

Know your neighbor: self‐organizing data streaming
processing in Advanced Metering Infrastructure

Master of Science Thesis in Programme Computer Systems and Networks

THEODOROS KOTSANTIS

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, April 2014

The Author grants to Chalmers University of Technology and University of Gothenburg the non-
exclusive right to publish the Work electronically and in a non-commercial purpose make it
accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does not
contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants hereby
that he/she has obtained any necessary permission from this third party to let Chalmers
University of Technology and University of Gothenburg store the Work electronically and make
it accessible on the Internet.

Know your neighbor: self‐organizing data streaming processing in Advanced Metering
Infrastructure

Theodoros Kotsantis

© Theodoros Kotsantis, April 2014.

Examiner: Marina Papatriantafilou

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
Göteborg, Sweden April 2014

Abstract

Devices in fields like telecommunication and infrastructure networks as well as telephone and
stock markets are sources of continuous data streams. Data streams are usually data created by
sensors. These sensors are great in number, for example the sensors that automatically
measure electricity consumption in a country can be hundreds of thousands. Also these sensors
can vary the rate they create new data. In addition several of the applications that create data
streams require close to real time processing of data. For example, having access in real time to
the electricity consumption of all the users in one district, we could detect if the part of the
network that serves that district is getting overloaded and take on actions that would prevent
an outage. So in order to process data streams, we should address three challenges: process a)
high volume of data, b) with a fluctuating volume in a c) close to real time fashion.

Stream Process Engines (SPEs) are the systems that emerged from the Database (DB)
community and are designed to process data streams in an online fashion. Stream Engines
process the data streams as soon as data arrive by applying continues queries. Each data
element is processed at most once, without the need to persist the information first. Stream
engines can process great volume of data with close to real time delay. Stream engines can run
in a distributed fashion but we need to use Load Balancing (LB) protocols, so the stream engines
would cope with fluctuations in the rate that data arrive.

One system that could benefit from Stream Processing is the Advanced Metering Infrastructure
(AMI), the system responsible for the reporting of end user electricity consumption to utility
management office. For this thesis we assume on the AMI there is installed a distributed SPE
application. We assume that the AMI that we examine in this thesis uses a hierarchical network
to transfer information (i.e. smart meter readings). Distributed SPE systems that exist in
bibliography don’t provide a LB protocol for a distributed SPE application with hierarchical
structure. For this reason we want to develop a LB protocol that can apply to the distributed
SPE application of our AMI system.

In this thesis, we developed a load balancing protocol that can avoid overloading and can spread
the workload among the entities of distributed SPE application. We studied the characteristic of
such a system, developed the load balancing protocol, implemented and evaluate its
performance in a simulated environment.

Acknowledgements

With this master thesis project I completed my studies in the Department of Computer Science
and Engineering, of Chalmers University of Technology. I want to acknowledge the people who
supported me and encouraged me in my studies during these years.

I would like to express my sincere gratitude to my project supervisor Vincenzo Massimiliano
Gulisano for all the support, guidance and encouragement he offered me. I would also like to
thank my examiner Marina Papatriantafilou for her valuable guidance on this thesis project.

I would like to acknowledge all the professors of the University for the knowledge they
transferred to me and the time they devoted for me.

Finally I would like to thank my family for their love and support through my academic life.

Theodoros Kotsantis

Göteborg, March 2014

Contents
1. Introduction .. 1

1.1 Background ... 1

1.2 Short problem statement ... 7

1.3 Goal ... 8

2. System description and problem modeling ... 9

2.1 Terms definitions .. 9

2.1.1 Data stream ... 9

2.1.2 Queries and Operators .. 9

2.1.3 Stream Process Engines... 10

2.1.4 Advanced Metering Infrastructure ... 13

2.2 Problem modeling .. 14

2.2.1 System Overview ... 14

2.2.2 Possible scenarios of operator transfer. ... 16

2.3 Detailed problem description .. 19

2.4 Evaluation method ... 20

3. Design ... 21

3.1 Protocol ... 21

3.2 Operator selection algorithm ... 23

3.3 Protocol detailed description ... 26

4. Evaluation ... 38

4.1 Evaluation Setup ... 38

4.2 Evaluation of Results .. 39

5. Related Work .. 43

6. Conclusion ... 44

7. References .. 45

1

1. Introduction

1.1 Background
Over the past decades, the integration of computer chips across the devices that people use on
a daily basis, which can range from room temperature thermometers to machinery inside a
factory and even sensors in agricultural crop fields, lead to a constant increase in the volume of
data that need to be processed and stored. When we add up to the already great amount of
data acquired from computer systems and mobile devices, we end up with a tremendous load
of information.

Current applications of stock market and electronic trading, cellular network and infrastructure
networks for reasons like control, commanding, accounting, fraud detection and others,
produce continuous streams of data (data stream [1]). All these applications require a close to
real-time processing of the data, in order to be effective. For example, it is important to monitor
in real time the electricity consumption of a district in order to detect changes in the
consumption that would lead to a blackout and take measures to present it. Hence data
processing must be done close to real time.

Combining those two factors together, we end up with a vast amount of data which must be
processed within close to real time margins. Traditional computing system solutions, like
Database (DB), where we store the information and then process them, are not the most
appropriate solution in this context; storing first the information adds unnecessary latency that
some systems cannot tolerate. Plus we don’t always need to store the information but instead
process it and use the outcome [2]. For example, an application that uses the readings from
sensors to determine the current condition of the electricity network by detecting values above
a threshold does not need to persist all the data. To overcome the limitations of DBs for this
kind of applications, Stream Processing came in use.

Stream Processing is a way that we can process data streams. In Stream Processing we have two
main components. The first component is the devices or applications that produce the data
streams and the second component is the application responsible to process the data streams.
For the first component we have the devices that continuously produce new data. For example,
the devices that periodically measure the electricity consumption in each house. The data from
each device are organized in data streams, with each data stream a sequence of tuples that
have the same schema. For the second component we have the application responsible to
process the data streams. Here we have a Directed Acyclic Graph (DAG) of query operators that
form the “continuous query” [3] and use them to process the data streams. The operator
applies a function on each tuple individually (stateless operator) or to group of tuples (stateful

2

operator). The tuples from each data stream are fed to the operators that are responsible to
process them (i.e. the operators which form a continuous query). In this way we have each tuple
flows through the query operators and is processed on the fly.

Stream Process Engines (SPEs) are examples of application that can be used to run stream
processing applications. In a SPE the query operators from the continuous queries stay loaded
on the main memory. As soon as a new tuple from a data stream arrives, is loaded directly on
the main memory and it gets processed. Because everything is done on the main memory, SPEs
are able to process data streams with minimal delay in comparison to DB systems.

Tuple schema: {timestamp,smart
meter ID,consumption reading}

SPE processing the data stream

Aggregate
operator

Filter
operator

Figure 1 – A continuous query processing a data stream on a SPE

Figure 1 is an example of a one continuous query loaded on a SPE application and presents
graphically how stream processing works. The arrows represent data streams and circles
represent query operators, with the operators loaded on the main memory of the SPE. The data
streams are related to energy consumption readings of the users in a district. The tuples have
three attributes: timestamp, smart meter ID and energy consumption reading. Here we have a
DAG of two operators that form a continuous query which spots customers whose aggregated
energy consumption over a day exceeds a given threshold. The tuples for each user are
aggregated in the first operator, using a window of one day. Then the output tuples from the
first operator are fed to the second operator. The second operator filters out the tuples that
have value below a given threshold and forwards the rest.

SPEs began as centralized systems (Aurora [4], STREAM project [5], TelegraphCQ [6]) and
evolved to distributed solutions [7] [8]. The main difference between centralized and distributed
SPEs is that in the first all the processing is done in one node (i.e. all the operators that belong
to the same query are all deployed on the same node), while on the second one the operators
that belong to the same query can be deployed to multiple nodes (inter-operator parallelism)

3

[7]. On figure 2 we present an example that shows this difference between centralized and
distributed SPEs.

SPE Node

Centralised SPE

Aggregate
operator

Filter
operator

SPE Node

Distributed SPE

Aggregate
operator

SPE Node

Filter
operator

Figure 2 – The same continuous query deployed on a centralized SPE and a distributed SPE

On figure 2 we can see how the same query from figure 1 could be deployed to a centralized
SPE system and how could be deployed on a distributed SPE. On the centralized SPE all the
operators that belong to the same query are deployed on the same node. The processing is
done in the same way that we described before (description for figure 1).On the distributed SPE
the first operator from the query is deployed on the first SPE node and the second operator
from the query is deployed on the second node. Here the data from the readings are routed to
the first node where are processed by the aggregate operator and the output tuples are routed
to the second node where they are processed by the second operator.

4

The main disadvantage of centralized SPEs solutions is that the whole system is bounded to the
processing capabilities on one SPE node. Distributed SPEs systems have the advantage that they
can scale up better when we need to add more resources to the system in order to cope with
the increase of the load that must be processed.

An application of distributed SPE can be used with Advanced metering infrastructure (AMI)
systems. AMI is a system part of the Smart Grid [9] and is a system responsible for measuring
periodically the end users electricity consumption and report the information remotely to the
utility management office. An AMI system includes the smart meters, the AMI communication
network and the utility office. First, the smart meters are the electronic devices that are
responsible to measure the electricity consumption at the user end point. Smart meters have
bidirectional communication capacities and can report periodically the meter’s readings.
Second, the AMI communication network is the infrastructure responsible to transfer the
information, for example the readings from the smart meters to the management office. Third,
the utility office is where the readings from the smart meters are collected and get further
processed, for example to calculate billings among others.

For the purposes of this thesis we are examining the scenario where the AMI communication
network is a hierarchical network. The network consists of devices called Meter Collector Units
(MCUs) which are responsible to forward the energy consumption readings to the utility office.
Each MCU is responsible to handle data at different levels; for example an MCU is responsible to
collect the data from the smart meters at a neighborhood and forward them on the MCU that is
above it in the hierarchy (i.e. a MCU on higher level which is responsible to handle the data from
the MCUs at multiple neighborhoods and so on). Last we have to specify that a MCU cannot
reroute the data to other MCUs, but can only forward data to the MCU that is responsible to
collect them.

Using the smart meters and the infrastructure at the AMI communication network, we can run a
distributed SPE in order to address various issues related to AMI (accounting, monitoring and
management). Here we examine a system which consists of: First, the smart meters that are the
devices that create the data streams. And second the AMI communication network, on which is
installed a distributed SPE system. On each MCU we assume that there is installed an SPE
application capable of processing the data from the data streams that smart meters create. All
MCU can cooperate to form the distributed SPE system. All the processed data are eventually
forwarded to the utility office.

5

Figure 3 – MCUs monitoring the average consumption and filter out suspicious values at different levels: end user,
neighborhood and district

On figure 3 we present an example of the system that we are going to examine for the purposes
of this thesis. This example is about how we could monitor the average consumption and filter
out suspicious values at different levels: end user, neighborhood and district. The arrows
represent data streams, each diamond represents a MCU on which we can execute a SPE
application and the circles represent query operators. At the bottom of the figure we can see
the entities that represent the smart meters at the end user lever. One level above, the
neighborhood level, we group the smart meters in neighborhoods and for every neighborhood
we have a MCU that collect and process the data streams that originate from the smart meters.
Above the neighborhood level is the district level, where each MCU collects and process data
from the data streams that MCUs on neighborhood level create. On top of the picture we have a
MCU responsible to collect and process data from the MCUs at district level. On each MCU we
can deploy operators, with a DAG of operators to form a query. Here each query consists of 2
types of operators an aggregate and a filter operator. The aggregate operators can calculate the
average consumption on different level and the filter operators can filter out the values that are
below a threshold. For example, at a MCU on neighborhood level, we can aggregate the
readings from the smart meters and filter the suspicious values for each end user.

The problem we try to address with the applications of SPEs (in our case the distributed SPE at
the AMI communication network) is that the rate in which the data is produced can vary by

6

time. For example, an electricity company can apply different accounting policy on specific time
of the day, which requires the smart meters to measure the consumption more often. This
means that instantly the MCUs have to process greater volume of data without delaying the
delivery of results.

This high volume of data with varying rates creates two challenges for us: first there can be
MCUs which might not be able to keep up with the load of information that they have to
process, while other MCUs might not perform to the fullest. The second one is related to the
fact that you have restriction about where each operator of the query can be actually deployed.
For instance as we can see on the example of figure 3, we could not deploy the aggregate in
charge of aggregating the data of an entire district (aggregate from the MCU at city level) at an
MCU that is not "high enough" in the hierarchical network (for example a MCU at neighborhood
level) to have access to all the aggregated reading of an entire district.

As we mentioned previously distributed SPEs provide the means to deploy operators at
arbitrary SPE nodes (example on figure 2). In addition they can also provide the means to
transfer operators between arbitrary SPE nodes, i.e. change the node on which an operator in
deployed on run time. On figure 4 we can see an example of the operator transfer. Here we can
see a distributed SPE system with two SPE nodes: 1) at the beginning all the operators from a
query are deployed on one SPE node and the results are forwarded to an application. On the
same time, at the second node there are no deployed operators. On an operator transfer
process, 2) the node that possesses both the operators would stop temporarily to forward the
tuples to the filter operator. 3) The filter operator would get deployed on the second node. 4)
The first node would resume forwarding the tuple from the aggregate operator, but this time it
would forward then to second node which is now runs the filter operator. At this point the
second node would forward the results to the application. In this thesis we suppose the actual
operator transfer procedure is provided by the distributed SPE.

7

SPE Node

Aggregate
operator

Filter
operator

SPE Node

Aggregate
operator

SPE Node

Filter
operator

Application

Application

SPE Node

Before Operator Transfer

After Operator Transfer

Figure 4 – Operator transfer example

For the purpose of this thesis we want to use the functionality to transfer operators between
the nodes of a distributed SPE system in the system we examine, the distributed SPE application
on AMI. We want to use operator transfer in order to provide load balancing capabilities in our
system. Our goal is to cope with the fluctuation in the volume of the data streams created by
the smart meters.

1.2 Short problem statement
In the AMI system there can be time periods which the volume of data increase to such a
degree, that the MCU nodes don’t have the resources to run all the operators deployed on them
with the excessive load. Some nodes can get overloaded (a node can have so high memory and
CPU utilization that it cannot process the data in the rate they arrive) and lose the time
constrains that they have to produce the output, while other nodes are underloaded because
they receive no data to process.

The aim off this thesis work is to develop a load balancing protocol to avoid overloading of
nodes and provide load sharing between the MCU nodes. The detailed statement of the
problem as well as the evaluation criteria, are presented on section 2.

8

1.3 Goal
 This report deals with the creation and evaluation of a load balancing protocol that could
potentially run on the MCU nodes of the AMI communication network. We suppose that we
have a fixed group of MCU nodes which can run SPE applications. When the performance of
node gets outside some predefined margins, the node will autonomously share the workload
with the adjacent peers. We plan to achieve that by designing and developing a Load Balancing
protocol, which will be used by the adjacent nodes to negotiate about which actions they are
going to perform.

To our knowledge there is no other load balancing protocol developed for a distributed SPE
application with the SPE nodes hierarchically organized. The nodes in the distributed SPE that
we examine should autonomously adapt to the variations in the tuple creation-rate with the
challenges that: first, the data streams cannot be rerouted and will always be routed through
the same nodes. And second, we have restrictions about where each operator of the query can
be actually deployed. Operators can be deployed only to nodes that have access to all the data
streams that the operator uses.

9

2. System description and problem modeling
In this chapter we begin by making an introduction to data streaming processing and AMI
systems, the terms and systems that we are going to use for this thesis. We continue with the
second section where we present the overview of the distributed SPE system that we are going
to examine. On the third section, we present a detailed description of the problem that we want
to address with this thesis. On the fourth section we finish this chapter with the method that we
are going to evaluate our proposed solution.

2.1 Terms definitions

2.1.1 Data stream
Data stream “is a sequence of data items that we can access only once” [1]. Data streams are
usually related with applications that produce high volumes of new data in real time; telephone
records, earthquake sensors, electricity smart meters, stock exchange records are some typical
examples. A data stream consists of tuples with the same schema. For example, on an AMI
system the tuples can have three attributes: timestamp, smart meter ID and energy
consumption reading.

Most applications creating data streams have the common characteristic that there are time
periods where the rate that they create new data fluctuates. The tuples are usually created
periodically by devices or sensors (for example the smart meter on a house reports the readings
every two hours, all year long) but this is not always the case. For instance the same smart
meter from the previous example, in the event of an outage could start to report its condition
every half an hour, because the extra data could help to narrow down the failure that caused
the outage on the first place.

2.1.2 Queries and Operators
Data streams are essentially sequences of tuples having a timestamp to specify the time point
that they were created. Like the tuples organized in tables in a DB system, the data streams can
be processed by applying queries on them. But unlike DB systems where a query is only issued
when the user decides to retrieve information from an instance of the DB, the SPE loads the
query on the main memory and the query consumes each new tuple that arrives.

Like in traditional DB systems, queries consist of operators. In stream processing each query is
usually presented as a DAG of operators. Most common operators can be divided in two
categories, the stateless operators (filter, map, union) and the stateful operators (join,
aggregate, sort) [4]. Stateless operators perform computations separately to each input tuple,
without taking into consideration the values of the previous or sequent tuples. Stateful

10

operators on the other hand, perform computations on window of input tuples.

Aggregate
operator

Filter
operator

Tuple schema: {timestamp,smart
meter ID,consumption reading}

Figure 5 - Query which spots customers whose aggregated energy consumption exceeds a given threshold

In figure 5 we can see an example of a query which spots customers whose aggregated energy
consumption over the last 6 hours exceeds a given threshold loaded. The arrows represent data
streams and circles represent query operators. The data streams are related to energy
consumption readings of the users in a district. The tuples have three attributes: timestamp,
smart meter ID and energy consumption reading. Here we use two operators that form the
continuous query, an aggregate and a filter operator. The tuples for each user are aggregated in
the first operator, using a window of 6 hours. Then the output tuples from the first operator are
fed to the second operator. The second operator filters out the tuples that have value below a
given threshold and forwards the rest.

2.1.3 Stream Process Engines
Stream Process Engines (SPEs) are examples of application that can be used to run stream
processing applications. It is the SPEs where we deploy on and run the query operators from the
continuous queries, to process the data streams. In the following two subsections we present
two versions of SPE systems, the centralized SPEs and then the distributed SPEs.

2.1.3.1 Centralized Stream Process Engines
Centralized Stream Process Engines [4] [5] [6], like all SPEs, are computational systems that can
process data stream without storing the data first. Storing data before we process them adds
time latency that certain applications cannot tolerate. Furthermore, in most cases it is more
essential to store the output (processed) data instead of the input data streams. As soon as the
tuples arrive they are loaded directly on the main memory where they stay until they are
processed by the according operator(s). This method provides a higher processing capacity
compared to a traditional DBs, which first retrieve the stored data, load them to main memory
and then process them.

11

On centralized SPEs there is only one processing entity and all the operators are deployed in the
only SPE node. The data streams, which begins from the source (for example an sensor), are
routed to the SPE node where is used as an input on the first operator of the query and the
output from the first operator is used as an input on the second operator and so on.

The problem with the centralized SPE solution is that not all operators that belong to the same
query have the same processing latency. An operator can become a bottleneck if the rate that
new tuples arrive increase. For example we have two operators on the same query deployed in
the SPE node. The first operator process tuples in 1 msec and the second operator process
tuples in 3 msec. If new tuples arrive every 3 msec the node can execute query with no
problem. But in the case where the new tuples arrive every 1 msec, the second operator
becomes a bottleneck.

When an operator becomes a bottleneck, for example during the periods that new tuples arrive
with increased rate, there are two main solutions: either we can apply load shedding strategies
(i.e. drop selected tuples from the data streams [4]), or we can replace operators from the
query which becomes bottleneck with other operators [7]. In both cases we would need to drop
tuples from the data stream, which would lead to changes in the accuracy of the output result.
Load shedding affects the result because we drop tuples from the input data stream in order to
decrease the workload. Replacing an operator can be performed online (replace the operator
without stopping the processing in the rest operators). If the operator that creates the
bottleneck is stateful, when we replace it we will also affect the output result because the older
tuples (that have been already processed) are not used for the results with the new operator.

To summarize, centralized SPEs are applications that we can process data streams, process high
volume of data in close to real time margins, but they have problem to adapt to rate
fluctuations.

2.1.3.2 Distributed Stream Process Engines
SPE can be centralized or distributed. In central SPEs the process of all the data streams is done
in a central system with increased processing capabilities. But a centralized solution of SPE has
the disadvantage that it does not scale up efficiently when the volume of data stream increase.
Distributed SPEs [7] [8] are the evolution of SPEs.

Distributed SPEs address scalability issues of centralized SPEs by distributing the operators that
belong to the same query to different SPE nodes. DSPEs can deploy multiple SPE enabled
computer clusters where we have the option to move operators inside the same cluster as well
as transfer operators of queries between different clusters. With this option distributed SPEs
have the ability to scale effectively, be applied on heterogeneous clusters, and share the
workload among the autonomous systems.

12

In most cases the processing entities (SPE nodes) of the distributed SPEs are running more than
one operator simultaneously. When a node becomes overloaded (has very high utilization of
CPU, memory, network usage or high processing time) there is an option to move one or more
operators, so these operators would run on another SPE node. The SPE nodes of a distributed
SPE system have the ability to transfer operators among them.

 When we refer to operator transfer, we mean to deploy an operator, which is already deployed
at one SPE node, to a new node and redirecting the data stream to the new node. On figure 6
we can see an example of this procedure. The procedure is performed between two
autonomous SPE nodes. In this example both of the SPE nodes have access to the same data
stream. At the initial phase, Node 1 has deployed on the main memory operator A and uses it to
process the data stream. On the same time node 2 only forwards tuples from the data stream.
At the middle phase, node 2 stops forwarding tuples to node 1 and begin to buffer the new
tuples. On the same time node 2 deploys operator A on its main memory. Node 1 processes all
the tuples which has already received and forwards all the processed tuples. At the last phase,
node 2 begins to process data stream and node 1 just forwards the processed data stream. In
the case where the operator is stateful, when the node 2 resumes processing the results from
the operator would not be completely accurate until the window of the operator is full.

Node 2

Node 1

A

Node 1

Node 2

A

Node
processing the

data stream

Operator

Node 2

Node 1
A

A

Initial Phase Middle Phase Last Phase

Figure 6 – Single operator transfer between adjacent nodes

In general, distributed SPEs can adapt with the changes in workload created by fluctuations in
the rate of data streams on runtime. Transferring operators in-between the SPE nodes of a
distributed SPE system and redirecting the data streams, distributed SPEs can move part of their
workload to other SPE nodes when they get overloaded.

13

2.1.4 Advanced Metering Infrastructure
The term Smart Grid refers to the integration of applications related to communication technologies
and data processing on top the electricity power grid. Smart Grid is an overlay network which
connects the power stations, transmission network, distribution network and smart meters at the
consumers’ end point [9].

Advanced Metering Infrastructure (AMI) system is responsible for measuring the consumers’
electricity consumption and reporting that information periodically to the utility management office.
In general AMI systems consist of 3 major entities: smart meters, AMI communication network and
utility office. The smart meters measure the end users consumption and using the AMI
communication network, the information is delivered to utility office.

Smart meters are the devices that calculate the power consumption at the consumers’ site. They
have telecommunication capabilities for providing close to real time billing services and reporting
back to the electricity provider. Smart meters use bidirectional communications channels where in
addition to sending the billing reports, they can receive commands. For example, while a smart
meter sends reports every 2 hours, it can receive a command to send reports every 15 minutes
instead.

The AMI communication network consists of units with telecommunication capabilities, and is
responsible to transfer information messages (for example, reports and commands) from and
toward the smart meters. The AMI network is combination of Home Area Networks, Neighborhood
Area Networks and Wide Area Networks [10].

Electricity companies plan to apply response demand and dynamic pricing policies. The end user
would pay different price rates depending on when he uses electricity. For example, the electricity
rate would be higher when the electricity network is overloaded. This requires to change the rate
that smart meters report; the smart meters should report more frequently at specific time periods.
AMI systems allow electric utility companies to control the rate that the consumption reporting is
done. But by changing the rate that smart meters report, we change the volume of data that system
must process. In addition these services require the AMI network to provide metering in close to
real time [11].

The integration of distributed SPE applications on the AMI system is a solution to achieve this goal:
distributed SPEs could potentially process big amount of data on close to real time margins and can
adapt to variations in the creation rates. For example, in hours with high electricity demand and
constantly changing charging rates, the smart meter can receive a command to increase the
frequency in which the consumption reports are sent. This automatically increases the processing
workload that must be processed with the existing processing infrastructure. If we could install
distributed SPE nodes on the AMI communication network, we could provide a solution.

14

2.2 Problem modeling

2.2.1 System Overview
For the purposes of this thesis we assume that on the AMI communication network there are
nodes, which have the ability to run an application that allows for distributed execution of data
streaming queries, in order to process the data streams from the smart meters. More
specifically the AMI network consist of MCUs which are hierarchically organized (figure 3): On
the far bottom are the smart meters which are constantly producing new data tuples (data
stream source). Above the smart meters is the AMI communication network. We assume that
MCU nodes are able to run distributed SPE applications (for simplicity from this point on, we are
going to refer to the SPE application running on each MCU as SPE node). The SPE nodes are
responsible for routing and processing the data. Each SPE node has a group of operators which
perform different operations on the data; i.e. operators process the tuples who compose the
data stream.

As we already mentioned, we assume that the AMI network is hierarchical (figure 3). Each MCU
is responsible to handle data at different levels; for example an MCU is responsible to collect
the data from the smart meters at a neighborhood and forward them on the MCU that is above
it in the hierarchy (i.e. a MCU on higher level which is responsible to handle the data from the
MCUs at multiple neighborhoods and so on). We have to specify that a MCU don’t reroute data
streams to other MCUs, but can only forward data to the MCU that is responsible to collect
them. MCU theoretically could re-route streams, but we don’t consider this option because it
would lead to a considerable increase of the latency (MCUs are usually embedded devices with
limited resources).

In our system the SPE nodes are able to transfer the processing of data from one node to
another, for example when an SPE node gets overloaded. As we discussed before (section
2.1.3.2) the SPE nodes are able to transfer operators of queries they possess to other SPE nodes.
On the same time they forward the data stream to the node that would do the processing
(figure 6).

At this point we have to specify that we assume that we take into account fluctuations on the
creation rate that are still "manageable". That is, we can have a load increase that is still
processable given the resources we have (after balancing the load among them). If the overall
load grows beyond the available resources we would need other ways of dealing with it (i.e.,
elasticity) which is not in the scope of this work.

15

When a SPE node decides to transfer an operator to another SPE node, it can transfer an
operator only to direct adjacent neighbor nodes. More specifically, a SPE node can transfer an
operator either to a node from which receive data stream (for simplicity we will call this SPE
node, child node), or to the node that forwards a data stream (parent node).

Due to the hierarchical AMI network not all SPE nodes have access to all data streams.
Therefore only specific transfers of operator(s) are feasible with each configuration of the
system. For example on figure 7 we can see that we can’t transfer operator A, to one of the
child SPE nodes. On the next section we are going to present the feasible operator transfers,
taking into consideration the limitations of our system.

ParentNode
A

Child Node Child Node

Parent Node

Child Node Child Node
A

Figure 7- Unfeasible Operator Transfer

16

2.2.2 Possible scenarios of operator transfer.
When a SPE node is processing a data stream, it is using as input the data that it gets from its
child(ren) node(s), it is processing them and then it is feeding the output to its parent node.
Each operator running in a node has two sets of relationships that affect it:

- Which is(are) the operator(s) that is(are) producing the input stream(s) and which is the
operator that process the output stream.

- Which are the nodes from which the input stream originates and which is the node that
the output stream ends; for example, the operator which produces the input stream is
running at a child node, and the operator processing the output stream is running on the
same node.

The relation between an operator running in a node and input/output data streams (i.e.
originating and destination nodes) arise limitations in the feasible operator transfers; only
specific operators can be moved between specific adjacent nodes. In our system we observed
three main scenarios that describe the relations of the operators running in a node and the
feasible operator transfers.

First scenario, a node has one parent and one child node and the operator running on that node
has an input stream originating from the child node. In this scenario there are two operator
transfer options:

- The operator can be transferred to child node.
- The operator can be transferred to parent node.

Second scenario, where the operator running in the node is dependent to another operator on
the same node. For example operator A can create output that is used by operator B running
on the same node (figures 8 and 9). In this case we have four operator transfer options:

- Move both operators to child node.
- Move both operators to parent node.
- Move one operator to child node.
- Move one operator to parent node.

If we decide to transfer only one operator to another node, we must first check if this is feasible.
We either can move operator A to child node or move operator B to parent node (figure 8 and 9
accordingly).

17

Child Node

Initial Node
A

B

Child Node

Initial Node

A

B

Figure 8- Operator transfer to child node when there are two depended operators on the same node

Parent Node

Initial Node
A

B

Parent Node

Initial Node
A

B

Figure 9- Operator transfer to parent node when there are two depended operators on the same node

18

Third and last scenario, an operator is feed by multiple children nodes. There can be operators
that use as input data streams which origin from different children nodes. For example in figure
10, the initial node is gathering three different data streams and processes them applying the
same operator on them. In this scenario, if we want to transfer the operator from the initial
node we can only move the operator to the parent node.

Child Node1

Initial Node
A

Child Node 2 Child Node3

Parent Node

Figure 10– Multiple input streams from different nodes

19

2.3 Detailed problem description
On the AMI systems there are fluctuations at the rate that new tuples are created by the smart
meters. In order to process the data stream from the smart meters without reducing the
accuracy of the output result, the application that is responsible to process the data should
adapt on runtime and process the extra workload.

For this thesis we assume that we use a distributed SPE application, installed on the AMI
communication network, to process the data streams. We assume that the distributed SPE
application is installed on a fixed number of MCUs, MCUs that form the AMI network, since we
assume that we cannot add more MCUs in the network. All MCUs are hierarchically organized
with each one of them to have access and be responsible to process data streams, on different
level.

On each MCU we assume that is running a SPE application (SPE node) and on the SPE node we
can deploy operators to process the data streams. In general we consider that a SPE node has
deployed a number of operators and is processing the tuples with no delay. Due to the
fluctuations at the data streams, there can be time periods that the number of tuples increase
to such a degree that the SPE node does not have the recourses (for example the main memory)
to process all the tuples on time. For example in a case that there are deployed three operators
on the SPE node, the node has the resources to process the tuples that belong to two of the
operators on time and begin to delay the results for the third operator. The solution to this
problem would be to transfer one (or two) of the operators to another SPE node that has the
resources to process it with no delays.

Distributed SPE applications provide the option to transfer operators to another SPE node but
the process is not straightforward. In the AMI network that we examine, the MCUs are
hieratically organized and they are not allowed to reroute data streams. These conditions create
limitations, on where we can transfer an operator; the SPE node which would receive and
deploy the operator, should have the adequate resources and access to the data stream(s) that
are required, in order to run the operator.

The operator transfer capability allows us to spread the workload among the SPE nodes. With
this master thesis we want to develop a Load Balancing protocol, which would avoid
overloading of SPE nodes and that would also provide load sharing between the SPE nodes, in
order to counter the data load fluctuations at the AMI system. We want to use the LB protocol
in order to decide which operators would be transferred, between the SPE nodes installed on
the MCU of the AMI communication network.

20

2.4 Evaluation method
For the purposes of this thesis we use memory utilization of each SPE node to measure the
performance of each node. We assume that each operator deployed on a SPE node occupies a
percentage of node’s main memory. When the rate that an operator receives tuples increase,
we consider that the size the operator occupies on the main memory increase. When the rate
that tuples arrive decreases, the size the operator occupies on the main memory decreases. So
in order to determine the performance of each SPE node, we measure its memory utilization
and if it’s above a predefined threshold the node is overloaded.

In order to check the performance of our protocol, we are going to create simulated
environment; we assume that we have an AMI communication network with MCUs and on each
MCU we are able to run SPE node. We consider that the distributed SPE system that the SPE
node create, provide as the option to transfer operators between the SPE nodes.

In our simulations, we have a fixed number of SPE nodes, on which we assume that we have
deployed operators. We would artificially create fluctuations in the rate that tuples arrive and
would have two simulations run: one without using of LB protocol and one using the protocol.
We plan to evaluate our results comparing the number of overloaded node for each pair of
simulation run. We are going to evaluate our protocol according to if the protocol reduces the
number of overloaded nodes and if it reduces the time that nodes stay overloaded.

21

3. Design

3.1 Protocol
In order to avoid overloading and perform load balancing among the SPE nodes of our system,
we developed a Load Balancing protocol which regulates the operator transfers between the
SPE nodes. The outer goal with this protocol is to distribute the excessive processing load,
generated by the fluctuations in tuples creations in the smart meters.

For the purposes of this thesis we measure the performance of each node according to its main
memory utilization. The idea is that each node has as a target to perform normally, i.e. within
two predefined margins of memory usage. When a node performs outside these margins, due
to fluctuations in the volume of data it is responsible for processing, the node transfers
operators towards its adjacent nodes in order to regulate its memory usage.

In this section we present the LB protocol that we designed. We begin with a general
introduction of the three main actions that are performed by the protocol and we proceed with
a more detailed description on the following sections.

As we presented on section 2.2, due to the characteristics of the AMI network that we examine,
there are limitations on where an operator can be deployed; an SPE node must have access to
all the data streams that are used as input for an operator, in order to run the operator. Before
a SPE node begin the procedure to transfer an operator to one of its adjacent nodes, the SPE
node must to know in advance, which are the adjacent nodes that are allowed to run the
operator. In order to achieve it, we created an algorithm (operator selection algorithm) that
examine all the operators deployed in one SPE node, and for each operator returns the adjacent
SPE nodes that each operator can be transferred.

Our protocol performs three main actions: a) the protocol uses the operator selection algorithm
to determine which operators can be transferred to which SPE node. The output of this
algorithm is a list of elements called operator transfers (section 2.2.2). Each operator transfer
element consists of the name of the operator and the ID of SPE node the operator can be
transferred. For example, if at one node there is deployed only one operator that can be
transferred either to parent node, or to child node, the operator selection algorithm would
produce two elements: both of them would contain the name of the operator, but would differ
on the ID of the SPE node that are referring(more details on section 3.2). The operator selection
algorithm only examines if one adjacent SPE node has access to the data streams that are
needed to run an operator and we don’t examine if the SPE node has the resources (free main
memory) to deploy the operator.

22

Actions two and three are connected with the memory utilization of each SPE node. b) When a
SPE node has memory utilization above a predefined threshold, the node is consider overloaded
and begins action two: the SPE node begins a negotiation round with its direct adjacent node, in
order to transfer operator(s) that has on its main memory to adjacent nodes. c) When a SPE
node has memory utilization below a predefined threshold, the node is consider underloaded
and begins action three instead: the SPE node begins a negotiation round, in order to take on
operators from its adjacent nodes.

The LB protocol is distributed and separately each SPE node uses its’ local memory utilization as
the only parameter to take decision for the protocol. All nodes can exchange information
messages and transfer operators only with their direct adjacent nodes.

Each SPE node runs locally a copy of the same algorithm (operator selection algorithm, action
one). This algorithm is taking as input the operators deployed on the node and creates a list
with all the possible combinations of operator transfers (more details on section 3.2). With a
period T, the node is checking the level of its memory usage. If the node’s memory usage is
outside the predefined margins, the node begins negotiations with its direct adjacent nodes
using the LB protocol.

When the node needs to decrease its memory usage (action two), the node sends negotiation
messages to its adjacent nodes, which contain the operator transfers created by operator
selection algorithm. The nodes negotiate using the operator transfers and if they finally reach to
an agreement, an adjacent node would deploy the operator indicated at the operator transfers.
After this point the adjacent node begin to process the data streams connected to the
operators.

When the node needs to increase its memory usage (action three), the node sends negotiation
messages to its adjacent nodes, which contain the memory size of operators that the node can
take on. The adjacent nodes reply with their operator transfers that they can provide. Then the
node selects the operator transfers that it can take on and deploy the according operators. After
this point the node begins to process the data streams connected to the operators.

23

3.2 Operator selection algorithm
In order to decide which operators can be transferred from one node to another, we developed
the operator selection algorithm. In this algorithm we calculate all the possible combinations of
operator transfers for this node (from this point and on, we will refer to them as Available
Transfers) that we use in each run of the LB protocol. The algorithm decides which operators
can be transferred to a parent node and which to a child node. It also decides if two or more
operators must be transferred together (with other operator) and to which node.

The algorithm examines each operator separately and checks which, is its downstream operator
and which, is its upstream operator. The algorithm also examine if those operators are deployed
in the same or different nodes. For example, in the case where a node holds two operators, A
and B, while operator A depends to operator B (depended operators on the same node figures
8, 9). The algorithm will produce four combinations of Available Transfers: a) transfer operator A
to child the node, b) transfer operator B to the parent node, c) transfer both operators A and B
to the child node and d) transfer both operators to the parent node. Algorithm is repeated only
when we add or remove an operator from the SPE node.

Table 1 – Classes Operator, Transfer and Node used on the operator selection algorithm

Operator, contains information about a single operator
Op.name Operator’s name
Op.mem Operator’s memory usage
Op.node Node at which the operator is deployed
Op.downOP Operator’s downstream peer (null if last operator)
Op.upOPs Array of operator’s upstream peers (null if first operator)
Transfer, contains the information for a possible set of operator that can be transferred
Transfer.ops Operators to be transferred together
Transfer.node Destination node
Node, contains information about the operators deployed at a node and the available transfers
Node.ops Array of Operator deployed at the node
Node.transfers Array of Available Transfer actions for the node

The operator selection algorithm makes use of three types of objects: Operator, Transfer and
Node. Their classes are described on table 1. So each time a new operator is deployed to the
node the algorithm on listing 1 is executed to calculate the possible combinations of operators
transfers and save them to Available Transfer array.

24

1. Forall (Operator op in node.ops)
2. // Create an array containing this operator
3. OP[] mustMoveTogether = {op}
4. // Add to array mustMoveTogether downstream operators of op at the same node
5. Node dst = getDownOPsInNode(mustMoveTogether, op.downOP, node)
6. Transfer t(mustMoveTogether, dst);
7. node.transfers.add(t);
8. // Check if the operator has only one upstream peer
9. If (allSingleUpstream(op,node)) {
10. OP[]mustMoveTogether = {op}
11. Node dst = getUpOPsInNode(mustMoveTogether, op.upOPs[0], node)
12. Transfer t(mustMoveTogether, dst);
13. node.transfers.add(t);
14. }
15. }

Listing 1 – Algorithm for finding the possible combinations for operator transfers

On listing 1 we describe the operator selection algorithm which identifies all the possible
Transfers that can be issued when a SPE node needs to transfer operators (for example if the
node is overloaded). For all Operator op deployed at the node we check: a) if there are any
downstream operators of the op in the same node (lines 2-7) and b) if there are any upstream
operators of the op in the same node (lines 8-13). From this information, the algorithm creates
and determines which Available Transfers are applicable to the parent node and which to the
child(ren) node(s).

The algorithm begins by creating an array (mustMoveTogether) in which it saves the
downstream operators of op (line 3). More specifically it uses faction getDownOPsInNode() to
find the downstream operators of op that might be deployed at the same node and add them to
the array mustMoveTogether (line 5). Remember that if op’s downstream operators belong to
the node, the only way to transfer op to the parent node is to create a Transfer that would
transfer all of them to the parent node (section 2.2.2, second scenario). Next algorithm creates
Transfer t, in which it adds the operators from array mustMoveTogether and sets the
destination node (i.e. the parent node, line 6). Last the algorithm adds Transfer t in Available
Transfer array (line 7).

The algorithm continues by calculating all the Available Transfers that would involve op and
they would be applicable only to children nodes. For each operator we save the information
related to all of its upstream operators, belonging to the same node on op.upOPs. The algorithm
checks if all the operators in op.upOPs have only one input data stream, using the function
allSingleUpstream() (line 9). We perform this check for the cases where there are two (or more)
upstream data streams that are feeding the operator op (section 2.2.2 third scenario). In those
cases the algorithm does not create a Transfer that involves the transfer of the specific operator
to any child node; the LB protocol is only able to transfer the operator to the parent node.

25

If result from allSingleUpstream() is true, the algorithm creates an array (mustMoveTogether) in
which it saves the upstream operators of op in the node (line 10). Faction getUpOPsInNode()
adds the upstream operators of op that might be deployed at the same node, at the array
mustMoveTogether (line 11). Next algorithm creates Transfer t, in which it adds the operators
from array mustMoveTogether and sets the destination node (line 12). In this case the
destination node, is the node that feeds (provide the input stream) the last operator in the array
op.UpOps. Last the algorithm adds Transfer t in Available Transfer array (line 13).

1. Node getDownOPsInNode (OP[] ops, OP op, Node node){
2. If (op.downOP!=null && op.downOP.node==node){
3. ops.add(op.downOP)
4. getDownOPsInNode(ops,op.downOP,node)
5. }
6. }
7. Boolean allSingleUpstream (Op op,Node node){
8. If (op.upOps[0].operator.size() == 1){
9. If (op.upOps[0].node == node){
10. Return allSingleUpstream (op.upOps[0], node)
11. }Else // Upstream operator of op doesn’t belong to node{
12. Return true
13. }
14. }Else // Operator op has more than one upstream peers{
15. Return false
16. }
17. }
18. Node getUpOPsInNode (OP[] ops, OP op, Node node){
19. If (op.upOPs[0]!=null && op.upOPs[0].node==node){
20. ops.add(op.upOPs[0])
21. getUpOPsInNode (ops, op.upOps[0],node)
22. }
23. }

Listing 2 – Pseudo code for the functions on listing 1

Listing 2 contains the pseudo-code for the three functions used on the operator selection
algorithm on listing 1.

allSingleUpstream () function checks if operator op has only one upstream data stream. The
function begins by checking the first entry in the array with the upstream operators of op. If op
has only one upstream operator (i.e. there is only one input stream for this operator), line 8, the
function continues checking all the entries on op.upOPs until it finds the last operator in the
node. The last operator in the node is the one that has an upstream operator that is deployed
on a different node (lines 9 - 12).

26

3.3 Protocol detailed description
With the Load Balancing protocol we want to provide load balancing among the nodes. In order
to measure the performance of a node we check the average memory utilization at a specific
time point. We could also measure CPU usage or a combination of CPU and memory measuring
together. But for the purposes of this project we focus on memory usage only. According to the
protocol, node decides if it is necessary to transfer (or receive) operators to a direct adjacent
node (i.e. parent node or any of its children nodes).

More specifically each node of the system checks with period T, what is the memory usage of
the SPE node. The node can be overloaded, underloaded and working normally. If a node works
normally, the node is not undergoing any reconfiguration action. If the node is overloaded, it
begins a negotiation round with its direct adjacent nodes in order to transfer to them operators.
If the node is underloaded, it begins a negotiation round with its direct adjacent nodes in order
to take on (transfer) operators from them.

When a node begins the negation for transfer of operators with its adjacent neighbors, the node
must finish negotiations that it has already began, and don't begin new negotiations until then.

The figure 11 represents a bar with the total memory utilization of a node. The protocol is using
three thresholds: Lower threshold (Lt), Target threshold (Tt) and Upper threshold (Ut), which we
have noted on the memory bar. According to them we define if a node is underloaded, working
normally, or overloaded.

Figure 11- Memory utilization of a SPE node

27

• Node is underloaded when the memory usage of it is below the Lower threshold (Lt)
point.

• Node is overloaded when the memory usage is above the Upper threshold (Ut) point.

• Node is working normally when the memory usage is between the Lt and Ut points.
When a node is transferring operators it aims to reach the Target threshold (Tt) point.

Tt is the average value between Lower and Upper thresholds and is chosen instead of Ut to
avoid situations where nodes are constantly transferring operators; if we would transfer an
operator to a node that is working normally but its memory usage is very close to Ut (for
example the memory usage of the node after the operator transfer gets 1% less than the Ut)
there is a high probability that this node would run out of memory soon. This would initiate
another execution of the protocol and new round of operators transfer.

Table 2 – Protocol message

Message, information message used by the Load Balancing Protocol
Message.sender Node which sent this message
Message.typeOfMessage The type of the message
Message.urgent Used by the protocol to sort messages of the same type

(Values : High, Normal, Unset)
Message.size The total memory size of operators present in the Message.transfers
Message.transfers Array of available Transfer actions carried in the message

Table 2 presents the structure of the messages that we use with the LB protocol. The types of
messages in the protocol can be divided in two groups; whether the node that initiates the
negotiation is overloaded or underloaded (table 3).

Table 3 – Types of the protocol messages

Type of message

Types related to the
negotiations of an
overloaded node

opOfferRequest
opOfferReply
opOfferTransferRequest
Clear
opOfferTransferReply

Types related to the
negotiations of an
underloaded node

opDemandRequest
opDemandReply
Clear
opDemandTransferRequest

28

In the protocol the node that initiated the negotiation can receive multiple messages (one for
each adjacent node) of one of two types “opOfferReply”, “opDemandReply”. Message.urgent is
used for messages of these two types and is used to sort messages of the same type. For
example a node receives two “opDemandReply“ messages, one from an overloaded node and
one from a normal operating node. The message from the overloaded node would be sorted to
be processed first in the protocol.

In figure 12 we present an example of the negotiation for operator transfer between an
overloaded node and its adjacent nodes. We are using 3 nodes, node 2 where the operator is
initially deployed, its parent node 1 and child node 3 (figure 12). We examine node 2. Node 2 is
overloaded because node’s memory usage is 65%, 5% above the Ut (thresholds are specified in
the figure). Node 2 has a number of different operators deployed; among them is operator A
(memory size consumed by the operators are specified in the figure). Node’s 1 memory usage is
at 59%. Node’s 3 memory usage is 40%. Nodes 1 and 3 have their own distinct group of
operators. In this scenario these are the steps that our LB protocol follows:

29

Node 3

Node 2
A

Node 1

Node 3

Node 2

A

Node 1

Memory
Usage 59%

Memory
Usage 59%

Memory
Usage 55%

Memory
Usage 65%

Memory
Usage 50%

Memory
Usage 40%

Configuration before
operator transfer

Configuration after
operator transfer

Thresholds
Lt = 40%
Tt = 50%
Ut = 60%

D DZ Z Operators size
Operator A: 10%
Operator D: 20%
Operator Z: 35%

Figure 12 – Operator transfer because node 2 is overloaded

• Phase 1. Node 1 exchanges information messages with the adjacent nodes –
sends “opOfferRequest” message to every adjacent node – stating that it needs to
transfer operators. Node 2 would first check its available transfers and would look for
which operator can transfer in order to reduce its memory usage to Tt. Node 2 would
choose to send available transfers that contain operator A to the other nodes, because
it’s the only operator that can transfer and not reduce the node’s memory usage bellow
Tt.

• Phase 2. The adjacent nodes examine “opOfferRequest” message and decide on
if they are able to receive operator A from node 2. More specifically each node examines
in which state it is going to get in (normal or overloaded), if they receive the operator
offer from node 2. Then each node sends an “opOfferReply” message as a reply to node
2.

30

• Phase 3. Node 2 receives the replies from the adjacent nodes. Node’s 1 reply
states that it cannot take on the operator A (if node 1 takeover operator A the node
would get overloaded). Node’s 3 reply state that the node can take over operator A with
size 10%. Node 2 informs node 3 that is going to transfer operator A with message
“opOfferTransferRequest”. Node 2 sends also clear message to Node 1.

• Phase 4. Node 3 loads the operator 1 in its main memory and confirms the
decision of node 2 with “opOfferTransferReply” message.

Figure 13 shows the sequence of messages exchanged on the previous example and in general
when we transfer operators because a node is overloaded.

Figure 13– Sequence of messages exchanged when a node is overloaded

31

Listing 3 shows the pseudo code common to all nodes. Code is executed when the monitoring
period for the node has elapsed. If memory usage is above the Ut, the node decides which
operators should be transferred to another node (lines 1 – 16). If the node has memory usage
below Lt the pseudo code in lines 17 -21 is executed instead.

Upon: new monitoring period has elapsed at the node

1. If [(Memav > Ut) && (No negotiation in progress)] Then{
2. Message parentMessage(node,“opOfferRequest”, Unset,0, Transfer[] empty)
3. Message childMessage(node,“opOfferRequest”, Unset,0, Transfer[] empty)
4. excessOpSize := Memav –Tt // excessOpSize variable indicates the total memory size of the operators

that need to be moved
5. For (Transfer t from node.transfers){
6. If (t.totalOpMem() <= excessOpSize)
7. If (t.node == Parent_Node) {
8. parentMessage.transfers.add(t)
9. }
10. Else{
11. childMessage.transfers.add(t)
12. }
13. }
14. Send parentMessage to parent_Node
15. Send childMessage to child_Node
16. }
17. Else If [(Memav. <Lt) && (No negotiation in progress)] Then{
18. Message opRequest(node,“opDemandRequest”,Unset,0,Null)
19. opRequest.size := (Tt – Memav)
20. Send opRequest to all adjacent Nodes
21. }

Listing 3

If the node is overloaded it creates “opOfferRequest” messages that correspond to each of the
node’s adjacent neighbors (lines 2-3). Node sets in local variable excessOpSize the total memory
size of the operators that should be transferred to other nodes (line 4). Then all available
Transfers t available in the node.transfers that are smaller in size than excessOpSize are selected
(lines 5-6). A copy of transfer t is added to the message that corresponds to t.node (lines 7-13).
When the node has finished checking all the available Transfers, it sends the “opOfferRequest”
messages (lines 14-15).

If the node is underloaded, it creates an “opDemandRequest” message (line 18). Node sets the
opRequest.size field to Tt – Memav, because this is the memory size of the operators that the
node should deploy to reach Tt (line 19). Last a copy of the “opDemandRequest” message is sent
to all the direct adjacent nodes.

32

Upon: receive Message mess, with field type = “opOfferRequest” and source the Node that sent the mess

1. Message replyMessage(node,“opOfferReply”,Unset,0, Transfer[] empty)
2. If (Memav > Ut) then
3. Send replyMessage to source Node // the node is Overloaded that’s why it can’t receive more

operators. For this reason node reply with an empty message
4. Else{
5. target := Ut - Memav - 1
6. For (Transfer t from mess.transfers){
7. If (replyMessage.size <= target){
8. If (t.totalOpMem() + replyMessage.Size <= target)
9. replyMessage.transfers.add(t)
10. Increase replyMessage.size by t.totalOpMem()
11. mess.transfers.remove(t)
12. }Else
13. Break For Loop
14. }
15. If (Memav <= Lt)
16. replyMessage.urgent := High
17. Else
18. replyMessage.urgent := Normal
19. Send replyMessage to source Node
20. }

Listing 4

Listing 4 presents the pseudo code executed when a node receives an “opOfferRequest”
message (mess). Node begins by creating an “opOfferReply” message (replyMessage message-
line 1). If the total memory usage of the node is above Ut (line 2), the node is not able to deploy
more operators. For this reason the node just sends the reply message with parameter
replyMessage.urgent = Unset, replyMessage.size = 0 and replyMessage.transfers = empty
Transfer [], which according to the protocol indicates that the node cannot take on any
operators (line 3).

If node’s total memory usage is below Ut the node continues and sets the local variable target
equal to the size of memory that the node can use to deploy more operators (line 5). A node
can accept operators as far as they do not exceed the upper threshold. A more conservative
approach would be to accept operators as long as they do not exceed the target threshold. In
our case we go for the first option and we set target equal to (Ut - Memav – 1).

Next node checks the Transfer t that is present on the mess.transfers. replyMessage.size is
equal to the total memory size of the operators that the node has decided to take on (initially
set to zero). If the reply replyMessage.size is smaller than target (i.e. the node can take on more
operators) the node checks if there are more t in the mess. The node continues with the check
on line 8. At this point the node checks if operators at t can be loaded in the node. This is done
by calculating the overall size of t (t.totalOpMem() function returns the total memory usage of

33

the operators present in t). If operators in t can be deployed on the node, t is added on the
reply message and we increase the replyMessage.size by t.totalOpMem() (lines 9 - 10). When a
node selects a transfer t, it decides the operators it can receive. For this reason the algorithm
removes from mess the rest of the transfers that involve the operators that are present on t
(line 11). The node checks the t present in mess until it cannot receive more operators.

Next node sets replyMessage.urgent according to its memory usage (lines 15 - 18). Reply
messages from nodes with total memory usage below Lt have greater priority in this phase of
our protocol. For example, in case that there are two nodes that can take over the same
operators, one node underloaded and one normally working; we want underloaded node to
take over the operators. For this reason we set replyMessage.urget to high.

Upon: receive Message(s) mess, with field type = “opOfferReply”

1. repliesList.add(mess)
2. if (node received all the reply message from the adjacent node){
3. Set agreedSize := 0 // agreedSize is a local variable on the node, that indicates the size of the operators that it is

agreed to be transferred to another node.
4. For (each mess in the repliesList){
5. Message replyMessage(node,“Clear”, Unset,0, new Transfer[] empty)
6. If (agreedSize < excessOpSize){ // excessOpSize is a local variable on the node which was set on listing 3 at

line 4
7. For (Transfer t from mess.transfers)
8. If (t available in node.transfers){ // the node checks that if the Transfer that the adjacent node want

to perform is still available in the list of available transfer in the node
9. If (t.totalOpMem() <= excessOpSize - agreedSize){
10. Increase agreedSize by t.totalOpMem()
11. replyMessage.transfers.add(t)
12. Increase replyMessage.size by t.totalOpMem()
13. replyMessage.typeOfMesage := “opOfferTransferRequest”
14. node.transfers.remove(t)
15. }//End If
16. }//End If
17. }//End For Loop
18. Send replyMessage to mess.sender // send a message which contains the actions that the adjacent

node will perform
19. }
20. }Else
21. Send replyMessage to mess.sender // send an empty message that indicates to the adjacent node that it

will not do any action and the negation has finished for him.
22. }//End for
23. Clear RepliesList
24. }//end If

Listing 5

34

Listing 5 presents the pseudo code executed by the node that began the negotiation
(overloaded node) and is at the phase where it collects the replies from the adjacent nodes. So
the node that initially sent the “opOfferRequest” messages to its adjacent nodes, collects the
“opOfferReply” messages from them. Every “opOfferReply” message that the node receives is
stored it at repliesList array. Messages are sorted in the list according to the message.urgent
field. The node waits until it receives all the reply messages and only then continues to process
those (lines 1-2).

The node checks the Transfers t that are present in each “opOfferReply” reply message. If the
node has not reached its goal, i.e. excessOpSize(line 6),the node checks if t is still available in
node.transfers (line 8). This check is performed in order not to assign the same t to two
different nodes.

Upon: receive Message mess, with field type = “opOfferTransferRequest” and source the Node that sent the
Message

1. Message transferReplyMessage (node,“opOfferTransferReply”,Unset,0, new Transfer[] empty)
2. For (Transfer t from mess.transfers){
3. node.ops.add(t.ops) // load the operators that are present in the Transfer t to the main memory of

the node and add them to the list with the operators running in the node
4. transferReplyMessage.transfers.add(t) // indicate which actions are performed by the node
5. Increase transferReplyMessage.size by t.totalOpMem()
6. }//End For Loop
7. Send transferReplyMessage to source

Listing 6

Listing 6 presents the pseudo code executed on the node receiving “opOfferTransferRequest”
message (mess). The node loads the operators indicated on each Transfer t present on mess. On
the same time the node adds t on the reply message transferReplyMessage.
transferReplyMessage is used as an acknowledge message that indicates that the node has
successfully deployed the operators.

Upon: receive Message mess, with field type = “opOfferTransferReply”

1. For (Transfer t from mess.transfers)
2. node.ops.remove(t.ops) // node removes the operator from the list of running operators and begin to

forward the tuples related to this operator

Listing 7

Listing 7 presents the pseudo code executed on the node that receives an
“opOfferTransferReply” message (i.e. the node that was overloaded and initiated the
negotiation process). The node removes from main memory the operators present on t. After
this point the node only forwards data streams that are related to the operators that are
removed from main memory (t.ops).

35

Figure 14 shows the sequence of messages exchanged when a node announces that can deploy
more operators because it is underloaded.

Figure 14 - Sequence of messages exchanged when a node is underloaded

Listings 8 - 10 provide the pseudo code that is executed by the LB protocol when there is
negotiation process which a node initiated because the node was underloaded.

At listing 8 we can see the pseudo code that each node that receive message (mess) of type
“opDemandRequest” executes. If node has memory usage equal or smaller than Tt, it cannot
provide any operators and for this reason the node replies with an empty “opDemandReply”
message (lines 2-3). If the node has memory usage above Tt it checks the available Transfers t
that are in the node (node.transfers) and the ones that are smaller or equal to target are added
on the reply message (lines 4 - 16). Next node is setting the priority that the reply message
would have (lines 17 - 20) and sends the message to source node.

36

Upon: receive Message mess, with field type = “opDemandRequest” and source the Node that sent the Message

1. Message replyMessage(node,“opDemandReply”,Unset,0, new Transfer[] empty)
2. If (Memav < Tt) then
3. Send replyMessage to source Node // the node cannot offer any operators and reply with an

empty message
4. Else{
5. If ((Memav - mess.size) < Tt)
6. target := Memav – Tt // target is a local variable that indicates the memory size of operators

that the node could offer
7. Else
8. target := mess.size
9. For (Transfer t available in node.transfers){ // check all the available Transfers on the node
10. If (t.node == mess.sender) // if Transfer is related with the node that sent the mess
11. If (t.totalOpMem() <= target){
12. replyMessage. transfers.add(t)
13. Increase replyMessage.size by t.totalOpMem()
14. }//End If
15. }//End If
16. }// End For Loop
17. If (Memav <Ut)
18. replyMessage.urgent := Normal
19. Else
20. replyMessage.urgent := High
21. Send replyMessage to source Node
22. }
While executing: all other received messages ignored

Listing 8

Listing 9 presents the pseudo code executed on the node that initially sent the
“opDemandRequest” messages (the underloaded node, listing 3) to its adjacent nodes and then
collects the “opDemandReply” messages from them. Every “opDemandReply” message that the
node receives is stored at repliesList array. Messages are sorted in the list according to the
message.urgent field. The node waits until it receives all the reply messages and only then
continues to process them (lines 1-2).

If the node received an empty “opDemandReply” message (i.e. mess.size ==0 that the adjacent
node mess.sender sent), the node sends a “Clear” message to mess.sender and the negotiation
with that node finishes (lines 8 -9). Otherwise the node chooses t and loads the operators
present at t.ops to node.ops(lines 12-13). The node also adds the t in the
“opDemandTransferRequest” reply message (lines 14 -16). When a node selects a t it removes
all other t present on mess.transfers that have common operators (for example two Transfer t
that have common operators in t.ops – line 18).

37

Upon: receive Message(s) mess, with field type = “opDemandReply”

1. Add mess to repliesList
2. if (node received all the reply message from the adjacent node){
3. agreedSize := 0 // agreedSize is a local variable on the node, that indicates the size of the operators that the local

node has agreed to take over from the adjacent nodes
4. target := Tt - Memav // target is a local variable that indicates the memory size of operators that the node could take

over
5. For (each mess in the repliesList){
6. Message trasferRequest(node,“Clear”,Unset,0, new Transfer[] empty)
7. If (agreedSize <= target){
8. If (mess.size==0) // if the adjacent node replied that it cannot offer any operators (mess.Size==0) the node

replies with a clear message and the negotiation finishes for the adjacent node
9. Send trasferRequest to mess.sender
10. Else{
11. For (Transfer t from mess.transfers){
12. If (t.totalOpMem() <= (target – agreedSize)){
13. node.ops.add(t.ops) // load the operators that are present in the transfer to the main memory of the

node and add them to the list with the operators running in the node
14. transferRequest.transfers.add(t)
15. Increase transferRequest.size by t.totalOpMem()
16. transferRequest.typeOfMesage :=“opDemandTransferRequest”
17. Increase agreedSize by t.totalOpMem()
18. node.transfers.remove(t)
19. } // End If
20. }//End For Loop
21. Send trasferRequest to mess.sender // the reply message with all the actions that the node is going to (i.e.

the operators that is going to takeover)
22. }// End Else
23. }Else
24. Send trasferRequest to mess.sender // the adjacent node replied with a set of actions but the node won’t

perform them. The node replies with a clear message and the negotiation finishes for the adjacent node
25. }//End For Loop
26. Clear RepliesList

Listing 9

Listing 10 presents the pseudo code executed on the node that receives an
“opDemandTransferRequest” message. The node removes from main memory the operators
present on t. After this point the node only forwards data streams that are related to the
operators that were removed from main memory (t.ops).

Upon: receive Message mess, with field type = “opDemandTransferRequest”

1. For (Transfer t from mess.transfers){
2. node.ops.remove(t.ops) // node removes the operator from the list of running operators and begin to forward the

tuples related to this operator
3. }

Listing 10

38

4. Evaluation

4.1 Evaluation Setup
In order to evaluate the performance of the LB protocol described in the previous section, we
used NETSIM 5.2 program [12] to simulate a network of nodes. Each node we assume that can
run a stream process application. We used a dual-core Intel® Core™i5 CPU 450M@ 2.40GHz
computer equipped with 4GB of RAM to run all the tests. The protocol and all the testing code
are written in Java 1.8.0-ea-b108 using the default classes provided by the NETSIM program.

We want to simulate a hierarchical network of devices, so we created a 15 node perfect binary
tree, with bidirectional communication lines among the adjacent nodes. Each node in the
simulation represents a node in the AMI communication network, which we assume that it can
run a distributed SPE application (SPE node). All nodes have equal computational resource and
are running the same version of the LB protocol.

Our purpose is to measure how our protocol performs when there are fluctuations on the
creation rate of the data stream. For this reason we simulated an environment that has sudden
changes at the memory usage of each operator. To achieve this we created a component that
modifies the operators’ memory usage at runtime. We artificially increase or decrease the
memory usage of an operator to replicate the sudden changes in the rate that tuples arrive.

Table 4 – Parameters of experiments

Parameters of an experiment
Number of operators The total number of operators that are deployed to all the nodes
Monitoring Period Period with which each node checks its memory usage and runs the

LB protocol if needed
Timespan (sec) The time interval that we choose a new operator to alter its memory

usage. Also equal to the length of time that we alter the memory
usage of this operator.

Period (sec) The period we change the operator's value that represent its
memory usage size

Increase Rate Random value taken from a Poisson distribution with mean (λ) equal
to 2

Table 4 lists the parameters that we set for every simulation run.

Each run of the simulation lasts for 16 minutes. The simulation begins with all nodes loading the
operators and after 2 seconds we begin to alter the memory size of the operators in the system.

39

More specifically, every Timespan seconds we choose an operator (the selection of the operator
is done following a discrete uniform distribution of all the operators in the system). For this
timespan we command the node that possesses this operator to increase/ decrease the
operator’s memory size every Period seconds for the Increase Rate value. From the beginning of
the simulation and for the next 8 minutes the operators are only increased. On the 8th minute of
the simulation and for the next 8 minutes operators are only decreased. Last, in our
implementation we only decrease the memory usage of an operator that we have previously
increased.

Next we present a general example on how we alter the memory size of an operator. We
assume that this example takes place in the first 8 minutes of the simulation run and therefore
we only increase the value of the operator. We command node 5 that for the next 20 seconds
(Timespan) the node will increase every 2 seconds (Period) the memory size of operator Y, by a
different value that it is taken from Increase Rate. Every 5 seconds (Monitoring Period) each
node of the system is running the LB protocol and performs accordingly.

4.2 Evaluation of Results
In this section we evaluate our LB protocol on simulated environment. We examine how a
distributed SPE application installed on the AMI communication network performs with and
without the LB protocol.

In both cases, we measure the average memory usage for all nodes and the standard deviation.
In order to achieve that, we are logging every two seconds the total memory usage of each
node. Then for every two second we calculate how much is the average memory usage of all
nodes. Also every two seconds we calculate the standard deviation. What we want to do is to
study the variation of the total memory usage of each node compared to the average memory
usage of all nodes.

For the evaluation of the protocol we compare pairs of simulation runs: one simulation run in
which the nodes don’t execute the LPB and one simulation run in where the LBP is executed. In
both simulations runs we have the same distribution of operators per node, i.e. each time,
when the simulations are initialized, a node will possess exactly the same operators. Also, in
both simulations we increase the same operators, on the same sequence and with the same
parameters for each operator (i.e. increase/decrease, Timespan, Period and Increase Value per
operator).

We proceed with a detailed overview of one experiment, where we evaluate the results that we
receive for that experiment. Then we present summary results for all the experiment runs.

40

On table 5 we list the parameters of one simulation. Each simulation run begins by randomly
deploying 360 operators on the 15 nodes of our situation environment. Then after 2 seconds,
we randomly peek on of the 360 operators. For the next 16 seconds and every 1 second we
increase its memory size by a random value by that it is taken from Increase Rate. When the 16
seconds pass, we chose another operator and begin to increase its memory size accordingly.

Table 5 – Simulation example parameters

Parameters of experiment
Number of operators 360
Monitoring Period (sec) 5
Timespan (sec) 16
Period (sec) 1
Increase Rate Poisson distribution with mean (λ) equal to 2
Threshold values
(percentage of nodes
main memory)

Lt = 40 %
Tt = 50 %
Ut = 60 %

On figure 15 we see two graphs with Average Memory Usage for all nodes and standard
deviation, and how they change over time. On the first graph we can see that the average
memory usage, the first 8 minutes we have a constant increase and for the next 8 minutes it
decreases. This has to do with the fact that the first 8 minutes we are randomly pick operators
and we increase their memory size, while on the next 8 minutes we decrease the memory size
of the operators that we previously increased.

41

Figure 15 – Average Memory Usage and Standard Deviation

On the second graph in figure 15, we see how standard deviation of average memory usage
changes over time. As we observe system in which we have enabled the LB protocol has lower
standard deviation values during the execution of the simulation run. Nodes’ memory usages
have smaller variation from the average memory usage for all nodes when we used the LB
protocol. We manage to achieve more even distribution of the workload among the nodes of
the system, as we see from the standard deviation graph. This fact can be interpreted to more
even distribution of the workload.

42

Figure 16 – Number of nodes above Ut over time

All the nodes in the simulations begin either underloaded or normally working. In the
simulations we are monitoring when a node will get overloaded and for how much time is going
to stay in that state.

On figure 16 we see how the number of overloaded nodes changes over time. Here we observe
that when we use the LB protocol the system has less overloaded nodes over time. Also the
nodes that get overloaded stay on that state for shorter time. We calculated that when we use
the LB protocol the same system processes the same workload being 26,44 % less overloaded in
total. In addition the number of the nodes that get overloaded is smaller in 85,52 % of the time.

On average in a series of 15 experiments with similar parameters, at the simulation runs that we
used the LB protocol, the protocol kept the number of the overloaded nodes smaller in 80,83 %
of the time.

Overall, the results show that with the use of LB protocol we can minimize the time that the
nodes in a simulated distributed SPE system are overloaded due to the fluctuations of the
creation rate of the data streams. We can observe that nodes of the system can tolerate the
sudden increases of workload because for the same amount of workload there are less
overloaded nodes in most cases.

43

5. Related Work
There have been different approaches on developing load balancing mechanisms that would
improve the performance of Distributed Stream Processing Engines.

Flexible Filters [13] is a load balancing solution applicable to multi-core processor architectures
and using backpressure messages. More specifically multiple copies of data processing filters
are deployed simultaneously on multiple cores for a short amount of time. The idea is that data
from the same data stream are split in two separate streams and are processed in parallel by
two cores on the same time. Each core knows in advance the maximum throughput of the
filters deployed on it. When the throughput of a filter falls (because the core cannot keep up
with the processing rate of the upstream core), the core sends backpressure signals to upstream
core. The upstream core deploys the filter related to the backpressure signal and processes in
parallel part of the data (that belong to the data stream that the other core cannot process on
time). Such a solution cannot be directly applicable in our distributed SPE system. In our system
there are operators that have more than one input data stream. In a case where an operator
has two input streams that originate from two different child nodes, we would not be able to
deploy two copies of the operator at the two child nodes and process the data in parallel, since
each node has access to only one data stream.

In bounded-price mechanism [14] nodes of the system conduct two-way contracts among them.
Nodes negotiate off line with their neighbors about the workload that they can take on in return
of payment. Each node tries to achieve the best economic deal taking into consideration the
workload that must be processed and the contracts that it has made. When a node needs to
process data from a data stream, it checks if it is cheaper to process the data locally or
“outsource” the processing to another node. On Stream Cloud (SC) [15]the system is divided to
share-nothing clusters. In order to counter the variation in the workload, each cluster has the
ability to commission/decommission new nodes in the cluster (elasticity) and also perform load
balancing between the already existing nodes. For the load balancing part, SC monitors the
standard deviation of CPU utilization. When the CPU usage standard deviation is above a
predefined upper threshold, a new distribution of operators (among the existing nodes) is
calculated. If with the new distribution of the operators the performance of the system
improves, operators from the overloaded node are transferred to the node with the least
workload. These two solutions, plus [16] could not be directly applicable on the system we
examine in this thesis. These solutions have been designed for flat distributed SPE systems,
where we can reroute data stream to any SPE node. The network we examine is hierarchical. As
we presented, a data stream flows only from child to parent node and this raises limitations on
operator transfer procedure, which these solutions don’t examine.

44

6. Conclusion
The electricity utility companies in order to provide services like better management of the
electricity network and dynamic price rates to the end users, need to have access to the
information provided by AMI system in close to real time. These services would require to
change over time the frequency that smart meters in the AMI system report their readings.
Distributed SPE applications would be one of the solutions to process the data from the AMI
systems, since they can process huge volume of data in close to real time margins.

In this thesis we developed a distributed Load Balancing Protocol to cope with the workload
variations in a distributed SPE application installed on AMI system. Our goal is to avoid
overloading and spread the workload between the SPE nodes of such distributed SPE system.
This would require to transfer query operators between the SPE nodes. The distributed SPE
application that we examined on this thesis, we assumed that is installed on a hierarchical AMI
communication network and the data are always routed through the same nodes. For this
reason we had the challenges: a) to transfer an operator to an adjacent SPE node that both have
access to the appropriate data streams and b) have on the same time the available resources
(free main memory). We developed an Operator Selection Algorithm that defines which
operators can be transferred from one node to each of its neighbors (i.e. which actions are
available for the node to perform). Each SPE node then uses the LB protocol to negotiate with
its direct neighbors.

We developed the LB protocol that under simulated environment achieves the distribution of
work load between SPE nodes of our system. We managed to decrease the number of the
nodes and the time that nodes in a distributed SPE system stay overloaded, which we assume
that it can be translated to better resource utilization in a distributed SPE application installed
on AMI communication network. It is a subject for further research to verify that our LB protocol
can bring the same results under a real distributed SPE system.

For the purposes of this report we measured performance according to nodes’ main memory
usage. Also all the decisions in the protocol are made based on nodes’ memory usage. Although
this is a good starting point, more parameters like nodes’ CPU and Network utilization could be
added to algorithm in a future work.

45

7. References

[1] M. Henzinger, P. Raghavan och S. Rajagopalan, ”Computing on data streams,” i External Memory Algorithms:
DIMACS Workshop External Memory and Visualization, May 20-22, 1998, Palo Alto, California, American
Mathematical Soc., 1998, p. 107.

[2] M. Stonebraker, U. Çetintemel and S. Zdonik, "The 8 Requirements of Real-Time Stream Processing," SIGMOD
Rec., vol. 34, no. 4, pp. 42-47, December 2005.

[3] D. Terry, D. Goldberg, D. Nichols och B. Oki., ”Continuous Queries over Append-only Databases,” i Proceedings
of the 1992 ACM SIGMOD International Conference on Management of Data, vol. 21, New York, NY, USA, ACM,
1992, pp. Pages 321-330.

[4] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tatbul och S. Zdonik,
”Aurora: a new model and architecture for data stream management,” The VLDB Journal—The International
Journal on Very Large Data Bases, vol. 2, nr 2, pp. 120-139, August 2003.

[5] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. I. K. Datar, R. Motwani, U. Srivastava och J. Widom, ”STREAM:
The Stanford Data Stream Management System,” Book chapter, Stanford InfoLab, 2004.

[6] S. Chandrasekaran, O. Cooper, A. Deshpande, M. Franklin, J. Hellerstein, W. Hong, S. Krishnamurthy, S.
Madden, V. Raman, F. Reiss och M. Shah, ”Telegraphcq: Continuous Dataflow Processing for an Uncertain
World,” i Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, New York,
NY, USA, San Diego, California: ACM, 2003, pp. 668-668.

[7] D. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M.Cherniack, J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin,
E.Ryvkina, N. Tatbul, Y. Xing och S. Zdonik, ”The Design of the Borealis Stream Processing Engine,” Asilomar,
CA, Second Biennial Conference on Innovative Data Systems Research (CIDR 2005), 2005, pp. 277--289.

[8] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez och P. Valduriez, ”StreamCloud - A Large Scale Data
Streaming System,” i Distributed Computing Systems (ICDCS), 2010 IEEE 30th International Conference on, IEEE,
2010, pp. 126--137.

[9] ”The Future of the Electric Grid: An Interdisciplinary MIT study,” Massachusetts Institute of Technology,
Cambridge, 2011.

[10] C. Bennett och D. Highfill, ”Networking AMI Smart Meters,” i Energy 2030 Conference, 2008. ENERGY 2008.
IEEE, IEEE, 2008, pp. 1-8.

[11] J. Wang och V. Leung, ”A survey of technical requirements and consumer application standards for IP-based
smart grid AMI network,” i Information Networking (ICOIN), 2011 International Conference on, IEEE, 2011, pp.
114-119.

[12] S.-A. Andréasson. [Online]. Available: http://www.cse.chalmers.se/~andreass/champ/Netsim/.

[13] R. L. Collins och L. Carloni, ”Flexible Filters: Load Balancing through Backpressure for Stream Programs,” i
Proceedings of the Seventh ACM International Conference on Embedded Software, New York, NY, USA, ACM,
2009, pp. 205-214.

46

[14] M. Balazinska, H. Balakrishnan och M. Stonebraker, ”Contract-Based Load Management in Federated
Distributed Systems,” i Proceedings of the 1st Conference on Symposium on Networked Systems Design and
Implementation - Volume 1, San Francisco, CA, USENIX Association, 2004, pp. 15--15.

[15] V. Gulisano, R. Jiménez-Peris, M. Patiño-Martínez, C. Soriente and P. Valduriez, "StreamCloud: An Elastic and
Scalable Data Streaming System," in IEEE Trans. Parallel Distrib. Syst., vol. 23, Piscataway, NJ, USA, IEEE Press,
2012, pp. 2351 - 2365.

[16] Y. a. Z. S. a. H. J.-H. Xing, ”Dynamic Load Distribution in the Borealis Stream Processor,” i Proceedings of the
21st International Conference on Data Engineering, Washington, DC, USA, IEEE Computer Society, 2005, pp.
791--802.

	THEODOROS kOTSANTIS
	Acknowledgements
	1. Introduction
	1.1 Background
	1.2 Short problem statement
	1.3 Goal

	2. System description and problem modeling
	2.1 Terms definitions
	2.1.1 Data stream
	2.1.2 Queries and Operators
	2.1.3 Stream Process Engines
	2.1.3.1 Centralized Stream Process Engines
	2.1.3.2 Distributed Stream Process Engines

	2.1.4 Advanced Metering Infrastructure

	2.2 Problem modeling
	2.2.1 System Overview
	2.2.2 Possible scenarios of operator transfer.

	2.3 Detailed problem description
	2.4 Evaluation method

	3. Design
	3.1 Protocol
	3.2 Operator selection algorithm
	3.3 Protocol detailed description

	4. Evaluation
	4.1 Evaluation Setup
	4.2 Evaluation of Results

	5. Related Work
	6. Conclusion
	7. References

