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ABSTRACT:

Recently, a camera self-calibration algorithm was reported which solves for pose, focal length and radial distortion using a minimal
set of four 2D-to-3D point correspondences. In this paper, we present an empirical analysis of the algorithm’s accuracy using high-
fidelity point correspondences. In particular, we use images of circular markers arranged in a regular planar grid, obtain the centroids
of the marker images, and pass those as input point correspondences to the algorithm. We compare the resulting reprojection errors
against those obtained from a benchmark calibration based on the same data. Our experiments show that for low-noise point images
the self-calibration technique performs at least as good as the benchmark with a simplified distortion model.

1. INTRODUCTION

Estimating the position and orientation of a camera along with
its intrinsic properties is a fundamental problem in computer vi-
sion. In three-dimensional machine vision, this goal is tradition-
ally achieved by calibrating a camera model with the help of 2D
images of reference points, whose 3D coordinates are known rel-
ative to some coordinate system (Tsai, 1987, Wei and Ma, 1993,
Heikkila and Silvén, 1997).

Recently, self-calibration methods have become popular (Hart-
ley, 1997, Triggs, 1998, Li and Hartley, 2005). Those techniques
do not use a calibration object, but rather exploit structural fea-
tures of a static scene viewed from different positions. Corre-
spondences across the different views then provide constraints
used to derive the model parameters.

An interesting class of self-calibration techniques are those that
try to minimize the number of correspondences necessary. Very
recently, techniques originally described by (Triggs, 1999) were
used by (Josephson and Byrod, 2009), and shortly after by (Buj-
nak et al., 2011) to state minimal problems that include modeling
of non-linear effects, such as radial distortion.

In this paper we compare how the method by (Bujnak et al.,
2011), used for self-calibration, fares against a traditional calibra-
tion method (Zhang, 2000) in terms of reprojection error. In order
to do so, we use images of a calibration object, a regular grid of
circular markers. Thus, we already provide 3D point coordinates
both to the calibration technique and also to the self-calibration
method. In this scenario, the traditional calibration method serves
as a benchmark or “gold standard”. We consider this to be justi-
fied, as the method by (Zhang, 2000) is implemented as the cal-
ibration method of choice in some form or another in a variety
of (open-source) software packages, including such popular soft-
ware as OpenCV (Bradski and Kaehler, 2008) and the MATLAB
Camera Calibration Toolbox by (Bouguet, 2004).

Since the two approaches are targeted at different applications,
there do not seem to be many comparisons across them. The work
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by (Devernay and Faugeras, 2001) compares a self-calibration
technique against a regular calibration, but they do not use a
minimal solver that models radial distortion. In (De Villiers et
al., 2008), different distortion models and numerical optimiza-
tion techniques are compared, but only the traditional calibration
technique is used in any of the experiments.

1.1 Contributions

The main contributions of this paper are

• Applying the algebraic minimal problem solver by (Buj-
nak et al., 2011) and the associated proposed self-calibration
method for images of only a few, but confirmed, co-planar
points arranged in a grid pattern, and verifying its feasibility
for this type of task up to a specific qualitative accuracy.

• Comparing that self-calibration against a benchmark cali-
bration method (Zhang, 2000) based on bundle adjustment
with respect to reprojection error.

• Using the best solutions from the self-calibration as initial
values for bundle adjustment and comparing the resulting
optimization result with the default of using a constant initial
guess chosen in advance.

2. CAMERA MODEL

The general model of a camera used in this paper is the pinhole
camera model (Hartley and Zisserman, 2003). The projection
equation in the pinhole model can be written as

sx =

fx γ cx

0 fy cy
0 0 1


︸ ︷︷ ︸

M

[
R | t

]
X. (1)

Here X is a point in 3D space, x its projection on the image plane,
R and t respectively describe the rotation and translation which
relate the world coordinate system to the camera coordinate sys-
tem. (R, t) together are called the extrinsic parameters. M is the
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camera intrinsics matrix capturing the focal length along the x
and y coordinates of the image, fx and fy , and the camera’s prin-
cipal point (cx, cy), while the parameter γ describes the skewness
of the two image axes. Since the projection is only defined up to
scale, an arbitrary scale factor s is included in the equation.

For the remainder of the paper we assume zero skew, as was done
by (Bujnak et al., 2011) and (Zhang, 2000).

3. DISTORTION MODEL FOR THE
SELF-CALIBRATION

The method by (Bujnak et al., 2011) uses the division model
(Fitzgibbon, 2001) for radial distortion, which is given by[

xp − xc

yp − yc

]
=

1

1 + qr2d

[
xd − xc

yd − yc

]
. (2)

In this equation, (xp, yp) is the undistorted image point, (xd, yd)
is the distorted image point, (xc, yc) is the center of distortion, q
is the radial distortion coefficient, and r2d = x2

d + y2
d.

In order to formulate a minimal problem, three more simplifi-
cations are made to reduce the degrees of freedom. Firstly, the
principal point is set to the image center. Secondly, the center of
distortion is set to the principal point, and thus also to the image
center. And lastly, the aspect ratio is set to 1. With these assump-
tions and by including the radial distortion from Equation (2) into
the model from Equation (1), the projection can be described as

s

 xd

yd

1 + qr2d

 =

f 0 0
0 f 0
0 0 1


︸ ︷︷ ︸

M

[
R | t

] 
X
Y
Z
1

 . (3)

In their work, (Bujnak et al., 2011) describe two different param-
eterizations for the unknowns in this equation system depending
on whether the 3D points are coplanar or not. In each case, the re-
sult is a polynomial equation system that can be solved efficiently
using the Gröbner basis method (Cox et al., 1998). A detailed de-
scription of the method is beyond the scope of this paper, and
we refer the reader to (Stewénius, 2005) for a background on the
theory of Gröbner basis solvers and its application to computer
vision.

4. DISTORTION MODEL FOR THE BENCHMARK
CALIBRATION

The work by (Brown, 1966, Brown, 1971) proposed a model for
mapping a distorted image point to a point in an image obtained
from a distortion-free projection. In (Wei and De Ma, 1994) it is
shown that the same functional form can be used for the reverse
mapping. The reverse mapping is also used by (Zhang, 2000) and
can be described as[

xd

yd

]
=

[
xu + x̃u(k1r

2
u + k2r

4
u + . . .)

yu + ỹu(k1r
2
u + k2r

4
u + . . .)

]
+[[

p1(r
2
u + 2x̃2

u) + 2p2x̃uỹu

]
(1 + p3r

2
u + . . .)[

2p1x̃uỹu + p2(r
2
u + 2ỹ2

u)
]
(1 + p3r

2
u + . . .)

]
(4)

with: x̃u =xu − xc, ỹu = yu − yc.

Here, (xd, yd) is the distorted image point, (xu, yu) is the undis-
torted image point, (x̃u, ỹu) is the undistorted point’s relative po-
sition to the center of distortion (xc, yc), ki is the ith radial distor-

tion coefficient and pj is the j th decentering distortion coefficient,
and r2u = x̃2

u + ỹ2
u.

As for the self-calibration and as (Zhang, 2000), we assume that
the center of distortion is the same as the principal point, thus we
set (xc, yc) = (0, 0). Furthermore, and again in line with (Zhang,
2000), we only consider the first two coefficients for radial dis-
tortion (k1, k2). But additionally, we include the first two coeffi-
cients for decentering distortion as (Wei and De Ma, 1994) did.

To determine the distortion coefficients, along with focal lengths
(fx, fy) and principal point (cx, cy) from Equation (1), given n
images ofm co-planar points the following optimization problem
can be stated:

min
bj

n∑
i=1

m∑
j=1

‖Q(bj , Xi)− xij‖2. (5)

Here, bj is the parameterization of the camera in view j, Q is the
modeled projection function, Xi are point i’s 3D coordinates and
xij are point i’s image coordinates in view j.

To solve this equation numerically, the Levenberg-Marquardt al-
gorithm (Levenberg, 1944, Marquardt, 1963) can be used, which
is the method also suggested by (Zhang, 2000).

5. COMPARING THE SELF-CALIBRATION AND THE
BENCHMARK CALIBRATION MODELS

In order to make the two different models somewhat comparable,
we adapt the benchmark’s model by setting the principal point to
the image center and assuming an aspect ratio of 1 as in the right-
hand side of Equation (3). We also simplify the benchmark’s
distortion model from Equation (4) to not account for decentering
distortion, and only include the first radial distortion coefficient.

Through these changes, we get the same number of parameters
in both models. In particular, we can directly compare the focal
length, rotation and translation estimates from both models. The
only parameter not directly comparable is the radial distortion
coefficient. However, (Fitzgibbon, 2001) showed that these two
radial distortion models approximate the true distortion function
nearly equally well.

As the benchmark calibration method (Zhang, 2000) assumes im-
ages of points located in a single two-dimensional plane, we are
restricted to using images of coplanar points, only. For our anal-
ysis and experiments, we consider points arranged in a regular
two-dimensional grid pattern. As for the images of the grid pat-
tern, we initially normalize all image coordinates by scaling them
with a factor of

scale =
2

max(width, height)− 1
, (6)

so that all image coordinates are mapped between minus one and
one (Josephson and Byrod, 2009). This way, the analysis is inde-
pendent of image size.

We use the solver for Equation (3) inside a RANSAC-like loop,
similar to (Bujnak et al., 2011), that optimizes for number of in-
liers based on the reprojection error. The sample space consists
of the 3D-to-2D point correspondences describing the mapping
from the points of the regular grid pattern to their respective im-
age points in the same image. As our object points are arranged
in a regular grid, we decided to exclude the degenerate cases of
having 3 or 4 co-linear points. We thus opted for sampling from
the set of all possible non-degenerate 4-point configurations of
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points in the same image, instead of sampling any set of 4 points
as a traditional RANSAC approach would suggest. Each sampled
4-point configuration is fed to the minimal solver to obtain the
model parameters. We calculate for each point in the same im-
age the reprojection error under the model and determine which
points are inliers. The criterion for a point being an inlier is based
on the results from the benchmark calibration with the simplified
model for the exact same image: if the reprojection error for a
point is less than 3 times the maximum reprojection error over all
points from the same image for the benchmark calibration, then
the point is considered an inlier. From all sampled 4-point config-
urations for a given image, we keep the solution with the highest
number of inliers, and, as a secondary criterion, the lowest aver-
age reprojection error over all inliers. We repeat this procedure
for all images.

For the benchmark calibration we minimize the reprojection func-
tion given in Equation (5) using the Levenberg-Marquardt algo-
rithm. We perform the minimization twice: once employing the
distortion model from Section 4., which we subsequently refer to
as the full model, and a second time using the simplified model as
described previously in this section. Instead of single images as
for the RANSAC-like method described above, we divide all im-
ages into sets and apply the Levenberg-Marquardt algorithm on
each set individually. But as before, we obtain the reprojection
errors for all 3D-to-2D point correspondences, as well as esti-
mates for focal length, distortion coefficients, rotation and trans-
lation. Note however, that, for a given set of input images, the
benchmark calibration only estimates a single focal length for the
complete set, while the self-calibration technique gives an esti-
mate for each image individually. The same holds true for the
respective radial distortion coefficients.

6. EXPERIMENTAL RESULTS

6.1 Measurement acquisition

For the image acquisition we used two Qualisys Oqus 3+ cam-
eras, one equipped with a 25mm lens, the other with a 50mm
lens. The 25mm lens is shipped by default with the camera. We
chose to test the 50mm lens as well because this lens is of higher
quality than the 25mm one, exhibiting less pronounced distortion
characteristics. This fact, we hypothesized, would allow for con-
clusions about the relative performance of the calibration meth-
ods depending on the distortion characteristics of the lens.

The Qualisys Oqus cameras are usually used for 3D motion cap-
ture, recording infrared light reflected from or actively emitted by
spherical or circular marker objects. The reason to choose those
cameras is that we wanted to take images of single points without
sophisticated image feature extraction. Since the motion capture
cameras are optimized to record the relatively small markers, the
feature extraction task is simplified to finding (nearly) circular
spots on the image. Since we wanted to have single points, we
used the cameras built-in functionality to calculate the centroids
of detected markers to obtain subpixel coordinates of the image
points.

To capture images of co-planar points, we used a plate with cir-
cular retro-reflective markers arranged in a regular 4× 5 grid, so
that the distance between neighboring markers along a particu-
lar dimension is the same. We used the camera-calculated image
coordinates of the marker centroids for our final analysis. Fig-
ure 1 shows a color picture of the plate, while Figure 2 shows
an image of the markers taken by the Qualisys Oqus camera in
marker-detection mode.1

Figure 1: The plate used for calibration, with 4×5 circular retro-
reflective markers arranged in a regular grid pattern.

Figure 2: A visualization of the markers seen and identified by
the Qualisys Oqus 3+ camera.

For each of the two lenses, we took images of the plate from
different angles and at two different distances from the cameras,
such that the image points were distributed over the entire im-
age sensor for both distances. The two distances were adapted
according to each lens’ approximate focal length. With up to 20
points per image, we got 105111 points in 5267 images for the
25mm lens, and 76299 points in 3866 images for the 50mm lens.

6.2 Self-calibration versus benchmark calibration

We divided the data for each lens into different, similarly sized
sets, yielding 7 sets for the 25mm lens and 8 sets for the 50mm
lens. For each set, we performed a benchmark calibration and
recorded the reprojection error for each point in each image. We
ran the calibration for both the simplified model as described in
Section 5. as well as the full model described in Section 4.

We then ran the self-calibration on the same set, using the sam-
pling approach described in Section 5. For each image, 30 sam-
pling iterations were performed where a minimal set of 4 points
was selected. We determined the number of inliers and kept track
of the model with the largest number of inliers. If two models
gave rise to the same number of inliers, we only considered the
one resulting in the smaller average reprojection error over all in-
liers. Concurrently, we also recorded the individual reprojection
errors for all inlier points for that model.

Figure 3 shows the empirical mean and standard deviation of the
number of inliers given the number of sampling iterations over
all images for both lenses. For most images, the inliers included
all points after the first iteration step. All the points in all images
were determined to be inliers after the maximum number of itera-
tions. This is an indication that the acquired point images contain
very little noise, which can be attributed to the high-fidelity grid
pattern and the fact that only nearly-circular features had to be
extracted from the images. The lower mean and higher variance
of the number of inliers for the 50mm lens can possibly be ex-
plained by the observation that in general it is better not to model

1The coloring and numbering is added by the processing software for
visualization purposes only.
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Figure 3: RANSAC-like procedure during self-calibration: Mean
and standard deviation of number of inliers given the number of
sampling iterations for the 25mm lens (a) and the 50mm lens (b).
The standard deviation is truncated towards the top, as the num-
ber of inliers can be at most 20 (the number of markers in the grid
pattern).

lens distortion if the effects are negligible (Josephson and Byrod,
2009), which we assume is the case for this high-quality lens we
used.

Figure 4 displays for both lenses the cumulative distribution of re-
projection errors for all (inlier) points over all images for both the
benchmark calibration (simplified and full model) and the self-
calibration. Based on the visual representation, it seems that,
for the 25mm lens, the self-calibration and the benchmark cali-
bration with the simplified model perform similarly well, while
the benchmark calibration with the full model performs better.
In order to validate this impression, we performed a t-test for
paired samples, pairing the point-wise reprojection errors of the
three methods against one another. We observed a significant
difference (p < 0.001) for any two, with the benchmark calibra-
tion with the simplified model actually performing worse than the
self-calibration with respect to average reprojection error. For the
50mm lens, the figure does not reveal a clear difference between
the three techniques. Again, a t-test for paired samples indicated
a significant difference (p < 0.001) between any two, with the
self-calibration having the lowest average reprojection error, and
the benchmark calibration with the full model the highest one.
As mentioned before, it seems that modeling the negligible dis-
tortion effects for the 50mm lens is not beneficial, thus a sim-
pler model will probably “cause less harm” than a more elaborate
one. A reason for the self-calibration method performing better

than the benchmark calibration with the simplified model irre-
spective of the lens used could be that the model parameters are
fitted for each image individually for the self-calibration method,
while the parameters for the benchmark calibration are fitted to a
set of multiple images.
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Figure 4: Cumulative distribution of the reprojection error values
for all points across all views for the benchmark calibration using
the full model, the benchmark calibration using the simplified
model, and the self-calibration for both the 25mm lens (a) and
the 50mm lens (b).

6.3 Self-calibration combined with benchmark calibration

In this experiment, we used the best estimate, in terms of repro-
jection error, of focal length and radial distortion from the self-
calibration for each set of images used by the benchmark cali-
bration. This best estimate was set as the initial guess for the
Levenberg-Marquardt algorithm within the benchmark calibra-
tion with the full model for the respective set of images.

We observed that the benchmark calibration is rather unsensitive
to the choice of intial guess, as we got the exact same final esti-
mates for the extrinsic and intrinsic parameters as when using a
constant default guess. We attribute this to the robustness proper-
ties of the Levenberg-Marquardt algorithm.

7. LIMITATIONS

We compared a single self-calibration method with a single of-
fline calibration technique. A more comprehensive study could
shed light on specific differences between alternative self-calibration
and offline calibration methods.
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Both the division model in Equation (2) and the simplified model
for the benchmark calibration make use of a single radial distor-
tion coefficient. For the lenses used in our experiments this was
sufficient, as the lenses would either exhibit moderate barrel or
pincushion distortion, but not a combination of both. However,
our results cannot be generalized to lenses with complex distor-
tion, and, in fact, we would expect the calibration methods based
on those models to perform significantly worse in such cases.

As feature extraction and marker centroid calculation inside the
Qualisys Oqus cameras is implemented by proprietary algorithms,
we cannot assess the theoretical robustness properties and error
characteristics of that measurement step.

8. CONCLUSION AND FUTURE WORK

In this paper, we presented a comparison of a specific camera self-
calibration method that includes modeling of radial distortion to
a benchmark calibration method to assess the former’s relative
performance in terms of reprojection error for images of a regular
grid of points.

We showed that for this particular case with high-fidelity images
taken from a regular grid of circular markers, the self-calibration
scheme produced lower average reprojection errors compared to
the benchmark calibration with a simplified model, for both a
25mm and a 50mm lens. We also used the focal length and radial
distortion parameter pairs estimated by the self-calibration tech-
nique as initial guess for the benchmark calibration with the full
model, but observed that the optimization yielded the exact same
final estimates for both intrinsic and extrinsic parameters as when
using a constant default guess.

Future work could show whether running the benchmark calibra-
tion on a per-image basis results in better performance than run-
ning it on sets of images — something we expect, as we think it
is an example of overfitting. We also suggest a more comprehen-
sive study comparing a variety of self-calibration and offline cal-
ibration methods to better understand their relative performance
characteristics under different conditions. Finally, as an alterna-
tive to using the reprojection error as calibration quality indicator,
deviations of reconstructions from 2D images of a ground-truth
3D scene whose geometry is known to a very high accuracy could
be calculated and compared across the different reconstructions.
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