The auxiliary device, or external scrubber, is then
responsible for error detection and correction, as well as handling the non-volatile
reference memory. The external scrubber can be placed in an auxiliary rad-hard FPGA
or microprocessor, or an ASIC. Using an external scrubber setup has the advantage of
separating scrubber and target FPGA, allowing the scrubber to be implemented in a
device that is radiation hardened by process [38]. The purpose of this is to make the
scrubber itself immune, or at least much less susceptible, to SEUs. However, the
programming interfaces on the target FPGA, for example SelectMAP, are still
susceptible to SEUs. By using a dedicated scrubber and by storing pre-calculated CRC
and ECC values in its internal memory, scrubbing performance can be increased.

Scrubbers can also be internal to the FPGA, meaning that the scrubber is implemented
in logic and placed in the target FPGA itself, and is therefore self-hosting. While
reducing overall system complexity, this has the obvious disadvantage of being
susceptible to SEUs in the scrubber logic. Also, there is still a need for an off-chip, non-
volatile memory and memory controller for the initial programming of the FPGA. Some
internal scrubber implementations feature the possibility of self-scrubbing, where the
scrubber can scrub portions of itself using dynamic partial reprogramming. A
comparison between an internal and an external scrubber implementation is made in

[39]. The authors come to the conclusion that the internal scrubber implementation
examined is less reliable and efficient compared to the external implementation. Fig. 33
shows simplified block diagrams of example internal and external scrubber setups.

Page

 47

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

FPGA

Se
le

ctM
A

P

External Scrubber

Internal Scrubber
M

e
m

o
ry

C
o

n
tro

lle
r

FPGA

Memory
Controller

Reference
Memory

Configuration
Manager

IC
A

P
Configuration

Manager

Reference
Memory

Control

Fig. 33. External and Internal Scrubbers

The configuration manager (the scrubber itself) can be primarily software-based or
completely hardware-based. A pure hardware approach, either internally in the FPGA
or implemented on an external host module, can be efficient both in terms of
performance and interfaces to the reference memory and target FPGA. This is the
common approach used in the literature [40]. With a hardware-based scrubber, the
scrubbing algorithm is fixed, typically based on a state machine.

Using a software-based scrubber running on a rad-hard microprocessor is an
alternative that allows for greater flexibility in the scrubbing algorithm which can be
based on more sophisticated schemes. However, a software-based scrubber this is
typically significantly slower than a pure hardware approach, as it requires the
execution of the scrubbing algorithm program in the microprocessor, as well as
interfacing the microprocessor with the reference memory and the target FPGA.
Employing a compromise between the two alternatives can be an efficient approach,
for example by implementing the scrubber in an auxiliary FPGA with a soft-core
processor. This allows fast interfacing and data processing by the FPGA logic (e.g.
CRC calculations), while the soft-core handles the high-level algorithm.

In systems where one (external) scrubber is responsible for scrubbing multiple devices,
the hardware-software-hybrid approach may be suitable due to the number of interface
pins required, and the usually more sophisticated scrubbing schemes. The scrubber
can also be used in device-redundant systems to detect errors manifested as
discrepancies between the outputs of the redundant devices.

Since scrubbers require continuous use of the programming interfaces of the FPGA,
special techniques need to be implemented in order to update the reference
configuration during operation and make use of dynamic partial reconfiguration. In [41],
the authors suggest a scheme for circumventing this problem, making use of a partially
reprogrammable memory to store the reference configuration.

Page

 48

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Xilinx provides a macro for soft error detection and correction. The SEU Controller, or
SEU_cntrl, is self-hosted by the target FPGA. SEU_cntrl can access the Internal
Configuration Access Port (ICAP). It uses the frame ECC and the Configuration
Memory CRC to detect errors and automatically correct them in a Single Error
Correction, Double Error Detection (SECDED) scheme, which can be seen as a form of
scrubbing. It can also access the SelectMAP port [42]. Fig. 34 shows a block diagram
of the SEU_cntrl macro.

CLK

ACM_ACTIVE

END_OF_SCAN

INITIALIZING

BUSY

SEU_DETECT

CRC_ERROR

MBE

SIMULATE_SEU_ACK

UART_TX

ACM_MODE

SIMULATE_SEU_SBE

SIMULATE_SEU_MBE

UART_16_X_BAUD

UART_RX

SEU_CNTRL

Fig. 34. Xilinx SEU Controller Macro

A useful feature of the SEU_cntrl macro is the ability to simulate SEUs for the purpose
of testing mitigation schemes. The macro can inject errors (bit-flips) in the configuration
memory, either randomly or in locations defined by the user. This allows for a
predictable and controlled testing method when evaluating SEU mitigation schemes,
and will be used later on in this work. Featuring a standard UART connection, the
macro can interface with a PC for error injection and logging. Internally, the macro uses

a Pico-blaze core, an 18kB BRAM block and an ICAP controller [42].

The SEU controller macro is itself susceptible to SEUs. Specifically, there are two
types of errors that can cause the SEU_cntrl to fail: Multiple Bit Upsets (MBUs) in the
same frame, and SEUs in the configuration memory or user memory of the SEU
Controller itself. Some of these (less critical ones) may be corrected, as the SEU_cntrl
has the ability to scrub itself. Errors in the programming interface (ICAP) or frame ECC
errors may lead to the SEU Controller writing incorrect frames to the FPGA
configuration memory. In Virtex 6 and newer Virtex devices, the SEU Controller is
known as the SEM Core (Soft Error Mitigation Core). The SEM is an IP Core that can
be generated through Xilinx CoreGen.

Page

 49

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.4.3.3 System Context and Limitations

In selecting a scrubber implementation scheme, the scrubber has to be put into context
and in relation to the system as a whole. This includes an assessment of the SEU rate
and potential risks, as well as considering the fault-tolerant techniques that are used in
conjunction with the scrubber, in order to achieve the desired reliability levels. Overall
power consumption, system complexity and by extension cost, are other factors in
selecting the scrubber implementation scheme. The added system complexity by an
external scrubber may be infeasible for some applications. Watchdog and configuration
register scrubbing can be implemented by the configuration manager to protect against
cases in which the target device experiences an SEFI that disrupts critical control
elements. This may require a full reconfiguration of the FPGA, and assumes that the
scrubber is not itself affected by the SEFI. Control registers in the FPGA can be polled
periodically by an external circuit or external scrubber. As a minimum, a system for
space applications employing scrubbing needs to implement an off-chip memory, a
configuration manager, a scrubber (here the two are separated to highlight the
difference between the initial programming circuitry and the continuous scrubbing) and
a watchdog timer [38]. Table 3 gives an overview of the scrubbing classifications and
implementation options discussed in this section.

Table 3. Scrubber Variations

Implementation Aspect Alternatives

Scrubbing Approach

Readback
Blind

Blind with basic Error Detection

Implementation

Hardware (FSM)
Software (Soft-core)

Hybrid
Placement External

 Internal
Multiple Devices One-device scrubber

N-device scrubber

Scrubbing Frequency

Periodical
Variable

Watchdog Timeout
 On Error Detection

Error Detection

Frame ECC
Memory CRC

Direct Compare

Error Correction

Full
Partial

Frame-level SECDED

Page

 50

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

During scrubbing, power is dissipated in the scrubber circuitry and in the programming
interface of the FPGA. A more complex scrubber implementation with readback and
compare naturally leads to a higher power consumption, which has to be put in relation
to the overall system power consumption. Using the variable scrubbing rate briefly

discussed earlier, power consumption can be reduced [36].

Scrubbing can be seen as complementary technique to fault-masking or fault-tolerance
techniques such as TMR. It is also important to understand the limitations of the
selected scrubbing scheme, as the scrubber may not be able to scrub all parts of the
system (although depending on the application this may not be necessary), and may
itself be susceptible to SEUs.

2.4.4 Error Correcting Codes

Error Correcting Codes, ECC, are additional bits added to a data sequence in order to
detect and potentially correct errors in that data sequence, according to some algorithm.
ECC can be used to verify data integrity in fault-tolerant FPGA designs. In this section,
the use of ECC for protection of user data, configuration memory and state machine
states is discussed.

2.4.4.1 State Machine Encoding

State machines are common design elements in both ASIC and FPGA designs. A state
machine is defined by its inputs, outputs, state, state transitions and initial state, and
can be written as . The current state, , is stored in DFFs and
encoded as a binary value. Selecting the state encoding scheme with respect to SEUs
is important to avoid risking the state machine going into an undefined, potentially
unrecoverable state. As a basic rule, all states possible with the selected encoding
scheme need to be defined, and there must be no potential hang state where the state
machine is stuck indefinitely. Different encoding schemes exist for state machines,
including Gray coding (using a hamming distance of 1), One-Hot and general Hamming
codes (Hamming distance of >1). One-Hot encoding uses as many flip-flops as it has
states, which is a resource-costly approach. However, it also has the advantage of
simple combinatorial logic for state transitions. In [43], the authors provide a set of
criteria for fault-tolerance encoding schemes for state machines. The authors go on to
compare Gray coding, One-hot, Hamming-2 and Hamming-3 encoding. It is found that
Hamming-3 provides the best fault tolerance with respect to SEUs. However, it is also
the slowest and most resource-demanding encoding scheme.

2.4.4.2 Configuration Memory ECC

As mentioned in Sec. 2.2, the configuration memory of a Virtex 5 FPGA is protected
using ECC on a frame-level and a CRC value for the whole configuration memory. The
error correction scheme and details described here are specific for Virtex devices, but
the principles are general. In Virtex 5, each frame is protected by a 12-bit ECC value
using Hamming code, calculated by the FPGA design tools when generating the bit-
stream file. An ECC macro, named FRAME_ECC_VIRTEX5, can be instantiated by the
user for error detection as part of a SECDED scheme. A configuration frame is read
back through one of the available programming interfaces and stored by the SECDED
circuitry. The ECC and the frame content are used to calculate a syndrome value [18],
which indicates the existence of an error as well as the location within the frame. The
identified bit can be inverted, and the whole frame can be written back, correcting the
error. This applies for a single-bit error within a frame. Multiple bit errors can be
detected, but not located, making a reconfiguration of the entire frame necessary.

Page

 51

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

The syndrome value is a 12-bit vector, where the MSB indicates the presence of an
error, and the remaining 11 bits are used to locate the error within the frame. As a
configuration frame in Virtex 5 consists of 1,312 bits, 11 bits are sufficient to address
any bit in the frame. If no error exists, the syndrome value should consist of all zeroes.
In case the MSB is 0, but the 11 location bits are not all zeroes, this indicates the
presence of a multiple bit error [18].

The whole configuration memory is protected by a 32-bit CRC value. This value is
calculated for the original configuration and stored by a configuration manager. When
reading back the configuration memory, the configuration manager can calculate the
CRC value and compare it with the original. If there is a discrepancy between the
calculated and the original CRC values, an error is present somewhere in the
configuration memory [18].

2.4.4.3 User Data Protection

Given the variable nature of user data in FPGA, there is no golden reference with
which to compare, as discussed in Sec. 2.2. Using the two user data error modes
defined in Sec. 2.2 as a starting point, we discuss the use of error correcting codes to
protect the contents of DFFs, distributed RAM and BRAM. Single DFFs need to be
protected by redundancy, for example using the approach in [44]. For registers or
arrays of DFFs, it is possible to implement error correcting code in logic, although this
is not commonly done.

The 32kB Block RAMs in Xilinx Virtex-5 can be protected by enabling the built-in 64-bit
ECC, which is able to detect and correct single-bit errors, and to detect double bit
errors. This requires the (dual-port) BRAM to be configured as a 512x64 bit memory
block, where the two ports work as dedicated read and write ports, respectively [17].
The ECC is based on Hamming code and uses eight parity bits to implement SECDED.
If a single-bit error is detected, it will be automatically corrected. This will be signalled
by an output signal. Double bit errors cannot be automatically corrected, but they can
be detected, which is also signalled by an output. Internally, the BRAM ECC module
consists of an encoder and a decoder, as well as the required MUX structure. This is
illustrated by Fig. 35. The module interfaces with the BRAM block, working as an
intermediate between the BRAM block and the user. The addition of an ECC module
will typically not be directly noticeable from the BRAM user’s point of view, but it will
affect timing. The encoder and decoder blocks can be configured to be used
individually. In [45], the authors present an EDAC setup and calculations of the EDAC
Word Error rate for BRAM blocks in a radiation-hardened version of Xilinx Virtex 5.

Page

 52

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

USER ECC MODULE BRAM

Encode

Decode and
Correct

DIP

WRADDR

RDADDR

PARITY

DI

DO

DBITERR

SBITERR

DOP

M
U

X
in

g

ADDRA

ADDRB

DIPB

DIPA

DIA

DOA

DOPA

Fig. 35. ECC Protected BRAM

2.4.5 Checkpointing and Rollback

Checkpointing is the technique of periodically saving the (known-good) state of a
circuit, in what is commonly known as a snapshot. This allows the system to revert
(Rollback) to the last checkpoint when detecting an error, to recover from the error and
continue execution from a known-good state. Checkpointing has been commonly
implemented in software in fault-tolerant processor systems[23], [46], [47], but can also
be applied to general logic or to soft-core processors in programmable logic. Applying
hardware checkpointing is aimed at reducing the overhead effects of more expensive
fault-tolerant techniques such as TMR. The concept of checkpointing requires
mechanisms to store system states, detect errors through scrubbing readback, and to
perform rollback to restore the system state. This inevitably introduces some time
losses, as the error is not masked in the same way as for TMR implementations, but
this may be feasible for some applications. Checkpointing can be implemented on-chip
or in external circuitry. Fig. 36 illustrates the checkpointing principle.

Page

 53

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

C1 C2 C3 C4

C
2

 R
e

sto
re

Error Detected

Rollback

Fig. 36. Checkpointing and Rollback Principle

In FPGA, internal checkpoint saving can be made very efficient by leveraging the high
on-chip bandwidth capabilities. However, the checkpointing structures are themselves
susceptible to SEUs, and checkpointing may not be trivial or suitable to implement for
all types of applications. When implementing a soft-core processor based system on
FPGA, checkpointing can be a low-cost alternative to TMR [48]. As checkpointing only
restores the system state, it should be combined with error correction and build-up
prevention techniques (Configuration Scrubbing). The frequency of checkpoint storing
has to be weighed against scrubbing frequency and timing requirements. The scrubber
has to be able to scrub the entire memory between checkpoints, setting an upper limit
to the frequency. Checkpointing with a low frequency, on the other hand, leads to
potentially long recovery latencies due to the required re-execution [47]. As
checkpointing is well suited for soft-core processor systems, it may be a good idea to
combine checkpointing for suitable modules in the system with TMR for more critical
parts, as well as normal configuration memory scrubbing being performed in parallel.
Checkpointing must, however, be synchronised with the scrubber’s readback and
repair activities to be meaningful [48].

2.4.6 Temporal Redundancy

Temporal redundancy differs from spatial redundancy techniques such as TMR, in that
calculations are repeated in time instead of being performed in parallel redundant paths.
While temporal redundancy has the potential for lower area overhead compared to
TMR, there are some obvious disadvantages [24]. Firstly, since all computations have
to be repeated (commonly three times), there is obviously an increase in the execution
time for a task. Also, if there is a permanent error in the configuration memory, all the
time-redundant computations will exhibit the same error in their outputs. This makes
temporal redundancy mainly useful for mitigating transient errors only.

Another type of temporal redundancy utilises clock skew on sequential elements to
mitigate SETs. By using, for instance, three separate clock signals skewed by 90°,
combined with voting circuitry, transient glitches on input signals from combinatorial
logic can be masked. As for the technique of repeating calculations in time, clock
skewing does not offer protection against configuration errors, and provides a rather
weak alternative for SEU mitigation for space applications.

Page

 54

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

2.4.7 Tool-Level Techniques

Certain SEU mitigation and prevention techniques for FPGA can be implemented on a
design tool level, and are focused on generating an inherently more robust
configuration bit stream. This can be done in several different ways. SEU-aware Place
And Route (PAR) techniques incorporate metrics and weight functions into the PAR
algorithm to optimise the placement and routing of resources on the FPGA with respect
to error avoidance [49]. Traditional FPGA design tools often try to optimise for speed or
area, potentially removing intentional redundancy and sabotaging the fault-tolerant
design techniques employed by the designer. There are also vendor-supplied
redundancy tools, such as the previously mentioned XTMR tool from Xilinx, which are
specifically targeted at automatically adding redundancy to the design. The efficiency
and customisation opportunities of such designs may be limited, or at least not in line
with what the designer wants, so there may be a trade-off between engineering effort
and redundancy efficiency.

When focusing on SEU mitigation, it is typically of interest to try to optimise the
placement of resources for scrubbing purposes. This can mean packing logic into fewer
configuration frames and utilising each frame more to reduce the number of sensitive
frames, even if it makes less sense when optimising for performance alone. Having
fewer sensitive frames to scrub can help reduce the MTTR, provided that the sensitive
frame map is available to the scrubber, or incorporated into the scrubbing sequence.

When using voting redundancy, such as TMR, it may be beneficial to place the
redundant paths physically apart on the chip to reduce the possibility of a single fault
affecting multiple redundant paths. This, however, introduces a degree of routing
overhead and potential timing issues when routing signals from the redundant paths to
connect them in voter stages.

For SET prevention, retiming algorithms can be applied on the tool-level to prevent the
propagation of SETs, as discussed in [50]. A low-overhead method was presented in
[51], which utilises restructuring of the logic expressions and LUT contents in
combination with spare logic in the CLBs in Xilinx Virtex FPGAs to provide some
degree of error masking. This method will here be referred to as Logic Decomposition,
Logic Restructuring (LD+LR).

2.4.7.1 SEU-Aware PAR

The basic goals of FPGA PAR tools are to provide a physical allocation of the
synthesised design modules onto the FPGA resources, to provide routing paths in an
efficient and minimal way, and to if possible meet the timing constraints set by the
designer. Traditional PAR tools are based on the concept of simulated annealing,
where design blocks are placed randomly in the initial placement stage, then iteratively
improving the placement through the swapping of blocks. In determining whether two
blocks should swap places or not, a cost function is used. The placement cost function
weighs the wiring and timing costs, and determines the improvement value of the swap
by computing a delta value between the old and the new placement. As the PAR
algorithm progresses, in simulated annealing referred to as lowering the temperature,
the algorithm accepts less and less bad swaps. The idea of starting at a high
temperature is to allow some bad swaps to take place in order to overcome local
minima, where less sophisticated greedy PAR algorithms risk getting stuck. A simplified
version of a cost function is given by (18), as defined in [52] and used in [49]. Here, is
a user-defined weight constant, and the Previous Cost refers to the previous
temperature step.

Page

 55

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

 (18)

In [49], the authors suggest adding an SEU-sensitivity component to the cost function,
using the VPR tool [53]. The modified placement cost function as presented in [49] is
given by (19). Here, is a user-set constant similar to .

(19)

The authors go on to define three wiring fault categories, similar to what was discussed
in Sec. 2.3.1.1: Shortened, Open or Bridging faults. When employing a TMR scheme,
bridging effects can effectively break the redundancy by bridging together two of the
redundant paths. The basic principle for avoiding short and open wiring faults in PAR is
simple: shorter wires mean fewer PIPs to upset. Bridging faults are more complex to
avoid, and generally involve placing sensitive modules so that they do not share
connection points more than necessary. For routing, the authors of [49] include an SEU
cost component similarly to what is done for placement.

 A PAR algorithm specifically targeted at keeping TMR implementations robust is
presented in [22]. The algorithm, named RoRA for Reliability-Oriented place and Route
Algorithm by the authors, attempts to route the signals between the redundant paths so
that upsets cannot affect both paths.

While SEU-Aware PAR algorithms on their own do not mask or prevent errors, they
assist to a degree in avoiding routing errors and errors affecting multiple modules,
without inferring much overhead in terms of area and power. For instance, the authors
in [49] present a 22% improvement (reduction) in SEU-susceptibility at a cost of 5%
critical path delay and 8% increased power consumption when using SEU-aware
placement and routing.

2.4.7.2 LD+LR

In[54], [21], [51], low-overhead fault masking techniques that are discussed utilises
LUT content restructuring combined with spare logic in the CLBs of a Xilinx Virtex
device. The proposed methods are quite similar in nature, and offer a degree of fault
masking where the area overhead will depend on LUT utilisation. This is an attempt to
reduce the massive area and power penalties imposed by TMR. The basic idea is to
utilise the fact that in (Xilinx and Altera) FPGAs, the n-input LUTs are made up of two
(n-1) input LUTs (for example, a 6-input LUT in recent Xilinx Virtex FPGAs consists
internally of two 5-input LUTs, here denoted as sub-LUTs for simplicity). If less than all
inputs to a LUT are used, there will be a free sub-LUT, giving the possibility to duplicate
the LUT content into the two sub-LUTs. The technique presented in [51], called LD+LR,
is a post-PAR design step that extracts the LUT information from the bit stream and
attempts to perform logical restructuring on the LUT content to maximise the number of
0’s or 1’s in a LUT. To facilitate this, logic expressions may need to be broken down
into components implemented in different LUTs.

Page

 56

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fault masking is achieved by using spare logic gates in the CLB on the outputs of the
internally duplicated LUTs. A error can be masked by an AND operation on the

outputs of the LUTs, and similarly a error is masked by an OR operation. Fig. 37
shows an example where a 5-input logic function is duplicated inside a 6-LUT, the

number of 0’s maximised in the LUT content, and the outputs AND-ed to mask
faults. In [51], the authors achieve an 85% fault masking level with only a 7% increase
in slice usage on a Xilinx Virtex 6. This requires additional steps in the design flow, as
the LD+LR algorithm is applied post-PAR and then resynthesised.

5-LUT

DFF

5-LUT

DFF

5-LUT

5-
In

p
u

t
Lo

gi
c

Fu
n

ct
io

n

6-LUT

5-
In

p
u

t
Lo

gi
c

Fu
n

ct
io

n

6-LUT

Original Function Duplication and Masking

Fig. 37. LD+LR Masking

Page

 57

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3 Method

Testing SEU mitigation techniques requires some form of testing method that allows
the introduction of SEUs in the design and observation of the behaviour. The obvious
approach is to subject an FPGA with the implemented design to actual radiation, using
a particle beam with known characteristics. This is known as in-beam testing. While in-
beam testing may offer the most realistic testing environment, it also requires access to
a radiation source and advanced equipment. The test process is both expensive and
time-consuming. For certain important numbers, such as TID tolerance, vendors
commonly supply in-beam testing results for their devices.

Gate-level simulation may be used as normal, with the addition of introducing so called
stuck-at errors to fix a bit to a logical 1 or 0. While it is not particularly useful for testing
the overall susceptibility of a system, it can allow detailed analysis of fault propagation,
as the designer can trace signals through the system in a predictable way. Analysing
the configuration bit stream can give an idea of what stuck-at errors to simulate and
trace.

Another alternative, fault injection, refers to the method of injecting faults into the
configuration bit stream or user data. This can be achieved in a number of ways, for
example by intentionally programming an FPGA with an incorrect bit stream, or to use
dynamic partial reconfiguration to introduce faults. Fault injection can be implemented
in hardware or software, and there are fault-injection software suites available for
FPGA, most notably FLIPPER, discussed in [55]. The Xilinx SEU Controller Macro
discussed earlier includes functionality to inject single or multiple bit errors into the
design, at a user specified or random frame address [42]. How fault injection is
implemented is an important aspect in designing an evaluation method for fault-tolerant
techniques, and will be discussed further in Sec. 3.3.3.

While frame-level fault injection might not be quite as realistic as in-beam testing, it can
certainly be very close when used in conjunction with a good SEU-rate estimate. Fault-
injection techniques also offer several advantages. It is far less time consuming and
costly compared to in-beam testing, and offers good error-logging possibilities, as well
as a predictable behaviour for studying specific parts of the design or specific error
modes. One drawback is that it is not possible to simulate some SET effects. A
combination of using fault injection and gate-level simulation can prove very efficient for
evaluating SEU mitigation techniques, and will be used in this work. This section
describes the implementation and use of an FPGA-based test platform for evaluating
SEU mitigation techniques, with focus on TMR and Scrubbing implementations.

Page

 58

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.1 Test Platform

In order to test and evaluate the mitigation techniques introduced in the previous
chapters, a test platform has been implemented. The purpose and aim of the FPGA
test platform is to provide a common base structure on which different test payloads
can be implemented and tested. In designing the test platform, a few basic functions
were identified: a platform needs to provide fault injection, fault detection and logging,
and an exchangeable payload. To facilitate this, and to be practically implementable on
an FPGA board, the test platform also needs to provide interfaces to off-chip resources,
such as memory.

Since the test platform is implemented to test and evaluate mitigation techniques on
the FPGA, test data and results needs to be collected and stored. In order to provide
easy controllability and to send back test data, communication with a PC is required.
Also, it is desirable to move complexity from hardware (on the FPGA) to software (on a
PC) in order to improve data logging capability and to reduce the time and effort
required in developing. This subsection describes the test platform and the board it is
implemented on.

3.1.1 Board

The platform is implemented on a Virtex-5 LX50 Evaluation Board from AvNet [56]. The
board is based around a Xilinx Virtex-5 FPGA (XC5VLX50) and includes two DDR2
memory modules (totalling 64MB), a 16 MB flash memory, a 32 MB xcf32p Xilinx
Platform Flash and connectors for RS232, Ethernet and USB. The board is also
equipped with a JTAG connector for programming, a small LCD display, generic I/O
pins, a clock synthesiser, as well as push buttons and LEDs for user interaction. A 100
MHz oscillator provides the base clock to the FPGA. Fig. 38 shows the evaluation
board. A block diagram of the most important components is presented in Fig. 39.

Fig. 38. Virtex 5 Evaluation Board

Page

 59

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

DDR2
SDRAM

DDR2
SDRAM

16MB Flash
28F128J3

Xilinx
Platform

Flash

xcf32p

Ethernet

RS232

USB
CY7C68013

LCD Controller

LEDs / Buttons

Xilinx Virtex 5
FPGA

XCV5LX50
– FF676

JTAG

Fig. 39. Virtex 5 Evaluation Board, Block Diagram

The Virtex-5 LX50 has a fixed speed grade of -1 and is implemented in an FF676
package. Table 4 gives an indication of the number of the most important resource
types available on the FPGA.

Table 4. XC5VLX50 Resources

Resource Number / Amount

Logic Slices

7,200

Block RAM 1,728 kB

Xtreme DSP Slices 128

DSP48E Slices 48

DCMs 12

3.1.2 FPGA Test Platform

The FPGA Test Platform architecturally consists of three main parts: A bus structure
and system framework, a test structure, and the payload itself. By keeping the payload
separate from the rest of the test framework, it can easily be replaced and acts as a
Device under Test, DUT. Fig. 40 gives an overview of the FPGA platform, its off-chip
memory interfaces and the PC communication.

Page

 60

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Virtex-5

Core
Test Structure Payload

SEU
 C

o
n

tro
lle

r
(SEC

D
ED

)

BUFs, Clock Management, etc.

Bus

Master

Display
LVDS
SAM

DMA
Mem Ctrl

RAM

UartRx

UartTx

. . .

. . .

Frame
ECC

UART

SelectMAP

Platform Flash

Fault Monitor / Logger

ICAP

UART

ClkDiv

Flash

Device
Under
Test

Reconfiguration Manager

UART

BRAMB
u

s / D
M

A

UART

Fig. 40. FPGA Test Platform

3.1.2.1 Bus Structure and System Framework

The bus structure includes a bus-master, DMA handling and several peripheral units
connected to the central bus network. The bus network consists of a memory access
bus (for DMA) and a register bus. Peripheral units include a UART receiver/transmitter,
an LCD interface, a DDR2-SDRAM interface and a Flash memory interface. Units
connected to the π-bus can access configuration registers and DMA channels through
access requests to the bus master. When a unit on the bus makes a DMA request or
register access, the bus master acts as an arbiter, handling all mapping and interfacing
to the off-chip memories. The system framework handles all the underlying pin
mappings and clock management. The system and bus structure are run on a 40 MHz
clock derived from the on-board 100 MHz oscillator.

Page

 61

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.1.2.2 Test Structure

The test structure handles fault injection, result checking, error logging and
scrubbing/reconfiguration. The test structure consists of three parts: SEU Controller,
SEU Monitor and Reconfiguration Manager.

3.1.2.2.1 SEU Controller

The SEU Controller is an instantiation of the Xilinx SEU Controller Macro described
earlier, and implements SECDED functionality and fault injection capability through the
use of Frame ECC and ICAP primitives. An UART interface enables communication
with a PC through a set of commands and status send-backs. The controller is able to
detect and correct (single-bit) configuration-memory errors, and can detect and indicate
multiple bit errors.

3.1.2.2.2 SEU Monitor

The SEU Monitor is a module responsible for testing the DUT and storing the results in
the memory. Test vectors are kept by the monitor and sent as inputs to the DUT, which
then sends the computed results back to the monitor to be compared with the expected
result. The monitor then stores a status vector to memory, indicating any errors that
may have occurred in the DUT. Similarly to the controller, the monitor implements an
UART interface for receiving commands from a PC and sending back the logs when
requested. The monitor’s set of commands does not overlap with those of the controller,
allowing both units to listen to the same UART receive channel at the same time.
Commands that are not recognised are simply ignored. The monitor can store test log
data to an internal BRAM, or to the 16MB off-chip flash memory through DMA requests
on the bus. The flash memory option is included for tests that require reconfiguration of
the whole FPGA, in which case the test logs need to be kept in a non-volatile off-chip
location. BRAM is the default storage location for the test logs. Fig. 41 shows an
example of a test run.

The communication between the SEU Monitor and the DUT consists of the input and
output data, as well as run and done signals. These allow the Monitor to control when a
test is started through the DUT. Having as few signals to and from the DUT as possible
is important to maximise the separation between test framework and payload.

Page

 62

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fault Monitor / Logger

UART

TMR
0

TMR
1

TMR
2

Voter

BRAM

X X Y

X

Test
Vector

Log Error on
TMR 2

Read and
Send Log

Fig. 41. Example Test Run

In this example, a TMR implementation of the DUT is tested. A fault is inserted in the
DUT through the SEU Controller, which in this example has hit one of the redundant
branches, TMR 2. The monitor then receives a command from the PC telling it to run
the test, and proceeds with sending the test vector inputs to each of the three TMR
branches. The injected error causes TMR2 to produce an incorrect output. The monitor
logs all outputs from the redundant branches as well as from the voter stage, and
stores a log word to BRAM, indicating that one of the redundant branches has
produced an incorrect output, but that the voter stage has managed to mask the error.
Upon receiving another command from the PC telling the monitor to send the log data,
the entire log stored in BRAM is sent over UART to the PC in a raw hex format. The log
data is received and saved by software on the PC.

The raw log format stored in memory by the monitor uses 16 bits for each test run. The
meaning of each of these bits will depend on the test points used in the DUT and will
have to be interpreted accordingly. As an example, when testing a TMR design with
tripled voters, one would typically wish to log the status (correct or incorrect) of the
outputs of each of the TMR branches and of each of the voters. An example is shown
in Table 5.

Page

 63

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Table 5. Log Line Example

 Unused
Bit [16:9] 8 7 6 5 4 3 2 1 0

 - 1 1 1 1 1 1 0 1 1

In this example, TMR0-2 indicates correct output on the redundant branches,

 indicates correct output from Voter n, and indicates that Voter n correctly
identified if it has a majority result or not. This particular log line, corresponding to a
single test run, would indicate that an incorrect output has been detected from TMR
branch 2 as a result from the injected fault, but that the error was masked by the
voters. This log line is logged by the SEU Monitor as 0xFFFB.

3.1.2.2.3 Reconfiguration Manager

Interfacing to the configuration memory is done through an ICAP interface instantiated
in the reconfiguration manager. The reconfiguration manager is responsible for
scrubbing, either in the form of dynamic partial reconfiguration, or as a simple full
reconfiguration that can be triggered by the monitor module. A full reconfiguration is
triggered by setting a single trigger signal from the test framework, which triggers a
state machine sending a sequence of commands to the ICAP interface. The
reconfiguration manager, or the Scrubber, can be modelled as internal or external. This
is done by including or excluding the configuration frames corresponding to the
scrubber in the fault insertion frame list, respectively.

3.1.2.3 Payload

The payload represents the actual device under test. The payload can easily be
exchanged, depending on what needs to be tested. A payload has a set of test points
which depends on the application. In the monitor example given in 3.1.2.2.2, the output
from each of the TMR branches is a separate test point, as well as the output from the
voter stage.

Page

 64

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.1.2.4 Selecting a Payload/DUT Application

For evaluating mitigation techniques, a 128-bit AES application has been selected. The
AES, or Advanced Encryption Standard[57], block takes as input a 128-bit key and a
128-bit plaintext to be encrypted. Output consists of a 128-bit encrypted text. The
application was chosen partly because of its extensive documentation and practical
applications, partly because of the computational properties: because each step in the
computation depends on the previous steps, an error somewhere in the computation
chain is likely to propagate through to the output. Using an AES block implementation
for testing is also a good match for testing both gate-level and module-level
redundancy techniques, as well as being suitable for dynamic partial reconfiguration.
Furthermore, output data is easy to verify, and there are a large number of test vectors
available. For each test that is run by the monitor, a total of 283 test vectors are run
and compared with an expected, pre-computed result. These test vectors are specified
in the AES standard.

The AES-128 block used here do not make use of BRAM or DSP slices on the FPGA,
instead using only logic and sequential elements. A set of constant values are used for
the so called sbox in the AES implementation. The AES algorithm will not be discussed
in detail here. Instead, readers are referred to the standard, given by [57].

An FIR filter application has also been implemented and tested. However, due to time-
consuming test sequences and lack of time, this report puts focus on the AES
application. Two other DUT applications were used in preliminary testing stages: a
simple shift register chain, and a telemetry decoding module. These were abandoned
in favour of the AES block. The shift register chain offers simple observability, for
example by shifting an XOR-pattern, but does not use the logic resources in an efficient
manner with respect to fault injection. Furthermore, the huge shift register needed to
make up a feasible target for fault injections makes up a very unrealistic application.
The telemetry decoder module on the other hand is a highly realistic and usable
application. However, it lacks obvious testing points, making it difficult to set up a fault
model for analysis, and it is too big to be conveniently contained and monitored by the
test framework.

Page

 65

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.1.2.5 VHDL Implementation

The test platform is implemented as a configurable VHDL model, following the RUAG
Space coding and design standards. The design follows (although not strictly) a flat
hierarchy approach. Records, code blocks and local signals are used where
appropriate. The implementation follows the same module composition as shown in
Fig. 40, and is largely built around the bus structure. Table 6 shows the resource usage
of the test framework, not including the DUT instance.

Table 6. Test Framework Resource Usage

Slice

Slice Reg

LUT

LUTRAM

BRAM

DSP48E

DCM

2,089

2,789

3,844

108

15

3

2

The 40 MHz internal bus clock is used to clock all modules attached to the bus. The
SEU Controller is clocked at 50 MHz, deriving its clock signal directly from the 100 MHz
clock. The DDR2 memory makes use of a 200 MHz clock signal to communicate with
the DDR2 on the board. Fig. 42 illustrates the bus structure. The blocks shown in the
figure correspond to VHDL entities. As the SEU controller operates in a different clock
region compared to the rest of the system, asynchronous interfaces are implemented
where signals cross the clock domains. The clock management and buffers are defined
in an underlying layer, together with pin assignments.

UART Arbiter

Device Under Test

Bus Master

SEU Controller
Flash

Interface

UART to Bus
Interface

DMA Handler
SEU Monitor

Clock and Baud
Rate Manager Reconfig

Manager
(Scrubber)

DDR2
Interface

User I/O

Peripherals

Fig. 42. Test Framework Bus Structure

The UART arbiter controls which UART module has access to the transmission line (Tx)
on the board. The three modules that implement UART interfaces (UART-to-Bus
interface, SEU Monitor, SEU Controller) can request the outgoing Tx line, and the
arbiter assigns it according to what mode the test platform is in. The peripherals box
included in Fig. 42 represents the Ethernet, SAM, LVDS and LCD Display modules.

For Synthesis, a normal Synplify flow is used. The netlist (.edf) file created by Synplify
is then imported to Xilinx PlanAhead for PAR. Sec. 3.3.1 mentions more on the PAR
approach used. A user constraints (.ucf) file is used in PlanAhead for pin mappings and
clock signal constraints.

Page

 66

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.1.3 PC Communication and Software

Communication with a PC is achieved through the on-board RS232 interface, using a
fixed baud rate of 115,200 kbps. In total, the test platform implements three separate
UART receivers/transmitters. The first UART interface connects the PC to the bus
structure, allowing the PC to read and write data to registers and memories through the
bus master. The second and third UART interfaces belong to the SEU Controller and
Monitor, respectively. An UART arbiter decides which UART receiver/transmitter is
allowed to write to the outgoing UART transmission pin. This setup allows the PC to
send commands that switch between register/memory mode and test mode.
Furthermore, it gives the possibility to move some of the complexity of the test
procedures to software on the PC side.

The host PC runs a Tcl/Tk application to monitor and control the test platform and test
runs. By using the Tcl application, tests can be automated and scaled easily. Fig. 43
shows a screenshot of the application during running tests.

Fig. 43. Monitor Application

When in register/memory mode, the application can access and modify the internal
FPGA registers as well as any Flash or DDR content, through the π-bus structure.
In test mode, the PC interfaces with the test framework on the FPGA. The SEU
Controller and SEU Monitor listen to the same receiver channel from the PC, and the
transmission channel (to the host PC) can be set by sending certain commands from
the PC. A list of commands is given below. The list of commands includes all the SEU
Controller commands as specified in Table 7 as well as the SEU Monitor commands.
Some of the commands require additional arguments, as indicated in the table.

Page

 67

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Table 7. Test Platform UART Commands

Command Target Description

> S Controller SEU Controller Status Report
> D Controller Set SEU Controller in Detection Only Mode
> A Controller Set SEU Controller in Auto Correction Mode
> 1 Controller Simulate Random SBU
> 2 Controller Simulate Random MBU
> R
> #FrameAddress

Controller Read and display specified configuration frame

> Q

> #FrameNumber
Controller Query frame address for specified frame number

> T

> #FrameAddress

> #BitNumber

Controller Toggle configuration bit at specified location

> Z Monitor Run all test vectors and log result
> Y Monitor Print entire log from memory to UART channel
> X Monitor Trigger reconfiguration sequence
> K Monitor Give UART control to Controller

The Tcl application has functionality to load a set of frame addresses corresponding to
the DUT, in order to be able to randomly insert configuration bit upsets in the DUT only.
It also includes functionality to load a Matlab-generated fault-injection pattern, storing
logs, saving command sequences and programming the flash memory. How these
Matlab fault injection patterns and DUT frame mappings are generated, is discussed in
detail in Sec. 3.3.3. The Tcl application also supports running fully automated test
sequences. These sequences are discussed in Sec. 3.3.10.

Page

 68

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.2 Implementing Mitigation Technique Candidates

The focus of this work has been put on evaluating TMR and Scrubbing techniques.
This section describes the different versions of TMR and Scrubbing implemented.
These implementations are then used as payloads in the test platform.

3.2.1 TMR Implementations

Four TMR variants have been implemented, based on the AES block. By setting
generics in the VHDL code, the same AES payload entity can be configured for
different levels of TMR. The AES payloads are made up of AES-128 encryption blocks
and voter stages where applicable. The available TMR implementations are listed
below.

Reference: A reference design that consists of a single AES block without any TMR
protection. Output consists of a single 128-bit vector containing the encrypted result.
This design is used as a baseline reference with which to compare the mitigated
designs. All injected faults leading to errors will propagate through the reference design
and cause an incorrect output. Only one test point is logged for the reference design,
namely the output correctness.

Single Voter TMR: A module-level TMR design with a single voter stage. Output
consists of the majority result and a majority indicator from the voter stage. A single
voter design can mask errors on a single TMR branch (one of the AES modules), but
will produce an incorrect output if an error occurs in multiple branches or in the voter
itself. Five test points are used in the single voter design. These are the individual
outputs from the redundant encryption blocks, as well as the result and majority
indicator from the voter stage.

Triple Voter TMR: A module-level TMR design where the voter stage is itself tripled.
The output consists of three sets of result and majority indicator signals, one pair from
each of the voter stages. The output from each of the TMR branches is fed to each of
the voter stages. This design is able to mask errors in the voter stage, as opposed to
the single voter version. However, multiple TMR branch errors (the so called Bridging
Errors) will still cause an error on the outputs. The test points used in the triple voter
design are similar to the single voter ones, with the addition of two voter result and
majority pairs. In total, nine test points are used.

Synplify TMR: A tool-level TMR design, where the reference design is synthesised
using Synplify Premier. The synthesis tool applies TMR protection at a lower level than
the single and triple voter TMR implementations. The interfaces look the same as the
reference design from the outside. This is achieved by setting the Synplify attribute
radhardlevel = distributed_tmr in the Synplify constraints file. The single test point
taken from the Synplify TMR implementation is the correctness of the output. Letting
the design tools apply TMR to a design removes the need for a designer to change the
RTL code, thereby saving design time and effort.

To prevent the synthesis tool from removing redundant modules and paths, the inputs
to the redundant branches are kept as separate ports in the VHDL entity. Synplify
attributes syn_keep and syn_preserve are used on all signals and instances,
respectively, in the AES payload. Not applying these will cause the synthesis tool to
remove all redundancy. By passing a VHDL generic to the SEU Monitor instance, it will
check for and log errors based on the test points for the specified design.

Page

 69

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 44 shows block diagrams of the TMR implementations. Clockwise from the upper
left diagram, these are: Single Voter TMR, Reference design, Synplify-applied TMR,
Triple Voter TMR. The test points of each design are indicated in the diagrams.

Result Majority

Result, Majority Result, Majority Result, Majority

Result

Input Input Input

InputInputInputInput

Result

Input

AES0 AES1 AES2

AES0 AES1 AES2

Voter
0

Voter
1

Voter
2

AES

AES

Voter

Fig. 44. TMR Implementations

Page

 70

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.2.2 Scrubber Implementations

This section describes the different scrubbing approaches implemented. These
scrubbing implementations make up the Reconfiguration Manager module. Five
different scrubbing approaches have been implemented, as listed below. Each of these
scrubbing implementations can be combined with any of the TMR implementations.
Also, by keeping the scrubber inside or outside the payload of the test platform, it can
represent an internal or external scrubber implementation, respectively. This is
illustrated in Fig. 45.

Test Structure Payload

ClkDiv

SE
U

 C
o

n
tro

lle
r

(SE
C

D
E

D
)

Frame
ECC

UART

Fault
Monitor /

Logger

UART

Device
Under
Test

Reconfiguration
Manager

ICAP

Test Structure Payload

ClkDiv

SE
U

 C
o

n
tro

lle
r (SE

C
D

E
D

)
UART

Fault
Monitor /

Logger

UART Device
Under
Test

Reconfiguration
Manager

ICAP

Frame ECC

ICAP

UART UART

Fig. 45. External vs. Internal Scrubber

Blind Scrubbing: Using the Blind Scrubbing approach, scrubbing is done by fully or
partially reconfiguring the FPGA periodically according to a fixed rate. In this report, full
reconfiguration is used. This approach eliminates the need for error detection circuitry,
but is not responsive to errors in the same way as scrubbing on error detection. Blind
Scrubbing is referred to as Scheduled Maintenance in [35]. In terms of additional
hardware required when implementing an internal scrubber on the FPGA, blind
scrubbing is relatively cheap. A cycle counter and scrubbing-configuration register is
required on-chip, as well as an ICAP controller. The counter can periodically trigger an
FSM, sending a reprogramming command to the FPGAs configuration registers and
triggering a read from an off-chip PROM/Platform Flash.

CRC-Based Error Detection: This type of scrubber performs a full reconfiguration upon
detecting an error in the configuration memory CRC. CRC error detection is fast, but
the scrubber is unable to pinpoint in which frame the error has occurred. In the design
presented here, the CRC error signal originates from the Xilinx Virtex-5 FrameECC
primitive. This is known as Emergency Maintenance in [35]. Apart from the FrameECC
primitive with some supporting logic, an ICAP controller and a reprogramming
command FSM are needed.

Page

 71

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Frame ECC-Based Error Detection: Frame ECC-based scrubbing makes use of the
same primitive as CRC-based scrubbing, but instead of triggering on the CRC for the
whole configuration memory, the Frame-level ECC is used. This allows the scrubber to
trigger a partial reconfiguration for that particular frame when an error is detected.
Using partial reconfiguration allows scrubbing individual modules without interrupting,
which may be beneficial in conjunction with some TMR implementations. For example,
a Triple Voter design has no single point of failure (on a module level), and any one of
the TMR branches or tripled voters can be down for scrubbing without interrupting the
operation of the TMR’ed section. The downside to dynamic partial reconfiguration
(DPR), however, is the overhead from a DPR manager block, and the buffering
required.

Combination Scrubbing: The combination scrubbing option represents a mix of partial
and full reconfiguration. It makes use of the SEU Controller macro for correcting single
bits, using the macro’s SECDED bit-toggling functionality. If a multi-bit error occurs, or
if the SEU Controller is not able to correct an error, a full reconfiguration is triggered.
This combines the method described in [58] and adds MBE correction by full
reconfiguration. Fig. 45 shows a block diagram comparison of an external (left) versus
an internal (right) scrubber implementation using the Frame ECC-based error detection
method. The hardware overhead when using this approach consists of the SEU
Controller macro, together with an ICAP controller and reprogramming FSM for full
reconfigurations when an MBE is detected.

Page

 72

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.3 Test Method

3.3.1 FPGA Partitioning

As the DUT and the required framework will be implemented on the same FPGA it will
be necessary to distinguish the test framework from the actual DUT. As faults will be
inserted in a random manner, it is important that the DUT is isolated at a known interval
of frame addresses. By having a known frame-address interval, containing solely the
DUT, it will be possible to insert faults at random into the DUT only. Partitioning the
FPGA in this way allows for realistic SEU simulations in the DUT, while keeping the
test framework outside of the fault injection range. The partitioning starts at the VHDL
description where it is important that the DUT can be contained within one or more
component instances from the same level in the hierarchy. Declaring the DUT
instances from the same layer will make it possible to easily partition the complete
design into two p-blocks; one for the DUT and one for the framework. The modules
belonging to the DUT and the test framework are placed inside two separate VHDL
block structures. Once the design has been structured in this way it is synthesised,
producing a netlist in the Xilinx .edf format.

With the netlist available, the actual physical partitioning on the FPGA can be made.
PlanAhead is used for this task. PlanAhead facilitates Physical Block (p-block)
partitioning by the use of a GUI and a blueprint of the target FPGA, documented in [59].
To separate the DUT, all of the involved instances are partitioned into a new p-block.
This p-block is then placed on the device by picking an area on the device. Next, the
remaining framework is put into a second p-block which is placed at a different location
on the FPGA. Regard is taken to what resources are connected to which addresses to
make sure that the design fits into the least number of frames possible. Fig. 46
illustrates the described separation of DUT and test framework. As can be seen from
the figure, the DUT partition (highlighted upper right) is tightly packed and constrained,
while the rest of the design is more relaxed with respect to resource allocation. The
borders of the p-blocks are marked with purple lines.

Selecting the number of slices for the p-blocks is an important detail in the partitioning
process. In order to maximise the probability of an SEU actually inducing a fault within
a given frame interval (the DUT), p-blocks have to be as small as possible. By making
the p-blocks as small as possible, a worst case scenario is tested. The smallest
number of frames can be found by iteratively making the p-block smaller until the tool is
no longer able to successfully partition it. Once the design is mapped and placed-and-
routed a bit-file can be generated through the bitgen function in PlanAhead. Identifying
the frame addresses that correspond to the DUT is done through a set of Python
scripts. From the bitgen process in PlanAhead, a logic allocation (.ll) is generated.
Table 8 shows an example excerpt from an .ll file.

Page

 73

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Table 8. Logic Allocation File Excerpt

Bit Frame Bit Slice Latch Net

. . .
1067778

0x00000a9f

126

X33Y61

DQ

AesI_B.Aes1I/..

1067815 0x00000b1f 1182 X35Y77 CQ AesI_B.Aes2I/..

1067838 0x00000b1f 1187 X35Y77 DQ AesI_B.Aes2I/..

1067843 0x00000b1f 1309 X34Y78 AQ AesI_B.Aes2I/..

1067902 0x00000b1f 1310 X34Y79 DQ AesI_B.Aes2I/..

1067932 0x00000b9e 66 X37Y61 BQ AesI_B.Aes2I/..

The logic allocation file contains information about what configuration frame addresses
are mapped to each of the VHDL design entities. A Python script is used to parse out
and list all the frame addresses corresponding to the DUT. The resulting list of frames
makes up a sensitive frame map. This mapping is then loaded into the Tcl application
on the PC, as described earlier. Being able to target the test platform to only inject
faults into the part of the FPGAs configuration memory corresponding to the DUT is a
basic requisite for this type of testing to work. As the DUT communicates with the SEU
Monitor, there is a possibility of an injected error affecting the run and done signals of
the DUT, or the input/output data signals to/from the DUT. This is however an unlikely
scenario, and tests that are affected by this can simply be re-run.

Page

 74

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 46. FPGA Partitioning

A frame number to frame address mapping can be obtained by sending queries to the
SEU Controller using the “Q” command and iterating over the whole range of frame
numbers. This has to be done once only, since the relationship between frame number
and frame address is fixed for a given FPGA.

Other scripts that are used include a Python script that can introduce errors into the
binary .bit file, creating an incorrect bit stream. For this purpose, the method for
obtaining frame addresses from frame numbers, as described above, is used. This can
be used to test the impact of upsets in specific configuration bits on the DUT.

Page

 75

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.3.2 Timing Constraints

For a design to work after the place-and-route step it is important that essential timing
constraints are met. Often the designer is responsible for identifying and setting these
timing constraints. Some of the constraints are not set by default and will need to be
defined manually. Unfulfilled timing constraints, however, might become apparent first
once the margins in the PAR step become smaller.

An example of a scenario where the place-and-route-step margins become small is
when a design is partitioned into p-blocks. In the specific case described in this report,
the DUT is compressed as much as possible in a p-block. During this process, many of
the timing problems emerge. The first step of the solution is to identify the parts of the
DUT that stop working. The second step is to introduce sufficient timing constraints for
identified instances. For this specific test application, timing constraints were
introduced for all signals involved with the ICAP interface. Furthermore signals
connected to the UART interface were constrained as well. The constraints were set
using the timing constraint tool available in PlanAhead. The timing constraint used was
maximum path delay. Each timing constraint was gradually decreased until the
implementation was working as intended. A set of default timing constraints, used in
each consecutive implementation, was compiled in this manner.

3.3.3 Fault Injection

Being able to inject faults in an efficient, controllable and consistent manner is a key
factor in obtaining good test results and performance estimates for SEU mitigation
techniques. By having good random number generation and an accurate SEU
distribution, the tests can also be representative for real SEUs.

Fault injection is done through the SEU Controller. The controller is able to insert single
or multi-bit faults at random locations in the configuration memory using the commands
“1” and “2”, as described in Table 7. Using the “T” command, it is also possible to
specify exactly which frame address and bit number within that frame to upset. Using
the sensitive frame mapping described in Sec. 3.3.1, the Tcl application on the PC can
request single bit upsets in those specific frames corresponding to the DUT. The exact
bit number within the selected frame to be upset is generated by the Tcl application.
Fig. 47 shows a graphical illustration of 1000 random fault insertions (coloured bars)
into a DUT comprising 64 configuration frames (each frame consists of 1312 bits). The
colour scale is for visualisation purposes only, and bears no further meaning. The
figure shows that the fault insertion is acceptably random and evenly distributed over
the range of frames and bits in the DUT.

Page

 76

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 47. Distribution of inserted faults where the x-axis represents frame and the
y axis represents the bit.

To simulate randomly incoming SEUs, Matlab is used to generate sequences of SEU
injections. The time between two consecutive SEUs in the sequence follows a
Gaussian distribution where the mean, μ, is decided by the expected SEU rate. The
time between two fault injections in the generated sequence is scaled with a time
factor, depending on the SEU rate, later on. This allows the scaling of results according
to SEU rate. Generating fault injection sequences in this manner ensures both
repeatability and consistency with current SEU rate parameters.

Fig. 48 shows the fault-insertion mechanism. All faults are injected through the SEU
Controller macro using ICAP. The separation between DUT and test structure is made
by partitioning using p-blocks in PlanAhead as mentioned in the previous section.

Several other fault-injection approaches have been suggested in the literature: In [60],
the authors suggest a non-intrusive fault-injection approach. The fault-injection method
described in this report shares some similarities with the fault-injection proposed in
[60], with some key differences. In this report, faults are injected by sending commands
to the SEU Controller, which uses ICAP, whereas the system described in [60] makes
use of JTAG.

In the test platform described in this report, the test framework and fault-injection
mechanism are synthesised, placed and routed together with the DUT. This makes
fault injection through the SEU Controller an intrusive fault injection method, as its
presence in the system affects the way the DUT is implemented on the FPGA. Using
the partitioning of the FPGA as described in the previous section, however, an
assessment has been made that the intrusiveness of the fault-injection mechanism
should not affect results in a significant way.

Page

 77

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Virtex-5

Core
Test Structure Payload

SEU
 C

o
n

tro
lle

r
(SEC

D
ED

)

Frame
ECC

UART

Host PC

Fault Monitor / Logger

ICAP

UART

ClkDiv

Device
Under
Test

Reconfiguration Manager

BRAM

UART

Tcl Application
Scrubbing Settings

Sensitive Frame List

Fault Injection Sequence

Results Log File

Fig. 48. Fault-Insertion Mechanism

In [61], the authors list a few criteria for fault-injection systems used to evaluate fault
tolerant techniques. The authors go on to propose an external SEU generator
approach, which similarly to [60] makes use of JTAG to inject errors.

The performance bottleneck in the fault-injection system proposed in this report is the
RS-232 communication between the test framework and the host application on the PC.

Page

 78

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.3.4 Static Tests

In this report, a separation is made between static and dynamic testing. This section
describes the static testing method. In static testing, single bit upsets are tested in
isolation to see their impact on the function of the circuit. A fault is randomly injected in
the DUT. After the fault injection, the DUT is tested by running a large number of test
vectors through the DUT, with the SEU Monitor checking the result for each test vector.
The reason for using a large number of test vectors is the possibility that certain test
vectors mask certain faults in the DUT. By using a set of test vectors that together offer
a good coverage, the risk of a fault going undetected is minimised.

An error is considered to have occurred when one or more of the test vectors cause the
DUT to produce an incorrect result. It should again be noted that even when inserting
faults (bit-flips) only in the configuration frames corresponding to the DUT, not all
inserted fault will be noticeable as errors on the output (not all bits are sensitive, as
discussed earlier). After running the test vectors, any errors are logged and stored to
memory by the monitor. The fault is then corrected by the controller, regardless of
whether or not the fault caused an observable error. Each one of these steps is run by
sending a command from the Tcl application on the PC. These steps together are
considered as one test run for a single fault injection. The log line stored for each such
test run gives an indication of whether or not the injected fault had an effect on the
DUT. A test set, or test campaign, is made up of a number of test runs. In this report,
4,000 fault injections make up a test campaign. This number was chosen to provide a
reasonable statistical confidence. By analysing the logs from an entire test campaign,
statistics are obtained for the static testing of the specific DUT being tested. As
mentioned earlier, this approach tests the effects of single fault injections in isolation,
giving a sense of how a single bit-flip can affect the DUT.

Static testing is useful for evaluating the masking capabilities of a mitigation technique,
for example TMR. The test process is managed by the Tcl application running on the
PC. A fault injection campaign comprising X test runs can be visualised as in the
flowchart in Fig. 49, seen from the PC’s point of view.

Start SEU Controller in
Detection Mode

Inject Single Bit
Fault in DUT

Load Sensitive
Frame List

Configure UART
Interface

Run Test
Vectors and
 Log Results

SEU Controller
in Correction

Mode

Corrected ?
Finished X

runs?

Print Result on
UART

Raw (hex)
Error LogMATLAB Script

Error Statistics
File Log Error

N

N

Y

Y

Fig. 49. Static Testing Flow

Page

 79

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.3.5 Dynamic Tests

Dynamic tests differ from static tests in that errors are not corrected between each fault
insertion. This allows the analysis of dynamic processes, such as error build-up, and
the effect of scrubbing. With this type of test, the system is running normally rather than
being paused in between each isolated test as it is in static testing. In dynamic testing,
the DUT is continuously run and fed with data. The Tcl application on the PC controls
all commands sent to the FPGA for error logging, fault insertion, reconfiguration and
UART control. By keeping the test sequence completely in software on the PC, tests
can be easily changed, and more advanced logging capability is possible.

By using the fault injection technique described in Sec. 3.3.3, the Tcl Application can
simulate a specific SEU rate with the appropriate level of randomness. A dynamic test
could for example be as simple as injecting faults according to such a distribution into a
TMR enabled DUT, in order to see how many errors, on average, that particular TMR
implementation can handle before being broken by error build-up. Dynamic testing is
useful for seeing how a system or technique performs over time, or for testing
scrubbing techniques. From dynamic testing, numbers for Availability, MTTF, MTTR
and performance over time can be obtained. Therefore, dynamic testing is more of a
simulation of a real scenario, rather than simple isolated, single error testing as in static
tests. With dynamic testing, different scrubber implementations and scrubbing rates
can be tested for effectiveness, as well as testing the robustness of different TMR
implementations. The dynamic testing procedure is based on events in the Tcl
Application. Each event can be seen as a slot, where a single event can take place.
This event can be a fault insertion, a reconfiguration or an idle slot.

All event slots are considered to take the same amount of time, referred to here as a
‘tick’. When running the actual tests, different types of commands sent to the FPGA
from the Tcl Application will take different amounts of time, mainly due to the RS232
communication. As the RS232 is the bottleneck in the test system with respect to
delay, it is desirable to design a test approach that eliminates or masks the
communications related real-time delays. In a real FPGA system operating in space, an
SEU can be seen as an instantaneous event.

Page

 80

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 50 illustrates a simple dynamic test simulating a periodical scrubbing approach
combined with random SEU insertion, given a certain average SEU rate. The control
sequence, managed by the Tcl Application, uses the (Matlab-generated) fault-injection
sequence to determine at which ticks to inject faults. The DUT frame mapping file
contains information on where in the FPGA to inject errors. Scrubbing, or
reconfiguration, commands are sent periodically according to the programmed
scrubbing rate. The R1-R3 slots in the figure represent reconfiguration events, and F1-
F3 represent fault injections. Empty slots are idle. Each fault injection event consists of
an error injection, running all the test vectors for that error, logging and printing the
result, then giving control of the UART back to the SEU Controller. The triangle shapes
in the figure represent testing of the DUT and printing back results to the PC. In this
particular example, the DUT was able to mask F1, but produced an error (purple
triangle in the log line) after F2 due to error build-up. In this example, TTR would be 2
ticks (half the time between two scheduled scrubbing events, measured in discrete time
points).

Ticks R1 F1 F2 R2 F2 R3

Control
Sequence

Log

Matlab-generated
Fault Injection

Sequence Tcl Application on PC
DUT Frame

Mapping

Fig. 50. Basic Dynamic Testing

By using this method, tests are easily scalable to whichever SEU and Scrubbing rates
need to be tested. The fault injection sequence generated by Matlab only needs to
provide a good-enough resolution, as the actual fault injection time stamps used by the
Tcl Application can be scaled. There are two time measurements that cannot be
scaled using this method. The first one is the time it takes to fully reconfigure the FPGA
(for the Virtex-5 test platform used here, this time is about 500ms). The other one is the
time it takes to detect a configuration error, when using a scrubber based on error
detection. These times need to be measured and converted to the Tick-timescale. The
time of one tick needs to be scaled according to the SEU rate.

As an example, given a resolution of 100 for the fault injection sequence, and an

expected SEU rate of

, the tick duration would be

 .

Using this tick time, a reconfiguration event would cause the circuit to be unavailable
for 5 ticks. This type of measurement is used later when calculating availability, which
is the primary measurement for comparing SEU mitigation techniques.

Page

 81

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.3.6 Measuring Power

As the evaluation board used lacks current sense resistors and circuitry for measuring
power consumption, measurements have to be made at the board master power
supply. An alternative would be to physically modify the board by replacing the DC-DC
regulators for VccInt, VccAux and VccO with regulators equipped with power
measurement circuitry. However, besides from being difficult, this not be done without
damaging the board and so will not be considered here.

Measuring power consumption at the external power supply is not an entirely accurate
method, as measurements are made on the whole board and not only the FPGA itself.
This method was indeed applied in this work, but the differences in power consumption
between mitigation technique implementations proved to be too small to measure. This
is mainly because the power dissipated by the board as a whole is large compared to
the power drawn by the FPGA, and losses in voltage regulators are likely to dominate.
During power measurements, variations were recorded depending on a number of
factors such as temperature. Because of this, power measurements were abandoned.
Fig. 51 shows a screenshot from the oscilloscope used for the attempted power
measurements.

Fig. 51. Power Measurements

Page

 82

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.3.7 Measuring Availability

Availability in a context of fault tolerance represents how often the system is functional
and delivering its service. The availability can therefore be calculated as described in
Eq. 16. In our case, however, there will be another contribution to the down time of the
system apart from the system producing the wrong result. Whenever the system is
being scrubbed it is also unavailable and therefore unable to fulfil its purpose.
Availability, as used hereafter in this report, is therefore calculated according to Eq. 19.

 (19)

From Eq.19 it is apparent that availability represents the ratio of correct ticks to all ticks.
Correct ticks comprise ticks where the right end result is produced by the
implementation and no scrubbing is in progress. Number of correct ticks is calculated
by deducting the ticks where the DUT produces the wrong result and the number of
ticks where the DUT is occupied by scrubbing, as shown in Eq.19.

Page

 83

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.3.8 Measuring Area

Area measurements are read from the Map Report File generated by PlanAhead. The
-details command is supplied to the MAP stage in PlanAhead, generating a detailed
resource usage report in Section 13 of the .mrp file, as documented in [62].

Table 9 presents an example of an excerpt from an .mrp file generated during mapping
of a triple voter TMR implementation. The instances Aes0-2 represent the redundant
AES modules, and Voter0-2 the tripled voter stages. Using this method it is possible to
compare the areas of different payloads, without the underlying test framework.

Table 9. Map Report File Excerpt

Module Slices Slice Reg LUTs

LUTRAM

. . .

 +Payload.AesTmr 3/1298 4/1603 3/4224 0/0

 ++AesI_B.Aes0 349/349 404/404 1143/1143 0/0

 ++AesI_B.Aes1 367/367 404/404 1143/1143 0/0

 ++AesI_B.Aes2 366/366 404/404 1141/1143 0/0

 ++Voter_B.Voter0 71/71 129/129 264/264 0/0

 ++Voter_B.Voter1 71/71 129/129 264/264 0/0

 ++Voter_B.Voter2 71/71 129/129 264/264 0/0

 +TestStructure.BaudDivider 12/12 10/10 24/24 0/0

 +TestStructure.ReconfMgr 15/15 16/16 31/31 0/0

 +TestStructure.SeuCtrl 77/183 194/314 96/328 0/86

 +TestStructure.SeuMon 323/380 89/159 1049/1174 0/0

 +TestStructure.UartArb 12/12 0/0 24/24 0/0

While the AES blocks are all equal in size, there may be a slight difference in the
number of slices used. This will vary with the PAR approach used by PlanAhead.
Looking at the number of Slice Registers first, and the number of LUTs second, gives a
good approximation of how big the module is. Other resources such as DSP blocks,
DCMs and BRAMs are not shown here. Note that in the example shown in Table 9, the
Reconfiguration Manager (TestStructure.ReconfMgr) is not a part of the Payload. This
means that the scrubber is not included in area measurements, and no faults are
inserted in the scrubber. Keeping the scrubber outside of the payload in this manner
represents having an external scrubber implementation.

Page

 84

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.3.9 Tool and Language Versions

Table 10 gives a summary of the tools and languages used in this project, as well as
the version used. Note that editors, supporting applications and individual scripts are
not listed here.

Table 10. Tools and Languages

Tool / Language Version Vendor Used For

Synplify Pro / Premier

H-2013.03

Synopsys

Synthesis

PlanAhead 14.4 Xilinx Floor-planning, PAR

Tcl 8.6 In-tool scripting, test manager

Python 3.3.2 General scripting, text parsing

Perl 5.18.2 General scripting, text parsing

Matlab R2012a Mathworks Data analysis, statistics

iMPACT 14.5 Xilinx FPGA / PROM Programming

VHDL -93 HDL

OMERE 3.6.3.0 TRad Orbit and SEU calculations

SPENVIS 4.6.7 SEU calculations (CREME’96)

ModelSim 10.2a Mentor Simulations

Page

 85

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.3.10 Test Toolchain and Plan

Fig. 52 shows the complete test toolchain from VHDL code to test results file. The input
to the toolchain is a VHDL model of the DUT and an estimated SEU rate. As output
from the entire chain, complete test run statistics are generated.

.edf

Synthesis
[SYNPLIFY]

Frame Analysis
[PYTHON]

VHDL Model

ngdbuild
[PLANAHEAD]

.fdc

.ll

.bit

Statistics

.framelog

Fault Sequence
[MATLAB]

Test Platform
[XC5VLX50]

Tcl Application
[Tcl]

Data Analysis
[MATLAB]

.filog

.testlog

Map
[PLANAHEAD]

PAR
[PLANAHEAD]

BitGen
[PLANAHEAD]

Pre-Map
[SYNPLIFY]

PROM Gen
[iMPACT]

.mrp

.ucf

Timing Analysis
[TRCE]

.twx

Fig. 52. Complete Test Toolchain

Page

 86

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

The Tcl Application will run different test sequences and log different log data on the
FPGA depending on the type of test and the type of DUT used. As mentioned earlier, a
test campaign in this report consists of 4,000 fault injections. These test sequences
consist of a series of commands sent via RS232 to the SEU Controller and SEU
Monitor. Fig. 53 and Fig. 54 contain pseudo-code representations of the test
sequences for blind scrubbing implementations and static testing, respectively.

The sensitive frame list used is generated by the Python script as seen in Fig. 52
(.framelog file). The fault insertion log (.filog file) is generated by Matlab as described
earlier. When the tick count matches a fault insertion point as stated in the fault
insertion list, a fault is inserted. In the blind scrubbing test sequence, reconfigurations
are requested by sending the command “X” periodically with the scrubbing rate that is
to be tested. Using a μ-value of 100 ticks for the fault insertion, a scrubbing rate of 5
would, for example, correspond to sending a reconfiguration command every 20 ticks.
Output consists of a .testlog file. The Xilinx tool TRCE is run for timing analysis [63].

Page

 87

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

SFL := Read Sensitive Frame List

 RFIL := Read Fault Insertion List

 while i<4000 loop

if (nextReconfiguration) then

Command "X"

Reconfigure

Command "*"

Command "D"

elseif (nextFaultInjection) then

FrameAddr := $SFL(random)

BitNumber := random(0,1312)

Command "T"

Inject Error in…

Send $FrameAddr

Frame Address

Send $BitNumber

Bit Number

Command "Z"

Run Test

Command "Y"

Print Test Result

Log

Print to Log File

Command "K"

Return UART

end if

Tick $delay

Tick forward

end loop

Fig. 53. Blind Scrubbing Test Sequence

SFL := Read Sensitive Frame List

 while i<4000 loop

 Command "D" # Detection Mode

FrameAddr := $SFL(random)

BitNumber := random(0,1312)

Command "T"

Inject Error in…

Send $FrameAddr

Frame Address

Send $BitNumber

Bit Number

Command "Z"

Run Test

Command "Y"

Print Test Result

Log

Print to Log File

Command "A"

Correction Mode

 Await Correction # Wait for Correction

Tick $delay

Tick forward

end loop

Fig. 54. Static Testing Sequence

Page

 88

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Using the test tools and mitigation techniques available, a test plan has been created in
order to catch as many relevant trends as possible. In particular, the test plan is
designed to investigate scrubbing rate versus availability.
Fig. 55 shows a summary of the dynamic tests (scrubbing tests).

Scrubbing Technique TMR Implementation Scrubber Location

Blind Scrubbing

Reference
Internal

External

Synplify TMR
Internal

External

Single Voter
Internal

External

Triple Voter
Internal

External

Scrubbing on
CRC Error

Reference
Internal

External

Synplify TMR
Internal

External

Single Voter
Internal

External

Triple Voter
Internal

External

Scrubbing on
Frame ECC Error

Reference
Internal

External

Synplify TMR
Internal

External

Single Voter
Internal

External

Triple Voter
Internal

External

SECDED + scrubbing
on MBE

Reference
Internal

External

Synplify TMR
Internal

External

Single Voter
Internal

External

Triple Voter
Internal

External

Fig. 55. Scrubbing Test Plan

For blind scrubbing, different scrubbing rates are tested. The scrubbing rate is always
stated in relation to the expected SEU rate. In the test plan presented here, the rates
tested are: 0.01, 0.1, 0.5, 1, 2, 5, and 10 times the SEU rate. This means that for the

Page

 89

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

lowest scrubbing rate, an average of 100 faults are injected between scrubbing events.
For the fastest scrubbing rate, the FPGA is scrubbed on average 10 times between
each fault injection.

Detection-based scrubbing techniques, on the other hand, perform scrubbing only upon
detecting an error. This means that a ‘scrubbing rate’ has no meaning for detection-
based scrubbers, and therefore only one test is conduced per combination of detection
method, TMR implementation and scrubber placement.

For the static testing, only the different TMR implementations are tested (it would not
make sense to test a scrubbing implementation with the static testing method as
described in this report). Fig. 56 shows an overview of the static tests conducted.

TMR Implementation

Reference

Synplify TMR

Single Voter

Triple Voter

Fig. 56. Static Testing Plan

The purpose of the dynamic (scrubbing) tests is to provide information on MTTF, MTTR
and Availability, as well as to simulate a “real” scenario to see how TMR
implementations hold up to errors over time. Static tests are performed with the
purpose of testing the masking capabilities of different TMR implementations only.

Page

 90

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

3.3.11 Test Data Analysis

As mentioned in Sec. 3.1.2.2.2, the SEU monitor is used to test and monitor the DUT to
make sure that it is working properly. Apart from knowing that a failure has occurred, it
is also interesting to see in what part of the DUT failed. For this purpose multiple
signals, as shown in Table 5, are logged by the SEU monitor. For each combination of
logged status bits it is possible to categorise a fault. Since this task can be done
afterwards, it is done in a post-processing script.

The constructed MATLAB script starts by importing the log for the constructed Tcl log.
It then proceeds to identify the status bits by searching for the request command.
Depending on what implementation mode is used (Reference, Single Voter, Triple
Voter or Synplify TMR) the script interprets the status bits differently. Depending on the
combination of status bits, the script calculates if the result is correct, what category the
error belongs to and if the scrub can be done in parallel.

The available result categories are: Correct result, Voter error, Single TMR Error, Error
in 2 TMR units (Bridge Effect) and Multiple Errors. A Voter error is any combination of
errors where each AES unit outputs a correct value while one or more voters output an
incorrect value. A Single TMR Error is an error where one AES unit outputs an
incorrect value while the remaining DUT functions as intended. A Bridge Effect error is
an occurrence where two of the AES outputs are incorrect while the rest of the DUT is
working correctly. Finally, Multiple Errors indicate that at least one AES unit and one
voter are erroneous. Once all errors have been categorised, statistics are concluded
and metrics are calculated.

The MATLAB script also calculates the scrubbing metrics such as the availability,
MTTF and MTTR. For blind scrubbing, all the instances for scrubbing and fault
insertion can be calculated from the fault injection file and based on the specified
scrubbing rate. For the blind scrubbing mode the script therefore only extracts the
status bits for each fault insertion.

For CRC triggered scrubbing, frame ECC triggered scrubbing and SECDED the
MATLAB script also extracts the detection and scrubbing durations. In this case
availability, MTTR and MTTF is based on the extracted detection duration and the
scrubbing duration. These are calculated by the PC application and saved in the log.
All compiled metrics for each run are saved in summary reports.

Page

 91

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

4 Results

In this section, the results from the static and dynamic testing campaigns are presented.
Sec. 5 provides a discussion of the results.

4.1 Evaluating TMR Implementations

The static tests are performed as described in Sec. 3.3.4, and are used to give an
indication of how well the different TMR implementations can mask errors. Table 11
gives a summary of the static testing results.

Table 11. Static Testing Results

TMR Injected Errors Observable Errors Failures Failures(%)

Reference 4000 1084 1084 27.1

Single Voter 4000 697 34 0.85

Triple Voter 4000 714 14 0.35

Synplify TMR 4000 10 10 0.25

In the reference AES design, all observable errors will also be failures, as they lead to
an incorrect output. This gives a failure rate of 27.1%, meaning that 27.1% of SEUs
affecting the configuration memory will result in an incorrect output. Observable errors
in this report are defined as errors that produce an incorrect output from an AES block
or a voter stage

 Table 12 shows a breakdown of the observed errors in each of the tested TMR
implementations.

Table 12. Observable Errors, Static Testing

TMR Single Errors Bridge Errors Voter Errors Multiple Total

Reference 1084 (100.0%) N/A N/A N/A 1084

Single Voter 663 (95.1%) 10 (1.4%) 20 (2.9%) 4 (0.6%) 697

Triple Voter 674 (94.4%) 6 (0.8%) 32 (4.5%) 2 (0.3%) 714

Synplify TMR 10 (100.0%) N/A N/A N/A 10

The categories bridge errors, voter errors and multiple errors are not applicable to the
reference design or to the Synplify TMR design. A single error is defined as an error
affecting the output of a single TMR branch. In the reference design, this means an
error has occurred in the (one and only) AES encryption block, and therefore an
incorrect output is noted.
Looking at the resources used for each of the TMR implementations, Table 13 shows
the relative resource usage on an XC5VLX50 FPGA. The designs are synthesised
using Synplify Premier (H-2013.03).

Page

 92

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Table 13. TMR Implementations, Resources

TMR Slices Slice Regs LUTs LUT-DFF-Pairs Relative

Reference 291 408 1143 1143 1

Single Voter 1354 1345 3698 3698 3.24 x

Triple Voter 1472 1603 4224 4224 3.87 x

Synplify TMR 2275 1224 5436 5436 4.76 x

4.2 Evaluating Scrubbing Methods

By running dynamic, continuous tests on TMR systems and employing different
scrubbing methods, statistics can be obtained for the efficiency of the scrubbing
methods. These methods also have to be put into relation with the area overhead and
added complexity they bring to the system.

4.2.1 Availability

In this section, results for availability are depicted as a function of SEU rate, and in the
case of blind scrubbing also Scrubbing rate. The scrubbing rate is defined as the
frequency of scrubbing divided by the frequency of SEUs. Sweeping the SEU rate in
this manner corresponds to comparing the performance of a scrubber at different levels
of radiation.

Page

 93

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

4.2.1.1 Blind Scrubbing

Fig. 57 shows the availability of four different systems, all using blind scrubbing, but
with different TMR implementations. In this plot, the mean time between SEUs is fixed
at 1 SEU per minute. The scrubbing rate is varied to illustrate how scrubbing more or
less often affects the system’s availability. The x-axis (scrubbing frequency) is varied
from 0.01 to 10. These values correspond to a periodical scrubbing performed 100x
slower to 10x faster than the expected SEU rate.

Fig. 57. Availability, Blind Scrubbing (at SEU Rate 1/min)

In
Fig. 58, results for blind scrubbing availability are presented in four different graphs for
the different TMR implementations and reference case. In this figure, the scrubbing
rate as well as the mean time between SEUs is varied. The black line represents the
maximum availability value at each SEU rate. The colour coding represents the level of
availability.

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

f
scrubbing

/f
SEU

A
v

ai
la

b
il

it
y

Reference (No TMR)

Single Voter

Triple Voter

Synplify TMR

Page

 94

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 58. Availability, Blind Scrubbing

Fig. 59 illustrates this by showing the percentage of downtime (when the system is not
available) when the system is busy with reconfiguration. The inverse of the plotted
values correspond to the percentage of the total downtime the system is producing an
incorrect output.

1
0

-2

1
0

0

1
0

0

1
0

5

0

0
.5 1

fscru
b

b
in

g /fS
E

U

R
eferen

ce

1
/fS

E
U

Availability

1
0

-2

1
0

0

1
0

0

1
0

5

0

0
.5 1

fscru
b

b
in

g /fS
E

U

S
in

g
le V

o
ter

1
/fS

E
U

Availability

1
0

-2

1
0

0

1
0

0

1
0

5

0

0
.5 1

fscru
b

b
in

g /fS
E

U

T
rip

le V
o
ter

1
/fS

E
U

Availability

1
0

-2

1
0

0

1
0

0

1
0

5

0

0
.5 1

fscru
b

b
in

g /fS
E

U

S
y
n
p
lify

 T
M

R

1
/fS

E
U

Availability

Page

 95

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 59. Cause of Downtime, Blind Scrubbing

1
0

-2

1
0

0

1
0

0

1
0

5

0

5
0

1
0
0

fscru
b

b
in

g /fS
E

U

R
eferen

ce

1
/fS

E
U

Scrubbing [%]

1
0

-2

1
0

0

1
0

0

1
0

5

0

5
0

1
0
0

fscru
b

b
in

g /fS
E

U

S
in

g
le V

o
ter

1
/fS

E
U

Scrubbing [%]

1
0

-2

1
0

0

1
0

0

1
0

5

0

5
0

1
0
0

fscru
b

b
in

g /fS
E

U

T
rip

le V
o

ter

1
/fS

E
U

Scrubbing [%]

1
0

-2

1
0

0

1
0

0

1
0

5

0

5
0

1
0
0

fscru
b

b
in

g /fS
E

U

S
y
n

p
lify

 T
M

R

1
/fS

E
U

Scrubbing [%]

Page

 96

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 60 shows the cause of downtime for blind scrubbing, similarly to Fig. 59, but fixed
at an SEU rate of 1 SEU per minute.

Fig. 60. Cause of Downtime, Blind Scrubbing (at SEU rate 1/min)

Fig. 61 shows a plot of Availability/LUT as a function of scrubbing rate for the different
TMR implementations and the reference case.

Fig. 61. Availability per LUT, Blind Scrubbing (at SEU Rate 1/min)

Fig. 62 shows Availability/LUT for the three TMR implementations in combination with
blind scrubbing, again as a function of the mean time between SEUs and the scrubbing
rate. The reference design is not included here.

0.01 0.1 1 2 5 10
0

20

40

60

80

100

%

f
scrubbing

/f
SEU

Reference

0.01 0.1 1 2 5 10
0

20

40

60

80

100

%

f
scrubbing

/f
SEU

Single Voter

0.01 0.1 1 2 5 10
0

20

40

60

80

100

%

f
scrubbing

/f
SEU

Triple Voter

0.01 0.1 1 2 5 10
0

20

40

60

80

100

%

f
scrubbing

/f
SEU

Synplify TMR

Scrubbing

Wrong result

10
-2

10
-1

10
0

10
1

10
-5

10
-4

10
-3

f
scrubbing

/f
SEU

A
v

ai
la

b
il

it
y

/L
U

T

Reference (No TMR)

Single Voter

Triple Voter

Synplify TMR

Page

 97

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 62. Availability per LUT, Blind Scrubbing

1
0

-2

1
0

0

1
0

0

1
0

5

0 1 2

x
 1

0
-4

fscru
b

b
in

g /fS
E

U

S
in

g
le V

o
ter

1
/fS

E
U

Availability/LUT
1
0

-2

1
0

0

1
0

0

1
0

5

0 1 2

x
 1

0
-4

fscru
b

b
in

g /fS
E

U

T
rip

le V
o
ter

1
/fS

E
U

Availability/LUT

1
0

-2

1
0

0

1
0

0

1
0

5

0 1 2

x
 1

0
-4

fscru
b

b
in

g /fS
E

U

S
y
n
p
lify

 T
M

R

1
/fS

E
U

Availability/LUT

Page

 98

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

4.2.1.2 Error Detection-based Scrubbers

For the implemented scrubbers that make use of error detection methods (CRC, ECC,
SECDED), the concept of scrubbing rate has no meaning, as scrubbing is done only
after detection, and not periodically as for blind scrubbing.. Table 14 shows availability
for the three detection-based scrubbing methods when varying the SEU rate from 1 per
second to 1 per day.

Table 14. Detection-based Scrubbers

Page

 99

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

4.2.2 Resource Usage

Table 15 presents a comparison of the resource usage for the different implemented
scrubbing methods. The numbers presented for the case with no scrubber
implementation can be seen as not having a scrubber at all, or keeping the scrubber
externally. The numbers for CRC, ECC and SECDED scrubbers represent the case of
having the scrubber internally on the FPGA. Relative overhead percentages are
presented for each combination of TMR and Scrubbing, with the no-scrubber case as a
reference case for each TMR implementation.

Table 15. Scrubber Implementations, Resources

Scrubber TMR Slices Slice Regs LUTs Relative

None

Reference 291 408 1143 100%

Single Voter 1354 1345 3698 100%

Triple Voter 1472 1603 4224 100%

Synplify TMR 2275 1224 5436 100%

CRC

Reference 315 424 1179 104%

Single Voter 1373 1361 3634 101%

Triple Voter 1491 1619 4241 101%

Synplify TMR 2294 1240 5472 101%

ECC

Reference 746 1042 2051 255%

Single Voter 1809 1979 4606 147%

Triple Voter 1843 2237 5125 140%

Synplify TMR 2730 1858 6344 152%

SECDED

Reference 505 734 1526 180%

Single Voter 1596 1671 3607 124%

Triple Voter 1687 1933 4598 120%

Synplify TMR 2490 1550 5819 127%

Fig. 63 shows a graphical representation of the relative resource usage for each of the
implemented scrubbing methods, normalised to reference (the resource usage of
reference is 1.0). In Fig. 63, the TMR implementations’ names are shortened as SV
(Single Voter), TV (Triple Voter) and Synp (Synplify TMR).

Page

 100

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 63. Relative Resource Usage for Different Scrubbing Methods

S
V

T
V

S
y
n

p
0 2 4 6

B
lin

d

S
V

T
V

S
y
n

p
0 2 4 6

C
R

C
 trig

g
ered

S
V

T
V

S
y
n

p
0 2 4 6

F
ram

e E
C

C
 trig

g
ered

S
V

T
V

S
y
n

p
0 2 4 6

S
E

C
D

E
D

S
lices

S
lice reg

isters

N
u

m
b

er o
f L

U
T

s

N
u

m
b

er o
f L

U
T

-D
F

F
 p

airs

Page

 101

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

4.2.3 Mean Time to Failure

For a lot of applications, Mean Time to Failure (MTTF) numbers can be more relevant
and give more information than availability. Fig. 64 shows MTTF as a function of
scrubbing rate for blind scrubbing systems, again using a fixed mean time between
SEUs of 1 min.

Fig. 64. MTTF, Blind Scrubbing (at SEU Rate 1/min)

Note that the y-axis in Fig. 64 is given in hours and on a logarithmic scale. Note the
asymptotic tendency for each TMR implementation.

Fig. 65 and Fig. 66 show MTTF and MTTF per LUT as functions of the SEU rate for
blind scrubbing. It should be noted that the z-axis is not normalised in Fig. 65.

10
-2

10
-1

10
0

10
1

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

f
scrubbing

/f
SEU

M
T

T
F

 [
h
]

Reference (No TMR)

Single Voter

Triple Voter

Synplify TMR

Page

 102

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 65. MTTF, Blind Scrubbing

Fig. 66. MTTF per LUT, Blind Scrubbing

Fig. 67 shows MTTF as a function of SEU rate for the three error detection-based
scrubbing methods: CRC, ECC and SECDED, given in hours.

10
-2

10
0

10
0

10
5

0

2

4

x 10
4

f
scrubbing

/f
SEU

Reference

1/f
SEU

M
T

T
F

 [
h
]

10
-2

10
0

10
0

10
5

0

5

10

x 10
5

f
scrubbing

/f
SEU

Single Voter

1/f
SEU

M
T

T
F

 [
h
]

10
-2

10
0

10
0

10
5

0

5

10

x 10
5

f
scrubbing

/f
SEU

Triple Voter

1/f
SEU

M
T

T
F

 [
h

]

10
-2

10
0

10
0

10
5

0

5

10

x 10
6

f
scrubbing

/f
SEU

Synplify TMR

1/f
SEU

M
T

T
F

 [
h

]

10
-2

10
0

10
0

10
5

1

2

3

x 10
6

f
scrubbing

/f
SEU

Single Voter

1/f
SEU

M
T

T
F

/L
U

T
 [

h
]

10
-2

10
0

10
0

10
5

1

2

3

x 10
6

f
scrubbing

/f
SEU

Triple Voter

1/f
SEU

M
T

T
F

/L
U

T
 [

h
]

10
-2

10
0

10
0

10
5

1

2

3

x 10
6

f
scrubbing

/f
SEU

Synplify TMR

1/f
SEU

M
T

T
F

/L
U

T
 [

h
]

Page

 103

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 67. MTTF, Error Detection-based Scrubbing

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

C
R

C
 trig

g
ered

1
/fS

E
U

MTTF [h]
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

MTTF [h]

F
ram

e E
C

C
 trig

g
ered

1
/fS

E
U

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

1
/fS

E
U

MTTF [h]

S
E

C
D

E
D

R
eferen

ce (N
o
 T

M
R

)

S
in

g
le V

o
ter

T
rip

le V
o
ter

S
y
n
p
lify

 T
M

R

Page

 104

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 68 shows MTTF per LUT as a function of SEU rate for each of the TMR
implementations for the detection-based scrubbing methods.

Fig. 68. MTTF per LUT, Error Detection-based Scrubbing

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

C
R

C
 trig

g
ered

1
/fS

E
U

MTTF/LUT [h]

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

MTTF/LUT [h]

F
ram

e E
C

C
 trig

g
ered

1
/fS

E
U

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

0

0
.0

2

0
.0

4

0
.0

6

0
.0

8

1
/fS

E
U

MTTF/LUT [h]

S
E

C
D

E
D

R
eferen

ce (N
o

 T
M

R
)

S
in

g
le V

o
ter

T
rip

le V
o

ter

S
y
n

p
lify

 T
M

R

Page

 105

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

4.3 Faults In Time

Depending on implementation there will be difference in availability, MTTF and FIT.
The relation between these metrics and how they are derived is described in 2.4.1.
Systems with the CRC, ECC and SECDED implementation will yield a high availability.
In these specific cases, the availability comes close to 1 and the difference between
the implementations will be negligible. A plot showing the different availabilities will
therefore not be a fair comparison. MTTF and FIT will be shown for all combinations
instead. Fig. 69 shows MTTF for the error-detection based scrubbing methods, similar
to Fig. 67, but over an extended x-axis.

Using these numbers, by a simple rescaling of MTTF according to Eq. 17, a FIT value
is obtained. Fig. 70 show FIT values for the error detection-based scrubbing methods.

Fig. 69. MTTF, Error Detection-based Scrubbing (extended x-axis)

2 4 6 8 10

x 10
4

0

5000

10000

CRC triggered

1/f
SEU

M
T

T
F

 [
h

]

2 4 6 8 10

x 10
4

0

5000

10000

M
T

T
F

 [
h

]

Frame ECC triggered

1/f
SEU

2 4 6 8 10

x 10
4

0

5000

10000

M
T

T
F

 [
h

]

SECDED

1/f
SEU

Reference (No TMR)

Single Voter

Triple Voter

Synplify TMR

One month

Page

 106

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 70. FIT, Error Detection-based Scrubbing

2
4

6
8

1
0

x
 1

0
4

0 5

1
0

1
5

x
 1

0
6

C
R

C
 trig

g
ered

1
/fS

E
U

FIT

2
4

6
8

1
0

x
 1

0
4

0 5

1
0

1
5

x
 1

0
6

FIT

F
ram

e E
C

C
 trig

g
ered

1
/fS

E
U

2
4

6
8

1
0

x
 1

0
4

0 5

1
0

1
5

x
 1

0
6

FIT

S
E

C
D

E
D

1
/fS

E
U

R
eferen

ce (N
o
 T

M
R

)

S
in

g
le V

o
ter

T
rip

le V
o
ter

S
y
n
p
lify

 T
M

R

Page

 107

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

4.4 Example LEO and GEO Scenarios

In order to provide realistic and complete examples of the feasibility of SRAM-based
FPGAs in space, two common satellite orbits have been selected. One Low Earth Orbit
(LEO) and one Geosynchronous Orbit (GEO) are used, as they represent the most
common cases for commercial satellites. This section will present a complete example,
weighing in device characteristics, satellite orbit parameters and radiation models,
finally arriving at a FIT value for each orbit, for the particular FPGA type.

4.4.1 Device Characteristics and Test Application

The FPGA used throughout the experiments detailed in this report is the XC5VLX50.
However, the XC5VLX50 is a commercial, non-rad-hard FPGA, and so no radiation
testing results are available from the manufacturer. Because of this, calculations will be
made using the device characteristics published for another Virtex-5 series FPGA, the
Virtex-5QV FX130T (XQR5VFX130T). The Virtex-5QV FPGA is a radiation-hardened
version for space applications [64], for which radiation testing results are available. The
FX130T has a larger capacity than the VLX50 FPGA. In [65], extensive radiation test
results for the Virtex-5QV FX130T are presented.

Fig. 71. Cross Section, Heavy Ions

Fig. 72. Cross Section, Protons

Fig. 71 and Fig. 72 show the cross section of the FX130T device for heavy ions and
protons, respectively. The Weibull parameters used are from [65].

0 20 40 60 80 100 120
10

-14

10
-13

10
-12

10
-11

10
-10

10
-9

10
-8

LET [Mev cm
2
g

-1
]

C
ro

ss
 s

ec
ti

o
n
 [

cm
2
/b

it
]

0 20 40 60 80 100 120 140 160 180 200
10

-20

10
-19

10
-18

10
-17

Energy [Mev]

C
ro

ss
 s

ec
ti

o
n
 [

cm
2
/b

it
]

Page

 108

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

The test application is the same 128-bit AES encryption application used in the
previously described experiments, but scaled up to fill the entire FPGA. For the
purpose of calculating SEU rates, all the configuration cells are considered as being
used, along with all user flip-flops. No DSP48E slices are used. Two different versions
of the test application for each orbit will be used: a version with 5% BRAM usage, and
another version where 50% of the available BRAM is used. Using the resource usage
report from the .mrp files generated by PlanAhead post-PAR and the resources
available on the FX130T as stated in [64], the numbers for functional flip-flops and
device usage percentage are calculated.

Available on the FX130T are 20,480 slices, 320 DSP48E slices, 596x18kB BRAM and
298x36kB BRAM.

In Table 16, the FX130T FPGA has been filled with as many AES blocks as will fit. The
level of BRAM used is fixed at 5% of the total available memory. As a measure of the
size of the application, and for easy comparison with ASIC designs, the measurement
Functional D-Flip-Flops is used. This measurement is the number of DFFs that add to
the functionality to the system, and does not include redundant flip-flops. For example,
a reference design AES block and a TMR AES block has the same number of
functional DFFs, as they perform the same function.

A characteristic of the AES block is that it is logic-dominated, meaning that LUT
resources will be the bottleneck when scaling the design to fill the whole FPGA. These
numbers are highly application specific. The total number of DFFs available is 81,920.
Theoretically, all of these could be used in an application (see Table 17).

Table 16. Functional DFFs, AES Application in FX130T FPGA

TMR Functional DFFs BRAM Device Usage AES Blocks

Reference 28,968 512 kB 99.1% 71

Single Voter 8,976 512 kB 99.3% 22

Triple Voter 7,752 512 kB 98.0% 19

Synplify TMR 6,120 512 kB 99.5% 15

Table 17. Functional DFFs, Theoretical Maximum in FX130T FPGA

TMR Functional DFFs

Reference 81,920

Single Voter 25,380

Triple Voter 21,920

Synplify TMR 17,320

Page

 109

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

4.4.2 Satellite Orbits and Radiation Profiles

The example Low-Earth Orbit is specified by the parameters in Table 18, and its
ground track is illustrated in Fig. 73.

 Table 18. LEO Parameters

Altitude 800km

Inclination 98°

RAAN 20°

Argument of Perigee 0°

True Anomaly 0°

Fig. 73. LEO Satellite Groundtrack

This represents a standard sun-synchronous orbit with a retrograde inclination, typical
for example for a remote sensing / Earth observation satellite. Aluminium shielding of
thickness 0.100” is included in the calculations in this chapter. Table 19 presents the
orbital parameters for the Geostationary (GEO) orbit used, illustrated in Fig. 74.

Table 19. GEO Parameters

Altitude 35,786 km

Longitude -55°

Fig. 74. GEO Satellite Groundtrack

The LET spectrum for the LEO is shown in Fig. 75 and the LET spectrum for GEO is
shown in Fig. 76.

Page

 110

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 75. LET Spectrum, LEO

Fig. 76. LET Spectrum, GEO

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-20

10
-15

10
-10

10
-5

10
0

10
5

LET [Mev cm
2
g

-1
]

In
te

g
ra

l
fl

u
x

 [
cm

-2
s-1

]

Integral flux

Differential flux

10
0

10
1

10
2

10
3

10
4

10
5

10
6
10

-20

10
-15

10
-10

10
-5

10
0

10
5

D
if

fe
re

n
ti

al
 f

lu
x

 [
cm

-2
s-1

(M
ev

 c
m

2
g

-1
)-1

]

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
-20

10
-15

10
-10

10
-5

10
0

10
5

LET [Mev cm
2
g

-1
]

In
te

g
ra

l
fl

u
x

 [
cm

-2
s-1

]

Integral flux

Differential flux

10
0

10
1

10
2

10
3

10
4

10
5

10
6
10

-20

10
-15

10
-10

10
-5

10
0

10
5

D
if

fe
re

n
ti

al
 f

lu
x

 [
cm

-2
s-1

(M
ev

 c
m

2
g

-1
)-1

]

Page

 111

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

4.4.3 FITs

The expected SEU periods for the two examples orbits are derived from Fig. 75 and
Fig. 76. The corresponding SEU rates for each of these cases are shown as vertical
lines in Fig. 77 and Fig. 78. Furthermore, FIT is calculated for LEO and GEO for the
SECDED implementation. These values are presented in Table 20.

MTTF values for the different implementations are presented in Fig. 77. The x axis
shows the SEU period in seconds. The FIT for all detection based-scrubbing
combinations as a function of SEU period is shown in Fig. 78.

Table 20. FIT, Example Orbits using SECDED Scrubbing

Orbit BRAM Usage Reference Single Voter Triple Voter Synplify TMR

LEO

0% 4.835E+04 2.016E+03

5.635E+02

4.515E+02

5% 1.146E+07 4.778E+05

1.336E+05 1.070E+05

50% 1.142E+08 4.760E+06

1.331E+06 1.066E+06

GEO

0% 1.108E+05 4.618E+03 1.291E+03 1.034E+03

5% 1.948E+07 8.122E+05 2.270E+05 1.819E+05

50% 1.938E+08 8.081E+06 2.259E+06 1.810E+06

Page

 112

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 77. MTTF, Error Detection-based Scrubbing

2
4

6
8

1
0

x
 1

0
4

0

5
0
0
0

1
0
0
0
0

C
R

C
 trig

g
ered

1
/fS

E
U

MTTF [h]
2

4
6

8
1
0

x
 1

0
4

0

5
0
0
0

1
0
0
0
0

MTTF [h]

F
ram

e E
C

C
 trig

g
ered

1
/fS

E
U

2
4

6
8

1
0

x
 1

0
4

0

5
0
0
0

1
0
0
0
0

MTTF [h]

S
E

C
D

E
D

1
/fS

E
U

R
eferen

ce (N
o

 T
M

R
)

S
in

g
le V

o
ter

T
rip

le V
o

ter

S
y
n

p
lify

 T
M

R

O
n

e m
o

n
th

V
irtex

-5
Q

V
 L

E
O

 o
rb

it 5
%

 B
R

A
M

V
irtex

-5
Q

V
 G

E
O

 o
rb

it 5
%

 B
R

A
M

V
irtex

-5
Q

V
 L

E
O

 o
rb

it 5
0

%
 B

R
A

M

V
irtex

-5
Q

V
 G

E
O

 o
rb

it 5
0

%
 B

R
A

M

Page

 113

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Fig. 78. FIT, Error Detection-based Scrubbing

2
4

6
8

1
0

x
 1

0
4

0 5

1
0

1
5

x
 1

0
6

C
R

C
 trig

g
ered

1
/fS

E
U

FIT

2
4

6
8

1
0

x
 1

0
4

0 5

1
0

1
5

x
 1

0
6

FIT

F
ram

e E
C

C
 trig

g
ered

1
/fS

E
U

2
4

6
8

1
0

x
 1

0
4

0 5

1
0

1
5

x
 1

0
6

FIT

S
E

C
D

E
D

1
/fS

E
U

R
eferen

ce (N
o
 T

M
R

)

S
in

g
le V

o
ter

T
rip

le V
o
ter

S
y
n
p
lify

 T
M

R

V
irtex

-5
Q

V
 L

E
O

 o
rb

it 5
%

 B
R

A
M

V
irtex

-5
Q

V
 G

E
O

 o
rb

it 5
%

 B
R

A
M

V
irtex

-5
Q

V
 L

E
O

 o
rb

it 5
0
%

 B
R

A
M

V
irtex

-5
Q

V
 G

E
O

 o
rb

it 5
0
%

 B
R

A
M

Page

 114

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

5 Discussion and Recommendations

This section provides a discussion of the method and results, and also gives a set of
general recommendations for the use of Xilinx commercial SRAM-based FPGAs in
space applications.

5.1 Relevance and Limitations of Test Method and Results

The results presented in this report apply to the selected test application, the 128-bit
AES encryption block. While the techniques discussed are general, the results, and
therefore the optimal mitigation strategy, will vary widely depending on the application.
Using an AES application gives the tests a high level of observability, since an error
anywhere in the encryption chain is likely to propagate through to the output. The AES
application is rather logic-heavy, in that it uses a lot of logic rather than sequential
elements. The AES application has no feedback or dependency on earlier encryptions,
so the results presented in this report will not take feedback effects into considerations.
In many real applications, there is feedback or strong state dependencies that may
exhibit different error patterns when incorrect state or data is introduced into the system.
The test method only tests upsets in the configuration memory. It does not test user
data upsets or single event transients (SETs).

The AES application used here does not make use of BRAM or DSP blocks. It is a
conscious choice to make the application as scalable and as placement-independent
as possible, by using only fabric resources. Also, it allows for tighter packing into a p-
block than might otherwise have been possible. This means that the AES application
can be duplicated to fill up the entire FPGA with a high degree of resource utilisation,
with respect to logic slices. A scaled-up version of the system, using multiple instances
of the AES application, shows a similar hit percentage of SEUs. Overall, the application,
and therefore the results, can be scaled to fit any size of FPGA, while retaining its
behaviour.

As this report aims to investigate the feasibility of using non-rad-hard, COTS SRAM-
based FPGAs in space, the AES block represents a realistic application. This type of
FPGA would typically not be used in critical applications such as On Board Computers.
Therefore, a microprocessor application is not selected. Applications such as the AES
block would typically be found in communication modules or payload instruments,
where commercial SRAM-based FPGAs could be considered.

While the test platform and method have some limitations and error sources, overall
they produce reliable results that are representative of a real FPGA application in a
space scenario. By running tests on an actual FPGA and injecting errors in a
predictable and controlled manner in the configuration memory, the test method covers
all the possible error modes, given a large enough number of fault injections.

The fault injection method and error logging used in this project are intrusive, in the
sense that they are implemented, synthesised, placed and routed on the FPGA side-
by-side with the DUT. Because of this, the test framework will unavoidably affect the
DUT. While communications and interactions between the DUT and the test framework
are kept to a minimum, there are some shared connection points. This may affect the
statistics and results slightly. However, these effects are unlikely to have any significant
impact on the trends shown by the results. The tests do show some variations from test
run to test run. By using a large number of injected faults (tens of thousands), these
variations are averaged out.

Looking at the test platform itself, the major bottleneck in terms of test performance is
the serial UART communication between the host PC and the test FPGA. Also, the

Page

 115

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Xilinx SEU Controller macro used for fault injection has an upper limit on how often
faults can be injected. The “tick” system that the Tcl application on the host PC uses
allows for the UART communication time to be excluded from the ticks and therefore
scaling of the SEU period without re-running tests. This is because all times are
measured in ticks, which is a unit-less measurement that can then be scaled by a time
factor according to the SEU period. Only reconfiguration events and detection times
are measured in absolute time, and have to be converted to ticks. Using this method,
the calculations do not have to take the communication latency between the host PC
and the test FPGA into consideration, as all communication events are considered to
take place inside of a single tick slot.

Some possible sources of errors during test runs are single event upsets that affect the
communication between the SEU Monitor and the DUT. It has been noted during some
tests that this may cause the test system to time-out while waiting for a response from
the DUT. In case this happens, it is logged by the SEU Monitor as an error. This
however was corrected by modifying the monitor to exclude a non-responding AES unit
and log the test vector anyway.

5.2 Trends in Result Data

Some important trends and tendencies have been observed during the test data
analysis. First of all, it should be clear to designers that an availability of 100% cannot
be achieved and, in fact, should not be the goal of a design process. The higher the
availability is, the costlier it will be to improve it further, in terms of resources and
system complexity. Where the threshold is between what is feasible, in terms of
availability per resource, will depend on the application.

Overall, cost is an important aspect of fault-tolerance. Fault-tolerance carries a cost
either in terms of resources or in terms of (down-) time. Triple Modular Redundancy
introduces a considerable resource overhead. Depending on the implementation, this
overhead is somewhere in the range of 200% - 400% of the original implementation.
This can be clearly seen in Table 13, and is supported by the literature ([30], [20]).
Depending on how the application is placed and routed on the FPGA, and on what
special resources it uses, the effective overhead could be even greater. If the resource
cost of applying TMR to the whole application is too great, it can be useful to consider
partial TMR, applying redundancy only to critical parts of the application (as discussed
in 2.4.2), such as feedback loops or the circuitry in finite state machines keeping track
of the state.

Scrubbing circuitry can be placed internally on the FPGA, or externally. Internal
scrubbing logic uses resources on the FPGA, introducing overhead, as seen in Table
14. Depending on which scrubbing method is used and the device utilisation, resource
overhead from using an internal scrubber may be significant or not, or may even be the
dominant part of the design resource-wise.
Again looking at Table 14, it is shown that different scrubbing methods vary widely in
their implementation size. The numbers in Table 14 are for single AES blocks: scaling
the application to fill the entire FPGA would make the scrubber implementation
overhead much smaller in comparison.

Page

 116

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

It is important to note that scrubbing circuitry itself is susceptible to radiation-induced
upsets. A malfunctioning scrubber can cause a lot of damage by writing incorrect frame
data, writing to the wrong frames, or scrubbing unexpectedly. Scrubbers and fault-
tolerance monitoring circuitry can be protected by TMR just as the payload application.
The advantage of keeping a scrubber internally on the FPGA is that overall system
complexity is reduced, and that the scrubber can easily access error detection signals
with after a shorter delay. However, internal scrubbers also have the disadvantages of
being susceptible to SEUs, as well as taking up resources on the FPGA. External
scrubbers can be implemented as radiation-hardened ASICs. This adds to the overall
system complexity, but may prove to be a better solution since the scrubber’s target
system and the scrubber are completely separated.

5.2.1 TMR implementation

In implementing TMR, it can be useful to consider the observability of errors. As an
example, the Synplify TMR implementation used in this project offers no way of
observing partial errors, as only errors on the output from a module can be seen. In the
Triple Voter TMR design on a module-level, on the other hand, errors on separate TMR
branches and voters can be observed. This can be used in error detection, if the
application allows it.

An important and very generally applicable concept is that adding redundancy also
adds area to the application, thereby adding more resources susceptible to SEUs. That
is, the redundancy overhead also has a failure rate. This can be seen as making the
target for SEUs bigger, but at the same time more robust. The same concept also
applies when scaling an application. Going from a design comprising 1,000 functional
DFFs to the same design scaled to 10,000 functional DFFs will cause MTTF to scale
linearly, and FIT to scale accordingly, with the area increase, when considering the
whole system. Simply put, more functionality means more SEU-susceptible flip-flops.

The static testing results in Table 11 give a good sense of how good the different TMR
implementations are at masking errors. The reference design is provided as a baseline,
and gives an estimate of how large a percentage of injected errors will cause actual
observable errors. Throughout the experiments conducted and described in this report,
about 25% of the injected errors give an observable error somewhere in the system.
For the Single Voter and Triple Voter TMR designs in Table 11, there are about 700
observable errors per 4000 injected errors. However, most of these errors affect single
TMR branches, and are masked by the voter stage. For the Synplify TMR
implementation, only failures are observable using the method described in this report.
As Synplify TMR applies TMR on a much lower level than the single and triple voter
module-level TMR designs, only the actual output from the whole AES block can be
observed.

Comparing the different TMR implementations, it can be seen that the Triple Voter and
Synplify TMR designs offer a similar level of masking, while the Single Voter design
has a slightly higher failure rate. This is because the voter stage in the Single Voter
design represents a single point of failure. An SEU affecting the voter output itself
cannot be masked by the Single Voter design. Triple Voter and Synplify TMR on the
other hand, can deal with such errors. None of the designs, however, can protect
against the case where a single bit upset affects two separate TMR branches (a so
called bridge error). These bridge errors are the primary cause of failure in the Triple
Voter design.

Page

 117

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Different TMR implementations will yield different numbers and types of errors, as can
be seen in Table 12. For the Single Voter, bridge errors, voter errors and multiple
errors cause incorrect output results, while single errors are masked. As single errors
make up the majority of observed errors, the single voter design is indeed able to mask
a large portion of the observed errors. The reason why the amount of single errors is so
much greater than bridge, voter and multiple errors is quite simply explained by the fact
that the AES modules occupy more resources compared to the voter, whose size is
almost negligible in comparison. Bridge errors are rare, because they can only occur
when two separate TMR branches erroneously become connected and therefore share
an error. As noted earlier, the single voter is susceptible to voter errors, as it is a single
point of failure for the design. The increased amount of voter errors for the Triple Voter
TMR design compared to the Single Voter design can again be explained by the simple
fact that three voters make a bigger target than one.

Overall, the Triple Voter design sees only a slightly higher number of total observable
errors compared to the Single Voter design, which is roughly proportional to the size
difference. It should be noted that there is an increased number of voter errors
observed due to the larger amount of resources occupied by voters, but that these can
in most cases be masked out by the triplicated voters. In the case of the Synplify TMR
design, it is not possible to observe errors other than correct or incorrect output.

5.2.2 Scrubbing implementation

The relative-area-column of Table 14 shows some interesting results. Out of the
implemented scrubbing methods, Frame ECC-based detection with dynamic partial
reconfiguration is the most expensive in terms of resources. A SECDED scrubber
making use of the Xilinx SEU Controller is a slightly more economical option. CRC-
based full reconfiguration presents little overhead. Together, these observations give
an idea of the area overhead for each scrubbing method, to be kept in mind while
looking at MTTF and FIT numbers.

The performance of blind scrubbing has been extensively researched in this work. In
particular, the relation between scrubbing frequency and SEU rate has been studied.
Looking at Fig. 57, the Synplify TMR system consistently performs better than the other
TMR implementations, up to a scrubbing rate of 1 (scrubbing at the same speed as
expected SEUs). The plot in Fig. 57 is fixed at an SEU Rate of 1 SEU per minute. An
interesting thing to note in this plot is that availability seems to drop after scrubbing rate
1. The scrubbing rate, at which this happens, varies widely with the mean time between
SEUs. For longer mean time between SEUs, a higher scrubbing frequency to SEU
frequency ratio will result in a better availability.

Looking at the same trend, but also varying the SEU rate, gives Fig. 58. In Fig. 58, a
sharp drop is seen for all TMR implementations when the SEU and scrubbing
frequencies are both high. This is because the system is trying to scrub faster than
what is possible. A full reconfiguration takes a certain amount of time (~500 ms).
Trying to perform a full reconfiguration (scrubbing) at 10x the expected SEU frequency,
if the mean time between SEUs is 1 second, will result in the system being down for
scrubbing 100% of the time. Fig. 59 shows this behaviour by plotting the scrubbing rate
and SEU rate versus the portion of the total system downtime that is caused by
scrubbing. A reasonable conclusion from these figures is that scrubbing more often
does not always lead to better availability, and can in fact be directly harmful to the
availability of a system, if done too often. In addition to this, power and system
complexity concerns should be added.

Page

 118

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

The black line drawn for each TMR implementation in Fig. 58 gives the optimal
scrubbing rate for a given SEU rate. Comparing the four implementations, it can be
seen that the reference design can be scrubbed more often in relation to the SEU rate,
without losing in availability. This is because the time spent in scrubbing mode is quite
small compared to the time the circuit is producing an incorrect output, as the reference
design is so sensitive to errors in the first place. The Synplify TMR implementation is
much more fault-tolerant.

In Fig.60, the SEU rate (mean time between SEUs) has been fixed at 1 SEU / minute
to visualise more clearly the cost of scrubbing in terms of downtime. These graphs
show that there is a point where the dominating contributor to system downtime shifts
from being wrong result on output to scrubbing. The higher the masking rate of the
TMR implementation, the most sudden this shift will be. The main thing to note in Fig.
60 is the difference between the reference design and the TMR designs. The reference
design gradually shifts over, while the TMR designs shift more suddenly. In the
reference design, a much larger proportion of the downtime is caused by having an
incorrect circuit, producing an incorrect output. As mentioned earlier, the scrubbing rate
at which the switch of dominant factor from wrong output to scrubbing occurs depends
on the mean time between SEUs.

For a sense of how area-efficient the tested SEU mitigation techniques are, Fig. 61
shows used resources per availability, at a fixed SEU rate of 1 SEU / minute. As for the
previous pairs of graphs, this is accompanied by Fig. 62, where the SEU rate is varied.
An interesting thing to note here is that redundancy implementations with high levels of
availability are (un-proportionally) expensive in terms of resources. The reference
design is not included in Fig. 62, as it would show much higher values than the TMR
implementations.

The first row of Table 14, CRC scrubbing with an SEU rate of 1/second, is interesting.
Given that a full reconfiguration takes about 500ms, the system will be performing
reconfigurations half of its total operational time. This gives a low availability, of around
0.5. For the reference, Frame ECC-based detection scrubber with SEU rate 1/second,
availability is much higher. This is due to the fact that even if Frame ECC is slower than
CRC to detect errors, repairs are made much faster, as only a partial reconfiguration of
a single frame has to be made, rather than a full reconfiguration.

Looking at resource usage for the TMR implementations, as illustrated by Fig. 63, three
distinct area profiles emerge. The Triple Voter design uses the most slice registers, but
comparing overall resource usage in LUT-DFF-Pairs used, Synplify TMR is the most
expensive implementation in terms of area. The LUTs are the bottleneck in these TMR
implementations. The Single Voter, Triple Voter and Synplify TMR use roughly a factor
3, 4 and 5 times more area than the unprotected reference design, respectively.

A combination of a low SEU rate and a high scrubbing-rate-to-SEU-rate ratio results in
high MTTF. The first thing to note is that Synplify TMR is consistently the best-
performing TMR implementation. Secondly, it can be seen from Fig. 67 that the Triple
Voter and Synplify TMR designs benefit more from using partial reconfiguration than
the Single Voter TMR design does. As mentioned earlier, this is due to the fact that the
Single Voter design has a single point of failure, the voter. The green line is placed at
730 hours, which is equal to one month.

Page

 119

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Looking at Fig. 68, an interesting tendency to note in this figure is that the Triple Voter
and Synplify TMR designs are almost exactly as area-efficient. Also, comparing Fig. 68
to Fig. 62 shows that while the unprotected reference design may give the highest
availability-per-LUT ratio, it is much worse when looking at the MTTF-to-LUT ratio.

Ticks, which are used in calculations by MATLAB, are scaled with SEU period.
However, some duration are counted as absolute values, such as scrubbing duration
and error detection times, although these absolute times are negligible in comparison
to the ticks which are scaled. This gives MTTF a linear relation to the SEU period,
which is illustrated by Fig. 77.

When MTTR<<MTTF, which is true in the presented example, then MTTF ~ MTBF.
From this information it is expected that FIT as a function of SEU period resembles an
f(x) = 1/x curve. Synplify TMR has the highest MTTF for all SEU periods which yields
the lowest FIT for each SEU period, as shown in Fig. 76. The FIT is calculated as a
function of MTTF as shown in Eq. (17).

5.3 Orbit example calculations

As the two different orbits differ severely in altitude, it is expected that the LET
spectrum for the two respective orbits are different. An observable difference between
the two spectrums is that the particle fluence is higher for all LET levels in the GEO
spectrum. This is expected as LEO is on a much lower altitude and therefore under the
influence of Earth’s protective magnetic field.

FIT is a common figure of merit used in conjunction with fault tolerance. When a
system designer specifies a required fault tolerance value, this number is often given in
FIT. The estimated requirements can be used in two different ways when assessing
fault tolerance. The first approach is to start at a given FIT value. For this required FIT
value, each of the detection scrubbing implementations will give a value for the
maximum tolerable SEU period. This can be seen graphically where a FIT corresponds
to a horizontal line, as is seen in Fig. 77 and Fig. 78. This horizontal line will intersect
with the different implementations at different SEU rates. The shorter the SEU period,
the smaller the radiation constraints have to be on the target FPGA.

Another approach is to pick a target FPGA, run radiation tests for this particular FPGA
and resolve an SEU rate by integrating it with particle fluence for the orbit of interest.
With these parameters, the SEU period can be used to find which implementation
yields the lowest number of FIT. The SEU period can be represented graphically as a
vertical line where the resolved number of FIT will be where the respective curves
intersect with said vertical line, as is done in Fig. 77 and Fig. 78.

Page

 120

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

5.4 Protecting User Data

In this report, focus has been on mitigation techniques for SEUs in the configuration
memory. Protecting user data is also an important aspect in providing fault tolerance.
This problem, however, exists in ASIC development as well, so coding standards and
design considerations are well established. Using the fault-tolerance mechanisms
described in this report will help guarantee the function of the implemented logic, which
is a requisite for user data protection schemes. Deploying triple modular redundancy
schemes for all user data flip-flops is an efficient mitigation strategy for user data
upsets, but drastically reduces the number of functional flip-flops available to the
designer. As for configuration memory upset mitigation techniques, when designing
systems employing redundancy to protect user data, special care has to be taken to
making sure that the synthesis and design tools do not optimise away or inadvertently
breaks the redundancy.

There are a few basic rules when designing robust applications. State Machines should
be designed without deadlock states, and using dummy states where necessary. This,
of course, depends on the designer being able to trust the underlying logic
configuration. State machine encodings can be chosen for robustness, for example
employing Hamming-3 coding as discussed in Sec. 2.4.4.1.

Errors in user data can be difficult to detect, if the data is not protected by CRC. The
only other way to detect such errors is by comparing and detecting errors in output
data. If this type of error detection mechanism is implemented in a system, it can for
example trigger a reconfiguration of the affected module. However, reconfiguring and
resetting a module will cause it to lose its state, and resynchronising with other parts of
the system may take a long time.

Synthesis and PAR tools play a role in minimising the susceptibility to user data upsets.
In designing redundant, fault-tolerant systems, it is often important to keep track of
what is allowed for the tools to optimise and what is to remain untouched to achieve the
desired level of redundancy. Considering constant-value flip-flops, these must be
synthesised as constant signals or un-clocked flip-flops. During the experiments
described in this report, unexpected errors were encountered due to incorrect values
being clocked into flip-flops which were intended to hold constant values. Constant
values can be considered as user data or as configuration memory, following the
division presented in Fig. 20. In [66], the authors provide an interesting discussion on
how to approach SEU susceptibility for constant values in FPGAs.

DSP slices pose a challenge in that their internal pipelining registers and configuration
vectors cannot be protected by TMR, yet are still susceptible to upsets. Possible
solutions are temporal redundancy, or tripling DSP slices on a module level.

In conclusion, user data protection is very much up to the designer to implement and
keep in mind. Normal, robust coding and design work for state machine designs should
be applied for FPGAs just as for ASIC designs. Larger memory or register blocks such
as BRAM can be protected by error correcting codes. Indeed, in space applications,
RAM is almost always protected by EDAC. In [63], the authors present results for ECC
protected BRAM for the radiation-hardened Xilinx XQR5VFX130 FPGA. Flip-flops may
also be tripled and voted. The role of configuration memory SEU protection is to
guarantee the integrity of the logic function implemented in the circuit.

Page

 121

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

6 Conclusion

The results presented in this report suggest that standard, commercial SRAM-based
FPGAs from Xilinx can indeed be used in space applications for standard LEO and
GEO missions. The suitability of such devices, however, depends fully on the mission
profile, the target device and on the application itself. For suitable applications, the type
of FPGA discussed can provide a very cost-to-area-efficient alternative to conventional
ASICs, radiation hardened FPGAs and antifuse FPGAs.

It is recommended to implement TMR for most applications. TMR needs to be
combined with some type of scrubbing in order to be efficient. For certain applications,
duplication with comparison or some other error detection method may be feasible,
given that the application can afford the downtime while repairing and rerunning.

When implementing redundancy, tool-inferred TMR constitutes a convenient and safe
method of implementation, as no changes have to be made in the RTL code. In Xilinx
TMR tool and in Synplify Pro, TMR can be applied simply by setting a flag or setting
synthesis attributes.

Error detection-based scrubbing is most often superior in performance and response-
time compared to blind scrubbing. In the case of blind scrubbing, the scrubbing rate
needs to be adapted to the expected SEU rate. Scrubbing more often does not always
lead to better availability for the system. Blind Scrubbing, however, still serves a
purpose if done as maintenance in an adaptive manner for instance whenever the
system is idle.

The Xilinx SEU Controller Macro / SEM (SECDED) represent an area-efficient and
effective single error correction method. Combined with full or partial reconfiguration
upon double error detection, the method is an efficient scrubbing method. Partial
reconfiguration is in general better than full reconfiguration when combined with TMR,
as it allows module-level reconfiguration without interrupting the function of the circuit.
However, partial reconfiguration requires extra hardware, and is significantly more
complicated than simply triggering a full reconfiguration from an external PROM.

6.1 Other Recommendations

It should be noted that the use of on-chip RAM and DSP slices greatly affects the
overall susceptibility to radiation, which in turn increases the SEU rate experienced by
the device. BRAM and DSP slices.

It is recommended that each application where a non rad-hard device is considered is
evaluated thoroughly. All normal considerations regarding protection of user data, FSM
states and block RAM that apply to ASIC and rad-hard FPGA designs should be
applied to designs in SRAM-based FPGAs as well. This type of FPGA should be
considered for non-critical systems only, such as instruments, image processing
applications and non-time-critical communication links. Mission-critical, safety-critical or
real-time systems should not be implemented in standard commercial SRAM-based
FPGAs. Mission length will also need to be factored in the decision of whether or not to
use an SRAM-based commercial FPGA. For longer missions, system designers need
to make sure the selected FPGA has a high enough tolerated TID.

Page

 122

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Certain applications are more suitable for implementation in SRAM-based FPGAs than
others. Some applications can afford to rerun computations or transmissions, or may
have a natural downtime, such as communication links that are only active for short
periods. In these applications, scrubbing can be performed by taking advantage of the
natural window of downtime. This type of application load-based scrubbing relies on
the implemented fault masking to mask any errors during heavy workloads, and
scrubbing to correct errors when the application is free.

If redundancy is implemented in RTL code (represented by the module-level single and
triple voter TMR designs in this report), special case has to be taken to ensure that the
synthesis tool does not remove the intentionally designed redundancy by optimising. In
general, the designer needs to pay attention to what the design tools are doing to the
code, in order to make sure that the intended fault-tolerant techniques are kept.
Synthesis attributes to preserve redundancy are available in XST and Synplify, and
should be used. It is usually a good idea to keep a critical stance towards the design
tools. Even if no errors or warnings are reported, the tools may not produce what the
designer expects. Also, the designer should make sure that the synthesis tool does not
remove unreachable FSM states, as they may be important for robustness. In Synplify
Pro, it is recommended that the designer specifies the attributes syn_keep,
syn_preserve and syn_encoding for signals, components and state machines,
respectively.

If observability can be implemented for an application, at a feasible hardware cost, it is
often beneficial. Errors can be observed at module-level internally in the FPGA, or at a
device-level in the system. On a system level, it may be efficient to implement a single,
radiation-hardened scrubbing ASIC tasked with scrubbing multiple FPGAs. In case one
of the FPGAs in a system encounters an error, a system alarm type of signal can be
triggered, allowing the other FPGAs to adapt their workload while the faulty FPGA is
being repaired.

Page

 123

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

7 Future Work

Building upon the work presented in this report, several extensions are possible that
would add to the quality of the results. Using an application with feedback or strong
state dependence as a payload would allow the study of fault propagation and
persistence. It would also be a good platform for studying the efficiency of partial TMR,
for example by protecting only vital feedback loops with redundancy. An FIR filter
application was implemented during this project, but was never fully tested due to a
lack of time.

The test platform and host PC application show some unexpected behaviour from time
to time, most likely due to bugs. Adapting the platform to other FPGA architectures
than Virtex-5, and running tests to compare different FPGA families, would be a highly
interesting experiment.

Page

 124

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

8 Acknowledgements

We would like to express our gratitude to our supervisors, Peter Spjuth and Vilhelm
Geijer at RUAG Space, for their support, suggestions and patience with technical
questions, in spite of their busy schedules. Also we would like to thank our examiner
and academic supervisor, Professor Per Larsson-Edefors at Chalmers University of
Technology, for guiding and supporting us during this project, even when it meant
having to sacrifice his lunch breaks. We thank Stanley Mattsson and Sture Larsson at
RUAG Space for their support and input in radiation-related questions.

A thank you is also in order to Martin Lindskog at RUAG Space for helping out with
hardware and equipment. Furthermore, we thank our manager, Andreas Karlsson, for
his support and interest in our work, and for the opportunity for us to undertake this
thesis project at RUAG Space in the first place. Last but not least, big ups to the whole
Digital Research and Development team at RUAG Space for making it a great place for
us to do our thesis work.

Page

 125

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

9 Bibliography

[1] Xilinx, “UG470: 7 Series FPGAs Configuration User Guide,” 2013.

[2] E. Petersen, Single Events Effects in Aerospace, John Wiley & Sons, 2011.

[3] F. Sturesson, S. Mattsson, C. Carmichael and R. Harboe-Sorensen, “Heavy ion
characterization of SEU mitigation methods for the Virtex FPGA,” in European
Conference on Radiation and Its Effects on Components and Systems, 2001.

[4] H. Quinn, P. Graham, K. Morgan, J. Krone, M. Caffrey and M. Wirthlin, “An
Introduction to Radiation-Induced Failure Modes and Related Mitigation Methods
For Xilinx SRAM FPGAs,” in International Conference on Engineering of
Reconfigurable Systems & Algorithms, 2008.

[5] C. Yui, G. Swift, C. Carmichael and R. Koga, “SEU mitigation testing of Xilinx
Virtex II FPGAs,” in IEEE Radiation Effects Data Workshop, 2003.

[6] S. Habinc, Gaisler Research, “Suitability of reprogrammable FPGAs in space
applications,” 2002.

[7] J. G. Drobny, Ionizing Radiation and Polymers, Elsevie, 2012.

[8] “Stopping of Ions Heavier than Helium,” Journal of the ICRU, vol. 5, no. 1, 2005.

[9] T. Henriksen and D. H. Maillie, Radiation and Health, Taylor & Francis, 2003.

[10] J. H. Trainor, “Instrument and spacecraft faults associated with nuclear radiation in
space,” Advances in Space Research, vol. 14, no. 10, p. 685–693, 1994.

[11] B. M. Rabin, K. L. Carrihill-Knoll and B. Shukitt-Hale, “Operant responding
following exposure to HZE particles and its relationship to particle energy and
linear energy transfer,” Advances in Space Research, vol. 48, no. 2, pp. 370-377,
2011.

[12] D. G. Lesins, “Atmosphere,” AccessScience, McGraw Hill Education, [Online].
Available: http://www.accessscience.com/content/atmosphere/058800. [Accessed
31 01 2014].

[13] D. P. Riley and D. M. Walt, “Van Allen radiation,” AccessScience, McGraw Hill
Education, [Online]. Available: http://www.accessscience.com/content/van-allen-
radiation/727110. [Accessed 01 02 2014].

[14] P. Fortescue, G. Swinerd, J. Stark, A. Tatnall, J. Farrow, M. Bandecchi and C.
Francis, Spacecraft System Engineering, John Wiley & Sons, 2011.

[15] “CREME96, Critical Charge Method,” [Online]. Available:
https://creme.isde.vanderbilt.edu/CREME-MC/help/critical-charge-method.
[Accessed 02 02 2014].

[16] C. C. Foster, “Total Ionizing Dose and Displacement-Damage Effects in
Microelectronics,” MRS Bulletin, vol. 28, no. 2, pp. 136-140, 2003.

[17] Xilinx, “UG190: Virtex 5 User Guide,” 2012.

[18] Xilinx, “UG191: Virtex 5 FPGA Configuration User Guide,” 2012.

[19] Xilinx, “UG193: Virtex-5 FPGA Xtreme DSP Design Considerations,” 2012.

[20] F. Lima Karstensmidt, L. Sterpone, L. Carro and M. Sonza Reorda, “On the
Optimal Design of Triple Modular Redundancy Logic for SRAM-based FPGAs,” in
Proceedings of the Design, Automation and Test in Europe Conference and
Exhibition, 2005.

[21] K. Huang, Y. Hu, X. Li, G. Hua, H. Liu and B. Liu, “Exploiting Free LUT Entries to
Mitigate Soft Errors in SRAM-based FPGAs,” in Asian Test Symposium (ATS),
2011 .

[22] L. Sterpone and M. Violante, “A new reliability-oriented place and route algorithm
for SRAM-based FPGAs,” IEEE Transactions on Computers, vol. 55, no. 6, pp.

Page

 126

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

732 - 744 , 2006.

[23] A. Sari and M. Psarakis, “Scrubbing-based SEU mitigation approach for Systems-
on-Programmable-Chips,” in International Conference on Field-Programmable
Technology (FPT), 2011.

[24] K. Morgan, D. McMurtrey, B. Pratt and M. Wirthlin, “A Comparison of TMR With
Alternative Fault-Tolerant Design Techniques for FPGAs,” IEEE Transactions on
Nuclear Science, vol. 54, no. 6, pp. 2065 - 2072 , 2007.

[25] N. Storey, Safety Critical Computer Systems, Harlow: Addison-Wesley, 1996.

[26] H. Quinn, K. Morgan, P. Graham and J. Krone, “Domain Crossing Errors:
Limitations on Single Device Triple-Modular Redundancy Circuits in Xilinx FPGAs,”
IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2037 - 2043 , 2007.

[27] B. Pratt, M. Caffrey, J. F. Carroll, P. Graham, K. Morgan and M. Wirthlin, “Fine-
Grain SEU Mitigation for FPGAs Using Partial TMR,” Nuclear Science, vol. 55, no.
4, pp. 2274-2280, 2008.

[28] Gaisler Research, “Functional Triple Modular Redundancy (FTMR),” Göteborg,
2002.

[29] E. Kamanu, P. Reddy, K. Hsu and M. Lukowaik, “A new architecture for single-
event detection & reconfiguration of SRAM-based FPGAs,” in High Assurance
Systems Engineering Symposium, Plano, TX, 2007.

[30] X. Wang, “Partitioning Triple Modular Redundancy for Single Event Upset
Mitigation in FPGA,” in E-Product E-Service and E-Entertainment (ICEEE), Henan,
2012.

[31] G. L. Smith and L. de la Torre, “Techniques to Enable FPGA Based
Reconfigurable Fault Tolerant Space Computing,” in Aerospace Conference, Big
Sky, MT , 2006.

[32] A. Martin-Ortega, M. Alvarez, S. Esteve, S. Rodriguez and S. Lopez-Buedo,
“Radiation Hardening of FPGA-Based SoCs through Self-Reconfiguration and
XTMR Techniques,” in Southern Conference on Programmable Logic, San Carlos
de Bariloche , 2008.

[33] G.-H. Asadi and M. B. Tahoori, “Soft error mitigation for SRAM-based FPGAs,” in
IEEE VLSI Test Symposium, 2005.

[34] Xilinx, “XAPP987: Single Event Upset Mitigation Selection Guide,” 2008.

[35] Xilinx, “XAPP864: SEU Strategies for Virtex-5 Devices,” 2010.

[36] I. Herrera-Alzu and M. López-Vallejo, “Design Techniques for Xilinx Virtex FPGA
Configuration Memory Scrubbers,” IEEE Transactions on Nuclear Science, vol. 60,
no. 1, pp. 376 - 385, 2013.

[37] J.-Y. Lee, C.-R. Chang, N. Jing, J. Su, S. Wen, R. Wong and L. He,
“Heterogeneous Configuration Memory Scrubbing for Soft Error Mitigation in
FPGAs,” in International Conference on Field-Programmable Technology (FPT),
2012.

[38] NASA REAG, Melanie Berg, “Xilinx Virtex-Family Scrubbing Methodologies,” 2012.

[39] M. Berg, C. Poivey, D. Petrick, D. Espinosa, A. Lesea, K. LaBel, M. Friendlich, H.
Kim and A. Phan, “Effectiveness of internal vs. external SEU scrubbing mitigation
strategies in a Xilinx FPGA: Design, test, and analysis,” in European Conference
on Radiation and Its Effects on Components and Systems (RADECS), 2007.

[40] P. Adell, G. Allen, G. Swift and S. McClure, “Assessing and mitigating radiation
effects in Xilinx SRAM FPGAs,” in European Conference on Radiation and Its
Effects on Components and Systems (RADECS) , 2008.

[41] J. Heiner, B. Sellers, M. Wirthlin and J. Kalb, “FPGA Partial Reconfiguration via
Configuration Scrubbing,” in International Conference on Field Programmable

Page

 127

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

Logic and Applications (FPL), 2009.

[42] Xilinx, “New Generation Virtex-5 SEU Controller,” 2010.

[43] Taft Naegle, S., Burke, G., Newell, M, NASA Jet Propulsion Laboratory, “Fault-
Tolerant Coding for State Machines,” 2008.

[44] S. Habinc, Gaisler Research, “Functional Triple Modular Redundancy (FTMR),”
2002.

[45] G. Allen, L. Edmonds, T. C.W., G. Swift and C. Carmichael, “Single-Event Upset
(SEU) Results of Embedded Error Detect and Correct Enabled Block Random
Access Memory (Block RAM) Within the Xilinx XQR5VFX130,” IEEE Transactions
on Nuclear Science, vol. 57, no. 6, 2010.

[46] M. Sonza Reorda, M. Violante, C. Meinhardt and R. Reis, “A low-cost SEE
mitigation solution for soft-processors embedded in systems on programmable
chips,” in IEEE/ACM Design Automation & Test in Europe (DATE), 2009.

[47] S. Punnekkat, A. Burns and R. Davis, “Analysis of Checkpointing for Real-Time
Systems,” Real-Time Systems, vol. 20, no. 1, pp. 83-102, 2001.

[48] A. Sari, M. Psarakis and D. Gizopoulos, “Combining Checkpointing and Scrubbing
in FPGA-based Real-Time Systems,” in IEEE VLSI Test Symposium (VTS), 2013.

[49] H. Zarandi, S. Miremadi, D. Pradhan and J. Mathew, “SEU-Mitigation Placement
and Routing Algorithms and Their Impact in SRAM-based FPGAs,” in International
Symposium on Quality Electronics Design (ISQED), 2007.

[50] W. Xu, J. Wang, Y. Hu and J.-Y. Lee, “In-Place FPGA Retiming for Mitigation of
Variational Single-Event Transient Faults,” IEEE Transactions on Circuits and
Systems, vol. 58, no. 6, pp. 1372 - 1381 , 2011.

[51] A. Das, S. Venkataraman and A. Kumar, “Improving autonomous soft-error
tolerance of FPGA through LUT configuration bit manipulation,” in International
Conference on Field Programmable Logic and Applications (FPL), 2013.

[52] V. Betz, J. Rose and A. Marquardt, Architecture and CAD for Deep-Submicron
FPGAs, Kluwer Academic Publishers, 1999.

[53] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for
FPGA Research,” in International Workshop on Field Programmable Logic and
Applications, 1997.

[54] J.-Y. Lee, Y. Hu, R. Majumdar, L. He and M. Li, “Fault-tolerant resynthesis with
dual-output LUTs,” in Asia and South Pacific Design Automation Conference
(ASP-DAC), 2010.

[55] M. Alderighi, F. Casini, S. d'Angelo and M. Mancini, “Evaluation of Single Event
Upset Mitigation Schemes for SRAM based FPGAs using the FLIPPER Fault
Injection Platform,” in IEEE International Symposium on Defect and Fault-
Tolerance in VLSI Systems (DFT), 2007 .

[56] AvNet, “Xilinx Virtex-5 LX Evaluation Kit User Guide (Rev 1.5),” 2009.

[57] National Institute of Standards and Technology, “Specification of the Advanced
Encryption Standard. FIPS PUB 197,” 2001.

[58] J. Heiner, N. Collins and M. Wirthlin, “Fault Tolerant ICAP Controller for High-
Reliable Internal Scrubbing,” IEEE Aerospace Conference, pp. 1-10, 2008.

[59] Xilinx, “UG632: PlanAhead User Guide (v14.1),” 2012.

[60] E. Abolhassani Ghazaani, Z. Ghaderi and S. Ghassem Miremadi, “A Non-
instrusive Portable Fault Injection Framework to Assess Reliability of FPGA-based
Designs,” in 2013 International Conference on Field-Programmable Technology
(FPT), 2013.

[61] M. Straka, J. Kastil and Z. Kotasek, “SEU Simulation Framework for Xilinx FPGA:
First Step Towards Testing Fault Tolerant Systems,” in 14th Euromicro Conference

Page

 128

SEU Mitigation Techniques for Advanced Reprogrammable FPGA in Space

 Brosser & Milh 2014

on Digital System Design, 2011.

[62] Xilinx, “UG628: Command Line Tools User Guide (v13.1),” 2011.

[63] Xilinx, “UG612: Timing Closure User Guide (v13.4),” 2012.

[64] Xilinx, “DS192: Radiation-Hardened, Space-Grade Virtex-5QV Family Overview,”
2012.

[65] G. Swift (Xilinx Inc.), G. Allen (Jet Propulsion Laboratory), “Virtex-5QV Static SEU
Characterization Summary,” 2013.

[66] G. Allen, L. Edmonds, C. W. Tseng, G. Swift and C. Carmichael, “Single-Event
Upset (SEU) Results of Embedded Error Detect and Correct Enabled Block
Random Access Memory (Block RAM) Within the Xilinx XQR5VFX130,” IEEE
Transactions on Nuclear Science, vol. 57, no. 6, pp. 3426 - 3431 , 2012.

[67] H. Quinn, G. Allen, G. Swift, C. W. Tseng, P. Graham, K. Morgan and P. Ostler,
“SEU-Susceptibility of Logical Constants in Xilinx FPGA Designs,” IEEE
Transactions on Nuclear Science, vol. 56, no. 6, pp. 3527-3533, 2009.

