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Assessment of safety characteristics for Li-ion battery cells 
by abuse testing 
 

FREDRIK LARSSON 

Department of Applied Physics, Chalmers University of Technology 

ABSTRACT 

 
Despite the many advantages with lithium-ion batteries there can be disadvantages in form of safety 
issues. In an abuse situation a Li-ion cell can undergo a thermal runaway releasing excessive heat, 
flammable and toxic gas emissions and eventually accompanied by dissembling/explosion and fire. 
Abuse tests are a method for assessment of the safety characteristics of Li-ion batteries. Results on 
cells and electrolytes from abuse testing by overcharge, short circuiting, external heating and fire test 
are presented and discussed. 
 
The thermal runaway was studied by external heating of various commercial Li-ion cells with 
cylindrical and pouch packaging. Cells with lithium cobalt based oxides showed a thermal runaway at 

around 200 °C with a maximum rate of temperature increase of about 5000 °C/min. Cells with lithium 
iron phosphate (LFP) showed significantly lower reactivity but a thermal runaway did still occur for 
some cells. 
 
Short circuit and overcharge tests of LFP pouch cells showed in most cases temperature increases 

below about 100 °C. Fires did not occur in these tests except one unexpected fire during an overcharge 
test. The fire tests show that the reactivity of Li-ion cells in a fire are dependent on the state of charge 
(SOC), however, the total heat release shows a low SOC dependence. Toxic emissions of hydrogen 
fluoride (HF), phosphorous oxyfluoride (POF3) and phosphorus pentafluoride (PF5) were studied by 
FTIR in fire experiments conducted on electrolytes and cells. The results are extrapolated to obtain an 
estimate of the possible emissions from a fire in an electric vehicle. 
 
Keywords: Lithium-ion, battery, safety, abuse test, overcharge, short circuit, thermal runaway, fire, 
toxic gases 
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1 INTRODUCTION 
 

The world is facing environmental changes and a diminishing oil supply. The greenhouse 

effect poses a threat to our civilization, and CO2 emissions are believed to be the main 

contributor to an increased temperature. The transportation sector has a large share of the 

CO2 emissions. The fossil driven traffic also results in severe air pollution in many cities 

which results in health problems. Sweden has a goal to reach a fossil independent vehicle 

fleet in the year 2030 and to have a carbon neutral society in the year 2050 [1]. One way to 

reach those goals is to use batteries and electrify the combustion engine propelled vehicles of 

today; passenger cars, heavy-duty vehicles, etc.  

Electrified vehicles (xEV) use either pure electric propulsion or combined electric and 

combustions engine propulsion. The pure electric vehicle (EV) has zero tail pipe emissions 

and has an energy storage system typically consisting of lithium-ion (Li-ion) batteries. The 

hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) typically uses a 

smaller sized battery. The HEV battery technology most often used today for e.g. Toyota 

Prius is nickel-metal hydride (NiMH) batteries while the PHEV typically uses Li-ion 

batteries. 

The lithium-ion technology offers high energy and power densities, long life time and fast 

recharging compared to e.g. lead-acid and NiMH battery technologies. Li-ion is a family 

name including many different cathode and anode materials that use lithium ions for 

transport between the electrodes. On the commercial market today there are a number of 

different electrode materials for Li-ion batteries. The lithium cobalt oxide (LCO), LiCoO2, 

was the first one introduced on the market by Sony in the 1990s. By mixing the cobalt with 

other materials a variety of cobalt based oxides is possible. Typically nickel, manganese or 

aluminum are used forming e.g. nickel manganese cobalt oxide (NMC), LiNixMnyCozO2 and 

nickel cobalt aluminum oxide (NCA), LiNxCoyAlzO2, where x+y+z=1. There are also 

cathode materials without cobalt, e.g. lithium manganese oxide (LMO), LiMn2O4. 

Phosphates are also used as cathode material [2] and the most widely used today is lithium-

iron phosphate (LFP), LiFePO4. Commercial anode materials for Li-ion batteries are 

dominated by carbon materials, e.g. natural and synthetic graphite, but lithium titanate oxide 

(LTO), Li4Ti5O12, is also used by some manufacturers. There are many potential electrode 

materials for use in Li-ion batteries and there are intensive research activities within this 

area, e.g. cells with higher voltage and for use in higher temperatures as well as the Li-air 

battery. Theoretically the Li-air battery, which uses air (oxygen) as cathode, can reach an 

energy density more than 10 times higher than today’s Li-ion batteries but several major 
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challenges must be overcome, including safety aspects and the Li-air battery is not likely to 

be commercialized within 20-30 years [3]. 

Today Li-ion batteries are widely used in different applications. They have been used for a 

long time in consumer products such as laptops, mobile phones, digital cameras and power 

tools. The automotive industry has more recently started to use Li-ion batteries in xEVs and 

with increasing yearly volumes. The high energy density of Li-ion cells gives batteries with 

low weight and volumes which have had a major impact on product development and design. 

However, the Li-ion technology has some drawbacks regarding safety aspects compared to 

other battery technologies, e.g. lead-acid and NiMH. Lithium-ion batteries have a high cell 

voltage due to the use of lithium which enables the high energy density but this can also give 

safety problems and incidents and accidents have happened, some of them with a large 

media interest [4-7]. 

Li-ion cells cannot use water based electrolytes due to the high cell voltage, typically 3.7 V 

(the value varies for different cell chemistries), and use instead organic electrolytes which 

are volatile and flammable. The electrolyte consists of organic solvents, a Li-salt and 

additives. Typical solvents used are ethylene carbonate (EC), diethyl carbonate (DEC) and 

dimethyl carbonate (DMC). The Li-salt commercially used today is lithium 

hexafluorophosphate, LiPF6. A number of different additives are used to achieve various 

properties, e.g. flame retardants, voltage stabilizers and additives intended to increase life 

time. The electrolyte and particularly the additives are each cell manufacturer’s secret and 

very rarely disclosed. Lithium metal itself is very reactive, however, the lithium is in form of 

Li+ and intercalated in electrodes, which is a much more stable state, with little free lithium 

metal as a result of e.g. aging effects, overcharge or overcurrent during low temperatures. 

A Li-ion cell must be kept within a certain range of temperature, voltage and current in order 

to be stable. In case these limits are exceeded the result might be any or a combination of 

these effects: swelling of the cell due to increased gassing/pressure, release of these gases by 

cell venting which can occur relatively slowly or rapidly (dissembling or even an explosion) 

and a fire might start. The type of abuse situation and the Li-ion cell chemistry and cell 

design affect the cell reaction. In case of an excessive internal cell temperature, a thermal 

runaway can occur. A thermal runaway is a rapid temperature increase, where the heat 

generation is greater than the heat dissipation to the cell surrounding. The onset temperature 

of the runaway depends on the cell chemistry, and for a typical cobalt cell it starts at 

relatively moderate temperatures, 120-150 °C [8]. The first step in a typical thermal runaway 

is the breakdown of SEI (solid electrolyte interface) layer, followed by a reaction between 

electrolyte and anode which is exothermal which further accelerates the process and 
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increases the temperature enabling the third step of the reaction between electrolyte and 

cathode, which is even more exothermal. The reactions can be sustained by its own oxygen 

whereas different cathode materials release different amounts of oxygen. The LFP chemistry 

is considered as the most thermally stable cathode material available at the market today 

with no oxygen release at those temperatures [8-11]. The thermal response of a LFP cell is 

thereby dominated by the electrolyte and anode. 

In case of mechanical abuse, e.g. deformation and penetration, internal short circuits are 

created inside the cell which thereby increases the cell temperature. An internal short circuit 

can also originate from particle contamination or from dendritic bridges formed during 

cycling (discharge/charging) of the cell. Forming of a dendritic bridge used to be a problem 

earlier but is nowadays a relatively small problem. However, cell failures in the field, “field 

failures”, are often seen as internal short circuits, with a low probability on cell level, less 

than 1 ppm [5,12]. Electrical abuse situations like overcharge, overdischarge and external 

short circuit can also cause problems. In case of external heating abuse, e.g. a fire close by or 

a Li-ion battery of a mobile phone lying in a car window a sunny day, a thermal runaway can 

also be initiated. 

In order to evaluate cell response in case of abuse situations, abuse testing can be used. 

United Nations has a test manual [13] for transportation demands of Li-ion batteries 

classifying them as dangerous goods and specifies test that the cells and batteries needs to 

undergo before they can be transported in resting state. In addition UNECE released its 

addendum 99 to regulation No. R100 [14] including safety  tests for battery used on wheeled 

vehicles, tests that included cycling of the batteries within certain temperature ranges etc that 

a vehicle might be exposed to. There are several international standards for abuse testing 

[15-17], many of which have been updated recently. The abuse tests standards for Li-ion is 

however, not yet complete, e.g. regarding toxic fluoride emissions. Besides, with the fast Li-

ion technology development there is also a natural process of updates to follow the 

technology progress and abuse tests standards are thereby likely to continually be updated 

for at least some time. 

Li-ion cells and battery systems containing multiple cells are equipped with various safety 

mechanisms [18-23]. Cylindrical cells have e.g. a safety vent, which, if it is properly 

designed and fully functional, can protect the cell from explosion, by releasing excessive cell 

pressure before critical pressure levels have been build-up. In case of pouch prismatic cells 

which have soft packaging (coffee bags) explosion risks due to high pressure are not likely 

due to the weak packaging. 
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The released gases contain a complex mixture of possible components, which vary with the 

abuse situation, e.g. if the cell is on fire or not. The gases can be both flammable and toxic. 

Vaporized solvents are typically released together with e.g. CO, CO2, H2 [24-26]. The 

fluorine content, from the Li-salt and also from possible use of some binders (e.g. PVdF), is 

a source for the formation of toxic fluorine compounds. Hydrogen fluoride (HF) is very toxic 

[27] and has gained most interest so far. Phosphorous oxyfluoride, POF3, and phosphorus 

pentafluoride, PF5, are two other gases that may be emitted [28-30]. The toxicity of POF3 is 

unknown but it can potentially be more toxic than HF as is the case for its chlorine analog, 

HCl/POCl3 [31].  Besides HF, POF3 and PF5 other complex components can be formed [32-

34]. 

The assessment of the overall safety of a battery with Li-ion cells is complex and determined 

by many factors; cell chemistry, cell design, battery system design, cooling system, safety 

mechanisms, mechanical deformation protection, etc. Abuse testing is a valuable tool to 

evaluate safety characteristics under a broad variety of situations. This licentiate thesis 

demonstrates this and gives insight into the safety issues with Li-ion batteries based on these 

tests.  

2 PAPER I: ARE ELECTRIC VEHICLES SAFER THAN 

COMBUSTION ENGINE VEHICLES? 
 

The aim of Paper I is to discuss the safety of an electrified vehicle, e.g. EV and PHEV, 

compared to a vehicle with only a combustion engine for gasoline or diesel. The paper gives 

a general introduction and description about battery systems, battery types, different hazards 

associated with electrified vehicles and some incidents that have occurred as well as outlooks 

for the future. 

METHOD 

In form of an e-book chapter that is updated regularly (living document) based on new 

research findings and technology development. 

MAIN FINDINGS 

• Electrified vehicles have the potential to be safer than combustion engine vehicles, 

simply due to that they are not carrying or carrying less amount of flammable 

gasoline/diesel, which will remove/lower the risk for fire and explosions.  

• New risks might be introduced by electric vehicles 
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• New technologies can always mean new unknown risks which might take time to 

learn to handle.  

• The electrical hazard in electric vehicle is low with correct handling. 

• Too few electrified vehicles are yet on the roads today to have any reliable statistics 

of accidents/incidents. 

 

3 PAPER II: ENERGY STORAGE SYSTEM SAFETY IN 

ELECTRIFIED VEHICLES 
 

The aim of Paper II is to study the thermal runaway response of commercial Li-ion cell with 

the physical cell size of type 18650, i.e. 18 mm in diameter and 65 mm long. External 

heating is used to initiate a thermal runaway since safety devices such as PTC and CID 

inside the cells cannot protect from this type of abuse. Commercial 18650 Li-ion cells from 

Samsung, Sanyo and K2 Energy were tested. The cells from Samsung and Sanyo had cobalt 

based cathodes and are typically used in laptop computers, while the cell from K2 Energy 

has a LFP cathode. 

METHOD  

The cells were fully charged (100% SOC) and heated up in a thermostated oven. The cells 

were tested one at the time, fastened on a brick which was centrally placed in the oven. The 

air in the oven was circulated with its built-in fan in order to achieve a uniform temperature 

around the cell. The cell surface temperature was measured with four type K thermocouples. 

The oven was set on 300 °C with continuous heating and was not stopped until the effect of 

the thermal runaway had completely finished.  

MAIN FINDINGS 

• The thermal runaway from Samsung and Sanyo cells with cobalt based cathodes 

showed similar thermal reactions, with a temperature rise of 18-25 °C/sec. 

• The LFP cell from K2 Energy had a thermal runaway but it was significantly less 

energetic compared to the cells from Samsung and Sanyo, with temperature rise of 

0.6 °C/sec. 

• The thermal runaway temperatures for all cells were around 200 °C, see Figure 1. 
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Figure 1 Temperature development for three 18650 lithium-ion cells during external heating 
test. 

 

4 PAPER III: ABUSE BY EXTERNAL HEATING, 
OVERCHARGE AND SHORT CIRCUITING OF 

COMMERCIAL LITHIUM-ION BATTERY CELLS 
 

The aim of Paper III is to study cell response of four types of commercial Li-ion cells under 

three types of abuse; external heating, overcharge and short circuit. The focus is on LFP cells 

from EiG and European Battery. 18650 Samsung laptop cells are also studied but during 

external heating only, since their safety devices (e.g. PTC, CID) would stop overcharge and 

short circuit situations making them non-interesting for this study. 

METHOD  

The external heating abuse tests are conducted using the oven and procedure discussed in 

paper II, with the exception that both a continuous and a step-wise temperature increase was 

used. For the step-wise increase, the oven temperature was first set to 80 °C and thereafter 

increased in steps of 10 °C every 15 min until either any thermal runaway had occurred or 

the maximum temperature of the oven (300 °C) was reached. Cells were fully charged 

(100% SOC) prior to the tests. 

The overcharge abuse tests started with fully charged cells which were then charged beyond 

their limits. For the EiG power cell a current of 10 C-rate (70A) was used and for the 
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European Battery energy cell a current of 2 C-rate (90A) was used. Cell voltage, current and 

temperature (by several type K thermocouples) were measured with 1 Hz. 

The short circuit abuse tests were conducted using 50 mm2 copper cables and a high current 

contactor enabling a low resistance short circuit. The current was measured by a current core 

and the cell surface temperatures measured with several type K thermocouples. 

MAIN FINDINGS 

• The external heating of the 18650 laptop cell resulted in a rapid thermal runaway, 

with a rate of temperature increase close to 5000 °C/min, a pressure wave, squirting 

of ignited cell materials and immediate fire. 

• The corresponding energy release from of 300 kg battery pack in an electric vehicle 

build by the 18650 cells would be approximately 70 MJ, corresponding to the 

combustion of 2 litre of gasoline. However, our results are up to six times lower than 

that of other studies. 

• LFP cells are less energetic than cobalt based cells. However, variations between 

LFP cells from different cell manufacturers as well as between different cell design 

versions from the same manufacturer were found. 

• For the 7 Ah LPF cell from EiG, it was found that the newer cell design have a 

significantly lower, close to undetectable, thermal runaway peak compared to an 

older cell design, see Figure 2. Even though both cell designs use the safest currently 

available commercial cathode material, LFP, this shows that the development for 

safer Li-ion cells is still improving but also underlines that the cathode material is 

only one of the important components for safety assessment. 

• Overcharge of LFP cells resulted in relatively low temperatures, less than 80 °C was 

measured, which is lower than the thermal runaway onset temperature. One LFP cell 

did however unexpectedly catch fire during the overcharge, see Figure 3. This fire 

event was not repeated in the following three tests. This highlights the possibility of 

field failures of batteries, in that there is a probability for these things to happen. 

• The short circuit currents of a single Li-ion cell can be high, around 1000 A was 

measured, see Figure 4. 
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Figure 2 Temperature development during external heating of EiG cells of newer and older cell 
design. 

 

 

Figure 3 One of the overcharge test, by 2 C-rate (90A), of a European Batteries cell resulted in 
a fire.  
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Figure 4 Short circuit of EiG cell of newer design (dashed lines) and EiG of older design (solid 
lines). 

5 PAPER IV: USING FTIR TO DETERMINE TOXIC 

GASES IN FIRES WITH LI-ION BATTERIES 
 

The aim of Paper IV is to study toxic emissions of HF, POF3 and PF5 from samples 

containing LiPF6 electrolytes. Tested electrolyte solvents were dimethyl carbonate (DMC), 

1,2-dimethoxyethane (DME) and polypropylene carbonate (PC). 

METHOD  

The FTIR was first quantitatively calibrated for HF, POF3 and PF5. Electrolyte fire tests were 

performed in a Cone calorimeter using radiative heating. Tests were conducted on pure 

LiPF6 salt and LiPF6 dissolved in PC and DME during both evaporation and ignition by an 

electric spark. 

Electrolyte fire tests were also performed using a custom experimental setup-up with a 

propane burner and needles to introduce solvents/water into the flames. The amounts of 

solvents were measured by a flow-meter. DME with 0.4 M LiPF6 and DMC with 0.4 and 1.0 

M LiPF6 were studied. Water was introduced in the flames in two tests.  

MAIN FINDINGS 

• It was possible to calibrate the FTIR to be used in fire tests on electrolytes to 

measure HF, POF3 and PF5. 
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• HF and POF3 emissions were measured from LiPF6 and the solvents PC, DME and 

DMC, e.g. see Figure 5 and Figure 6. 

• PF5 is highly reactive and thereby difficult to calibrate and no PF5 was found in the 

fire tests. 

• POF3 is produced with a concentration of approximately 5-40% of the HF 

concentration.  

• Some of the spectral peaks found correspond to unknown substances. 

 
Figure 5 Heat release rate (HRR) and HF concentration during burning of 1 M DMC injected 

as a spray (18 ml/min) into a 4 kW propane burner during two minutes. 

 

     

Figure 6 Concentrations of HF and POF3 during burning of 1 M DMC injected as a spray (18 
ml/min) into a 4 kW propane burner during two minutes. 
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6 PAPER V: CHARACTERISTICS OF LITHIUM-ION 

BATTERIES DURING FIRE TESTS 
 

The aim of Paper V is to study the fire characteristics and gas emissions of Li-ion batteries in 

case of an external fire. The heat release rate (HRR), total heat release (THR), battery 

temperature and voltage were measured. The production of toxic emissions was measured in 

real-time. Hydrogen fluoride (HF) was quantitatively detectable while phosphorous 

oxyfluoride (POF3) was not detectable in this setup, but was probably present in the released 

emissions.  

Seven tests were performed of 3 battery types; EiG 7 Ah, K2 Energy and conventional 

Lenovo laptop battery packs. The study included SOC levels of 100%, 50% and 0% for EiG 

cells as well as one test where water mist was applied in order to study possible influence on 

emissions. 

METHOD  

The tests were performed using the measurement and gas collection system of a Single 

Burning Item (SBI) apparatus. The battery was placed on a wire grating and a 15 kW 

propane burner beneath was used. Five EiG cells were tested at the time, fastened together 

with steel wire. The nine cells from K2 Energy were placed inside a box with steel net as 

protection from potential projectiles. The two laptop battery packs were also enclosed by a 

steel net in order to avoid projectiles. 

The HRR and THR were measured using the oxygen consumption method corrected for 

CO2. The O2 was measured by a paramagnetic analyser and CO2 by a non-dispersive infrared 

(NDIR) sensor. The toxic gas emissions were measured in real-time (one spectra every 12 

seconds) by Fourier transform infrared spectroscopy (FTIR) and by post analysis of any 

fluorine contained in the FTIR primary filter. The temperature and cell voltage of the mid 

cell of the EiG 5-cell pack were measured with 1 Hz. 

MAIN FINDINGS 

• Cells with 100% SOC are significantly more reactive than cells with lower SOC 

values and showed energetic outbursts, see Figure 7 and Figure 8. 

• The HRR peak values varied between 13 and 57 kW for batteries with 

approximately 100 Wh energy capacity. 

• Emissions of POF3 and PF5 were not detected but should have been present 

according to the theory. POF3 emissions were probably below the detection limit. 
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• HF was detected well above the detection limit and varied with SOC, see Figure 9. 

The total HF emissions varied between 15 and 124 mg/Wh, where lower SOC values 

gave higher HF values. 

• Application of water mist, see Figure 10, above the battery resulted in close to 

double the momentary HF production, see Figure 9. However, the total amount of 

HF released was similar to the case without water mist. 

• Extrapolation of the HF emission based on the EiG cell to a 10 kWh battery for a 

PHEV results in a total HF release between 400-1200 g. 

• A hypothetical case in which all HF is released and contained inside a PHEV 

passenger compartment of 5 m3 results in HF concentrations of 80-240 g/m3, which 

are magnitudes above acceptable short time exposure levels. 

 

Figure 7 Heat release rate for EiG cells of 0%, 50% and 100% SOC during 15 kW propane 
burner test (the HRR of the burner is subtracted). 

 

Figure 8 Mid cell temperature and voltage for EiG cells with 0%, 50% and 100% SOC during 
15 kW propane burner test. 
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Figure 9 HF mass flow for EiG cells with different SOC (indicated by % in figure legend) in 
tests 1-5.  

 
Figure 10 Water concentrations measured in test 1-3. The increased water level in test 3 due to 

water mist application is clearly seen 

 

7 CONCLUSIONS 
 

Abuse testing is used to evaluate the safety characteristics beyond the design parameters. 

Different Li-ion cell design and chemistry give diverse reactions to abuse, where LFP is 

significantly less energetic than cobalt based cells. LFP cells which are considered as the 

safest Li-ion battery chemistry available today can still catch fire, as shown in one of the 

overcharge tests.  



16  

State of charge impacts the reaction response during the fire tests and the heat release rate is 

higher with higher SOC values. When a Li-ion cell is short circuited, large currents of e.g. 

1000 A can be found. Overcharging tests utilising 2 C-rate and 10 C-rate of LFP cells 

resulted in swelled cells with gas released but relative low temperatures, below the onset of 

thermal runaway. 

Toxic gas emissions of HF and POF3 pose a possible critical risk for Li-ion batteries and 

especially for large Li-ion battery systems. POF3 is in our limited study found to be produced 

with about 5-40% of the HF production. The toxicity of POF3 is unknown but it is possibly 

even more toxic than HF. It was not possible to draw any clear conclusions on the impact of 

water as an extinguishing medium in these limited studies but a temporarily increased HF 

production rate was indicated at the application of water mist, however, further studies are 

required to make any firm conclusions. 

Extrapolation of the total HF emissions from cell-testing to a 10 kWh battery pack, typically 

used in a PHEV, results in 400 – 1200 g HF that could be released. This might pose a serious 

threat to humans near a car fire. A hypothetical case in which all HF is released and 

contained in a 5 m2 passenger cabin give HF concentrations that are orders of magnitude 

over the acceptable short term exposure levels. Further studies are needed also in this case. 
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INTRODUCTION

Replacing conventional vehicles using internal combustion engines with electri-

fied vehicles (EV) is a challenge in many respects. Introduction of new technical 

solutions, especially those produced for a mass market, may substantially change 

and possibly increase the risks associated with the products. On the other hand, 

electric vehicles have other clear advantages concerning safety as they do not 

carry conventional fuels onboard such as petrol or diesel, both of which are flam-

mable and toxic. Without a combustion engine onboard, the risks of fire and explo-

sion are thus minimized. Therefore, the introduction of electric vehicles promises a 

transition to a clean, non-polluting, healthy and safe means of transportation (see 

also Chapter 6 on life cycle environmental impact).

While there is a potential for electric vehicles to be safer than conventional ones 

we still need to consider what other risks this technological transition will bring as 

the risks associated with conventional vehicles are well known to most people and 

thus easily dealt with in daily life. What risks are associated with a large onboard 

chemical energy storage? Will the hazardous traction voltage of the electrical 
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system pose a danger to the passengers or to rescue personnel in case of an 

accident? How can eventual risks be diminished in traffic, when vehicles are 

parked and maintained? All these aspects and more need to be considered when 

designing the vehicle.

Safety issues for electric vehicles considered here include mainly battery powered 

vehicles, vehicles which have the battery as the only means to store energy (BEVs) 

or range extended vehicles where the battery is still the main source of energy but 

an extended range can be obtained using a combustion engine, for example plug-

in hybrid vehicles (PHEVs). Another type of electric vehicle is the fuel cell powered 

car, using hydrogen gas as fuel. In this case, safety aspects mainly concern the 

safe handling and storage of hydrogen. While EVs are on the market in rapidly 

increasing numbers today, the fuel cell car has not reached true commercial intro-

duction yet. Compared to conventional fuels hydrogen has both advantages and 

disadvantages, but again the risks are different to those we are familiar with and 

other safety practices are needed. We will, however, not include fuel cell safety 

issues in this chapter. 

Lithium-ion (Li-ion) batteries have high energy and power densities that make it 

possible to build BEVs and PHEVs with acceptable electric driving range with zero 

tail pipe emissions. This type of battery has therefore become the preferred choice 

for manufacturers of these types of vehicles. In this chapter we focus primarily on 

the lithium-ion battery while other battery types are discussed more briefly. Other 

technologies for energy storage, e.g. flywheels, compressed air and supercapaci-

tors might be used in future electric vehicles. Presently, they are used to a very 

limited extent and are therefore not included.

BATTERY SYSTEM DESCRIPTION

The traction battery system in an electric vehicle consists of many parts. Figure 4.1 

shows the principle layout for a traction battery system. The basic building block in 

the battery pack is the battery cells. The cells are connected in series in order to 

increase the voltage. Cells can also be connected in parallel, in order to increase 

capacity. Typically a battery pack for an electric vehicle consists of 100-400 cells.

A number of cells form a module, which is typically kept under 60V at present 

(2013) and is thus not a particular electrical hazard. A battery pack usually con-

sists of several such modules. To monitor and control cells, modules and pack 

each battery system has a master Battery Management System (BMS), often in 

combination with one or several slave management systems (e.g. one per module). 

The BMS has a number of functions essential for safe operation of the battery 

system: (i) Parameters such as cell voltage, current and temperature are monitored 

in order to ensure that the battery operates within the allowed limits, (ii) balancing 

of cells is performed in order to keep all cells on the same level regarding state of 

charge (SOC), (iii) contactors placed inside the battery pack in order to connect 

and disconnect the battery to the rest of the vehicle are controlled, (iv) the status 

of the electrical insulation of the traction voltage system is monitored and (v) the 

BMS communicates with the other parts of the vehicle as well as supplies informa-

tion to the driver. As an independent means of electrical safety the battery often 
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has one or several fuses, for short-circuit protection. Furthermore, the thermal 

management system of the battery could both heat and cool the cells in order to 

maintain a temperature within an efficient and safe temperature range. A mechani-

cal housing, the battery box, is used to enclose and protect the battery pack. It has 

several functions and a suitable tightness-class.

Traction
battery pack

Thermal
management

system

Cells Modules

Mechanical
housing

Short-circuit
protection

(fuse)

HV Connect/
Disconnect
(contactors)

Battery
management

system (BMS)

+ –

12V battery

Figur 4.1 The traction battery system overview.

Typically the battery pack uses an external 12V supply from the vehicle’s 12V-bat-

tery, e.g. a conventional lead-acid battery. The 12V supply is used to power up the 

BMS and to close the contactors. In principle, the battery could supply its own 

12V by an internal DC/DC converter but an external supply is a simple solution 

that is commonly used.

BATTERY TYPES

Lead-acid batteries (PbA) have been used for more than 150 years and are still 

produced in large quantities as 12 V and 24 V vehicle batteries. There are several 

types, e.g. free ventilated or recombination cells (e.g. AGM, GEL). Compared to 

Nickel-metal-hydride and Li-ion batteries, they have lower power and energy densi-

ties and a significantly shorter cycle lifetime. Lead-acid batteries also require a 

long charging time, typically 10 hours. Since this should be seen as a fully mature 

technology it has been cost optimized. Due to its high weight and large volume 

it is not a real option for PHEVs or EVs, even though it was used experimentally 

in EVs during the 1990s. Presently lead-acid batteries are considered only for 

micro-hybrid electric vehicles (start and stop techniques). The safety concerns are 

small and related mainly to the risk of hydrogen gas production during operation. 

Hydrogen gas can potentially ignite and explode but the buoyancy of hydrogen gas 

makes it relatively easy to ventilate the battery in order to avoid the formation of 
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an ignitable mixture with air. Since lead acid batteries is a mature technology the 

battery design is very well developed to avoid these problems.

Nickel-metal-hydride batteries (NiMH) are presently dominating the HEV-market; 

they are used in the Toyota Prius for instance. NiMH offers significantly improved 

energy and power densities compared to lead-acid batteries. Further, it offers a 

high cycle life time and safety concerns are small. They do not, however, have the 

same energy storage capacity as Li-ion batteries.

Lithium-ion is the dominant battery technology today for PHEVs and EVs due to 

its high energy and power densities, combined with a long life time. The safety 

concerns are however larger than for NiMH and lead-acid batteries. This is basi-

cally due to the chemistries used for these cells but the large size of the battery 

systems needed for these types of vehicles also makes the consequences of a 

malfunction potentially more serious. We will therefore devote most of this chapter 

to describe safety aspects of Li-ion batteries. 

A lithium-ion cell consists essentially of anode, electrolyte, separator and cathode. 

The lithium ion is shuttled back and forth between the anode and cathode through 

the electrolyte. Even though a large number of different lithium-ion chemistries 

are possible there are today (2013) only a few lithium-ion chemistries that are 

used commercially. The anode and cathode are intercalated lithium compounds. 

Typically the anode is based on graphite, lithium titanate oxide (LTO) can also be 

used. The cathode is composed of lithium cobalt oxide (the most common type for 

small consumer cells), mixed oxides (manganese, nickel, cobalt, and aluminum) or 

phosphates (mainly iron-phosphate). The electrolyte typically consists of organic 

solvents, lithium salt and additives. The exact composition differs between the 

manufacturers and is usually a commercial secret, especially regarding the 

additives. The separator is a porous polymer where the pores are filled with the 

electrolyte; its primary function is to avoid direct contact between anode and 

cathode. In some cases the separator may also have the function of shutting down 

the ion transport in case of overheating.

The risks involved with the use of lithium-ion batteries are closely related to the 

chemistries used, the design of cell and system, the handling of the battery when 

in use and the quality of the production. The choice of cell chemistry is, in turn, 

determined by the demands regarding energy and power density, cost and safety 

for the specific application. Small size lithium-ion batteries have been used for 

more than a decade in consumer products, such as laptop computers and mobile 

phones. During this time, battery fire incidents have been reported in laptops, 

iPods, cargo planes and electric vehicles.1 However, the conditions and require-

ments for lithium-ion batteries in automotive applications are different and more 

demanding than those for consumer electronics. Lithium-ion cells for the automo-

tive industry are, for example, characterized by increased quality, safety and life 

time compared to that of small consumer cells, and generally use more advanced 

materials with higher degree of purity. 

1 Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., and Chen, C., “Thermal runaway caused fire and explosion of lithium ion battery”, 
Journal of Power Sources, 208 (2012) 210-214. 
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Lithium-ion batteries have many advantages but the window of stability is relatively 

small (both regarding temperature and voltage). The cells must therefore be 

monitored and controlled by the BMS. Overheating may cause a severe malfunc-

tion; if the temperature exceeds typically 120-150 °C, exothermal reactions within 

the cell can start. The exothermal reactions will increase the temperature further, 

which can trigger additional exothermal reactions. If the overall cell reaction cre-

ates a rapid temperature increase, it could result in a so called thermal runaway. A 

thermal runaway consists usually of one or a combination of the following events: 

rapid gas release, electrolyte leakage, fire, rapid disassembling/explosion. 

The reason for the initial overheating may be an external short-circuit, overcharge, 

over-discharge, deformation of the battery by external forces, external heating or 

an internal short-circuit. The latter may be caused by dendrite growth, unwanted 

particles in the cell etc. If the overheating spreads to adjacent cells a large part of 

the battery system may be affected. Figure 4.2 shows how a thermal event on the 

cell level could develop to the system level. In order to obtain a high level of safety 

such a chain of events must be hindered. 

Thermal runaway
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energy storage 
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heating

Cross/ 
Deformation/ 
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Internal short 
circuit

Particle
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Lithium-ion cell 
temperature increase

Exothermic
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Figur 4.2 Potential chain of events for a thermal event on the cell level developing to system level.

The outcome of these reactions varies with cell design and chemistry, particularly 

with the electrode and electrolyte composition. The combination of reactive materi-

als and flammable components in the cell pose a risk, the electrolyte is flammable 

and the oxide materials may release oxygen at elevated temperatures, thus both 

fuel and oxidant needed for a fire might be present inside the cell. 

In order to meet the demand of the automotive industry, improved battery materials 

have been produced. The selection of the active electrode materials (anode and 

cathode) strongly affects the thermal runaway and its onset temperature. Lithium 

iron phosphate (LFP) is for example a more stable cathode material than the 
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cobalt-based lithium oxides that are commonly used in consumer Li-ion batteries. 

Other electrode materials, for example mixed oxides with cobalt in combination 

with other metals (e.g. Ni, Mn, Al), have been developed in order to improve safety 

and other aspects (e.g. life time, cost, energy and power densities).2 

The electrolyte composition and its additives, e.g. flame retardants, redox shuttles 

and gas release controllers, are also very important for the overall safety of the 

battery. The organic solvents involved, e.g. ethylene carbonate (EC) and dimethyl 

carbonate (DMC) are volatile and flammable. The mechanical packaging, cylindri-

cal, soft or hard prismatic can or pouch-prismatic, also affects the cell behavior 

during a thermal event. For example, a cylindrical can cell could build up a much 

higher pressure than a pouch cell.

There are both pros and cons associated with each type of cell packaging. For 

example, with a cylindrical cell it can be easier to control the venting direction but 

higher internal cell pressure build up can be potentially more dangerous. Thus, 

there are a number of safety mechanisms that can be included into a lithium-ion 

cell construction by its manufacturer depending both on the chemistry and physi-

cal design of the battery.

It takes a long time to develop new battery technologies, typically more than 

20 years. Potential future battery storage technologies is a very active field 

of research and one of the most interesting future battery technologies is the 

lithium-air battery, which has a huge potential compared to Li-ion batteries, e.g. 

the energy density is projected to be more than 10 times that of Li-ion batteries. 

There are, however, several challenges to be solved for the lithium-air technology, 

e.g. regarding life time and safety. One safety concern is how to prevent air from 

reaching the free lithium-metal. Li-air batteries are, however, not likely to be com-

mercialized within at least 20-30 years.3

VOLTAGES, CURRENTS AND ELECTRICAL HAZARDS

An electrified vehicle still contains electrical energy in the battery when it is shut-

down and parked. The manufacturer has constructed the vehicle in such a way 

that the hazardous traction voltage is kept inside the battery pack and insulated 

from the rest of the vehicle. In other words, all parts except the inside of the battery 

system can be considered as voltage free (provided there are no electrical insula-

tion failures). It is important to understand that also an “empty” battery, meaning 

fully discharged, 0% SOC, still has a considerable voltage. For an electric vehicle 

this is still to be considered as a hazardous voltage. The definition of hazardous 

voltage is that it is potentially dangerous for humans, and it is usually stated as > 

60 VDC (although this limit varies in different countries).

Vehicles with internal combustion engines have had a remarkable increase in 

vehicle safety during the last 10-20 years. Active safety is now starting to be 

introduced in some cars, e.g. lane departure warnings. The passive safety, e.g. 

2 Wang, Y., Jiang, J., Dahn, J., “The reactivity of delithiated Li(Ni1/3Co1/3Mn1/3)O2, Li(Ni0.8Co0.15Al0.05)O2 or LiCoO2 with 
non-aqueous electrolyte”, Electrochemistry Communications, 9 (2007) 2534-2540.

3 G. Girishkumar, B. McCloskey, AC Luntz, S. Swanson, W. Wilcke “Lithium- air battery: Promise and challenges” Journal of 
Physical Chemistry Letters 2010, Vol. 1(14), p. 2193–2203.
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crash protection, has evolved greatly over the years with e.g. the NCAP testing. 

Computer simulations and crash tests have fostered the development of crash 

deformation structures significantly and increased crash and collision protection. 

Electrified vehicles are likely to have the same level of passive and active safety 

as conventional vehicles. In order to ensure this, the safety techniques must be 

adapted for this new technology, e.g. during a crash, crash detection sensors 

inside the vehicle, also used for activation of airbags, can disconnect the traction 

voltage from the battery before the crash is complete. This means, that even if 

the electrical insulation of the traction voltage, containing the hazardous voltage, 

would be damaged, this voltage will be turned off. Of course, in severe crashes, 

there is always a risk that this might not be the case.

Presently (2013), car manufacturers crash protect the battery pack so that no 

short-circuit may occur in its electronics and that no lithium-ion cell can be 

deformed during pre-defined crash scenarios. In principle, this is done by putting 

the battery inside a crash protected box. This adds weight, volume and costs. In 

the future, it is likely that the battery pack instead becomes a part of the crash 

structure. Battery packs of today can handle some small deformation; this is a 

matter of design, which today varies depending on cell chemistry, cell design 

and packaging. In the future, it is likely to have safer lithium-ion cells and battery 

systems which could to a higher level stand a deformation. In that case the battery 

can to a larger extent by used in the vehicle’s crash structure. The deformation pro-

tection design criteria are given by load-cases. This means that for a severe crash, 

which is outside the design criteria, a deformation which is larger than expected 

can occur. It is unrealistic and just not possible to design the crash protection for 

all types of extreme collisions.

The electrical drive train is made safe by several means. In general the battery cells 

presently used are in general very safe since judicious choice of Li-ion technology 

ensures that an unsafe lithium-ion cell would not be chosen. The voltage of each 

lithium-ion cell is in general monitored and balanced with respect to the other 

cells. This requires quite advanced electronics and electro-components such as 

fuses and contactors are used in the battery pack. The electronic parts (electrical 

components, processors, circuit-boards etc.) of the battery pack are similar to the 

parts used in conventional vehicles by a large part of the industry. In case of errors 

in the electronics or sensor failures an unsafe situation could occur. However, the 

manufacturers work with functional safety (e.g. ISO26262) in order to minimize 

these risks.

The battery safety is ensured by the manufacturer by adding layer by layer of 

safety, schematically shown in Figure 4.3. Deformation of the battery cell can 

result in a thermal event. Therefore the battery is usually placed outside the defor-

mation zone. For a passenger car, this generally results in a battery placement 

inside or beneath the passenger compartment.
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Figur 4.3 An example of battery safety layer by layer.

The components and traction voltage cables carrying a high voltage are usually 

very well insulated and protected. The risk that a human, e.g. driver, passenger, 

rescue personnel or firefighter, would be exposed to an electrical shock is in 

general very low. The traction battery has a so called floating ground, meaning 

that there is no electrical connection between the traction battery poles and the 

vehicle chassis ground. The 12V/24V vehicle battery on the other hand (for both 

conventional ICE vehicles and EVs) uses the vehicle chassis ground as the current 

return path to the negative 12V/24V pole. The principle of the floating ground and 

the current path of the traction battery are shown in Figure 4.4.
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Figur 4.4 Traction battery pack current path and the floating ground principle. If there are no insulation fault(s), there 

are no electrical connections between vehicle chassis ground and the battery poles.

Both DC (direct current) and AC (alternating current) voltages are present in EVs 

(see also Chapter 3). The DC voltage comes from the traction battery and the AC 

voltage is used by the power electronics and electric motor. Both pose a danger 

for humans in case of an electric shock caused by either a direct touch of the bat-

tery poles, or indirectly by touching the metal chassis. In order for such exposure 
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to occur, two insulation faults are required (one at each pole of the battery) and 

the victim must touch metallic parts with the different potentials at the same time. 

Figure 4.5 shows the principle of a double insulation fault.
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Figur 4.5 Principle figure that shows a double insulation fault. This means one insulation fault at the plus and one 

at the minus pole. They are shown as two resistances, Rpos and Rneg, connected to ground. This creates a current 

path between battery plus and battery minus.

The vehicle chassis ground is usually constructed to electrically act as one pole 

of the 12/24 V system by having most metal parts connected to each other. In 

the situation of a double insulation fault there will be a short-circuit through the 

chassis. Since the current takes the easiest path (i.e., the conducting path with the 

lowest resistance), the human body will hardly be affected by touching the chassis 

ground. On the other hand, there could be a potential risk for service personnel 

repairing a damaged electric vehicle, since they can, during disassembly, have 

two chassis ground, one with the negative battery potential (minus) and the other 

with positive battery potential (plus). There are however, protection means for this, 

e.g. insulation measurements, electrically insulated gloves (typically marked for 

safe use up to 1000V), and knowledgeable maintenance staff should be able to 

minimize this risk.

It could be mentioned that hazardous voltages, both DC and AC, inside the com-

ponents in an EV, sometimes are referred to as “high voltage”. From the automak-

ers perspective, this term conveniently separates the 12/24V system (“low volt-

age”) and the 300-600 V system (“high voltage”) for the electric drivetrain and the 

traction battery, However, to name the hazardous traction voltage as “high voltage” 

is somewhat misleading since there is already a definition and a long time tradition 

to use the term “high voltage” within the mains (electricity grid), for voltages over 

1000 VAC or over 1500 VDC. The term “HV” is actually in automotive industry 

sometimes interpreted as “hazardous voltage” (instead of “high voltage”).
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FIRES, GASES AND EMISSIONS

The energy stored in the battery in an electric vehicle is essentially released once 

you connect the two poles while the energy in a conventional vehicle requires the 

fuel to be mixed with air at the right proportion and pressure and then the gas 

mixture needs to be ignited by a spark or by exposure to high temperatures; the 

spark could for example be created by the starter engine. The higher voltages and 

currents used in an electric vehicle may be a risk for fires and lithium-ion batteries 

pose a special risk as the electrolyte is combustible, with properties similar to 

gasoline or LPG. Furthermore, the battery might progress into thermal runaway as 

described previously. One of the safety mechanisms used in these cells to prevent 

a more severe incident to occur is venting. The gases released in a venting situ-

ation are, however, highly toxic and flammable. In particular, a venting cell would 

release hydrogen fluoride (HF) which is highly toxic. Venting would also release 

many other fluorinated substances that have a potential of being toxic, but the 

toxicity of these has not yet been publically investigated. 

If a fire starts, many of these substances might be consumed in the fire but the 

knowledge in this field is still limited and more research is needed regarding 

evolved gases from battery fires. HF is a gas that evolves in many different types of 

fires. Recently INERIS in France set two different electric vehicles and two similar 

conventional ICE vehicles on fire and measured the heat release rate during the 

fire and also gases evolved including HF. They found that the heat release rate was 

of the same order of magnitude, independent of vehicle type. High concentrations 

of HF were emitted in the beginning of the fire for all four vehicles. This might have 

been caused by the air-conditioning system. Some HF also evolved later in the 

fire for EVs, but the concentration was less than that of the first spike of HF and 

distributed over a longer time period.4

Anecdotal evidence exists that electric vehicles burn fiercely and that the fire is dif-

ficult to extinguish. The INERIS experiment does not confirm this burning behavior 

but the fire was started by a gas burner in one of the seats in these experiments. 

Other means of starting the fire might give another result but there are at present a 

very limited number of investigations, if any, available on this topic. 

Extinguishment of a fire is an area where there still are questions to be answered. 

The advice from manufacturers is often to let the vehicle burn or to use water or 

sand. Letting the vehicle burn is not a viable option in e.g. a garage, a ferry or in 

a tunnel. Research for fire-fighters has until now mainly focused on extrication 

of people from crashed cars and not on extinguishment. In general, water is an 

excellent extinguishing medium that has a very high extinguishing power per mass. 

However, when it comes to potential live electric parts the advice is often to avoid 

using water. Research is therefore needed on how to attack a fire in a battery. 

Would it be safe to use water both in terms of the risk of electric shock and when 

it comes to gases evolved? Should other methods be used to respond to a fire? 

In addition a fire in the battery system might be difficult to reach. It is only just 

recently that a first extinguishing study was available. This study was conducted by 

4 A. Lecocq, M. Bertana, B. Truchot and G. Marlair “Comparison of the Fire Consequences of an Electric Vehicle and an Internal 
Combustion Engine Vehicle” Proceedings of FIVE 2012, Chicago, 27-28 September 2012
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DEKRA in Germany where batteries were extinguished using water and different 

additives.5 They conclude that more water was needed for the EV fires than for 

vehicles with conventional internal combustion engines.

The EV users would like to be able to charge their vehicle fast in some situations, 

similar to filling fuel into a conventional vehicle, or at least have a significantly 

shorter charging time than that of overnight charging. Systems for fast charging 

are therefore under development. Fast charging requires high currents and one 

would therefore intuitively associate this with larger fire risks. The high current 

would result in a higher risk of overheating or other malfunctions in the charging 

station or in the vehicle itself and thus careful design is important. These risks are 

well known and when the number of fast charging stations will grow actions will be 

taken to minimize associated risks.

INCIDENTS

Despite the manufacturers efforts to produce safe batteries some events have 

occurred that have reached media attention. One of the major media events in 

June 2011 was the fire that started in a GM Chevrolet Volt car three weeks after a 

crash test. The incident was thoroughly investigated by NHTSA and the chain of 

events was reproduced. The reason was found to be that the cooling media had 

leaked over the battery and then dried; leaving crystals that finally short-circuited 

the battery through the metallic belt around it. Changes have since been made to 

the design, e.g. to avoid leakage of cooling media. 

Another event that has drawn some media attention is the fires that occurred after 

hurricane Sandy hit the Atlantic coast in the New York area in November 2012. 

At the harbor of Newark, New Jersey, thousands of parked vehicles were flooded. 

The cars were brand new shipped in from abroad. The water wave that followed 

Sandy immersed the parked vehicles in 1.5-2.5 meters of seawater during several 

hours. It has been reported that sixteen Fisker Karma PHEVs and a few Toyota 

Prius HEV and PHEV burned. Unconfirmed statements from Fisker and Toyota 

blame the fires on short-circuits in the 12V vehicle electronics. NHTSA and Fisker 

have started an investigation to find the cause of the fires. To be submersed in 

1.5-2.5 meter deep seawater for several hours is a very severe test for an electrical 

system in general which can only be met with IP68 class or equal water-tightness 

level. Seawater is a good electrical conductor and can cause short-circuits, for 

both low voltage (e.g. 12/24V vehicle voltage) systems and for the traction voltage 

in electrified vehicles.

Apart from these events there are some other events that have not reached media 

interest. Focus on battery safety has to a large extent been on the cells as such 

and much progress has been made in this respect. The traction voltage parts of 

the system are also subject to many protection steps in many cases. It is impor-

tant, however, to take into account that the cells are part of a large system with a 

lot of electronics that needs to be functioning in a harsh environment as vehicles 

are subject to many different situations. 

5 Electric car batteries ‘at least as safe as combustion cars’ (2012)
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OUTLOOKS FOR THE FUTURE

Safety issues are of major concern in any introduction of a new product into the 

market as negative publicity might have a negative impact of general public’s 

perception of a product and the products potential to succeed. Key aspects here 

are to design safe products and be very open about events that have occurred as 

ample correct information is the best way to avoid rumors. One threat to a safe 

introduction could be home-converted vehicles as these, with their limited budget, 

would have difficulties reaching the same high safety levels as commercially built 

vehicles.

Lithium-ion batteries for automotive use have shown an increased safety regard-

ing fire and explosion through e.g. improved electrode and electrolyte materials. 

Therefore, the focus of lithium-ion safety research has moved increasingly towards 

the safety aspects associated with released gases and smoke, as well as other 

electrical aspects.

The choice of material for future batteries is a fundamental issue including possi-

ble scarcity problems. Further, the choice of different additives to obtain sufficient 

safety, e.g. flame retardants, or other necessary battery characteristics can result 

in life-cycle issues which will be untenable. New technologies are necessary which 

will no doubt pose new risks which will need to be addressed.

The number of EVs on the road is still low so reliable statistical studies of incidents 

and accidents are not possible yet, anyhow, the numbers are increasing steadily 

and with that also the possibility to conduct different safety studies as the price 

per vehicle is lowered and the vehicles are commercially available and not only 

leased etc. It is therefore likely that we will see an increasing number of studies on 

different safety aspects that still need to be resolved which will foster the develop-

ment of safer EVs.
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ABSTRACT 
The environmental challenges with CO2 emissions and a diminishing oil reserve drive the need of a 
broad introduction of electrified vehicles. The relatively new lithium-ion battery technology offers 
batteries with increased energy and power densities. Li-ion technology requires a monitoring system 
since its safety window is lower than many other battery technologies. In an energy storage system for 
electrified vehicles safety aspects thus have to be taken into serious consideration. In this paper fire as 
a consequence of malfunction or abuse of the energy storage system is discussed. 
 
KEYWORDS: energy storage system, electrified vehicle, lithium-ion, battery, safety, thermal 
runaway, fire 
 
 
INTRODUCTION 
An electrified vehicle has a traction system which can be either pure electric or a combination of 
electric and some other source (e.g. fossil fuel). New battery technologies, e.g. lithium-ion, makes it 
possible to build electric vehicles (EV) and plug-in hybrid vehicles (PHEV) with acceptable driving 
range with zero emissions. The Li-ion cells offer high energy and power densities and are constructed 
with advanced materials. There are however, still aspects to consider for these new technologies and 
electrified vehicles. A drawback is that the window of stability is relatively small (both regarding 
temperature and voltage region) and the lithium-ion cell materials are volatile and flammable. Safety 
is thus an important issue  due to the combination of the reactive nature of the cell materials and the 
presence of hazardous voltages in the vehicle.  
 
LITHIUM-ION BASICS AND THERMAL EVENTS 
Lithium-ion cell technologies have been used for more than 10 years in consumer products, such as 
laptop computers and mobile phones. During the years, there have been fire incidents with these 
batteries. The last 5 years, reports have been made regarding battery fire incidents in e.g. laptops, 
iPods, cargo planes and electric vehicles [1]. 
 
Lithium-ion cells consists of different layers, essentially; anode, separator, cathode and electrolyte. 
The electrolyte consists of organic solvents, lithium salt and additives. The electrolyte recipe is every 
cell manufacturer’s secret, especially regarding the additives. The organic solvents, e.g. ethylene 
carbonate (EC) and dimethyl carbonate (DMC) are flammable. Lithium is a reactive metal while the 
lithium-ion is more stable. Lithium metal can however be formed during normal and abusive use. 
 
Under abuse or malfunction conditions, the lithium-ion cell temperature can increase. If the 
temperature reaches typically 120-150 C, exothermic reactions within the cell starts. The exothermic 
reactions will further increase the temperature, which could start additional exothermal reactions. If 
the overall cell reaction creates a rapid temperature increase, it could result in a so called thermal 
runaway, which could consist of one of or a combination of the following; rapid gas release, 
electrolyte leakage, fire, rapid disassembling/explosion. 
 
Figure 1 shows an overview of the potential chain of events for a thermal runaway. On the left side in 
the figure, the sources of a cell temperature increase are shown. Furthermore, one cell could affect the 
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adjacent cells. In a worst-case scenario the thermal events from one of several cells could spread and 
affect the complete energy storage system. 
 
 

 
Figure 1. Potential chain of events for a thermal event on the cell level developing to system level. 
 
LI-ION FOR AUTOMOTIVE USE 
The conditions and requirements put on lithium-ion batteries in automotive applications are different 
from those  in consumer electronics. Basically, Li-ion batteries for consumer products do not meet the 
needs of the automotive industry. The safety aspects, which are discussed in this paper, are just one on 
many aspects which must be considered in a different perspective. 
 
In order to meet the demand of the automotive industry, new lithium-ion battery materials have been 
developed. Lithium iron phosphate (LFP) is a more stable cathode material than the mainly cobalt-
based lithium oxides that are commonly used in consumer Li-ion batteries. Researchers has also 
developed other electrode materials, for example mixed cobalt with other materials (e.g. Ni, Mn, Al) 
in order to improve safety and  other aspects (e.g. life time, energy and power densities) [2]. 
 
The cell design, both chemical and mechanical, affects safety. The cell manufacturer can influence the 
electrolyte composition and its additives [3], e.g. flame retardants, redox shuttles and gas release 
controller. The selection of the active electrode materials (anode and cathode) also affects the thermal 
runaway and its onset temperature. The mechanical packaging, e.g. cylindrical, soft or hard prismatic 
can or pouch prismatic, also affects the cell behavior during a thermal event. For example, a 
cylindrical cell could build up a much higher pressure than a pouch cell. There can be both positive 
and negative aspects on each cell packaging. For example, with a cylindrical cell it can be easier to 
control the venting direction. There are thus a number of safety mechanisms that can be included into 
a lithium-ion cell construction, by its manufacturer [4]. 
 
Lithium-ion batteries for automotive use have shown an increased safety regarding fire and explosion. 
Therefore, the focus of the lithium-ion safety have drawn more and more towards the safety aspects of 
released gases and smoke, as well as other electrical aspects, e.g. electromagnetic compatibility 
(EMC). 
  
EXPERIMENTAL 
In order to experimentally study thermal runaways in lithium-ion cells three cells of size 18650 were 
thermally abused in a thermostated oven. Two of the cells were standard laptop batteries from 
Samsung and Sanyo with unknown cathode composition, most likely cobalt mixed oxides. The third 
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18650 cell was manufactured by K2 Energy and had a lithium iron phosphate (LFP) cathode. The cell 
was fastened on a brick and centrally placed inside the oven. The oven was equipped with a fan 
system to circulate the air to achieve a uniform temperature.  The cells were tested one at a time with 
continuous heating from ambient temperature up to the onset of thermal runaway or to max 300 C, 
without any ramping or stops. Prior to the test, the cells were fully charged to 100% SOC according to 
each manufacturer’s charging instructions. Each cell was equipped with four thermocouples, placed 
uniformly with two sensors on the top and two sensors on the bottom of the cell. Figure 2 shows the 
average cell surface temperature for the three tested cell types. 
 

 
Figure 2. Temperature development for three 18650 lithium-ion cells during thermal abuse tests. 
 
All cells vented and got into thermal runaway. The cells from Samsung and Sanyo with the cobalt 
mixed oxide showed a very rapid temperature increase at the onset of thermal runaway.  The LFP 
based cell from K2 Energy also entered thermal runaway but with a more modest temperature 
increase. Both Samsung and Sanyo cells started to burn during the thermal runaway while the K2 
Energy cell did not burn. Table 1 shows basic cell data and extracted thermal runaway results where 
the rise time is the time between the onset and peak temperature of the runaway. The temperature rise 
is the difference between onset and peak temperatures of the runaway and the temperature rise rate is  
the ratio between temperature rise and rise time. As seen from the results the cell with the LFP 
cathode demonstrates a more safety performance than the laptop cells with a lower temperature rise 
rate and no fire. 
   
Table 1. Basic data for tested cells and extracted results from the thermal runaway. 
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Samsung 
ICR18650-24F 3.6 2.4 227 503 20 25.2 

Sanyo 
UR18650F 3.7 2.2 198 477 26 18.3 

K2 Energy 
LFP18650E 3.2 1.25 213 91 157 0.6 
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LITHIUM-ION BATTERY FIRE DEVELOPMENT 
When discussing fire in an energy storage system, two main fire types should be considered. The first 
type is the reaction within the lithium-ion cell material itself, that is, reactions between electrolyte and 
electrodes. The special properties in this case are; an accelerated process due to exothermic reactions 
and self-supply of oxygen due to oxygen released by the reactions itself. Therefore, this fire is 
difficult to control and extinguish. In theory, the thermal runaway reactions could be stopped by 
cooling the cell below the onset temperature of the reaction. In practice, as seen in Figure 2, the 
temperature development is so rapid that simultaneous cooling is difficult to achieve after the onset of 
the thermal runaway, a more viable option is to make sure that the onset temperature is not reached. 
 
The second type is a more traditional fire, that is, a fire which requires oxygen from its surroundings. 
It could be fires in e.g. plastics, cables and housing inside the energy storage system as well as in parts 
of the cell. Free electrolyte from cells or fire in plastic insulation and separator on a cell-level may be 
part of this type of fire. Furthermore, a fire of the first type, involving a thermal runaway inside a cell 
could start a fire of the second type, and vice versa. 
 
The design of the energy storage system is important in order to make it possible to stop or retard 
additional cells from going into thermal runaway. As always with batteries, adding additional safety is 
a compromise that adds negative consequences, e.g. adds weight, volume and costs to the system. 
However, the access of fire fighting media to be applied on the cell surfaces inside an energy storage 
system is usually very limited due to the packaging design of energy storage systems and electrified 
vehicles. A lithium-ion cell which undergoes thermal runaway or other severe conditions (e.g. 
overtemperature) will react with swelling and could release gases, smoke and particles. The gases 
released during cell venting are flammable and could thereby be ignited by a spark in the vicinity. 
Regarding the electrified vehicle and the integration on the energy storage systems as well as the 
hazardous voltage systems in the vehicle, the design for crash safety is vital. 
 
THE OVERALL SAFETY OF THE ENERGY STORAGE SYSTEM 
The overall safety of a complete electric vehicle and energy storage system will not only be a function 
of the cell safety but also of many other parameters on the system level. The battery management 
system (BMS) is very important in order to e.g. monitor and prohibit critical situations, alerting the 
driver in case of a thermal event, activate potential available counter-actions and controlling the shut-
down procedure of the system, which should be constructed under consideration of the complete 
safety of the electrified vehicle. The cooling system and the mechanical housing and structures are 
other important parameters. The positioning of the cells within the battery pack is also essential, and 
should e.g. consider cell venting properties. 
 
In order to obtain a safe system, all components and its properties must be considered. One of the key 
design parameters to understand when designing an energy storage system for electrified vehicles are 
the mechanisms for spreading of gases, smoke, fire and heat from components (e.g. battery cells) to 
battery system and to the complete electrified vehicle. 
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Lithium-ion batteries offer great energy and power densities but the thermal stability is an issue of concern compared to other
battery technologies. In this study different types of abuse testing have been performed in order to compare the battery safety for
different types of commercial lithium-ion battery cells. The results show large differences in abuse response for different cells.
Exposed to external heating laptop cells with cobalt based cathode developed a thermal runaway resulting in pressure release, fire
and temperatures over 700◦C. Lithium iron phosphate (LFP) is known to be a very thermally stable cathode material and LFP-cells
showed a significantly lower thermal response, a thermal runaway could, however, be detected for some of the cells in the external
heating test. The overcharge tests of LFP-cells were in most cases uneventful but in one case the test resulted in a violent fire. The
short circuit tests showed modest temperature increases of the cells in spite of high currents peaking at around 1000 A. Although the
development of safer lithium-ion battery cells has been successful thermal runaway events may still occur under extreme conditions.
© 2014 The Electrochemical Society. [DOI: 10.1149/2.0311410jes] All rights reserved.
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The high energy and power density of lithium-ion batteries have
made them the preferred type of battery for battery electric vehicles
as well as for plug-in hybrid electric vehicles. Lithium-ion batteries
have many advantages but the reactive, volatile and flammable mate-
rials present in the battery are a concern and may be a threat to safety.
Lithium-ion batteries are produced in large quantities, mainly for small
consumer products such as cellular telephones and other portable elec-
tronic devices. Using them in electric vehicles poses another situation
since the large size of the battery as well as the environmental condi-
tions that the battery is exposed to in terms of temperature, vibrations
etc have an influence on the safety. In addition, requirements such as
long life time and the possibility for a fast recharge of the battery calls
for other demands on the cells. All these aspects have an effect on
the safety of the vehicle, including the safety for people inside and
outside the vehicle, for service personnel involved in maintenance and
of rescue personnel in case of an accident.

Lithium-ion batteries have a limited window of stability regarding
temperature and voltage. Overheating may start exothermal reactions
that release even more heat which in turn can lead to an accelerated
process called a thermal runaway. A thermal runaway can be dev-
astating if it spreads to a complete battery system, releasing large
amounts of energy. Such a process could start due to overcharge,
overdischarge, mechanical deformation, external heating or an exter-
nal or internal short circuit, see Figure 1. The heat generated by any
of these events may start exothermal reactions in the battery that in
turn could lead to cell venting, fire or explosion.

These risks are well known1–8 and are not only associated with the
heat and high temperatures that may develop, the emission of harmful
or poisonous gases also pose a danger that has been emphasized in
literature,9,10 but also other gases which can be flammable may be
emitted.11–13 The reactions during overheating are typically due to the
decomposition of the solid electrolyte interphase (SEI) layer, anode
and cathode as well as electrolyte decomposition and combustion.5,14

These reactions are exothermal. In addition to this separator melt-
ing, an endotherm event, may occur. Oxygen may be released at the
positive electrode during decomposition; this oxygen can provide the
oxidant for the combustion of the electrolyte. Large efforts have been
spent on improving the safety of Li-ion cells, e.g. by replacing the
cobalt based electrode by lithium iron phosphate15 which is more
thermally stable and has long life time and high power density but
lower energy density.16 Another common practice for commercial
cells is to use a number of additives to the electrolytes to improve
safety, e.g. including fire retarders.17–20

Incidents involving lithium-ion batteries have been reported in
small as well as large battery systems, see for example Wang et al.21

zE-mail: vegan@chalmers.se

and Mikolajczak et al.22 Abuse tests of batteries are therefore of prime
importance in order to evaluate and improve the level of safety for
these types of battery systems. In this article results from abuse tests
of commercial Li-ion batteries of different type, chemistry and size
are presented to illustrate the problems that may arise under abnormal
operating conditions.

Experimental

Four types of commercial cells were tested; a Samsung 18650-cell,
i.e. a cylindrical cell 18 mm in diameter and 65 mm long, typically
used in laptops; two EiG cells of pouch-type with lithium iron phos-
phate (LiFePO4) cathode, and a carbon-based anode (a newer and
an older cell design); a European Batteries cell of pouch-type with
lithium iron phosphate cathode and graphite anode. A summary of
the cell specifications is provided in Table I. The EiG cells were op-
timized for power application while the European Batteries cell as
well as the laptop cell was optimized for energy applications. All cells
were fully charged, 100% State of Charge (SOC), according to the
manufacturer’s instructions.

Three types of abuse tests were performed; external heating, over-
charge and short circuit tests. All measurements were performed in
a similar but not identical condition as described in international test
standards for batteries such as FreedomCAR23 or SAE J2464.24 Cells
of different sizes, packaging, chemistries and manufacturers were
tested. Most tests were repeated in order to account for the variations
between individual cells. The tests presented in this paper are a selec-
tion of representative examples of these tests. For the Samsung 18650
cell only results from external heating tests are presented since over-
charge and short circuit tests would not be of interest due the built-in
cell protection mechanisms in the cell.

External heating test.— In the external heating test, the cells were
heated to excessive temperatures in order to examine their thermal
stability. This test is sometimes referred to as thermal ramp test. The
tested cell was placed inside a thermostatically controlled oven, Binder
FED 115. The oven has a microprocessor control and a PT 100 temper-
ature sensor for internal regulation of oven temperature. The oven’s
internal fan was set on full speed in order to circulate the oven air
to obtain a uniform temperature around the tested lithium-ion cell.
The cells were placed on one or two bricks in the center of the oven
and tested one at a time, see Figure 2. For the pouch cells the oven
temperature was first set to 80◦C and thereafter increased in steps of
10◦C every 15 min until either any thermal runaway had occurred or
to the maximum temperature of the oven (300◦C). For the 18650 cell
the oven was set to the maximum temperature (300◦C) with continu-
ous maximum heating. Both heading procedures were relatively slow.
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Figure 1. Lithium-ion thermal runaway overview from cell event to potential system event.

Table I. Basic data of tested cells.

Cell type Cell packaging Nominal voltage (V) Nominal capacity (Ah)

Samsung ICR18650–24F Cylindrical 3.6 2.4
EiG ePLB-F007H In article referred as “older design” Pouch 3.2 7
EiG ePLB-F007A In article referred as “newer design” Pouch 3.2 7
European Batteries EBattery 45 Ah v1.4 Pouch 3.2 45

With the continuous heating method it took around 90 min for the
oven to reach 200◦C.

The cell voltage and the cell surface temperature were measured
with a sample rate of 1 Hz with a data logger, Pico Technology ADC-
24. There were up to five type K thermocouples evenly distributed
on both sides of the cell’s surface and one additional thermocouple
measuring the oven temperature.

Overcharge test.— In the overcharge test, the lithium-ion cells
were abused by being charged beyond their limits. The charger was
limited to the preset maximum current of each experiment and up to
max 15.3 V. The 7 Ah EiG cell was charged with 70 A (corresponding
to 10 C-rate) considering that the cell is optimized for power applica-

Figure 2. Photo of oven set up, showing a cylindrical 18650 cell fastened onto
a brick with steel wire.

tions while the 45 Ah European Batteries cell was overcharged with
90 A (corresponding to 2 C-rate) due to its optimization for energy
applications. The cell surface temperature was measured with five
type K thermocouples; one of the sensors was directly attached to
the cell surface while four were so called plate-thermometers, that
is a thermocouple attached to a 10 × 10 cm metal plate. The plate-
thermometers were distributed around the cell, one directly under the
cell, the others placed with an air gap from the cell. The current was
measured using a current shunt (accuracy 0.5%). Cell voltage, current
and temperature were measured with a sample rate of 1 Hz with a data
logger, Pico Technology ADC-24.

Short-circuit test.— EiG and European Batteries cells were short
circuited using 50 mm2 copper cables and a high current contactor,
Telemecanique LC1F630, with a low internal resistance of 40 μ�.
The short circuit current was measured by a current core, Hitec 6000E
Topacc 1.0, which can measure currents up to 6000 A. The cell sur-
face temperature was measured with eighteen type K thermocouples
equally distributed on both sides of the cell surface. The cell voltage,
current and temperature were measured at 1 Hz using two data log-
gers, Pico Technology ADC-24 and Fluke Hydra Series II, as well as
by a Tektronix TDS 3034 oscilloscope.

Results

External heating test.— Figure 3 shows the results of an external
heating test on the 18650 cell. At 220◦C, a very rapid temperature
increase occurs when the cell catches fire and a pressure wave is ob-
served. The maximum average temperature at the cell surface reaches
743◦C which is higher than the melting temperature of aluminum,
660◦C. The maximum cell surface temperature measured by a sin-
gle sensor was 775◦C, the temperature of the cell interior was thus
probably even higher. Based on the average surface temperature in-
crease, the corresponding energy released from the thermal runaway
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Figure 3. Temperature and cell voltage development during external heating
of a Samsung 18650 cell.

can be roughly estimated since the cell is likely to be under adiabatic
conditions during the short duration of the thermal runaway, approxi-
mately 20 seconds. The specific heat capacity of a complete cell varies
between cylindrical and pouch cell packaging and is also dependent
on size, energy/power optimization etc. In the estimations we use an
approximate value of 700 J/kg◦C based on published values for dif-
ferent cell types.5,25–29 Using the measured temperature increase of
523◦C the energy released can be estimated to 15.6 kJ (4.33 Wh). The
calculated released energy is thus about half of that of the electrical
energy available in the cell, 8.64 Wh. It may also be noted that just
prior to the runaway, burning electrolyte is squirting out of the cell
seen in Figure 4, which releases energy which is not included in the
above value for the energy release calculation. Figure 5 shows the
derivative of the average cell surface temperature; the figure shows
that the thermal runaway temperature is 220◦C and that the rate of
temperature increase is very high, initially close to 5000◦C/min.

Cells with lithium iron phosphate (LFP) cathode have an enhanced
thermal safety compared to cells with cobalt oxide based cathode.
Figure 6 shows the results for two LFP-cells during external heating.
The old cell design shows a clear but relatively small thermal runaway
event while the new cell design shows no obvious signs of thermal run-
away. Actually, a minor exothermic event, hardly visible in Figure 6,
can be detected in the same temperature region as the thermal run-
away in the old cell design also for the new cell design. The chemical
and/or physical changes in the cell design are not known or studied in
this report. Complementary experiments where the temperature was
continuously increased also resulted in a similar behavior as that in
Figure 6. The time to reach the thermal runaway temperature was
approximately 90 minutes for the test using continuous heating and
approximately 200 minutes for the test using temperature-ramping.

Figure 4. Samsung 18650 cell at the beginning of thermal runaway releasing
ignited material.
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Figure 5. The rate of the cell surface temperature for the Samsung 18650 cell
in the temperature region of the thermal runaway peak.
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Figure 6. Temperature development during external heating of EiG newer and
older cell design.

Figure 7 shows the results of the European Batteries cell during
external heating. A moderate thermal runaway is detected also for this
LFP-cell, with temperatures reaching well above 300◦C. The runaway
temperature was 183◦C within ± 1◦C for these cells, this value is close
to the value observed for the older design EiG cell, 189◦C. The run-
away temperature was thus somewhat lower than for the laptop-type
cell. The energy released at the detected thermal runaway estimated
using the same method and specific heat capacity value as for the
Samsung cell above is also much smaller than for the laptop cell.
While the ratio of energy released to the electric energy stored in the
fully charged battery is of the order of 50% for the laptop battery it is
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Figure 7. Temperature development during external heating of European Bat-
teries cell.

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 129.16.69.49Downloaded on 2014-07-12 to IP 

http://ecsdl.org/site/terms_use


A1614 Journal of The Electrochemical Society, 161 (10) A1611-A1617 (2014)

0 5 10 15
-10

0

10

20

30

40

50

60

70

80

 Temp

C
ur

re
n 

[A
], 

V
ol

ta
ge

 [V
],

T
em

pe
ra

tu
re

 [°
C

]

Time [min]

 Current
 Voltage

90

100

110

120

130

140

 SOC

S
O

C
 [%

]

Figure 8. Overcharge of EiG cell of newer design.

between 10 and 30% for the LFP-type cells that showed a thermal run-
away. The rates of temperature increase at the thermal runaway for the
LFP-cells were 500◦C/min for European Battery cell and 60◦C/min
for EiG older design while the rate was not detectable for EiG newer
design. The 18650 cell lost 30% of its weight in the external heating
tests while the LFP cells lost between 16–26%, the EiG new design
had the lowest weight loss of 16%.

Overcharge test.— Figure 8 shows the result from an overcharge
test of the EiG cell of newer design. The cell surface temperature
reached a moderate temperature of 70◦C. An almost negligible weight
loss was measured, probably due to minor venting of electrolyte.
The overcharge test for one of the European Batteries cells is shown
in Figure 9. After approximately 5 minutes of charging at a state
of charge level of 115%, the cell suddenly caught fire, as seen in
Figure 10. The temperature reached 855◦C for a sensor placed in the
center of the top surface of the cell. During the fire, the top layer of
the cell was blown away so the cell temperature presented in Figure
9 may include the temperature of the flames and does not reflect the
cell temperature after this event.

The overcharge test on the European Batteries cells was repeated
three more times without any occurrence of fire and Figure 11 shows
the results of one of the repeated tests. The surface temperature reached
a maximum of 79◦C, a value comparable to that of the EiG cell. It
may be noted that all overcharged cells were swollen with a thickness
increase after the test ranging from 350 to 850% of the initial thickness.

Short-circuit test.— The results from short circuit tests for EiG
cells of both newer and older design are shown in Figure 12. There
were no significant differences between the two types of cells. Be-
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Figure 9. Overcharge of a European Batteries cell resulted in fire, in this case
the charger was manually stopped at 9.5 min due to the fire.

Figure 10. Overcharge of a European Batteries cell resulted in fire.
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Figure 11. Overcharge of a European Batteries cell that did not result in a
fire.

tween 20 and 30 seconds after the start of the short circuit the cell
swelled up quickly. The following 2 minutes the cell vented (with
no visual smoke) and swelling decreased considerably. The follow-
ing 5 minutes the cell contracted further to a thickness close to that
of the untested cell. The peak current reached almost 900 A which
corresponds to a discharge rate of 128C. The maximum cell surface
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Figure 12. Short circuit of EiG cell of newer design (dashed lines) and EiG
of older design (solid lines).
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Figure 13. Short circuit of European Batteries cell, photo (left) showing the flame and smoke from the burnt off positive terminal tab, the photo (right) after the
test shows the burnt off tab.

temperature was about 100◦C and both types of cells were discharged
to about 43% SOC.

In the short circuit test of the European Batteries cell the positive
tab of the cell burnt off, which stopped the short circuit current, see
Figure 13. The current just before this event was 1084 A and due to
the very short time for the short circuit the cell temperature and SOC
changed very little, less than 6◦C and 4% respectively.

Discussion

When the Samsung 18650 laptop cell was exposed to external heat,
the open circuit voltage remained stable until about 135◦C, measured
on the cell surface, as seen in Figure 3, then it falls abruptly. The melt-
ing points of typical shutdown separator materials, polyethylene and
polypropylene, are about 130 and 165◦C, the measured values are thus
reasonably close to these values, where the final voltage drop occurs at
about 158◦C. The difference may be due to a delay in the temperature
measurement due to the slow heat transfer in the interior of the cell.
The runaway temperature, 220◦C, and the temperature increase during
the thermal runaway, 532◦C, is in the same order as reported in our
previous study.30 The rate of temperature increase in the initial phase
of the thermal runaway is extremely high, close to 5000◦C/min. Jhu et
al.28 found for a similar cell a peak value of about 37000◦C/min with a
more sensitive technique, and in another study by Jhu et al.29 temperate
rates beyond 70000◦C/min were found. The state of charge can have
a strong influence on the cell behavior during abuse situations and
the influence may vary with different types of abuse. Jhu et al.28,29 and
Doughty et al.17 showed that lower SOC gives lower energy release
during external heating.

A comparison of the results of the external heating tests for the
18650 laptop cell (Figure 3) and the LFP-cells (Figure 6 and Figure 7)
shows that the behavior is much less dramatic for the LFP-cells. Two
of the three LFP-cells still go into thermal runaway but the energy
released is much less than that from a cell with cobalt-based cathode.
This is well-known from other studies2,13,20,31–36 and attributed to the
stability of the olivine structure of LiFePO4. The electrode influence
on the thermal stability of a LFP-cell is therefore dominated by the
anode material. Swelling and venting occurred for all pouch-type cells
while the laptop cell vented with a rapid release of gas, accompanied
by a pressure wave and immediately followed by fire.

The runaway temperature for the LFP-cells was lower than for
the laptop cell, 189◦C for the EiG older design and 183◦C for the
European Batteries cell. The thermal runway in the external heating
test for the new design of EiG is significantly reduced compared to
that of the older design. It may be noted that the EiG cell is designed

to target electrified vehicles in the automotive sector and is currently
in use there. The rates of temperate increase at runaway differ con-
siderably for the different cells; 5000◦C/min for the Samsung laptop
cell, 500◦C/min for European Battery cell and 60◦C/min for EiG older
design. This highlights the large differences for Li-ion cells and par-
ticularly underlines the importance of thermal stability.

Cell venting is an important safety factor to protect a Li-ion battery
from reaching too high pressure, especially in the case of cylindrical or
hard prismatic cell packaging. In fact, cell manufacturers may include
so called shutdown additives in the electrolyte in order to activate
cell venting at a pre-designed stage by gas generation from poly-
merizing of the additive molecules, before the cell reaches extreme
conditions.20 Upon heating of a cell, ventilation is also unavoidable
since the electrolyte typically consists of a Li-salt dissolved in volatile
organic solvents. Even in cases when fire or explosion does not oc-
cur, emitted flammable and toxic gas can be a serious problem as
mentioned in the introduction.

Abuse by overcharging and external heating adds energy to the
system due to the input of electric power or heat, while in a short cir-
cuit test no energy is added to the cell. Therefore, the overcharge and
external heating test can theoretically be seen as a more severe abuse
due to the addition of external energy to the cell. In the overcharge
tests presented the additional charged energy is between 20–30% in
terms of battery capacity. The energy released in the external heating
tests presented in this paper is calculated based on the change of the
cell surface temperature and are of the order of 50% or less of the elec-
trical energy within the cell. Those values do not represent the total en-
ergy release and neither the possible maximum energy release during
the most severe abuse situations when the cell materials are allowed to
fully combust. During the external heating, part of the electrolyte, and
particularly low boiling components (e.g. dimethyl carbonate), can
evaporate due to venting and cell opening. However, some electrolyte
is still present since thermal runaway does occur. For example, for the
18650 cell, electrolyte is squirting out of the cell prior to the thermal
runaway as seen in Figure 4, releasing energy which is not included in
the calculations. Besides, several other parameters also affect the re-
sults e.g. abuse test methods, cell chemistry, capacity size, cell design
and cell venting characteristics. Values typically found in the liter-
ature show a released energy of 2–3 times the electrical energy.1,38

The results presented in this article are lower presumably due to
the reasons discussed above. However, the energy release, 15.6 kJ,
of the thermal runaway for the 18650 cell in the external heating test
can be compared to 19.2 kJ measured for a similar 18650 cell.28

10 C-rate overcharge tests of the EiG newer design did not re-
sult in a thermal runaway and the peak surface temperature reached
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a moderate 79◦C. A similar result was obtained for one of the Euro-
pean Batteries cells, seen in Figure 11. However, one of the European
Batteries cells that was overcharged ignited with a resulting fire. This
behavior was not reproduced in three other tests. Excluding the ignited
cell, no thermal runaway could be detected even though all cells were
heavily affected by large swelling and venting. Hund and Ingersoll38

studied 1 C-rate overcharge of LiFeBatt 10 Ah LFP cells which re-
sulted in a significantly higher temperature of 160◦C but no fire or
sparks. He et al.39 used 2 Ah LFP cells and found a temperature peak
of 90◦C without fire during 1 C-rate overcharging. The incident of the
fire in our test is interesting but we can only speculate on the reason.
It could be a bad cell due to errors in the manufacturing process or
induced by some small variety in the test setup. An event like this in
the field could be referred to as a field failure, but field failures rarely
happens on cell-level, the probability is typically less than 1 ppm.21,22

For an overcharge situation to occur in a battery system a failure of
the Battery Management System (BMS) is required allowing the cell
to be charged above it limits. Secondly, as we have seen above, the
cell itself does not necessarily go into thermal runaway because it
is overcharged. Studies have, however, shown that LFP-cells have a
smaller margin with respect to the amount of overcharged capacity
compared to other common Li-chemistries, although the exothermal
response for LFP is significantly lower.2

The tested large-sized LFP pouch automotive cells have low inter-
nal resistance, enabling high short circuit currents known from other
studies.40 The short circuit current of the EiG cells was close to 900 A,
corresponding to a 128 C-rate. These cells are power optimized and
capable of delivering 20–30 C-rate in normal use. The short circuit
current for the six times larger capacity European Batteries cell is
close to 1100 A, i.e. a 24 C-rate. The European Batteries cell is en-
ergy optimized and made to deliver up to 4 C-rate in normal use. The
cell voltage seen in Figure 12 drops quickly due to the short circuit,
but does not reach 0 V instantly even if it is a hard short circuit with
low connection resistance. The current curve in Figure 12 quickly
rises and then falls to about half the value and then increases again.
This behavior could be explained by the fact that the extreme current
cannot be sustained due to limitations of the transport process of the
lithium ion in the cell resulting in a current drop, while the cell is
quickly heated due to the ohmic losses. The increased temperature
finally enables a higher transportation of lithium ions resulting in an
increased current. The time frame for these phases is less than 30 sec-
onds as seen in Figure 12. No thermal runaway is observed, however
the cell temperature increases fast during a short period of time.

The short circuit test of the European Batteries cell resulted in that
the positive terminal tab burnt off as seen in Figure 13 which stopped
the short circuit. In one perspective this can potentially be seen as
positive for the safety since the tab functioned as a “fuse” that stopped
the short circuit at an early stage. However the flame can be a potential
source of ignition of e.g. vented and flammable battery gases or other
easily ignitable materials inside a battery system.

Lithium-ion cells can be equipped with a variety of reversible
and irreversible safety mechanisms.41 The 18650 cells typically have
protection for short circuit, by the use of for example CID (current
interrupture device) and PTC (positive temperature coefficient), the
latter causing the cell resistance to increase rapidly at increased tem-
perature reducing the current going through the cell. Many of these
safety mechanisms were developed specifically for the Li-ion con-
sumer battery. The use of Li-ion batteries in other applications such
as within automotive give rise to more and different demands on the
safety as well as other aspects, e.g. cost, life time, energy and power
density. The environmental conditions in automotive applications are
different to those in consumer products; vibrations, extreme temper-
atures and varying humidity can be challenging. The risks involved
in case of electric vehicle crash deformations must also be taken into
consideration. In the automotive industry large capacity cells are re-
quired and typically hundreds of these are connected in series. Safety
mechanisms within the cell used in commercial Li-ion battery systems
do not always give the same protection in e.g. automotive applications.
A first example is the shutdown separator which can give an increased

safety for some cell abuse situations. However, the use of shutdown
separators in a large battery pack with higher voltage due to hundreds
of cells connected in series might not give the same safety due to
e.g. voltage breakdown of the separator.42,43 A second example is the
PTC which has a relative low voltage tolerance in cell-strings, po-
tentially as low as 30 V, which can result in spontaneous ignition in
case of overvoltage.44 Besides the safety concern the PTC also add
parasitic resistance in a large battery pack. A third example is the
CID which cannot offer the same safety in case of higher voltage
systems.44

The battery module design as well as the rate of energy release and
the total energy release from a thermal runaway in one cell determines
if neighboring cells are effected or not. From a safety perspective it
is essential to minimize the probability for a thermal event to occur
but also to minimize the consequences of such an event and prevent
damage to neighboring cells, avoiding the potential propagation of a
thermal runaway from cell to system-level as shown in Figure 1.

Conclusions

The abuse tests conducted on various types of Li-ion cells give
valuable information regarding diverse aspects of the cell safety. Risks
associated with thermal runaway situations; fire, smoke and gas emis-
sions are especially important for the use of Li-ion batteries in au-
tomotive applications. The external heating test of the 18650 laptop
cell resulted in a rapid thermal runaway accompanied with a pressure
wave and immediate fire. In large battery packs using multiple cells
in series and/or parallel the effect of a propagation scenario in thus
a concern. Safer chemistries like the LFP-cells are in general signif-
icantly less energetic. Nevertheless our results show that LFP-cells
can still go into a thermal runaway event even though the tested LFP
cells showed various results. During external heating up to 300◦C a
LFP-cell with a newer design did not show any substantial thermal
runaway while older design LFP cells showed a moderate thermal
runaway. Overcharge of the newer designed LFP-cell did not result in
thermal runaway either. However, overcharge of another LFP pouch
cell did result in a fire, even if that event could not be reproduced in
this study.

The energy released during a thermal runaway based on the results
reported above for a 18650 cobalt-based cell can be used to estimate
how much energy may be released in a thermal runaway of a 300 kg
battery system for an electric vehicle. The answer is perhaps somewhat
surprising, the calculation shows that the energy released could be in
the order of 70 MJ, corresponding to the combustion of about 2 liters
of gasoline. However, our estimate is low, as described above, and
using the highest value reported earlier one can expect a value up to
six times that calculated here. This is still considering the battery type
that has the largest energy release while other more safe chemistries,
e.g. LFP will have lower values. The presented results thus show
that although the safety aspects of Li-ion batteries are still a concern,
the safety is improving with safer chemical components and design
improvements.

Acknowledgments

The authors thank the Swedish Energy Agency and the FFI-
program for its support.

References

1. G. G. Eshetu, S. Grugeon, S. Laurelle, S. Boyanov, A. Lecocq, J.-P. Bertrand, and
G. Marlair, Phys. Chem. Chem. Phys., 15, 9145 (2013).

2. D. Doughty and E. P. Roth, The Electrochem. Soc. Interface: summer 2012, 37
(2012).

3. E. P. Roth and C. J. Orendorff, The Electrochem. Soc. Interface: summer 2012, 45
(2012).

4. D. Lisbona and T. Snee, Process Safety and Environmental Protection, 89, 434 (2011).
5. R. Spotnitz and J. Franklin, J. of Power Sources, 113, 81 (2003).
6. P. Biensan, B. Simon, J. P. Pérès, A. de Guibert, M. Broussely, J. M. Bodet, and

F. Perton, J. of Power Sources, 81–82, 906 (1999).

) unless CC License in place (see abstract).  ecsdl.org/site/terms_use address. Redistribution subject to ECS terms of use (see 129.16.69.49Downloaded on 2014-07-12 to IP 

http://dx.doi.org/10.1039/c3cp51315g
http://dx.doi.org/10.1016/j.psep.2011.06.022
http://dx.doi.org/10.1016/S0378-7753(02)00488-3
http://dx.doi.org/10.1016/S0378-7753(99)00135-4
http://ecsdl.org/site/terms_use


Journal of The Electrochemical Society, 161 (10) A1611-A1617 (2014) A1617

7. F. Larsson, P. Andersson and B.-E. Mellander, “Are electric vehicles safer than
combustion engine vehicles?”, Chapter 4 in Systems perspectives on Electromobility,
edited by B. Sandén, Chalmers University of Technology, Goteborg, Sweden, ISBN
978-91-980973-1-3, p. 31 (2013).

8. Z. J. Zhang, P. Ramadass, and W. Fang, “Safety of lithium-ion batteries”, Chapter 18
in Lithium-Ion Batteries: Advances and Applications, edited by G. Pistoia, Elsevier,
Amsterdam, The Netherlands, p. 409 (2014).

9. A. Hammami, N. Raymond, and M. Armand, Nature, 424, 635 (2003).
10. H. Yang, G. V. Zhuang, and P. N. Ross Jr, J. of Power Sources, 161, 573 (2006).
11. T. Ohsaki, T. Kishi, T. Kuboki, N. Takami, N. Shimura, Y. Sato, M. Sekino, and

A. Satoh, J. of Power Sources, 146, 97 (2005).
12. D. P. Abraham, E. P. Roth, R. Kostecki, K. McCarthy, S. MacLaren, and

D. H. Doughty, J. of Power Sources, 161, 648 (2006).
13. E. P. Roth, ECS Trans., 11(19), 19 (2008).
14. C. Arbizzani, G. Gabrielli, and M. Mastragostino, J. of Power Sources, 196, 4801

(2011).
15. A. K. Padhi, K. S. Nanjundaswarmy, and J. B. Goodenough, J. Electrochem. Soc.,

144, 1188 (1997).
16. K. Zaghib, A. Guerfi, P. Hovington, A. Vijh, M. Trudeau, A. Mauger,

J. B. Goodenough, and C. M. Julien, J. of Power Sources, 232, 357 (2013).
17. D. H. Doughty, E. P. Roth, C. C. Craft, G. Nagasubramanian, G. Henriksen, and

K. Amine, J. of Power Sources, 146, 116 (2005).
18. S. S. Zhang, J. of Power Sources, 162, 1379 (2006).
19. G. Nagasubramanian and K. Fenton, Electrochimica Acta, 101, 3 (2013).
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Using FTIR to determine toxic gases in fires with Li-ion 

batteries 

 

Abstract 
 

Batteries and in particular Li-ion batteries are seen as an alternative to fossil fuels in the automotive 

sector. Li-ion has however some safety issues including possible emissions of toxic fluorine 

containing compounds during fire and other situations. This paper demonstrates the possibilities to use 

the Fourier Transfer Infrared Technique to access these gases. The study is conducted in the Cone 

Calorimeter on different solvents used in Li-ion batteries. The measurements show that, apart from HF 

with a known high toxicity, also POF3 is emitted. The toxicity of POF3 is not yet established but has 

the potential of being very toxic. 
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Introduction  
 

Batteries are used in more and more applications and are seen as an important alternative to 

fossil fuels as energy carrier in the automotive sector. Several types of batteries are used today 

and more are developed over time. One of the most common types of batteries today is 

lithium-ion (Li-ion) batteries due to their high energy and power densities. Li-ion batteries 

have, however, some safety drawbacks with their organic based flammable electrolyte.  

Compared to many other battery technologies, Li-ion batteries also have a smaller 

temperature and voltage region of stability. Outside this region, Li-ion batteries can undergo a 

thermal runaway resulting in gassing and fire, and potentially even explosion [1,2]. A thermal 

runaway can be the result if a Li-ion cell is exposed to increased temperatures, i.e. 

temperatures of 120-150 C [3]. Other types of abusive conditions, e.g. overcharge or 

deformation can also result in venting of gasses and thermal runaway reactions. 

 

The electrolyte of a Li-ion cell contains a lithium salt, organic solvents (e.g. ethylene 

carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC)) and a number of 

additives. The far most used Li-salt today is hexafluorophosphate (LiPF6) due to its attractive 

performance despite its moderate thermal stability and fluorine content. The fluorine content 

can under abusive conditions emit fluorine containing compounds, e.g. hydrogen fluoride 

(HF). Other gases that can pose a danger include the chemical species in the oxidation and 

thermal breakdown of the initial LiPF6 salt solution. Most likely phosphorus pentafluoride 

(PF5), phosphorous oxyfluoride (POF3) and HF are of greatest concern but also the fluorinated 

phosphoric acids [4] can be of interest since they will give HF and phosphoric acid (H3PO4) 

when completely reacted with water. Overheating in a Li-ion battery cell can also result in 

formation of toxic fluoro-organic compounds [5]. The toxicity of all these gases is not fully 

established. The Swedish Work Environment Authority has exposure limits for total fluorides, 

HF and phosphoric acid but lacks data for the rest of the substances [6].  

 



The NGV
i
 for total fluorides are 2 mg/m

3
 and HF has a TGV

ii
 of 2 ppm. NIOSH (National 

Institute for Occupational Safety and Health, USA) states that HF has a IDLH (Immediately 

Dangerous to Life and Health) value of 30 ppm.  No exposure limits are given for PF5 and 

POF3, however, their chlorine analogues, PCl5 and POCl3, have NGV values of 0.1 ppm. The 

toxicity might, however, differ between the chlorine and fluorine species and there is no 

general rule like “fluorine is always more toxic”. But, still, the limits are low and gases 

evolved from battery fires are certainly of great concern to both the fire fighters, people close 

to a Li-ion battery in e.g. electric vehicles or in the close vicinity of the fire. Other gases 

emitted from electrolytes, especially under non-fire conditions include e.g. H2, CO, CH4, 

C2H6 [7, 8, 9], this paper focuses however on the fluorinated species. 

 

The HF formation in the decomposition of the LiPF6-based electrolytes under heated but non-

fire conditions is complex [10, 11, 12]. When heated in a dry and inert environment LiPF6 

decomposes to lithiumfluoride (LiF) as solid and phosphorouspentafluoride (PF5) as gas [13] 

 

 LiPF6 → LiF + PF5     (1)  

 

In contact with moisture/water PF5 reacts to form phosphorous oxyfluoride and hydrogen 

fluoride [13] 

 

 PF5 + H2O → POF3 + 2HF    (2)  

 

LiPF6 is highly susceptible to hydrolysis by even trace amounts of moisture [14]. When 

heated in moisture/water LiPF6 can directly form LiF, POF3 and HF [13]. 

 

 LiPF6 + H2O → LiF + POF3 + 2HF    (3)  

 

PF5 also react with HF to form hexafluorophosphoric acid (HPF6) [15]:  

 

 PF5 + HF → HPF6     (4)  

 

Phosphorous oxyfluoride (POF3) can react to form several fluorinated phosphoric acids, 

monofluorophosphoric acid (H2PO3F), difluor-phosphoric acid (HPO2F2) hexafluorphosphoric 

acid (HPF6), and phosphoric acid (H3PO4) [4]. The fluorinated phosphoric acids can react 

with water and yield HF and form phosphoric acid as a final product [4]:   

 

        
  
 
   

        
  
 
   

        
  
 
   

        (5)  

 

Of these gases it is HF, PF5 and POF3 that are of most interest due to their toxicity and 

potential toxicity and in particular is it interesting to know if and to what extent these three 

substances are emitted in fire situations. Further the possible effect of different burning 

conditions and fuel composition on the amount of gases produced is of interest together with 

if the addition of water, like in an extinguishing situation, would change the amounts 

produced.  

 

                                                      
i
 ”Nivågränsvärde” Mean value threshold in a working environment 

ii
 ”Takgränsvärde” Maximum allowed concentration in a working environment 



There is only limited information available on PF5 and POF3 measurement methods. Possible 

techniques for this were sought for in the literature and it was soon concluded that a possible 

solution was to use the FTIR (Fourier Transform Infra-Red) technique as all three gases have 

absorbance in the infrared spectra while no information was found on e.g. suitable florescence 

wavelength for these species. There is only limited information available on determination of 

PF5 and POF3 in gas phase. This study focused on FTIR methodology since it has the 

advantage of detection of several substances simultaneously without interfering with the 

chemical equilibria in the gas phase. Wet chemical methodologies followed by 

chromatography and suitable detection were ruled out due to uncertain kinetics and equilibria. 

 

Both PF5 and POF3 are reactive and few measurements have been performed on these gases in 

the literature. Yang, Zhuang and Ross [13] report measurements of these gases conducted 

using TGA (Thermal Gravimetry Analysis) and FTIR (Fourier Transform Infra-Red) on pure 

LiPF6 salt and salt solved in EC, DMC, PC (polypropylene carbonate), and EMC (ethyl 

methyl carbonate). Recently Eshetu et.al. [16] published a study on the different solvents used 

in the electrolytes without the salt with a focus on Heat Release Rate (HRR) from the 

different solvents and also toxicity of the combustion gases from the solvents. However as no 

LiPF6-salt was included in these tests the toxicity was similar to most organic solvents. A 

recent study by Ribiere et. al. [17] has been performed on pouch cells in the Fire Propagation 

or Tewarson apparatus where FTIR was used to measure toxic gases including HF but other 

fluorinated gases were not evaluated. 

 

This paper presents experiments conducted in the cone calorimeter where HRR [18] was 

measured together with gases emitted including HF, POF3 and PF5 in order to investigate  

possible influence of the burning conditions, fuel composition and water addition on the 

amounts of HF, POF3 and PF5 produced  The measurements were conducted using the FTIR 

technique and a first step in the study was to demonstrate the suitability of the FTIR technique 

to be used for measurements of these substances in fire situations. To this end the FTIR 

equipment was first calibrated for HF, POF3 and PF5. Then, tests were conducted on pure salt 

and LiPF6 salt solved in different electrolyte solvents at various concentrations. The solvents 

included in this study were Dimethyl carbonate (DMC) and Dimethoxyethane (DME) and 

Polypropylene carbonate (PC). The solutions were introduced to a propane flame as a spray at 

different flow rates or onto a metal plate in the flame in order to achieve different burning 

conditions and fuel composition.  

 

 

FTIR instrumentation and calibration 
 

The measurement system used consisted of an FTIR spectrometer, a gas cell, sampling lines, 

filters for removing particulates before the gas cell and a pump that continuously drew sample 

gas through the cell. The system is specified in Table 1. 

 

 

 

 

 

 

 

 

 



 

 

 

 
 

Table 1 Specification of the FTIR measurement system. 

Instrumentation Specification 

Spectrometer Thermo Scientific Antaris IGS analyzer (Nicolet) 

Spectrometer parameters Resolution: 0.5 cm-1 

Spectral range: 4800 cm
-1

 – 650 cm
-1

  

Scans/spectrum: 10 

Time/spectrum: 12 seconds 

Detector: MCT 

Gas cell Volume: 0.2 litres 

Path length: 2.0 m 

Temperature: 180°C 

Cell pressure: 650 Torr 

Primary filter M&C ceramic filter heated to 180 °C 

Secondary filter M&C sintered steel filter heated to 180°C 

Sampling tubing 4/6 mm diameter PTFE tubing heated to 180°C. The 

length of the tubing was 1.5 m + 2.5 m 

Pump Sampling flow: 3.5 l/min 

 

The FTIR used had a calibration for a number of components when delivered from factory. 

These components included e.g. CO2, CO and HF. It was seen that the factory calibration for 

HF was not sufficiently accurate for the intended use of the instrument and the instrument was 

recalibrated to include more spectral information and a wider concentration range i.e. include 

the full spectral band of HF and a concentration range from 18 ppm to 1245 ppm. The 

calibration of HF was made using a dynamic dilution system where a water solution of HF 

was injected into a heated stream of nitrogen. 
 

The quantification limit (LOQ) for HF with the recalibrated FTIR was determined to 2 ppm. 

In addition was the FTIR calibrated for PF5 and POF3. Calibration gas mixtures were prepared 

for this purpose by dilution of PF5 (99%, ABCR) and POF3 (99%, ABCR) in nitrogen 

atmosphere using gasbags (Flexfoil, SKC). Extra effort was put into pre-conditioning the bags 

so they were free of water adsorbed to the walls. This was necessary to be able to prepare the 

highly reactive PF5 mixture.  

 

Tests were conducted to record the spectral bands of POF3 as a basis for calibration of the 

FTIR. An important part of the calibration work was further to investigate the stability of 

POF3.  The spectral range of interest of POF3 (116 ppm) is shown in Figure 1; several 

distinctive absorption bands can be seen. 

 

 



 
Figure 1 Spectral bands of POF3. 

Three spectral bands are shown centred around the wavenumbers 871 cm
-1

 (P-F symmetrical 

stretch), 991 cm
-1

 (P-F asymmetrical stretch) and 1416 cm
-1

 (P-O stretch). The two latter 

vibrations are the strongest. The spectral information of POF3 is summarized in Table 2.  

 

Table 2 Spectral band positions for POF3. 

Band position  

(cm
-1

) 

Absorptivity* 

(abs/ppm.m) 

Type of band [13]  

1416 0.0014 P-O stretch 

991 0.0014 P-F asymmetrical stretch 

871 0.00025 P-F symmetrical stretch 

* Calculated from a spectrum of 100 ppm POF3 (650 Torr, 180 °C). 

 

A quantitative calibration was made for POF3 using flushed gas bags where known volumes 

of POF3 gas were injected into a known volume of nitrogen gas. The concentrations produced 

for the calibration were: 25 ppm, 100 ppm, 200 ppm, 300 ppm and 416 ppm. Spectral regions 

around 871 cm
-1

 and 1416 cm
-1

 were used for a CLS (classical least squares) calibration and 

water was included as an interfering component. The calibration was linear and a regression 

yielded a 0.98 R
2
 fit. The quantification limit (LOQ) for POF3 was calculated to 6 ppm.  

 

The stability of POF3 at both room temperature and at an elevated temperature was 

investigated. It was important to have this information to know that the calibration mixtures 

prepared in gas bags were stable and to see if any significant decomposition would take place 

in the heated sampling and measurement system. The investigation showed that POF3 is very 

stable at room temperature in a gas bag diluted with N2, which makes it possible to prepare 

quantitative calibration standards. Figure 2 shows the spectra of ~200 ppm POF3 from two 

different gas bags, stored for 8 and 33 minutes respectively at room temperature before 

measurement. Any decomposition at room temperature could not be detected from this test. 



The half-life for POF3 in N2 at 170 °Ciii
 was about 15 minutes according to the measurements 

shown in Figure 3, which means that there is no significant self-decomposition taking place in 

the measurement system during the ~10 s response time of the FTIR measurement set-up.  

 

 
Figure 2 Spectra of ~200 ppm POF3 measured in two separate Flexfoil bags at 8 min 

and 33 min after preparation. 

 
Figure 3 Series of spectra of 41 ppm POF3 kept at 170°C in the FTIR gas cell for 

different times (0, 8 and 31 minutes). 

 

To prepare PF5 standard gas blends for calibration it was found that the gas bags used needed 

to be dried by flushing with N2 in order to remove any remaining water as otherwise no 

                                                      
iii

 The investigation of decomposition at an elevated temperature was made with a cell temperature of 170 °C 

which was slightly lower compared to the standard cell temperature of 180 °C. 

 



significant spectral bands apart from those of POF3 and HF could be seen. This is explained 

by that the PF5 added to the bag was hydrolysed even by the small amounts of water that was 

present in the bag, to form the decomposition products POF3 and HF. The bags were 

subsequently thoroughly dried before adding PF5.  

 

By using flushed bags it was possible to locate the spectral bands of PF5 [13]. The interesting 

spectral range for PF5 of nominally 200 ppm PF5 in N2 is presented in Figure 4 with the 

interesting bands of 1027, 1071, 956 and 946 cm
-1

. As seen in Figure 4 bands from POF3 

(1416, 991 and 871 cm
-1

) are also seen despite careful flushing of the bag. PF5 has two 

stretching modes according to Yang et al. [13]. These are most probably the bands at 1017 

cm
-1 

and 946 cm
-1

. The remaining two bands found, 1027 cm
-1

 and 956 cm
-1

, must thus 

originate from unidentified decomposition products of PF5. The bands are listed in Table 3. 

 

 
 

Figure 4 Spectral bands of PF5 and decomposition products from 200 ppm PF5 in N2. 

Decomposition occurred although the Flexfoil bag was flushed with dry N2 

prior to standard preparation. 

 

Table 3 Spectral band positions found from PF5 and decomposition products. 

Band position (cm
-1

) Type of band 

1017 PF5: PF stretching [13] 

946 PF5: PF stretching [13]  

1027 Band from unknown decomposition product 

956 Band from unknown decomposition product  

1416 POF3: P-O stretch 

991 POF3: P-F asymmetric stretch 

871 POF3: P-F symmetric stretch 



 

Heating tests with the Cone Calorimeter  
 

The first step in our study was to investigate whether the same type of decomposition 

products as Yang et. al. [13] found, could be found in tests where the salt and the salt solved 

in electrolyte was heated in an open container with radiative heating in a Cone calorimeter, a 

schematic of the Cone calorimeter is provided in Figure 5. Further, combustion tests were 

conducted where the vapour was ignited to investigate how combustion would change the 

type of decomposition products. 

 

 
Figure 5 The Cone calorimeter. 

The sample was placed in a small (~40 mm diameter) metal bowl which was placed under the 

heating cone of the Cone calorimeter. The irradiation of the sample was in the range of 10-15 

kW/m
2
. The FTIR was connected to the exhaust duct of the Cone calorimeter. Separate tests 

were conducted with only solvents (DME and PC), the pure LiPF6 salt, and saturated 

solutions of LiPF6 salt and solvents.   
 

Figure 6 show the spectral bands of POF3 in a test where pure LiPF6 salt was thermally 

decomposed in the cone calorimeter. HF was also identified in this experiment.  There are no 

traces of PF5 or any additional decomposition products apart from POF3 in the spectral range 

shown in Figure 6. 

 



 
 

Figure 6 Spectral bands of decomposition products from pure Lithium hexafluoride 

(LiPF6) in an evaporation test with the Cone calorimeter. 

A spectrum from an evaporation experiment with a saturated solution of LiPF6 salt in PC is 

shown in Figure 7. Overlaid in this figure is a spectrum from an evaporation tests with pure 

PC. The spectral band from the solvent is shown around 1100 cm
-1

 together with the three 

bands of POF3 at 871 cm
-1

, 991 cm
-1 

and 1416 cm
-1

 demonstrating the clear identification of 

the different substances in the evaporation experiment.  

 
 

Figure 7 Spectrum from evaporation test with LiPF6 mixed in Polypropylene 

carbonate (PC) with overlaid spectrum from evaporation of pure PC.  

Similarly Figure 8 shows a spectrum from an evaporation test with a saturated solution of 

LiPF6 salt in DME together with an overlaid spectrum from an evaporation experiment with 



pure DME. Also here the spectral band from the solvent is seen around 1100 cm
-1

 together 

with the three bands of POF3 at 871 cm
-1

, 991 cm
-1 

and 1416 cm
-1

.  

 

 
 

Figure 8 Spectrum from evaporation test with LiPF6 mixed in Dimethoxyethane 

(DME) solid line overlaid by spectrum of DME only (dotted line).  

Tests were also conducted where saturated solutions of LiPF6 salt in DME, were ignited by 

the electric spark igniter in the Cone calorimeter. In these tests the same level of external 

radiative heat flow was used as for the evaporation tests discussed above (10-15 kW/m
2
).  A 

series of spectra (overlaid) are shown in Figure 9 from the tests with LiPF6 salt in DME. One 

can clearly see the characteristic spectral features of POF3 during the period of combustion (2-

95 s). Also HF was seen in the spectrum during this period (not shown in Figure 9). The 

spectral band from the solvent is shown only in the first spectrum and in the spectrum from 67 

s. The combustion efficiency must have decreased at this time but extinction was not recorded 

until 95 s. Figure 10 shows the spectrum from 54 s with a spectrum of DME from an 

evaporation test overlaid. Interesting is the two additional peaks, one at 1027 cm
-1 

and one at 

1034 cm
-1

, which do not originate from POF3 and most probably not from DME. The peak at 

1027 cm
-1

 was also found in the calibration tests with PF5 where PF5 was partly decomposed 

(see Figure 4). 

 



 
 

Figure 9 Series of spectra from fire test with LiPF6 mixed in Dimethoxyethane (DME). 

Spectra measured at 5 s, 42 s, 54 s and 67 s after start of heat exposure. 

Ignition at 2 s after start. Flame-out at 95 s. 

 

 
 

Figure 10 Spectra from the fire test with LiPF6 mixed in DME at 54 s from start of test. 

Overlaid by spectra from evaporation test with DME (solid line). 

Figure 11 shows a series of spectra (overlaid) from tests with LiPF6 salt in PC. The spectral 

bands of POF3 (the band at 991 cm
-1

 can be clearly seen in the figure) were seen in the spectra 

during the period of combustion (71-170 s). Also HF was seen as in the spectra during this 

period (not shown). The spectral band from the solvent is clearly shown in the spectra before 

ignition.  



 

 
 

Figure 11 Series of spectra from fire test with LiPF6 mixed in Polypropylene carbonate 

(PC). Spectra measured at 53 s (solid line, before combustion), 103 s (during 

combustion), 116 s (during combustion) and 162 s (during combustion) after 

start of heat exposure. Ignition at 71 s after start. Flame-out at 170 s. 

 
 

Figure 12 Spectrum from the fire test with LiPF6 mixed in PC at 128 s from start of test 

(dotted line). Overlaid by spectrum from evaporation test with PC (solid 

line). 

Figure 12 shows the spectrum collected at 128 s into the combustion test with LiPF6 salt in 

PC. A spectrum of pure PC has been overlaid. Also here one can see the two additional peaks 

which do not originate from POF3, one at 1027 cm
-1 

and one at 1034 cm
-1

. 

 



The combustion tests with electrolyte solvents of LiPF6 salt showed that HF and also POF3 

are present in the combustion effluents, while PF5 is not present. Further, unidentified spectral 

absorption bands indicate the presence of an additional, possibly fluorine containing, 

decomposition product. The identification of the origin of the unidentified absorption peaks 

would be important to fully understand the decomposition of LiPF6. The presence of POF3 is 

an important finding as this emission can be important to includes in a toxicity evaluation of 

the fire effluents. 

 

 

Burner tests with electrolyte  
 

An experimental set-up, with a simple diffusion propane burner with the possibility  to 

introduce solvent/salt solutions and water into the flame trough needles, was designed in order 

to be able to vary the salt/solvent concentration and combustion conditions in the test flames. 

This was done in order to investigate possible effects on toxic gas production from varying 

combustion conditions and from water used as extinguishing media. 

 

The needle solution was chosen in order to produce a spray into the propane flame  to make 

sure that the total amount of solvent/salt introduced was combusted. The propane burner was 

a very simple one, about 2 cm in diameter and holes were drilled in the side about 0.5 cm 

below the rim to introduce the needles, a picture of the burner is provided in Figure 13.  

 

 
Figure 13 Picture of burner. 

The amount of propane inserted was controlled by a variable area flow-meter. The amount of 

electrolyte inserted was controlled by two HPLC pumps. In the cases where salt was included, 

the solutions had been prepared before introduction into the HPLC pumps. Solutions of LiPF6 

(99 %, Sigma-Aldrich) were prepared by dilution in dimethylcarbonate (DMC, 99% Sigma-

Aldrich) and 1,2-dimethoxy ethane (DME, 99% Sigma-Aldrich). The DMC solutions were 

1.0 M and 0.4 M respectively and the DME solution was 0.4 M. 

 

The HRR from the combustion was measured by using Oxygen Consumption Calorimetry on 

the effluents quantitatively collected in the Cone calorimeter hood. FTIR measurements were 

made in all tests. Tests were conducted with different propane/solvent ratio. Also the way the 

solvent and salt were introduced into the flame was varied (either through the needle into the 

flame or onto a metal plate in the flame) and the amount of salt was varied. A photo of the set-

up with the metal plate is available in Figure 14. 

 



  
Figure 14  Photo of test where the electrolyte is introduced onto a metal plate in the 

flame. 

 

Some tests were conducted where water was introduced into the flame. The duration of these 

tests was however, limited because despite careful design of needles that were custom made 

for this study we encountered problems with creating a stable spray for long periods of time.  

 

An example of test results using the spray into the flame is presented in Figure 15 and Figure 

16 where 18 ml/min with 0.4 M salt solved in DME was introduced in the flame as a spray 

during 2.5 minutes. A full set of test results is available in Andersson et al [19].  In Figure 15 

the HRR is presented on the left hand axis together with the HF concentration in the smoke 

duct on the right hand axis. The HRR curve includes the HRR from the propane flame also, 

the timing for the introduction of the electrolyte spray is clearly seen as the HRR increases 

sharply. In Figure 16 from the same test, HF concentration in the smoke duct is presented on 

the left hand side and the POF3 concentration in the duct on the right hand side axis. 

 

When studying the graphs it is important to remember that the concentrations presented are 

concentrations in the exhaust duct. These depend on the gas flow in the exhaust duct and the 

amount of salt and electrolyte introduced into the flame. They should not be considered as the 

concentration in the vicinity of a burning Li-ion battery in an electrified vehicle but are only 

presented here as concentrations in order to evaluate changes in amount produced due to 

changes in flame composition etc.   

 

 



 
 

Figure 15  HRR and HF concentration in a test where 18 ml/min with 0.4 M salt solved 

in DME was introduced in the flame during 2.5 minutes. 

 

 
 

Figure 16  HF and POF3 concentration as a function of time in a test where 18 ml/min 

with 0.4 M salt solved in DME was introduced in the flame during 2.5 

minutes. 

 

Similar curves for a test where 18 ml/min of 1 M salt in DMC was introduced into the flame 

as a spray during two minutes are shown in Figure 17 and Figure 18. As seen the results are 

similar to the case with 0.4 M salt in DME as presented in Figure 15 and Figure 16, i.e. the 

spray introduction is clearly seen as a sharp increase in the HRR and the HF and POF3 

concentration increases with a slight delay. A difference is however seen in the HF/POF3 

ratio.    

 



 
 

Figure 17 HRR and HF concentration during a test where 18 ml/min of 1 M salt solved 

in DMC was injected as a spray during two minutes. 

 

 
 

Figure 18  HF and POF3 concentration as a function of time for a test  where 18 ml/min 

of 1 M salt solved in DMC was injected  as a spray during two minutes.  

The tests using the spray introduced into the burner all showed that the HRR was increased 

immediately upon injection of the electrolyte while it seems that the HF and POF3 

concentration increased somewhat delayed. This is caused by the 12 s integrating time of the 

FTIR analysis equipment and could also be due to delays in the filter and sampling system 

and to some extent to the delays in the pump system for introducing the salt and solvent. 
 

An example of a result from a test where DMC and salt was introduced into the flame in a 

much slower pace, i.e. 1.8 ml/min during 5 minutes is given in Figure 19. In this case the 

electrolyte flow had to be inserted onto a metal plate in the flame as it was not possible to get 

a spray at this low rate. As only a small amount of electrolyte was introduced into the flame 

no change in HRR could be observed. Still both HF and POF3 were detected. The time delay 



here is significant; this is due to the long transportation time through the pump system with 

this small pump flow. Also the delay in HF concentration due to delay in the sampling system 

is more pronounced here as the amount of HF produced is much lower due to the lower rate of 

electrolyte introduction.  

 

 
Figure 19 HF and POF3 measurements from a test where 1.8 ml/min of 1M salt solved 

in DMC was introduced onto a metal plate in the flame. 

The tests conducted are summarized in Table 4 together with the HF/POF3 ratio.  As seen in 

the table the FTIR measurements showed that both HF and POF3 were always present in the 

combustion effluents when electrolytes were burning. The measured concentration of HF was 

always significantly higher than the measured POF3 concentration.  

 

Table 4  Tests conducted. 

Test Type Flow 

(ml/min) 

Salt Propane 

HRR 

Electrolyte 

HRR 

HF/POF3 

ratio 

Test # 

in [19] 

A Needle 18 0.4 M in 

DME 

4 kW 6 kW 53 12 

B Needle 18 1 M in 

DMC 

4 kW 4 kW 14 10 

C Needle 18 1 M in 

DMC 

4 kW 4 kW 20 13 

D Metal plate 1.8 1 M in 

DMC 

4 kW  8 15 

E Needle 15 1 M in 

DMC 

5 kW 3 kW 23 22 

F Needle 15 0.4 M in 

DMC 

3.2 kW 2.5 kW 20 23 

G Needle 15 1 M in 

DMC 

5 kW 3.3 kW 12 25 

H Needle, 

water spray 

15 1 M in 

DMC 

5 kW 3 kW 8 26 

I Needle, 

water spray 

15 1 M in 

DMC 

5 kW 2 kW 16 26 



Despite careful design of needles it was difficult to obtain a stable spray. The needles were 

clogged in many cases and tests had to be interrupted. In some cases the measured HRR was 

lower than anticipated indicating that the flow through the pump was lower than anticipated 

or that not complete combustion of the electrolyte occurred due to that some electrolyte was 

released as a beam rather than a spray. Table 4 gives some insights into the uncertainties 

involved in these measurements e.g. by studying test B and C which repeats the same 

conditions and results in a HF/POF3 ratio of 14 and 20 respectively. A similar variation is 

seen between test E and G with a HF/POF3 ratio of 23 and 12 respectively.  

 

Studying test B, E and G one sees that test E and G with a larger propane/electrolyte ratio 

resulted in a HF/PO3 ratio of 23 and 12 respectively while the ratio was 14 for test B, i.e. 

varying the propane/electrolyte ratio does not affect the HF/POF3 ratio.   

The test E and G range of 12-23 covers to some extent the results from test H and I where 

water was sprayed into the flame for some period during the test which resulted in a HF/POF3 

ratio of 8 and 16 respectively. The results from test H are shown in Figure 20 where water 

was sprayed into the propane/electrolyte flame during time 3 minutes until 3:45. As seen it 

seems that the water injection causes the POF3 to increase. The same ratio is also kept initially 

when the electrolyte injection was stopped and water was let trough the pump and needle in 

order to clean the needle from time 5 minutes until 7 minutes. However looking into Figure 

21 for test I no such effect can be observed and thus it is not possible to make any conclusions 

concerning the water influence on the fluorinated species generated even if the ratio seems to 

be on the lower side of the HF/POF3 ratio measured in the without water case. The reason for 

the limited effect of the water spray can be the fact that the water sprayed into the flame was 

limited compared to the amount of water already present due to the combustion products from 

the propane and electrolyte as seen from the water vapour measurement from the FTIR 

presented as a dotted line in Figure 20 and Figure 21.   

 

 
Figure 20  HF and POF3 concentration for the electrolyte injection during time 2 

minutes until 3 minutes 40 and water cleaning of the system during time 5 



minutes until 7 minutes. Water was sprayed into the propane/electrolyte 

flame from time 3 minutes until 3 minutes 40.  

 
 

Figure 21  HF and POF3 concentration for the electrolyte injection during time 9 

minutes until 10 minutes 30s. Water was sprayed from time 9 minutes 50 

until 10 minutes 30.  

 

A notable difference is however seen between Test A and the other tests. In Test A 0.4 Molar 

DME was used while DMC was used in all other tests. The HF/POF3 ratio is 53 in Test A 

while it differs between 8 and 23 for the other tests. The 53 ratio is especially interesting in 

the light of Test F where the HF/POF3 ratio is 20 for a 0.4 Molar DMC solution. Eshetu et. al. 

[16] indicate that the toxicity of the combustion gases depends on the solvents used when 

studying unburned hydrocarbons, aldehydes and soot in oxygen lean conditions, i.e. linear 

carbonate esters results in less toxic gases than cyclic carbonates. Both DMC and DME are 

linear which gives thus no guidance in this matter, in addition did Eshetu et al [16] not study 

fluorinated compounds but only the solvents without any salt. DME and DMC differs 

however significantly when it comes to Heat of combustion where DME has a much higher 

heat of combustion of almost 28 kJ/g compared to DMC of about 14.6 kJ/g. Also the 

solubility of the salt differs significantly between DME and DMC.  

 

All tests showed that the POF3 seems to appear a bit earlier than HF, this was especially 

apparent in Test D where the electrolyte/salt solution was introduced onto a metal plate at a 

low flow rate in the flame. It is known that losses of HF occur in the measurement system and 

especially in the sampling filter [20]. The effect is most significant at measurements of low 

concentrations as the proportion captured in the filter in such cases is high compared to the 

total amount HF sampled through the filter. An effect of HF-losses in the filter is an initial 

increased response time (until the sampling system is saturated) that can be significant 

especially in measurements of low concentrations. Selected filters used in the measurements 

were analysed for total fluorine content. The analysis results showed that the amounts lost in 

the filter were low, normally around 5 % on weight basis.  



 
 

 

Conclusions  
 

The study conducted here is limited. In addition, it was not possible to vary all parameters to 

an as large extent as planned for due to difficulties with creating a stable spray. Further was it 

difficult to assess some of the variations as the time delays particularly for the HF was 

significant. Still some important findings were made. 

 

The work presented shows that it is possible to use FTIR to measure HF and POF3 in real time 

in Li-ion electrolyte experiments with and without combustion. The detection limit for the 

equipment used here was found to be 2 ppm for HF and 6 ppm for POF3.  

 

Both HF and POF3 were detected in all experiments. It is an important finding that POF3 is 

emitted together with HF also from combustion as this can increase the toxicity of the fire 

effluents. The amount of POF3 is shown to be significant, 5-40 % of the HF emissions on a 

weight basis and demonstrates the importance of finding the toxicity parameters for this 

substance. The toxicity of POF3 is not known but halogen analogues (POCl3) similar to POF3 

are highly toxic, more toxic than their corresponding acid (HCl). More information is needed 

to resolve this issue especially as POF3 can be emitted under other cell venting situations and 

not only fires. 

 

PF5 could not be detected in any of the tests. The reason for this is probably the high reactivity 

of this specie. This was demonstrated by the difficulty to produce a calibration gas mixture for 

PF5. 

 

Given the uncertainties involved in the tests it was not possible to determine any impact on 

gases produced depending on combustion parameters such as solvent/propane ratio, 

concentration of salt or the way the salt/solvent was introduced into the flame.  

 

A possible difference was however seen in HF/POF3 ratio depending on solvent used. This 

shows that also the solvent might have an impact on the amount of substances emitted in a fire 

situation. Eshetu et al [16] suggested an evaluation scheme for different solvents considering 

combustion behaviour and other properties such as viscosity. Considering the combustion 

parameters DME would be a poor choice. This evaluation scheme does not include 

fluorinated compound toxicity however. Given the toxicity of HF and possibly also POF3, a 

replacement for the LiPF6 salt is important to improve the safety for Li-ion batteries which is 

also concluded by Ribiere et al [17].       
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Abstract 

Commercial lithium-ion battery cells are exposed to a controlled propane fire in order to evaluate heat release rate 

(HRR), emission of toxic gases as well as cell temperature and voltage under this type of abuse. The study includes 

six abuse tests on cells having lithium-iron phosphate (LFP) cathodes and, as a comparison, one test on conventional 

laptop battery packs with cobalt based cathode. The influence of different state of charge (SOC) is investigated and a 

limited study of the effect of water mist application is also performed. The total heat release (THR) per battery 

energy capacity are determined to be 28-75 kJ/Wh and the maximum HRR values to 110-490 W/Wh. Hydrogen 

fluoride (HF) is found in the released gases for all tests but no traceable amounts of phosphorous oxyfluoride (POF3) 

or phosphorus pentafluoride (PF5) are detected. An extrapolation of expected HF emissions for a typical automotive 

10 kWh battery pack exposed to fire gives a release of 400-1200 g HF. If released in a confined environment such 

emissions of HF may results in unacceptable exposure levels. 

Keywords: Lithium ion, battery, hydrogen fluoride, phosphorous oxyfluoride, heat release rate, fire 

1. Introduction 

Lithium-ion batteries are widely used since they offer great benefits compared to many other battery technologies. 

Advantages such as high energy and power density, long life time and the possibility of fast charging make them 

attractive for consumer products and electrified vehicles. Nevertheless Li-ion batteries contain reactive and 

flammable materials, therefore safety issues are a concern and a number of incidents involving Li-ion batteries have 

been reported over the last couple of years [1-4]. Overheating of the batteries may result in exothermal reactions and 

lead to a thermal runaway with excessive amounts of heat, gas emissions, fire and potentially explosion/rapid 

dissembling [1,5-6]. Even in case there is no thermal runaway, a heated battery can still vent flammable and toxic 

gases. Examples of toxic gases that may originate from such events are hydrogen fluoride, HF, and phosphorous 

oxyfluoride, POF3. The toxicity of HF is quite well known [7] since it is formed during several chemical 

decomposition processes and fires but the toxicity of the POF3 is currently unknown. Actually, the toxicity of POF3 

might act with other poisoning mechanisms than just by formation of three equivalents of HF. Therefore, critical 

limits of exposure might be lower for POF3 than for HF as in the chlorine analogue POCl3/HCl [8]. The origin of the 

fluorine compounds is primarily the battery electrolyte but emissions can also come from the binder (e.g. PVdF) of 

the active electrode materials. The electrolyte usually contains flammable organic solvents some of which are 

volatile at modest temperatures (below 100 C) and the commonly used Li-salt, lithium hexafluorophosphate, LiPF6, 

has a limited thermal stability upon heating. The decomposition of LiPF6 can be described, according to Yang et al. 

[9] and Kawamura et al. [10], by: 

LiPF6  LiF + PF5          (1) 

PF5 + H2O  POF3 + 2HF         (2) 

LiPF6 + H2O  LiF + POF3 + 2HF        (3) 



POF3 + H2O  POF2(OH) + HF        (4) 

When LiPF6 is heated in a dry and inert atmosphere it decomposes to lithium fluoride, LiF, which is a solid 

compound at temperatures below 845°C and phosphorus pentafluoride, PF5, which is a gas and a strong Lewis acid, 

see eq. (1). In the presence of water/moisture PF5 produces POF3, and HF (eq. (2)). LiPF6 can also react directly with 

water/moisture to form LiF, POF3 and HF according to eq. (3). In fact, LiPF6 is highly susceptible to hydrolysis by 

even trace amounts of moisture [11]. Furthermore, Kawamura et al. [10] suggested that POF3 could react with water 

and form POF2(OH) and HF according to eq. (4). 

The decomposition of electrolytes containing LiPF6 forming HF is complex and has mainly been studied at ambient 

temperature and during heating (but not in situations where there is a fire) [12-19]. Besides emissions containing 

fluorine and vaporized solvents, a Li-ion cell can also emit other gases, e.g. H2, CO, CO2, CH4, C2H6 and C2H4 [20-

22]. Gases can actually be emitted from batteries under several types of abuse conditions such as overheating, 

overcharge [23], short circuit, fires etc. A few studies are published on heat release rate (HRR) and emissions of 

toxic gases from Li-ion batteries in fire conditions. Ribière et al. [24] used a Tewarson fire calorimeter to study the 

HRR and toxic gases from commercial 2.9 Wh pouch cells with LiMn2O4 (LMO) cathode and graphite anode and 

found e.g. that the total HF release was higher for lower state of charge (SOC) values. Eshetu et al. [25] studied fire 

properties and toxicity for commonly used Li-ion battery electrolytes but without Li-salt and thus without the 

possibility to produce HF.  

This paper presents results from fire tests of commercially available Li-ion battery cells. Parameters such as heat 

release rate, cell voltage and surface temperature are measured as well as HF and POF3 emissions. The influence of 

application of water is examined to a limited extent by introducing water mist into the flames.  

2. Experimental 

The tests were conducted using the measurement and gas collection system of a Single Burning Item (SBI) 

apparatus, that is normally used for classification of building materials according to the European Classification 

scheme EN13823 [26]. The experimental setup is shown in Fig 1. The cells/batteries were placed on a wire grating 

(large gratings about 4 cm x 10 cm) as seen in Fig 2. A propane burner was placed underneath the cells/batteries and 

was ignited two minutes after the start of the test. The HRR of the burner alone was approximately 15 kW. Abuse 

tests were performed on 7 Ah EiG LFP pouch cells, 3.2 Ah K2 LFP cylindrical cells, and on 16.8 Ah Lenovo laptop 

battery packs, see Table 1. 

 

Fig. 1. Schematic illustration over experimental setup. 



 

Fig. 2. The 5-cells pack of EiG cells placed on a wire grating. 

Test 1-5 used commercially available pouch cells with lithium-iron phosphate (LFP), LiFePO4, cathode and carbon 

based anode. Each test consisted of five cells that were mechanically fastened together with steel wire (0.8 mm 

diameter). The terminal tabs of the cells were cut for all cells but the mid one (the third cell), for which the cell 

voltage was measured. On both sides of the third cell type K thermocouples were centrally attached measuring the 

cell surface temperature. Temperature values presented in this paper are the average of these thermocouple readings. 

The temperature and cell voltage was measured with a sample rate of 1 Hz using a data logger, Pico Technology 

ADC-24. In test 3, water mist was manually applied as a spray into the flames above the battery to study any 

influence from additional water on the composition of the gas emissions. In test 6, nine K2 26650-cells, i.e. 

cylindrical cells 26 mm in diameter and 65 mm long, were placed standing up next to each other inside a box. The 

box had side walls made of non-combustible silica board and steel net at the bottom and top. It was used as a safety 

precaution to avoid possible projectiles. In test 7, two identical laptop battery packs were used and placed inside a 

steel net and fastened on the wire grating. 

Table 1 

Test objects. 

Test 

No. 
Battery type 

No. of 

cells 

Nominal 

capacity (Ah) 

Weight 

(g) 
Test condition 

1 EiG ePLB-F007A 5 35 1 227.9 100% SOC 

2 EiG ePLB-F007A 5 35 1 229.7 100% SOC 

3 EiG ePLB-F007A 5 35 1 229.3 100% SOC + water mist 

4 EiG ePLB-F007A 5 35 1 228.6     0% SOC 

5 EiG ePLB-F007A 5 35 1 227.6   50% SOC 

6 K2 LFP26650EV 9 28.8 734.8 100% SOC 

7 Lenovo laptop battery packs 12* 33.6 639.0 100% SOC 

* Two laptop battery packs were used at the same time, each with 6 cells. 

The cells in test 1-6 were set to the selected SOC-level, according to Table 1, by a charge/discharge procedure using 

an ordinary laboratory power aggregate and a Digatron battery test equipment. The two laptop battery packs in test 7 

were fully charged using a laptop computer. All batteries were unused but had different calendar aging. The EiG 

cells were approximate 2-3 years old, the K2 cells were approximate 1-2 years old and the laptop battery pack was 

less than 6 months old. 

The laptop battery packs in test 7 differ from the other test objects. First, they consist of not only the cells but also 

electrical connectors, plastic housing and electronic circuits. Secondly, they have cobalt based cell chemistry with a 



higher cell voltage, 3.7 V vs 3.2 V for the LFP-cells. Thirdly, in each battery pack, 3 cells are electrically connected 

in series increasing the voltage to 11.1 V. 

All tests were video recorded. The tests were performed during two days and in the beginning of each day a blank 

test was conducted in order to be able to subtract the burner influence on the HRR values and to make a blank for the 

gas analysis. The burner was active for a varying duration in the different tests, between 17-32 minutes, i.e. as long 

as a heat release contribution from the battery was still present. The fire emissions from the test object were collected 

in a ventilation duct. In test 1-2 a duct flow of 0.6 m
3
/s was used but in order to increase emission concentrations in 

the ventilation the duct flow was decreased to 0.4 m
3
/s in test 3-7.  

A Servomex 4100 Gas purity analyser was used to measure the oxygen content of the flow by a paramagnetic 

analyzer and CO and CO2 were determined by a non-dispersive infrared sensor (NDIR). The HRR was calculated 

using the method of oxygen consumption and was corrected for CO2 [26]. A part of the flow in the ventilation duct 

was extracted for on-line FTIR analysis. This sub-flow was extracted through an 8.5 m sampling PTFE hose, heated 

to 180 C, using a pump (3.5 L/min) located after the FTIR measurement cell. The sampled gas is passed through a 

primary filter (M&C ceramic filter, heated to 180 C) before the heated hose and thought a second filter (M&C 

sintered steel filter, heated to 180 C) before the FTIR. After each test the primary filter was chemically analyzed for 

fluoride content since it is known that HF may be partly adsorbed by this type of filter [27]. The fluoride adsorbed by 

the filter was determined by method B.1 (b) of the SS-ISO 19702:2006 Annex B standard, where the filter is leached 

in water in an ultrasonic bath for at least 10 min. Thereafter the fluoride content in the water is measured by ion 

chromatography with a conductive detector. The amount of HF is calculated by assuming that all fluoride ions 

present in the filter derives from HF. The concentration of the emitted gas was measured by Fourier transform 

infrared spectroscopy (FTIR) using a Thermo Scientific Antaris IGS analyzer (Nicolet) with a gas cell. The spectral 

resolution of the FTIR was 0.5 cm
-1

.
 
The gas cell was of 0.2 L, had a path length of 2.0 m, a cell pressure of 86.7 kPa 

was maintained and the cell was heated to 180C. Each spectrum used 10 scans which gave a new spectrum every 12 

seconds. There is a natural time delay between the gas measurement of the SBI and the FTIR in the measurement 

setup. The HRR and FTIR results presented in this paper were therefore time synchronized by overlaying of CO2 

measurements from the FTIR and the NDIR. 

FTIR is a suitable technique to measure the concentrations of HF and POF3 in the emitted fire gases. The FTIR was 

calibrated for a number of compounds, e.g. HF, when delivered from the supplier. However, it was found that the HF 

calibration was not accurate enough so it was recalibrated, see Andersson et al. [28] for a detailed description of the 

calibration procedure. The FTIR was also calibrated for POF3. PF5 could only be qualitatively determined by its 

spectral signature [28] but no traces of PF5 could be found in the fire tests probably due to that the PF5 is highly 

reactive. The detection limits were 2 ppm for HF and 6 ppm for POF3. The spectral bands used for Classical Least 

Square (CLS) type quantification of HF and POF3 are stated in Table 2. 

Table 2 

The spectral bands used for HF and POF3. 

Spectral bands (cm
-1

) Type of band  

HF  

   4203-4202 HF R-branch stretching mode [29] 

   4175-4172 HF R-branch stretching mode [29] 

POF3  

   1418-1413 P-O stretching mode [9] 

   874-868 P-F symmetric stretching mode [9] 

 

 



3. Results and discussion 

The HRR results for the EiG battery cells with 0%, 50% and 100% SOC are shown in Fig. 3. High SOC values give 

high HRR peaks and the temperature and voltage measurements in Fig. 4 confirm that cells with high SOC value 

give a more reactive response, with rapid temperature increase and earlier voltage breakdown. Studies using other 

techniques confirm our results that battery cells with higher SOC are more thermally reactive, using e.g.; fire 

calorimeter [24], accelerating-rate calorimetry (ARC) [5] and VSP2 adiabatic calorimeter [30]. The HRR from the 

nine K2 cells in test 6 and the two complete laptop battery packs in test 7 can be seen in Fig. 5. The laptop pack 

includes the plastic box and have Li-ion cells with the more reactive cobalt based cathode, while the K2 cells (as well 

as the EiG cells) have LFP cathodes which are known to be significantly more stable [5,31-34]. The higher HRR 

values for the laptop cells are thus expected. 

 

Fig. 3. Heat release rate for EiG cells with 0%, 50% and 100% SOC. 

 

Fig. 4. Mid cell temperature and voltage for EiG with 0%, 50% and 100% SOC. 



 

Fig. 5. Heat release rate for K2 cells (test 6) and laptop battery packs (test 7). 

Outbursts from fully charged cells (100% SOC) of EiG, K2 and laptop packs were visually observed, see Fig. 6 for a 

typical example. The outbursts originate from ignition of the rapid gas release from a cell upon opening due to 

excessive cell pressure and correspond to the sharp spikes in the HRR curves, see Fig. 3 and Fig. 5. In most cases, 

one HRR-spike could be detected for each individual cell. For EiG cells with 50% and 0% SOC no spikes were 

observed in the HRR curves, instead two broad maxima were found. The orientation of the cells on the wire grating 

varied due the different packaging types (pouch, cylindrical, complete battery pack) which might have influenced the 

results. However, tests 1-5 used the same cell type and setup. The results of tests 6-7 can be seen as examples of 

possible events for these types of cells. 

 

Fig. 6. Outbursts from EiG 100% SOC (test 1). 

The fire test on EiG cells with 100% SOC was repeated two times (tests 1-2) without water mist application and one 

time (test 3) with water mist applied approximately 6.5 minutes after burner start. Fig. 7 shows HRR, HF emission 

rate, voltage and temperature for the mid cell, in test 2. Rapidly propagating flames released from the battery cells 

were visually observed five times during the test and denoted outbursts, marked in Fig. 7, and coincided with the five 

spikes in the HRR curve. The hydrogen fluoride concentration showed a rapid increase at the end of the HRR peak 

and the HF maximum plateau was reached just after the HRR spikes. The delay between HF production and HRR is 

not due to gas transport time since it is compensaded by CO2 syncronisation, the reason is due to delay times in the 

sampling system. As expected, the temperature of the mid cell showed a steep increase connected to the HRR peaks, 

the outbursts and the voltage breakdown. The maximum temperature reached in this measurement was 521 C. Test 

1 and test 2 show similar values and behavior, the variation between the tests is due to the nature of the fire 

characteristics. 



 

 

Fig. 7. Results for EiG 100% SOC (test 2).  

Fig. 8 shows test 3 where 100% SOC EiG cells were tested with water mist application. Most of the results of the 

tests with and without water mist are similar, but the maximum HF concentration recorded at the time of applying 

the water mist into the flames is approximately twice as high as that in tests 1-2. However, the total amount of 

measured HF from FTIR and absorbed by the primary filter is of the same order for all tests 1-3. The water mist was 

certainly not the only source of water in this experiment, in addition to water existing in the atmosphere water is 

produced by the combustion process.  In the general case of combustion of hydrocarbons water is produced: 

CnHm + (m/4+n)O2  nCO2 + (m/2)H2O       (5) 

and in the oxidation of ethylene carbonate (EC), C3H4O3, a commonly used Li-ion solvent, water is thus produced 

according to: 

2C3H4O3 + 5O2  6CO2 + 4H2O        (6) 

When propane, C3H8, is combusted, 1 mol of propane produces 4 mol of water according to eq. (5). In test 1-3 the 15 

kW propane burner was active during 17 minutes and given the heat of combustion of propane, 2044 kJ/mol, the 

amount of water produced from the burner can be calculated to be approximately 550 g.  

 

Fig. 8. Results for EiG 100% SOC with water mist (test 3). 

 



The water concentration in the exhaust duct was measured by the FTIR, see Fig. 9 for the results of test 1-3. The 

water concentration shown for test 3 is scaled (factor 0.4/0.6) due to the lower duct flow in order to allow a 

comparison with the measured values of test 1-2. The outbursts result in an increased water concentration and the 

effects on the measured water concentration from the applied water mist is also clearly seen. Calculated from the 

measured data, the mass of the added water mist was around 400 g while around 350 g water was released due to the 

combustion of battery materials. The water in the duct flow from ambient air was around 1500 g for test 3 and 2300 

g in test 1-2 (due to higher duct flow rate). The time of the water mist application was relatively short and the water 

mist was applied in the reaction zone, thus the impact from this source of water was potentially high which is also 

seen in Fig. 9. The amounts of water from ambient air were large but the impact should have been low since only 

part of the air flow passed the reaction zone above the battery and no effect on the HF concentration was observed 

due to the higher ambient water content in the duct flow in test 1-2 compared to test 3. Fig. 10 shows the correlation 

between HF production and water concentration for test 3. No HF production directly associated with the outbursts 

can be seen but the application of water mist seems to influence the HF production. However, the added water mist 

only temporarily increased the emission of HF but did not change the total amount of HF produced. Anyhow, only 

one test with water mist application was performed and the correlation between the water mist application and the 

increased HF peak production could possibly depend on other factors than the additional water introduced by the 

water mist. 

Fig. 11 shows the measured production rate of HF for all EiG tests. For 0-50% SOC the peaks are broadened 

compared to the peaks for the 100% SOC cells and the total amount of measured HF is about double that of the 

100% SOC cells. Detailed results from all the tests can be found in Table 3. Total yields in mg/g are calculated as 

total amount of HF divided per weight loss of the batteries. In test 7 the weight loss also included the burning of pack 

materials, e.g. plastic housing. Total yields in mg/Wh are calculated as total amount HF in mg divided by total 

energy capacity, Wh, of the batteries for each test. Whichever of these yield values that are used, the EiG cells with 

0% or 50% SOC showed the highest HF values. The measured data indicate a relationship between SOC and the 

total released HF emissions, with increased total amounts of HF emission for lower SOC. Ribière et al. [24] found 

somewhat similar results by studying single cells with 100%, 50% and 0% SOC, showing an increasing total amount 

of HF emissions for decreasing SOC value. The reason for this is unknown and an investigation of the relationship 

would require further studies. The HF concentrations measured were in all cases well above the detection limit but 

no significant amounts of POF3 could be detected in any of the tests. FTIR measurements on samples of similar 

electrolytes with LiPF6 in a cone calorimeter have shown the production of POF3 to be in the order of 1/20 of the HF 

production [28]. The detection limit of POF3 in the FTIR measurements is 3 times higher than for HF, thus there 

could have been POF3 present during the measurements which has not been detectable. 

 

Fig. 9. Water concentrations measured in test 1-3. The increased water level in test 3 due to water mist application is 

clearly seen. 



 

Fig. 10. HF mass flow and water concentration for test 3. 

 

Fig. 11. HF mass flow for EiG cells with different SOC (indicated by % in figure legend) in tests 1-5. 

Table 3 

Detailed results of heat release rate, energy release, hydrogen fluoride emissions for test 1-7. 

Test 

No. 

Weight 

loss  

(g) 

 

Max 

heat 

release  

(kW) 

Total 

heat 

release 

(kJ) 

Hydrogen fluoride  

Max 

production 

rate (g/s) 

Total amounts 

from FTIR 

(g) 

Total amounts 

from filter 

(g) 

Total 

amounts 

(g) 

Total 

yields 

(mg/g) 

Total 

yields 

(mg/Wh) 

1 346 55 7731 0.0088 3.2 1.7 4.9 14 44 

2 342 51 7526 0.0077 3.9 2.4 6.3 18 56 

3 341 49 8095 0.0154 4.2 1.5 5.7 17 51 

4 353 13 8314 0.0102 9.7 1.6 11.3 32 100 

5 354 17 8452 0.0164 12.0 1.9 13.9 39 120 

6 145 29 2766 0.0029 1.2 1.0 2.2 15 24 

7 258 57 3470 0.0011 Not detected 1.9 1.9 7.3 15 

 

The HRR values presented in this paper are calculated using the oxygen consumption method. This technique is well 

accepted and used in fire calorimetry measurements. For the case of battery fires, the technique might however have 

some limitations since it will not account for energy liberated by Joule heating through electrical discharge, e.g. 

internal short circuits in a cell due to melted separator. Ribière et al. [24] estimates the error to be max 10% and 

thereby claim the oxygen consumption method to the usable. Besides the issue with Joule heating, the Li-ion battery 



can release its own oxygen [5]. The oxygen release varies with different Li-ion cell chemistries, and is typically 

lowest for LFP. In this test method a large amount of air is passed in the duct flow and the effect of released oxygen 

is regarded as negligible. 

In order to simplify an estimation of the heat and gas emission hazards for this type of lithium-ion batteries the 

values have been normalized to the energy capacity of the batteries. Table 4 shows such values from our study as 

well as calculated values using data from Ribière et al. [24]. Again, note that the values for the laptop battery pack 

also accounts for the plastic housing. The EiG cells have about the double total heat release, 67-75 kJ/Wh, compared 

to the other batteries in Table 4. Also, the influence of SOC levels is small compared to the differences between the 

battery types. The maximum HRR per Wh calculated from our experimental data, 110-490 W/Wh, is, however, 

lower than the values reported by Ribière et al. [24], 300-1900 W/Wh, who used a different test procedure. 

Normalized values for the total HF release vary in our study between 15-124 mg/Wh, a wider range than that found 

by Ribière et al. [24]. 

Table 4 

Total heat release, maximum HRR value and total HF release, normalized values for energy capacity. 

Battery Nominal 

energy capacity 

(Wh) 

Normalized 

total heat release 

(kJ/Wh) 

Normalized 

maximum HRR 

(W/Wh) 

Normalized 

total HF release 

(mg/Wh) 

Five EiG cells 112 67-75 110-490 44-124 

Nine K2 cells 92 30 310 24 

Two laptop battery packs 124 28 460 15 

Single cell, calculated from 

Ribière et al. [24] 
11 28-35 300-1900 37-69 

 

In general, the measured values of the amount of HF produced in fire tests are comparatively high and could pose a 

serious hazard if released in an enclosed environment. For example, the 7 Ah EiG battery cell can typically be used 

in a plug-in electric vehicle (PHEV) and a 10 kWh battery pack of a PHEV could consist of 448 such cells (a battery 

system of 112 cells in series and 4 cells in parallel; cell voltage 3.2 V nominal, pack voltage 358.4 V nominal). If we 

extrapolate our results for the 5-cell packs by multiplying by a factor of 448/5 = 89.6, it may represent a scenario of a 

complete fire of a PHEV battery pack. The extrapolation gives 400-1200 g HF depending on the state of charge for 

the EiG cells where high SOC gives lower HF. Even though the extrapolation is extensive and therefore can be 

questionable the result is in the same order of magnitude as that reported by Lecocq et al. [35] who conducted 

complete vehicle fire tests including HF measurements of two electric vehicles (EV) with fully charged batteries 

(100% SOC) and on two similar gasoline powered combustion engine passenger cars (none-EV). Lecocq et al. [35] 

measured significant HF emissions from all four vehicles, both EV and similar none-EV, and suspected that the HF 

emissions from all vehicles could in part originate from air conditioner system. Using the values in Lecocq et al. 

[35], and calculating the difference in total HF release between the EV and the similar none-EV an estimate of the 

contribution to the HF release from the Li-ion battery can be found to be 919 g for a 16.5 kWh Li-ion battery and 

657 g for a 23.5 kWh Li-ion battery. Scaling these values for a 10 kWh battery results in 280 to 557 g of released 

HF. 

If we assume that all the emitted HF is released within a closed passenger compartment of 5 m
3
 of an electrified 

vehicle we obtain HF concentrations between 80-240 g/m
3
. NOISH (The National Institute for Occupational Safety 

and Health) in USA stated the IDLH (Immediately Dangerous To Life or Health) value for HF to 30 ppm 

corresponding to a concentration of HF in air of 0.025 g/m
3 
[7]. Our values which are similar to those of Lecocq et al. 

[35] exceed the IDLH by about four orders of magnitude. The reported HF values from Ribière et al. [24] also by far 

exceed the IDLH value. However, the experimental data reported here comes from a limited study and the 

http://www.cdc.gov/niosh/
http://www.cdc.gov/niosh/


calculation assumes a somewhat extreme theoretical situation which differs from real fire situations, i.e. all HF is 

emitted and trapped in the compartment and that the passenger stays in the compartment. Anyhow, even if the 

emission occurs in a much larger volume, e.g. in a garage, the HF levels can still be very high. The reported HF 

values thus indicate that a critical situation might occur in the case of a thermal event in a Li-ion battery pack. 

Although we could not directly detect the presence of POF3, it may also be present in considerable amounts since 

indications are that HF and POF3 is produced with a ratio of about 1:20 [28].  

4. Conclusions 

The tests show that lithium-ion battery cells exposed to fire are significantly more reactive at 100% SOC than at 

lower SOC values and energetic outbursts were observed. The HRR peak values thus varied in a rather wide range, 

between 13-57 kW for batteries with approximately 100 Wh energy capacity. The normalized total heat release per 

energy capacity was 28-75 kJ/Wh and the normalized maximum HRR values were 110-490 W/Wh. 

 

The amount of HF released varied between 15-124 mg/Wh. Lower SOC values gave higher amounts of HF. 

Extrapolation of data shows that the potential HF release from a 10 kWh PHEV battery is in the range 400-1200 g 

HF. If this amount of HF would be released inside a passenger compartment of 5 m
3
 the HF concentration would be 

80-240 g/m
3
, that is magnitudes higher than acceptable short time exposure levels. Besides HF, there may also be 

significant emissions of POF3, a compound which might be more toxic than HF. Although these estimates are based 

on an extrapolation and can be regarded as a hypothetical case it highlights the risks associated with toxic emissions 

at battery fires and the need to find replacements for the fluorine content in the Li-salt and binder used in Li-ion 

battery cells. The influence of additional water in form of water mist seemed to increase the HF emissions 

momentarily, however the total HF release was the same. Further studies of the relationship between water and HF 

emissions in fires are needed in order to thoroughly evaluate potential risks related to the use of water as firefighting 

medium in electric vehicle fires. 
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