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On Feedback Resource Allocation in
Multiple-Input-Single-Output Systems using Partial

CSI Feedback
Behrooz Makki, Tommy Svensson,Senior Member, IEEE, Thomas Eriksson and Merouane Debbah,Fellow, IEEE

Abstract—This paper studies the problem of feedback resource
allocation in multiple-input-single-output (MISO) channels utiliz-
ing partial channel state information (CSI) feedback. Considering
low/moderate signal-to-noise ratios (SNRs), the optimal quantiz-
ers and the feedback bit allocation maximizing the throughput
are obtained in the asymptotic case where the number of feedback
bits increases. Moreover, the results are utilized to derive the
optimal retransmission rates in the automatic repeat request
(ARQ) protocols and joint CSI-ARQ schemes are proposed for
the MISO setups. We show that uniform channel amplitude
quantization is asymptotically optimal, in terms of throughput.
Also, the optimal retransmission rates of the incremental redun-
dancy (INR) ARQ protocols follow an arithmetic progression
in the exponential domain. Under certain conditions, a MISO
system using quantized CSI can be mapped to a MISO or a
SISO (S:single) setup using ARQ or joint CSI-ARQ feedback,
in the sense that they lead to the same throughput. Finally,
to maximize the throughput, the optimal number of channel
direction quantization bits should be(M−1) times the number of
amplitude quantization bits, whereM is the number of transmit
antennas.

I. I NTRODUCTION

Designing the optimal channel state information (CSI)
quantization and feedback bit allocation for, e.g., maximizing
the power-limited throughput is a complicated non-convex
problem which, depending on the fading model, may have
no closed-form solution [1]–[3]. Particularly, the problem
becomes more complex when the number of antennas at the
transmitter(s) or receiver(s) increases. For this reason,most
of the papers in the field of quantized CSI feedback focus
on either channel amplitude quantization, e.g., [4], [5] or
channel direction quantization [6]–[15] and the quantization is
normally based on random vector quantization or predefined
tables of thresholds [13]–[16]. However, as also discussedin,
e.g., [17]–[21], considerable performance improvement can be
achieved when both partial channel direction and amplitude
information are exploited for rate/power adaptation. On the
other hand, feedback bit distribution is mostly based on sim-
ulations [22], [23] and the problem of joint CSI quantization
and feedback bit allocation for maximizing the throughput has
not been well formulated yet.
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From another perspective, automatic repeat request (ARQ)
is a sequential feedback approach to provide the transmitter
with information about the channel quality. The optimization
of the (re)transmission rates in the ARQ protocols is by itself
a complex non-convex problem [2], [24]–[27]. However, as
demonstrated in [2], [24] and in the following, under certain
conditions the ARQ-based system can be mapped into an
equivalent setup using quantized CSI feedback, in the sense
that they lead to the same throughput. Thus, it is interesting
to address the optimal CSI quantization and feedback bit
distribution problem, because, as illustrated in the following,
the results are useful not only for the quantized CSI schemes
but also for deriving the optimal ARQ-based retransmission
rates.

This paper studies the design of CSI quantization and
feedback bit allocation in the multiple-input-single-output
(MISO) setups. The optimization objective function is the
system throughput. Also, the discussions are presented for
the low/moderate signal-to-noise ratio (SNR) regimes and in
the asymptotic conditions when the number of feedback bits
increases. In the meantime, the analytical conclusions match
with the numerical simulations with very high accuracy when
tested for finite number of feedback bits. Moreover, we derive
the optimal retransmission rates in the ARQ protocols, present
joint CSI-ARQ approaches for the MISO networks and show
conditions for when the quantized CSI, the ARQ and the joint
CSI-ARQ feedback schemes can be mapped to each other.

The main conclusions of the paper are as follows:
• Considering low/moderate SNRs and product channel

quantization codebooks with high number of feedback
bits, uniform channel amplitude quantization is optimal
in terms of throughput.

• The optimal low-SNR retransmission rates of the in-
cremental redundancy (INR) ARQ protocols follow an
arithmetic progression rule in the exponential domain
when the number of retransmissions increases.

• With proper setting of the number of quantization regions,
the transmission power and the number of retransmis-
sions, there exist mappings between the MISO and SISO
(S: single) systems using joint channel direction and
amplitude quantization, only channel amplitude quanti-
zation, the INR ARQ or joint CSI-INR ARQ feedback,
in the sense that they result in the same throughput.

• With sufficiently large number of feedback bits and
low/moderate SNRs, we haveQ = (M − 1)N where
M is the number of transmit antennas andQ and N
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represent the optimal number of channel direction and
amplitude feedback bits, respectively. Interestingly, our
theoretical results are in harmony with the feedback bit
allocation rules in, e.g., the 3GPP standards [1, Section
IV.A].

Moreover, the numerical results indicate that the optimal
channel amplitude quantization boundaries get closer to zero
when the transmission power increases. Also, the efficiency
of the uniform channel amplitude quantization is improved by
increasing the number of transmit antennas. Finally, substantial
throughput increment is achieved via very limited number of
feedback bits, if the feedback signal is properly designed.

We should mention that the problem of CSI quantization
has been previously studied in various papers, e.g. [2]–[21],
but we develop new techniques and derive new conclusions
that have not been presented before; as opposed to [2]–[16],
we consider MISO setups, both the channel amplitude and
direction quantizers are optimized in terms of throughput
and we determine efficient feedback bit distribution between
the channel direction and amplitude information maximizing
the throughput. Moreover, the problem setup of the paper is
different from the ones in [17]–[21] in which block diagno-
lization and predefined quantizers have been used for inter-cell
interference suppression [17], numerical methods have been
implemented to optimize (in terms of multiuser diversity gain)
the number of quantization bits [18], a quantized CSI-based
block diagonalization scheme is proposed for multiuser MIMO
[19] and the feedback bit allocation has been optimized for
outage-limited average power minimization [20], [21]. Finally,
the discussions that we present about the ARQ and joint CSI-
ARQ protocols have been considered by none of these papers.

II. SYSTEM MODEL

Consider a MISO system withM transmit antennas which
can be modeled as

y =
√
PhT vs+ z. (1)

Here,P is the transmission power,h = [h1 . . . hM ]T ∈ CM

and v denote the fading random vector and the unit-norm
beamforming vector, respectively,s is the input signal and
z ∈ CN (0, 1) represents the white complex Gaussian noise
added at the receiver. Also,(.)T denotes the transpose operator.

We study independent and identically distributed (iid) block-
fading channels where the channel coefficients remain constant
for a long time, determined by the channel coherence time, and
then change according to their probability density functions
(pdf:s). The results are obtained for the family of exponential
distributions [28, Section 4.4] which can model most relevant
fading conditions. LetfG andFG be the pdf and the cumu-
lative distribution function (cdf) of a random variable in the
family of exponential distributions. Among the propertiesof
the family of exponential distributions are [28, Section 4.4]

∀g > 0, ∃µ1 ≥ 0,
dfG(g)

dg
< µ1, (2)

∀g > 0, ∃µ2 ≥ 0, fG(g)(
dfG(g)

dg
)−1 ≤ µ2. (3)
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Figure 1. The quantization boundaries in (a) a SISO and (b) a2× 1 MISO
setup. WithM transmit antennas, the outage occurs iff the channel realization
drops into theM -dimensional ball centered at the origin with radiusg1;
otherwise the codeword is always decoded correctly.

The receiver is assumed to have perfect CSI which is an
acceptable assumption in block-fading channels [2]–[18],[20].
On the other hand, the transmitter is provided with quantized
CSI (or ARQ feedback), as illustrated in the following1. We
concentrate on the continuous data communication model [2],
[24]–[26] where a new codeword transmission starts as soon as
the previous codeword transmission ends. Finally, the results
are presented in natural logarithm basis and the throughputis
given in nats-per-channel-use (npcu).

III. PERFORMANCE ANALYSIS

With the total ofB feedback bits, i.e., dividingCM into 2B

quantization regions (QRs), the throughput of a MISO setup
is obtained by

η =
2B
∑

j=1

Rj Pr

(

Rj ≤ log(1 + P
∥

∥hT vj
∥

∥

2
)
⋂

h ∈ ξj

)

, (4)

wherevj andRj denote the unit-norm beamforming vector
and the data transmission rate considered for thej-th QR,
respectively, andξj ⊂ CM is thej-th QR. Also, (4) is obtained
by taking the expectation on the decodable data rates of all
QRs.

To maximize the throughput, the boundaries of the QRs, the
transmission ratesRj and the beamforming vectorsvj should
be optimized which, as stated before, cannot be determined
with a closed-form solution. Therefore, suboptimal quantizers
are normally considered and numerical solutions are utilized
[4]–[18], [20], [21]. Here, we consider the class of product
channel quantization codebooks which quantize the channel
direction and amplitude information separately. Note that,
while being suboptimal, the product quantization approachhas
some advantages such as lower storage requirements and faster
quantization [20], [21], [29]. Also, many practical systems are

1The transmitter is assumed to know the long-term channel statistics, as it
is required for parameter optimization.
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equipped with channel amplitude quantizers [20]. Hence, the
product quantization can be easily adopted in these systems.

With a product channel quantization approach, the channel
amplitude and direction information are comprised as follows.
Defining G = ‖h‖2 as thesquared channel amplitude, the
distribution of the random variableG is partitioned intoN
QRs [gn, gn+1), where gn’s are the amplitude quantization
boundaries. Also, the channel direction information is quan-
tized intoQ QRs with a uniform quantizer which is optimal
for channel direction quantization in iid fading conditions. As
examples, the 1- and the 2-dimensional representations of the
QRs are represented in Figs. 1a and 1b, respectively. Also,
note that with the considered quantization scheme we have
NQ = 2B.

Following the same procedure as in the SISO systems [2,
Lemma 1], [3], it can be proved that the maximum throughput
is achieved when the channel is assumed to be equal to its
worst case in each QR. In this way, using (4), the maximum
throughput is obtained by considering the beamformers ac-
cording to

max
vj

inf
∀h∈ξj

|hT vj | = inf
∀h∈ξj

|hT wj | = √
gj cos γ, (5)

whereγ is the angle of the QR (See Fig. 1b as an example).
That is, the optimal beamformer in each QR is the unit-norm
vector at the center of the region, denoted bywj , and the data
transmission rate associated with thej-th QR is determined
as

Rj = inf
∀h∈ξj

log(1 + P |hT wj|2) = log(1 + Pgjcos
2γ). (6)

In this way, the outage occurs iff the channel realization
drops into theM -dimensional ball centered at the origin with
radiusg1; otherwise the codeword is always decoded correctly.
Finally, due to the symmetry of the QRs in terms of direction
parameters, the system throughput is found as

η =
∑N

n=1
log(1 + Pgncos

2γ) Pr

(

G ∈ [gn, gn+1)

)

=
∑N

n=1
log(1 + Pgncos

2γ)

(

FG(gn+1)− FG(gn)

)

.

(7)

The objective of the paper is to maximize (7) subject to
the total feedback budgetNQ = 2B. Therefore,N , Q

and the quantization boundariesgn, ∀n, should be properly
designed. To achieve this goal, we consider the following
procedure. First, we derive a closed-form relation betweenthe
quantization boundariesgn, ∀n (Lemma 1). The second step
is to express the termcos2γ, which represents the effect of
quantized channel direction information, as a function ofQ,

i.e., the number of direction QRs. Here, we use the results of
[11] leading to (13). Then, the results of Lemma 1 are utilized
to write the quantization boundaries as a function of the
number of amplitude QRsN . Lemmas 2 and 3 are dedicated
to derive this function. Following the steps, (7) is rephrased
as (17) which is a function ofN andQ. Therefore, adding the
constraintNQ = 2B, we can determine the optimal feedback
bit distribution rules, maximizing the throughput, as in (20).
Indeed, to follow the steps, we need to use approximation

and bounding techniques. In all bounding and approximation
steps of the developed results, such as (12)-(14) and (19),
we upper-bound the throughput. Also, we concentrate on the
low-SNR regime with high resolution feedback, to keep the
bounds/approximations reasonably tight. Moreover, as demon-
strated in the following, the final conclusions are in harmony
with the numerical simulations with high accuracy.

Let us first find a relationship between the quantization
boundariesgn, ∀n, as stated in Lemma 1.

Lemma 1. With a product channel quantizer and low
SNRs, the optimal, in terms of throughput, channel amplitude
quantization tends towards uniform quantization, when the
number of feedback bits increases asymptotically.

Proof. Setting ∂η
∂gn

= 0 in (7) leads to

Pcos2γ(FG(gn+1)−FG(gn))
1+Pcos2γgn

+ fG(gn) log(
1+Pcos2γgn−1

1+Pcos2γgn
) = 0.

(8)

Assuming low SNR regimes, i.e.,P → 0, (8) is rephrased as

FG(gn+1)− FG(gn) + fG(gn)(gn−1 − gn) = 0 (9)

which leads to

gn =
gn+1 + gn−1

2
. (10)

Here, we have usedlog(1 + t) → t for small values oft and
(10) follows from(FG(gn+1)−FG(gn)) → fG(gn)(gn+1−gn)
for sufficiently large number of QRs. Thus, (10) indicates that,
at low SNRs, the quantization boundaries follow an arithmetic
progression. That is, the optimal, in terms of throughput,
channel amplitude quantization tends towards uniform quanti-
zation, when the number of QRs increases.

Interestingly, the conclusion of the lemma is independent
of the fading pdf and the transmission power as long as we
are in low SNR regime and the number of QRs is high. Also,
with uniform channel quantization we have

gn = g1 + (n− 1)α, (11)

whereα is the step size of the uniform quantization. Here, it is
interesting to note that, although Lemma 1 proves the asymp-
totic optimality of the uniform quantizers in high-resolution
feedback regimes, we still need to find the proper step size
such that the entire range of positive values is covered by
the quantizer and the gradient of the throughput, with respect
to the quantization boundaries, goes to zero. The optimality
condition of the step size is derived in Lemma 3 as explained
in the following.

The following discussions are presented for the low SNR
regime where, using (7), the normalized throughput function
(normalized by the transmission powerP ) is given by

η̃ = cos2γ
∑N

j=1
gj

(

FG(gj+1)− FG(gj)
)

. (12)

This is an appropriate approximation at low SNRs (see [30]
and the references therein). Also, note that the low-SNR
regime is of interest in many communication scenarios such
as wideband systems, sensor networks, cognitive radio, deep-
space communications via satellites and communication at
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the edge of the cellular networks, e.g., [31], [32], where the
available power per degree of freedom can be vanishingly
small.

To follow the steps and rewrite (12) as a function ofQ and
N , we use the bounds obtained in [11, eq. 15], i.e.,

(sin γ)−2(M−1) < Q < (
sin γ

2
)−2(M−1)

⇒ 1− 4Q− 1
M−1 < cos2γ < 1−Q− 1

M−1 , (13)

to upper bound the direction-related part of (12) ascos2γ <

1 − Q− 1
M−1 . Then, Lemma 2 is utilized to upper bound the

summation part of (12) which reflects the effect of channel
amplitude quantization.

Lemma 2. The normalized throughput (12) is upper bounded
by

η̃

E{G} cos2 γ ≤ 1 +
α(N − 1)

g1

−
∞
∑

j=1

(
−α

g1
)
j+1
{

1

j + 1

j
∑

k=0

(

j + 1

k

)

Bk(N − 1)
j+1−k

}

,

(14)

whereBk ’s are the Bernoulli numbers, E{.} is the expectation
operator and

(

n
k

)

denotes the “n choose k” operator.

Proof. Using (12), the bound is obtained by

η̃
cos2 γ

(a)
= g1Pr(G ≥ g1) + α

N
∑

n=2
Pr(G ≥ gn)

(b)

≤ E{G}(1 +
N
∑

n=2

α
gn
)

(c)
= E{G}

(

1 + α
g1

N−1
∑

n=1
(1 +

∞
∑

j=1

(−1)
j
(nα
g1

)
j
)
)

= E{G}
(

1 + α(N−1)
g1

−
∞
∑

j=1

( α
g1
)j+1

{

1
j+1

j
∑

k=0

(

j+1
k

)

Bk(N − 1)j+1−k
})

.

(15)

Here, (a) comes from (11) and some manipulations and(b)

is based on Markov’s inequalityPr(G ≥ x) ≤ E{G}
x

, x ≥ 0
[33, p.91]. Then,(c) is obtained by (11) and Taylor expansion
of the function 1

1+x
and the last equality follows from some

manipulations and the definition of Bernoulli numbers [34].

Lemma 2 rephrases the throughput as a function of the first
quantization boundaryg1 andα. Therefore, the next step to
write (7) based onQ andN is to representα as a function of
N. The representation is derived in Lemma 3 as follows.

Lemma 3. With sufficiently high number of QRs and low
SNRs, the optimal, in terms of throughput, quantization step
sizeα is given by

α = N−ε(N), lim
N→∞

ε(N) → 1, (16)

whereε(N) can be any function of the total number of QRs
N .

Proof. The proof follows from the fact that, for every given
power, a necessary condition for the optimality of the quanti-
zation approach is that the gradient of the throughput function

with respect to the quantization boundaries goes to zero. Thus,
(16) is obtained by finding the gradient of (12) with respect
to gn’s, and letting it go to zero. More details can be found
in the appendix2.

Using (13), (14) and (16), the normalized throughput (12)
is represented as

η̃ ≤ E{G}(1−Q− 1
M−1 )

(

1 + N−ε(N)

g1
(N − 1)

−
∞
∑

j=1

(−N−ε(N)

g1
)
j+1
{

1
j+1

j
∑

k=0

(

j+1
k

)

Bk(N − 1)j+1−k

})

,

(17)

which is a function ofN andQ; this was our ultimate goal.
Then, with a feedback budget constraintNQ = 2B, (17) is
used to formulate the optimal, in terms of throughput, feedback
bit distribution problem as

max
N,Q

{

(1 −Q− 1
M−1 )

(

1 + N−ε(N)

g1
(N − 1)

−
∞
∑

j=1

(−N−ε(N)

g1
)
j+1{

1
j+1

j
∑

k=0

(

j+1
k

)

Bk(N − 1)
j+1−k

}

)}

s.t.NQ = 2B.
(18)

Using B0 = 1, B1 = 1
2 , lim

N→∞
ε(N) → 1 and the first-order

approximation of the summation term in (17) by removing the
termsN−i, i > 1, for large values ofN , we take the logarithm
of the objective function to rewrite (18) as

max
N,Q

{log(1 − 1
aN

) + log(1 −Q− 1
M−1 )}

(d)≡ min
N,Q

{ 1
a
N−1 +Q− 1

M−1 }
s.t.NQ = 2B,

(19)

where a
.
=

1+ 1
g1

−
∑

∞

j=1
1

j+1 (
−1
g1

)j+1

1
g1

− 1
2

∑
∞

j=1 (−1
g1

)j+1
and (d) holds for large

values ofN andQ on which we focus. The optimal values of
N andQ are obtained by setting1

a
N−1 = Q− 1

M−1 , NQ =
2B, which definingQ .

= log2(Q), N .
= log2(N) andA .

=
log2(a) leads to

Q = M−1
M

B + M−1
M

A, (20)

N = 1
M
B − M−1

M
A. (21)

The optimal numbers of bits are the closest integers to (20)-
(21). Interestingly, for large values ofB, (20)-(21) result in

Q = (M − 1)N . (22)

That is, for sufficiently large number of feedback bits and
low/moderate SNRs, the optimal number of quantization bits
considered for channel direction information feedback tends
to be(M − 1) times the number of feedback bits required for
channel amplitude information feedback.

2Along with Lemma 3, it is interesting to note that, with the family of
exponential distributions and the optimal design of the high-resolution uniform
quantizer, the expected overload distortion (related to the outer region of the
quantizer) tends to zero faster than the granular distortion (corresponding to
the in-region distortion) [35].
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Regarding the derived bit allocation rule, the following
points worth to be mentioned:

• The derived bit allocation rule is independent of the
fading pdf and the transmission power as long as the
transmission power is sufficiently low. Also, (22) holds
for different step sizes as long as the optimality condition
of Lemma 3 is satisfied.

• With a different amplitude quantization approach, the
same bit allocation rule as in (22) has been previously
derived by [20] for a different problem where the goal has
been to design the power controllers for the MISO setups
in outage-limited conditions. There, the optimal ampli-
tude QRs minimizing the outage-limited transmission
power have been shown to follow a geometric sequence,
as opposed to our results with uniform channel amplitude
quantization.

• Our theoretical conclusion is in line with, e.g., the stan-
dard 3GPP Release-99 where, with 2 transmit antennas, 2
and 3 feedback bits are considered for channel amplitude
and direction quantization, respectively [1, Section IV.A]
(With M = 2 and B = 5, (20)-(21) are rephrased
as Q = 2.5 + 0.5A,N = 2.5 − 0.5A which for the
practical range ofA lead to the integer numbers of bits
Q = 3,N = 2).

• We presented the analytical results for iid fading condi-
tions, in harmony with [4], [5], [9]–[18], [20]. Limited
feedback in correlated Rayleigh-fading MISO setups has
been previously studied in, e.g., [6]–[8]. Particularly, as
shown in [7], at low/moderate SNRs and with high-
resolution feedback, on which we focus, the capacity
loss/decaying factor of the iid and correlated Rayleigh-
fading channels, due to channel quantization, are the same
and are given by [7, eq. (43)-(45)] which correspond to
(13). Therefore, although we present the results for iid
channels, (with high accuracy) the same bit allocation
rule as in (22) holds for the correlated channels at
low/moderate SNRs as well.

• Our results are derived based on the high-resolution
feedback assumption. However, as a well-known result
in the source coding area, the high-resolution bounds
agree well with the simulation results when tested for
low resolutions, e.g., [7], [35] (see Figs. 2-6 as well).

In Figs. 2-6, we evaluate the simulation results for Rayleigh-
fading channels where each element of the channel vector
h follows CN (0, 1). Demonstrated in Fig. 2 are the optimal
channel amplitude quantization boundaries for different trans-
mission SNRs10 log10 P and N = Q = 2. Also, setting
M = 2 and SNR= −3dB, Fig. 3 shows the optimal bit
distribution obtained by exhaustive search and compares the
results with the ones obtained via our theoretical derivation
(22). Here, the results are obtained for the optimal and uniform
quantization approaches which, for the considered parameter
setting of the figure, lead to the same optimal bit allocations
demonstrated in the figure. The effect of different channel
quantization schemes on the throughput is investigated in Figs.
4-5. Here, for different numbers of transmit antennas, the
relative throughput difference function∆ = ηopt−η

ηopt % is plotted

whereη denotes the throughput achieved with uniform channel
amplitude quantization andηopt is the maximum throughput
achieved by exhaustive search on the amplitude QRs (Fig. 4).
Also, considering perfect channel direction information,Fig.
5 shows the throughput for different quantization schemes and
M = 2. The results are obtained for different total numbers
of feedback bits and transmission SNRs.

As demonstrated in the figures, the optimal channel ampli-
tude quantization is very close to uniform quantization even
for limited number of feedback bits (Fig. 2). However, the
last quantization boundary of the optimal quantizer grows
large, as expected. Moreover, the optimal channel ampli-
tude quantization boundaries get closer to zero when the
transmission power increases (Fig. 2). The theoretical results
of (20)-(22) are in harmony with the optimal feedback bit
allocation rules derived via simulations, when the total number
of feedback bits increases (Fig. 3). Also, it is interestingto
note that optimizing the throughput at high SNRs we observe
the optimal number of channel direction quantization bits to
be higher (or equal) than the ones allocated for amplitude
quantization. However, depending on the number of antennas
and the SNR, different optimal bit allocations are obtained
at high SNRs; this is expected because our results have not
been proved for high SNRs. In Fig. 4, we observe higher
relative throughput difference in the cases withN = 3,
compared to the case ofN = 2, which is because of the
finite number of feedback bits and the range of SNR in the
figure. On the other hand, the efficiency of the uniform channel
amplitude quantization is improved by increasing the number
of transmit antennas/feedback bits, and the difference between
the throughput of the optimal and uniform quantization-based
schemes is negligible even with limited number of feedback
bits (Figs. 4-5). Particularly, for a large range of SNRs the
relative throughput difference is less than1% (Fig.4).

To close the discussions, we should mention that throughout
the paper we concentrate on the single-user MISO setups.
Our reasons for selecting the MISO systems are 1) different
standards such as the 3GPP [1, Section IV.A] and the 3GPP
LTE [1, Section IV.D], [36] mainly concentrate on the limited
feedback schemes for the MISO setups, 2) the analytical
results can be derived/followed, 3) a large portion of the
related literature is devoted to the MISO systems, e.g., [6]–
[8], [10], [14], [20], [36]. However, our results also provide
some insights/tools for the cases with multiuser MIMO. An
interesting extension of the paper, in which we are currently
involved, is to study the feedback distribution in multiuser
systems. Intuitively, we expect the same conclusions as in
the single-user MISO setup, when we extend the results to
the multiuser systems. Particularly, considering the outage-
limited power minimization problem in the multiuser setups,
[21] shows the same feedback bit distribution rule as in (22).
Finally, deriving feedback bit distribution rules based onthe
lower bounds of the throughput is an interesting topic for
extensions.

A. Relevance to the ARQ-Based Schemes

It has been previously demonstrated that the throughput of a
system utilizing INR ARQ protocol with a maximum ofI+1



6

0.5 1 1.5 2 2.5 3 3.5
Quantization boundaries, gn

 

 

SNR=1 dB
SNR=-5dB

Rayleigh fading channels,
M = 2, N = 2,Q = 2

Figure 2. The optimal quantization boundaries maximizing the throughput,
Rayleigh-fading channel,M = 2,Q = N = 2. As demonstrated in the
following, the results can be mapped to the optimal retransmission rates in a
MISO setup utilizing joint CSI-INR ARQ withQ channel direction feedback
bits and a maximum ofI + 1 = 2N INR-based retransmissions. Also, with
proper scaling of the transmission SNR, the results of the figure give 1)
the optimal retransmission rates in a MISO-INR ARQ setup utilizing perfect
channel direction information and 2) the optimal QRs in a MISO setup with
quantized channel amplitude and perfect channel directioninformation. See
Theorem 1 and its following discussions for more details.
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the optimal feedback resource allocation between the channel direction
quantization and INR ARQ feedback in a joint CSI-INR ARQ feedback
approach. See Theorem 1 and its following discussions for more details.
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amplitude feedback bitsN . Rayleigh-fading channel,M = 2. The results are
obtained with perfect channel direction information at thetransmitter, while
they can be mapped to the cases with quantized channel direction feedback
and scaled transmission SNRs (See Theorem 1).

(re)transmission rounds, continuous data communication and
uniform power allocation is obtained by [2], [24]3

ηINR =
∑I+1

i=1
RINR

i

(

FG(
eR

INR
i−1 − 1

P
)− FG(

eR
INR
i − 1

P
)

)

.

(23)

Here,RINR
i , RINR

0
.
= ∞, is the equivalent data rate at the end

of the i-th round. Then, with a SISO setup, [2, Theorem 1],
[24, Lemma 3] have used (23) to relate the throughput of the
ARQ-based scheme to the throughput in the quantized CSI-
based approach. The following theorem extends the results of
[2], [24] to a MISO setup. Moreover, we derive the optimal,
in terms of throughput, rate allocation of the INR ARQ and
propose joint CSI-ARQ protocols which lead to the same
throughput as in the cases with only CSI quantization. The
theorem is of interest because 1) it uses the results of the
quantized CSI scheme to solve the problem of optimal retrans-
mission rate allocation in the MISO-INR systems; the problem
which is complex non-convex in general. Moreover, 2) there
are many papers using only channel amplitude or channel
direction quantization. Then, the theorem provides connections
between the papers considering one of these schemes.

Theorem 1. The following assertions are valid:

a) Maximizing the low-SNR throughput with asymptotically
high number of retransmissions, the equivalent data rates
of the INR protocol follow an arithmetic progression in
the exponential domain.

b) In the optimal case, the same throughput is achieved in
the following scenarios:

– Scenario 1: A MISO setup with product CSI quan-
tization consisting ofN andQ QRs for the channel

3In [2], [24], the SISO model is considered. But, the same argument as in
[2], [24] is valid for the MISO setup too.
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amplitude and direction quantization, respectively,
and transmission powerP .

– Scenario 2: A MISO setup utilizing joint CSI-ARQ
feedback as follows. First, a uniform channel direc-
tion quantization withQ QRs is used to inform the
transmitter about the channel direction. Then, with
no pre-knowledge about the channel amplitude, the
data is transmitted via an INR ARQ with a maximum
of I + 1 = N retransmissions and powerP .

– Scenario 3: A MISO-INR approach with a maximum
of I + 1 = N retransmissions, perfect channel di-
rection information and transmission powerP cos2 γ
with γ obtained in Scenario 1.

– Scenario 4: A MISO setup withN channel amplitude
QRs, perfect channel direction information and trans-
mission powerP cos2 γ with γ obtained in Scenario
1.

In all considered scenarios, the throughput is given by
(7).

Proof. Using the variable transformationRINR
I+2−i

.
= log(1 +

Pgi) and replacingP cos2 γ by P, (23) is mapped to (7) with
N = I + 1. Therefore, following the same arguments as in
Lemma 1, we have

eR
INR
i =

eR
INR
i+1 + eR

INR
i−1

2
(24)

in the optimal case, which follows from (10) andRINR
I+2−i

.
=

log(1 + Pgi). That is, at low SNRs, the equivalent data rates
of the INR protocol follow an arithmetic progression in the
exponential domain, as stated in part (a) of the theorem.

For part (b), the proof follows from (7) and (23) where,
using the variable transformRINR

I+2−i

.
= log(1 + Pgi) and re-

placingP cos2 γ by P whenever required, it can be shown that
the same throughput is achieved in all considered scenarios.
Note that, in contrast to part (a), there is no approximation
in part (b) and the conclusion holds for every transmission
power/number of QRs.

We should mention that the result of Theorem 1 part (a)
is different from the one in [25, Theorem 1] which studies
the performance of INR ARQ protocols in the bursty data
communication models. There, the optimal retransmission
rates have been shown to follow a geometric sequenceRINR

i =
√

RINR
i−1R

INR
i+1, as opposed to the conclusion of Theorem 1 part

(a) with eR
INR
i = e

RINR
i+1+e

RINR
i−1

2 . As discussed in [24], [25], there
are fundamental differences between the performance of ARQ
protocols in the bursty and continuous data communication
models. Specially, the ARQ-based throughput achieved in
these data communication models are different which results
in differences in the optimal retransmission rates.

Following the arguments of Theorem 1, (22) gives the
optimal feedback resource allocation between the channel
direction quantization feedback bits and the INR-based ARQ
feedback bits in the joint CSI-ARQ model of Theorem 1 (See
Fig. 3). Moreover, usingRINR

I+2−i

.
= log(1+Pgi), Fig. 2 gives

the optimal INR-based retransmission rates of the considered
joint CSI-ARQ approach withQ = 2. Also, with proper

scaling of the transmission SNR, the results of the figure
give 1) the optimal retransmission rates in a MISO-INR ARQ
setup utilizing perfect channel direction information and2)
the optimal quantization boundaries in a MISO setup with
quantized channel amplitude and perfect channel direction
information.

Theorem 1 presented equivalent models for different MISO
setups, while there are also mappings between the MISO and
SISO systems utilizing partial CSI feedback. For instance,the
throughput achieved in a MISO setup withN andQ channel
amplitude and direction QRs, respectively, is the same as
the throughput achieved in a SISO system withN channel
amplitude QRs, transmission powerP cos2 γ and channel
gain cdf FG. This is because in both cases the throughput
is given by (7). Finally, Theorem 1 proposed different joint
CSI-ARQ, ARQ, quantized CSI with channel direction and
amplitude (or each one alone) feedback models which lead to
the same throughput. Then, selecting the best scheme depends
on many parameters such as the implementation complexity,
delay requirement and other protocol aspects.

Figure 6 demonstrates the system throughput in a2 × 1
Rayleigh-fading MISO setup. Here, consideringN = 1, . . . , 6
number of amplitude feedback bits, the throughput is obtained
with uniform channel amplitude quantization, and the results
are compared with cases having perfect/no CSI feedback.
Again, we can follow the discussions of Theorem 1 to map
the results to the cases with different quantized CSI, ARQ or
joint CSI-ARQ feedback models. Also, the difference between
the throughput of the optimal and uniform quantization-based
schemes is negligible for the considered range of SNR. Thus,
we only plot the results of the uniform quantization-based
scheme. Note that for Rayleigh fading conditions we have
fG(x) = 1

Γ(M)x
M−1e−x and FG(x) = 1 − Γ(M,x)

Γ(M) , x ≥ 0,

with Γ(x) and Γ(m,x) representing the Gamma and the
incomplete Gamma functions, respectively. Therefore, the
perfect-CSI throughput presented in Fig. 6 is obtained by

ηperfect=

∫ ∞

0

1

Γ(M)
xM−1e−x log(1 + Px)dx

(e)
=

1

Γ(M)

∞
∑

j=1

(−1)j+1P j

j

∫ ∞

0

e−xxM+j−1dx

=
1

Γ(M)

∞
∑

j=1

(−1)jP j

j
Γ(M + j), (25)

where(e) comes from the Taylor expansion oflog(1 + Px).
Also, the no-CSI throughput is given by

ηNo = max
R

{R(1− FG(
M(eR − 1)

P
))}

= max
x

{log(1 + P

M
x)(1 − FG(x))}

=
1

Γ(M)
max

x
{log(1 + P

M
x)Γ(M,x)} (26)

which, depending on the value ofM , may have no closed-
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Figure 6. The throughput in a Rayleigh-fading MISO channel with different
levels of CSI feedback. The same throughput as in the cases with N channel
amplitude feedback bits and perfect channel direction feedback is achieved
when utilizing (1) both channel amplitude and direction quantization, (2)
joint quantized channel direction information and INR ARQ feedback and (3)
only INR ARQ feedback, if the number of quantization bits, the transmission
power and the number of ARQ retransmission rounds are adapted according
to Theorem 1.

form solution4. However, as the first-order approximation, we
can uselog(1 + P

M
x) ≈ P

M
x andΓ(M,x) ≈ (M − 1)!− xM

M

to rephrase the maximization problem of (26) as

1

Γ(M)
max

x
{log(1 + P

M
x)Γ(M,x)}

≈ P

M2Γ(M)
max
x

{x(M !− xM )} (28)

and find a low-SNR approximation of the no-CSI throughput
as

ηNo ≈ log

(

1 +
P

M

M

√

M !

M + 1

)

Γ(M, M

√

M !
M+1 )

Γ(M)
. (29)

As shown in Fig. 6, the approximation (29) is tight at low
SNRs and the tightness decreases with the SNR. Also, con-
sidering different transmission SNRs, substantial throughput
increment is observed with limited number of amplitude QRs.

IV. CONCLUSION

This paper studied the design of optimal CSI quantization
and feedback bit allocation in MISO systems when the number
of feedback bits increases. Also, we presented discussions
on how to select the (re)transmission rates of the INR ARQ
protocol such that the throughput is maximized. In terms of
throughput, the results showed that: 1) uniform quantization
is asymptotically optimal for MISO channels. 2) The INR-
based retransmission rates follow an arithmetic progression

4SettingM = 1 as a special case, the no-CSI throughput of a SISO setup
is given by

ηNo = max
x

{e−x log(1 + xP )} = Λ(P )e−
eΛ(P )

−1
P , (27)

whereΛ(.) denotes the Lambert W function.

in the exponential domain. 3) For sufficiently large number
of feedback bits, the optimal number of channel direction
quantization bits tends to be(M − 1) times the number of
channel amplitude quantization bits whereM is the number
of transmit antennas. Finally, 4) there exist mappings between
the throughput of the MISO systems utilizing INR ARQ, joint
CSI-ARQ or different quantized CSI schemes.

APPENDIX

A. Proof of Lemma 3

Using (12) with uniform amplitude quantization, we derive
the gradient of the throughput as


























| ∂η̃
∂gn

| = |
∫ gn+1

gn
fG(t)dt− fG(gn)(gn−1 − gn)|

(f)

≤ 1
2 max
x∈[gn,gn+1]

( dfG(x)
dx )α2 (I)

| ∂η̃
∂gN

| = |fG(gN )(gN−1 − gN ) + 1− FG(gN )|
= |1− FG(gN )− αfG(gN)| .

= Φ (II)
⇒ ‖∇{η̃}‖ = (

∑

∀gn

| ∂η̃
∂gn

|2) 1
2 ≤ Φ+ (

∑

∀gn,n6=N

| ∂η̃
∂gn

|2) 1
2

(g)

≤ Φ+ 1
2µ1α

2
√
N. (III)

(30)

Here, (f) is obtained by the second-order expansion of the
function y(x) =

∫ x

a
f(t)dt and the fact that with uniform

channel quantization we havegn = g1 + (n− 1)α. Moreover,
(30.II) comes fromgn = g1+(n−1)α, ∀n. The first inequality
in (30.III) is based on triangle inequality. Also,(g) follows
from (30.I) and definingµ1

.
= max

x≥0
{ dfG(x)

dx } (See (2)-(3) for

the properties of the family of exponential distributions).
For the asymptotic optimality of the uniform amplitude

quantizer, the necessary condition is that the gradient (30.III)
goes to zero whenN increases. We use this condition
and (30.III) to derive (16) as follows. For the family of
exponentially-distributed variables, the termΦ = fG(gN )|α−∫

∞

gN
fG(t)dt

fG(gN ) | in (30.II) goes to zero exponentially ifgN → ∞.
This is because using L’Hopital’s rule we have

Φ = fG(gN )|α+ fG(g)(
dfG(g)

dg
)−1| ≤ fG(gN)(|α| + |µ2|),

(31)

if gN → ∞ (See (3)). On the other hand, forgN = g1 +
(N − 1)α → ∞ and vanishing gradient, we should haveα ≥
O(N−1) for the step size whereO(X) denotes the order of
the functionX . Therefore, in the extreme case we have

α = N−ε(N), lim
N→∞

ε(N) → 1, ε(N) ≤ 1, ∀N, (32)

which leads to1
2µ1α

2
√
N = O(N− 3

2 ) and, from (30.III),

‖∇{η̃}‖ ≤ O(e−N ) +O(N− 3
2 ) = O(N− 3

2 ) → 0, (33)

whenN increases. Finally, using the step size (32), we have
gn = g1 + (n − 1)N−ε(N) and gn

gn+1
→ 1 for large n’s.

Moreover, while (32) gives the optimality condition of the
step size, the codebook that achieves the optimal scaling is
not unique, and different step sizes can be determined as long
as (32) is satisfied (For more discussions and some examples
of proper quantization step sizes with asymptotically high
number of quantization regions, see [20, Section II.C] as well).
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