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Spin-polarized Shapiro steps and spin-precession-assisted multiple Andreev reflection
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We investigate the charge and spin transport of a voltage-biased superconducting point contact coupled to
a nanomagnet. The magnetization of the nanomagnet is assumed to precess with the Larmor frequency ωL

when exposed to ferromagnetic resonance conditions. The Larmor precession locally breaks the spin-rotation
symmetry of the quasiparticle scattering and generates spin-polarized Shapiro steps for commensurate Josephson
and Larmor frequencies that lead to magnetization reversal. This interplay between the ac Josephson current and
the magnetization dynamics occurs at voltages |V | = �ωL/2en for n = 1,2, . . ., and the subharmonic steps with
n > 1 are a consequence of multiple Andreev reflection (MAR). Moreover, the spin-precession-assisted MAR
generates quasiparticle scattering amplitudes that, due to interference, lead to current-voltage characteristics of
the dc charge and spin currents with subharmonic gap structures displaying an even-odd effect.
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I. INTRODUCTION

The combination of mesoscopic superconductivity and
spintronics has led to the development of superconducting
spintronics [1]. Such spintronics devices rely on the exis-
tence of superconducting spin-triplet correlations, whose spin
properties determine the behavior of these devices. So far,
experiments on devices comprising spin-triplet superconduc-
tors [2–4] have been scarce, although several exotic effects
have been predicted [5–7]. Instead, spin-triplet correlations
have been created from spin-singlet correlations originating
from conventional superconductors with the help of ferromag-
nets [8–11]. Up to now, these devices have consisted mainly
of superconductor-ferromagnet-superconductor junctions with
noncollinear magnetizations whose properties cannot easily be
modified after the fabrication stage. However, tunable devices
are desirable for future spintronics applications, and the search
for such is currently an ongoing quest.

In this paper, we present a theoretical investigation showing
how resonant spin supercurrents controlled by a bias voltage
can be used to manipulate the magnetization direction and even
cause magnetization reversal of a nanomagnet coupled to a
superconducting tunnel junction. Instead of a superconducting
hybrid junction with a static magnetization [12–18], we
consider a junction with a time-dependent one [19–21].
The lowest-energy magnetization excitation can be accessed
by the application of an external magnetic field, which
starts a precession of the magnetization around the direction
of the field [22–25]. This ferromagnetic resonance (FMR)
mode can also be achieved by a coupling between the
magnetization and the Josephson effect: The ac Josephson
current generates an oscillating magnetic field that resonantly
excites the magnetization precession [26–28]. The coupling
between magnetization dynamics and a spatially dependent
superconducting order parameter was experimentally studied
in tunnel junctions where the width W was larger than the
superconducting coherence length ξ0 [27]. This coupling was
detected as a rectification of the ac Josephson charge current.
However, in narrower tunnel junctions, such as supercon-
ducting quantum point contacts (SQPC) [29,30], for which
W < ξ0, the spin-rotation symmetry of the superconducting

order parameter may be broken locally, and one may anticipate
that spin-dependent modifications to the superconducting
correlations will influence the transport properties [31,32].

Here, we study such a coupling between the ac Josephson
effect and the magnetization dynamics of an SQPC containing
a nanomagnet, e.g., a ferromagnetic nanoparticle [26] or a
single-molecule magnet [33–37]. A bias voltage V is applied
across the junction, and the spin of the nanomagnet is set
into precession using standard FMR techniques whose effects
are captured by the introduction of an effective external
magnetic field H that generates a Larmor precession of the
nanomagnet’s spin with frequency ωL [Figs. 1(a) and 1(b)].
The Larmor precession creates scattering processes such that
quasiparticles traversing the junction may absorb (emit) a
precession quantum while undergoing a spin flip from ↓ (↑)
to ↑ (↓). The locally broken spin-rotation symmetry generates
multiple Andreev reflection (MAR) processes [see examples
in panels (c) and (d) of Fig. 1], that lead to a rich subgap
structure of the current-voltage characteristics of the dc charge
and spin currents. Moreover, at certain voltages, a phase
locking between the Larmor precession and the ac Josephson
effect occurs that generates Shapiro-like resonances. The phase
locking couples the lead condensates via tunneling processes
that are exemplified in panel (e) of Fig. 1. Interestingly, instead
of giving dc charge contributions as in Ref. [27], we predict
that the Shapiro resonances generate dc spin supercurrents
that are polarized in the plane perpendicular to H . It was
shown in Ref. [38] that an oscillating voltage bias can generate
spin-polarized Shapiro steps in the presence of a precessing
spin. Here, however, we show that a dc voltage bias is sufficient
for obtaining spin-polarized Shapiro steps that in turn exert a
spin-transfer torque on the spin S that may reverse its direction
on subnanosecond time scales [Fig. 1(f)].

The paper is organized as follows. In Sec. II, we present the
approach which is based on nonequilibrium Keldysh-Green’s
function techniques. We then proceed to report results for
charge currents in Sec. III and for the spin-polarized Shapiro
steps and their corresponding spin-transfer torques in Sec. IV
before we conclude in Sec. V. Appendices A, B, and C
contain details of the approach, analytic results obtained in

1098-0121/2014/90(1)/014516(9) 014516-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.014516
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FIG. 1. (Color online) (a) An SQPC containing a nanomagnet
with spin S. A bias voltage V is applied across the junction that is
exposed to an effective magnetic field H . (b) The field H causes S to
rotate with the Larmor frequency ωL. The angle between H and S is
ϑ , and χ (t) is the in-plane rotation angle of S. The first- and second-
order tunneling processes are shown in (c) and (d), respectively, in
which a spin-↓ (↑) electron(hole)-like quasiparticle e↓ (h↑) absorbs
a precession quantum ωL and undergoes a spin flip. Shapiro-like
resonances between the Larmor and the Josephson frequencies lead
to spin supercurrents that are transferred, e.g., by the process shown
in (e) in which two Cooper pairs at energies differing with 2eV

are transferred while one of the quasiparticles in each of the pairs
undergoes a spin flip. (f) The Shapiro spin currents may lead to
subnanosecond reversal of the precession axis.

the tunnel-limit regime, and explanations of the origins of the
spin-polarized Shapiro steps, respectively.

II. MODEL

The junction is described by the Hamiltonian H = Hleads +
HB + HT . The left (L) and right (R) leads are assumed to
consist of s-wave superconductors in the clean limit and are
described by the BCS Hamiltonian,

Hleads =
∑
k,σ

α=L,R

ξα,kc
†
α,k,σ cα,k,σ

+
∑

k

α=L,R

[�αc
†
α,k,↑c

†
α,−k,↓ + H.c.], (1)

where the dispersion is ξα,k = �
2k2/2m − μα and μα is the

chemical potential of lead α ∈ (L,R). The superconducting
order parameter �α = �(T )eiϕα depends in principle on
the temperature T , but here we restrict the analysis to the
zero-temperature case. The superconducting phase difference
ϕ(t) is taken to be placed symmetrically across the junction,
i.e., ϕL,R = ±ϕ/2 and increases linearly in time according to
ϕ(t) = ϕ0 + ωJ t , where ϕ0 is the initial phase difference and
ωJ = 2 eV/� is the Josephson frequency.

The nanomagnet’s spin S is assumed to be large enough to
be treated as a classical entity. Under FMR conditions, external
dc and rf fields are applied to create an effective magnetic field

H that affects the spin according to HB = −γ S · H , where
γ is the gyromagnetic ratio. In the case of a classical spin,
this Hamiltonian leads to the equation of motion dS/dt =
−γ S × H . If H , which here is taken to be along the z axis,
is applied at angle ϑ with respect to spin S, the solution to
the spin’s equation of motion describes a precessional motion
of S around the direction of H with the Larmor frequency
ωL = γ |H |. For later convenience, we introduce angle χ that
is formed between the x axis and the projection of S onto the xy

plane, see Fig. 1(b). Due to the Larmor precession, this angle
is given by χ (t) = χ0 + ωLt , where χ0 is the initial angle.
With these parameters, the spin describes the motion S =
SeS(t), where eS(t) = [cos χ (t) sin ϑex + sin χ (t) sin ϑey +
cos ϑez]. The nanomagnet’s spin generates a time-dependent
exchange field affecting the quasiparticles tunneling in the
direction ±k across the junction that can be incorporated into
a phenomenological tunnel Hamiltonian [19,39],

HT =
∑

kσ ;k′σ ′
c
†
L,kσVkσ ;k′σ ′cR,k′σ ′ + H.c., (2)

where Vkσ ;k′σ ′ = {V0δσσ ′ + VS[S(t) · σ ]}δ(k − k′) and σ =
(σx,σy,σz) are the Pauli matrices. This Hamiltonian contains
spin-conserving hopping amplitudes V0 + VSS cos ϑσz as
well as spin-flip hopping amplitudes VSS sin ϑe−iωLtσzσx .

Our approach used for calculating the transport properties,
which is presented in more detail in Appendix A, involves
using nonequilibrium Green’s-function techniques in which
the Green’s functions describing the leads are given by their
quasiclassical approximations and the hopping elements by
their Fermi-surface limits V0(S) → v0(S). The lead Green’s
functions are coupled via a t-matrix equation that describes
the perturbation to the hopping elements. The lead Green’s
functions determine the currents, which include harmonics
related to both the Josephson and the Larmor frequencies and
can be expressed as

jμ
α (t) =

∑
n,m

exp[−i(nϕ0 + mχ0) − i(nωJ + mωL)t]
(
jμ
α

)m

n
,

(3)
where μ = 0 denotes charge currents and μ = 1–3 denote
the spin-polarization directions x, y, and z. The current
components (jμ

α )mn are given in Appendix A. The values of m

are restricted due to the precession of spin S; a spin flip from
spin-↓ to spin-↑ (spin-↑ to spin-↓) corresponds to absorption
(emission) of a precession quantum ωL. Since the tunneling
quasiparticles are spin-1/2 particles, only a single precession
quantum can be absorbed or emitted. Therefore, only the
values m = 0,±1 are allowed. Moreover, we define the

TABLE I. Types of currents and the existence of corresponding
dc and ac components. The ac column shows with which harmonics
the current oscillates.

Type of current dc ac

Charge current � ωJ

In-plane spin current off-resonance ✗ ωL,ωJ

z-polarized spin current � ωJ

In-plane spin current at Shapiro resonance � ωL,ωJ
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FIG. 2. (Color online) Charge background current and conduc-
tance GB = ∂jc

B/∂V for a π junction with (a) D↑ = 0.8 and (b)
D↑ = 0.2. The current is normalized by the normal conductance given
by the two spin channels GN = [e2/h][D↑ + D↓]. The conductance
curves in panel (a) have been offset with 3 (D↓ = 0.8), 2 (D↓ = 0.5),
and 1 (D↓ = 0.2). In panel (b), the conductance is plotted for
D↑ = 0.2, D↓ = 0.1, and ωL/� = 0.2. In all plots, ϑ = π/8.

spin-transmission probabilities D↑(↓) as D↑(↓) = 4v2
↑(↓)/[1 +

v2
↑(↓)]

2, where v↑/↓ = v0 ± vS cos ϑ . Note, however, that a set
of D↑ and D↓ values does not uniquely define the hopping
elements v0 and vS due to the square of v↑(↓) in the definition
above. On the other hand, if the voltage bias is replaced
by a static phase bias, the junction is in a π (0) state if
vS > v0 (vS < v0) [32,40], and this additional information

combined with the spin-transmission probabilities determines
the hopping amplitudes.

III. CHARGE CURRENTS

Clearly, the currents in Eq. (3) can be divided into time-
independent as well as time-dependent parts (see Table I
for an overview). For an arbitrary bias voltage, the dc
currents are in general given by contributions from the (jμ)0

0
components. This kind of current will here be called charge
and spin background currents in the spirit of Ref. [41]. At bias
voltages fulfilling the Shapiro resonance condition, additional
dc components are present. We will start by describing the
charge background current. Next, the effects of the spin current
will be discussed as a starting point for the analysis of the
Shapiro resonances, which then concludes the paper.

Figure 2 shows the current-voltage characteristics as well
as the conductance for the charge background current jc

B =
(jμ=0)m=0

n=0 (from here on, we drop the index α and consider
currents on the left side of the interface unless otherwise
stated). The value ωL = 0 reproduces the usual current steps
and conductance peaks at eV = 2�/n due to MAR processes
of order n = 1,2, . . . [42–45]. For ωL �= 0, additional features
appear at voltages eV = (2� ± ωL)/n, where n = 1,3, . . .

due to the emission or absorption of precession quanta. This
structure can clearly be seen in the tunnel-limit conductance
where it is displayed as distinct satellite peaks [Fig. 2(b)].
The subharmonic gap structure is similar to that of the
current-voltage characteristics generated by photon-assisted
MAR, which shows features in the form of satellite peaks
due to absorption or emission of one or more photons [41].
However, due to the restriction of only a single emitted or
absorbed precession quantum in the spin-precession case,
there is only one satellite peak on each side of the feature
corresponding to a MAR process of order n [see Figs. 1(c)
and 1(d) for processes with n = 1 and 2]. Additionally, for

FIG. 3. (Color online) Background torque components as functions of bias voltage for a π junction. (a)–(c) Dampinglike components
describing spin nutations (d). (e)–(g) Fieldlike components describing oscillations of the precession frequency (h). In all panels, ϑ = π/8.
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a MAR process of order n that includes an exchange of
energy ωL, there are n possible paths [Fig. 1(d) shows the two
possible absorption paths for n = 2]. The energy exchange
causes a spin flip that introduces a minus sign in a subsequent
Andreev reflection amplitude due to the change between the
spinors (ψ↑,ψ

†
↓)T ↔ (ψ↓,ψ

†
↑)T . As a result, the total Andreev

reflection is suppressed due to destructive interference in
processes where n = 2,4, . . . but is enhanced in processes
for which n is an odd number. Consequently, only the MAR
processes with n = 1,3, . . . display side peaks.

IV. TORQUES AND SHAPIRO RESONANCES

Now, we turn to discuss the spin current and its effects.
The spin current generates a spin-transfer torque on S given
by τ (t) = jL(t) − jR(t). This torque can then be expressed in
terms of S as

τ (t) = γH (t)

S
γ H × S + γL(t)

S2
Ṡ × S, (4)

where

γH/L(t) = γH/L,0DScH/L,ϑ

+
∞∑

n=1

{
γ c

H/L,nDScH/L,ϑ cos(nωJ t)

+γ s
H/L,n[D↑ − D↓]c−1

H/L,ϑ sin(nωJ t)
}
, (5)

with cH,ϑ = cos ϑ, cL,ϑ = 1, and DS = 4v2
S/[1 + v2

S]2. The
γL,0 component describes a steady damping, whereas the
higher harmonics γ

c/s

L,n�=0 describe nutations of the spin [38].

The torque associated with the γH,0,γ
c/s

H,n components instead
acts like a magnetic field that shifts the precession frequency.
The lowest-order components are plotted in Fig. 3 where it can
be seen that the torque components exhibit the same odd-even
effect as the charge current.

For voltages at which the Larmor and Josephson frequen-
cies are commensurate V m

n = −(m/n)ωL/2e and n,m �= 0,
Shapiro resonances may occur [see the inset of Fig. 4(a)].
These Shapiro currents give a contribution to the dc spin
current that has an in-plane polarization, that in turn adds
a dc contribution to the spin-transfer torque. In a first-order
approximation, the dc torque will tilt the spin away from the
z axis so that it precesses around a new z direction. Treating
this effect self-consistently, we find that the Shapiro currents
may be able to reverse the spin’s direction. To investigate
the effects of the dc Shapiro torques, the corresponding total
torque components γ c

L/H,1 and γ c
L/H,2 are plotted in Fig. 4 at

voltages eV = ωL/2 and ωL/4, respectively.γ c
H,1/2 includes

the Shapiro contribution, which should hence be enhanced
compared to γ c

L,1/2 in order to reduce the spin-reversal times.
The other torque components are close to zero and therefore
are not shown. As can be seen in Fig. 4(a), the Shapiro torques
strongly depend on the junction transparency. The Shapiro
torques also display an oscillatory behavior as a function of
ωL as shown in the left panel of Fig. 4(b). The right panel of
Fig. 4(b) shows that it is sufficient to choose small precession
angles for the spin. The existence of a dc current that is spin
polarized in the xy plane implies that the rotational symmetry
around the z axis is broken and that the magnitude of the

FIG. 4. (Color online) (a) Components of the total torque eval-
uated at the Shapiro resonance voltages γ c

L/H,1(eV = ωL/2�) and
γ c

L/H,2(eV = ωL/4�) as a function of DS for a junction with v0 = 0.
The Shapiro steps depend strongly on DS and are finite only for high
transparencies. Inset: Total dc spin current as a function of bias voltage
for ωL = 0.5�, ϑ = π/8, and DS = 0.95. The in-plane spin current
exhibits peaks due to Shapiro resonances at the resonant voltages
eV = ωL/2n. (b) The torque components as functions of ωL (left
panel) and precession angle ϑ (right panels) showing that γ c

L/H,2 is
sensitive to the precession frequency and that γ c

L/H,1/2 is large even
for small precession angles. In all panels, ϕ0 = 0 and χ0 = 0.

Shapiro currents depends on the initial angle of nanomagnet’s
magnetization direction χ0. This behavior is analogous to the
dependence on the initial phase difference ϕ0, which also is
present in the transport characteristics of microwave-irradiated
Josephson junctions [41].

Realistic values of ωL may be smaller than the ones shown
in Fig. 2, which were chosen for clarity. Consider an SQPC
consisting of Nb, whose superconducting gap is � ∼ 1 meV,
that contains a nanomagnet which under FMR conditions
reaches precession frequencies of ωL ∼ 10 GHz, which is
well below the critical magnetic field Hc of Nb [22]. Then,
typically ωL/� = 0.01, and the temperature is restricted to
T < 100 mK. Increasing H closer to the critical-field value
decreases � and hence increases the ratio ωL/�, which
allows for a better resolution of the subgap structures of jc

B .
Alternatively, using the ac Josephson current to resonantly
excite the FMR mode of S(t), ωL values corresponding to an
effective magnetic field |H| > Hc can be achieved [26–28].
Detection of the spin-polarized Shapiro currents would then
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be a measurement of the FMR frequency of the nanomagnet.
To estimate the effectiveness of the Shapiro resonances for
spin reversal, self-consistent calculations were performed in
which the spin dynamics were determined using the calculated
spin-transfer torques. A spin S ∼ 50�, a contact width of
∼100 nm giving the number of conduction channels nc ∼
600, and ωL = 10 GHz give an estimated switching time of
∼0.1 ns.

V. CONCLUSIONS

In conclusion, we have calculated the charge and spin cur-
rents through a voltage-biased superconducting point contact
coupled to the magnetization dynamics of a nanomagnet. We
have shown that coherent multiple Andreev reflection in the
presence of the Larmor dynamics leads to a subharmonic gap
structure of the dc charge and spin currents with features
at eV = (2� ± ωL)/n, where n is an odd number due to
interference. In addition, resonance between the Josephson
and the Larmor frequencies leads to a rectification of the spin-
polarized supercurrent and the generation of spin-polarized
Shapiro steps, which is in contrast to the current through a weak
link coupled to a nanomagnet whose magnetization performs a
precessional motion. In that case, the resulting time-dependent
magnetic field produces Shapiro-type resonances that give
contributions to the charge current [46]. Estimates show that
the spin-polarized Shapiro steps, that depend sensitively on
the bias voltage, may lead to subnanosecond reversal of the
magnetization direction.
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APPENDIX A: DETAILS OF THE APPROACH

The transport properties are obtained using nonequilibrium
Green’s-function techniques through the Hamiltonian ap-
proach [13,45,47] in which the leads are described by Keldysh-
Green’s functions in the quasiclassical approximation [48–50].
The nanomagnet creates a spin-active interface that can be
treated as a strong impurity [51]. The resulting boundary
condition can be solved using a t-matrix equation expressed
in terms of the tunneling amplitudes and the quasiclassical
Green’s functions.

A quasiclassical Green’s function, or propagator, describes
quasiparticles at the Fermi surface with momentum pF

moving along classical trajectories with velocity vF ( pF ).
These Green’s functions can be written in the form

ǧ( pF ,R; ε,t) =
(

ĝR( pF ,R; ε,t) ĝK ( pF ,R; ε,t)

0 ĝA( pF ,R; ε,t)

)
, (A1)

where “ˇ” denotes a matrix in Keldysh space and the Green’s
functions ĝR,K,A are the retarded (R), Keldysh (K), and
advanced (A) Green’s functions in Nambu space, that is
denoted by “ˆ.” The Green’s functions obey the Eilenberger

equation [50],

i�vF · ∇ǧ + [ετ̂3 − Ȟ,ǧ]◦ = 0, (A2)

that is complemented by the normalization condition ǧ ◦ ǧ =
−π21̌. The symbol “◦” denotes matrix multiplication and
convolution over common time arguments.

A first step in calculating the transport properties of the
junction is to solve Eq. (A2) separately in each lead under the
assumption that the tunneling is switched off. In equilibrium,
the solutions are given by the Green’s functions

ĝR,A
α (ε) = τ̂3g

R,A(ε) + τ̂1f
R,A(ε)iσy

and

ĝK
α (ε) = [

ĝR
α (ε) − ĝA

α (ε)
]

tanh
( ε

2T

)
, (A3)

where

gR,A(ε) = −πε/�R,A, f R,A(ε) = −π�/�R,A,

and

�R,A =
√

|�|2 − (ε ± i0)2. (A4)

The effects of ϕ(t) are accounted for by a transforma-
tion Ûα = exp[iϕα(t)τ̂3/2] of the lead Green’s functions.
The voltage-biased lead Green’s functions ǧα(t,t ′) are then
expressed in terms of the equilibrium ones ǧα(t − t ′) =∫

(dε/2π )e−iε(t−t ′)ǧα(ε) as ǧα(t,t ′) = Û †
α(t)ǧα(t − t ′)Ûα(t ′).

Next, the quasiclassical trajectories in the left and right
leads are connected via the coupling described by the tunnel
Hamiltonian Eq. (2). Within the quasiclassical approximation,
the hopping amplitudes are replaced by their Fermi-surface
counterparts, which here means that V0 and VS are replaced
by v0 = πNF V0 and vS = πNF SVS , where NF is the normal
density of states at the Fermi energy. The resulting hopping
matrix in Nambu space is then

v̂(t) =
(

v0 + vSeS(t) · σ 0

0 v0 − vSσy[eS(t) · σ ]σy

)
, (A5)

where eS is the unit vector that describes the precessional
motion of spin S defined in Sec. II. The coupling between the
left and the right leads is captured by the so-called t-matrix
equation that describes a perturbation to the hopping element
and is given by

ťα(t,t ′) = �̌α(t,t ′)

+
∫

dt1

∫
dt2�̌α(t,t1)ǧα(t1,t2)ťα(t2,t

′), (A6)

where �̌L/R(t,t ′) = v̌(t)ǧR/L(t,t ′)v̌(t ′). The time dependence
of the superconducting phase of the Green’s functions is
transferred to the hopping elements by the transforma-
tion Ûα(t) according to v̂LR/RL(t) = ÛL/R(t)v̂(t)Û †

R/L(t) =
exp[±iϕ(t)τ̂3/2]v̂(t). The t matrices can be shown to depend
on energies containing multiples of frequencies ωJ and ωL.
Explicitly, the t matrices have a time dependence of the form

ťα(t,t ′) =
∑
n,m

exp[−i(nϕ0 + mχ0)

+ i(nωJ + mωL)t ′][ťα(t − t ′)]mn , (A7)
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where the components are given by

[ťα(t)]mn =
∫

dε

2π
e−iεt

[
ťα

(
εm
n

)]
, (A8)

and εm
n = ε + nωJ + mωL.

From now on, we drop the index α and show how to
calculate the t matrices on the left side of the junction. Defining

ťmn = [ť(εm
n )] and ǧm

n = ǧ(εm
n ) and Fourier transforming the

t-matrix equation, one obtains the algebraic equation,

ťmn = �̌m
n +

∑
l

{
Ǎm,l

n,nť
l
n + B̌

m,l
n,n+1 ť

l
n+1 + B̌

m,l
n,n−1 ť

l
n−1

}
, (A9)

where the retarded components are given by

[�̂R]mn =
∑

j

(
νm−j νj [gR]j−(1/2)δn,0 e−iϕ0νm−j iσy(νj )†[f R]j1/2δn,1

eiϕ0 (νm−j )†iσyν
j [f R]j−(1/2)δn,−1 −(νm−j )†(νj )†[gR]j1/2δn,0

)
, (A10)

[ÂR]m,l
n,n =

2∑
j=−2

(
νm−j νj−l[gR]jn−1/2[gR]ln νm−j νj−l iσy[gR]jn−1/2[f R]ln

−(νm−j )†(νj−l)†iσy[gR]jn+1/2[f R]ln (νm−j )†(νj−l)†[gR]jn+1/2[gR]ln

)
, (A11)

[B̂R]m,l
n,n+1 =

2∑
j=−2

eiϕ0 (νm−j )†iσyν
j−l[f R]jn+1/2

(
0 0

[gR]ln+1 [f R]ln+1iσy

)
, (A12)

and

[B̂R]m,l
n,n−1 =

2∑
j=−2

e−iϕ0νm−j iσy(νj−l)†[f R]jn−1/2

(
iσy[f R]ln−1 −[gR]ln−1

0 0

)
. (A13)

Here, we have defined ν0 = v0 + vSσz cos ϑ, ν±1 = vS

2 [σx ± iσy] sin ϑ , and νj = 0 if |j | � 2. The advanced and Keldysh
matrices are similarly defined. Collecting the terms as

Ān,n =

⎛
⎜⎝

Ǎ1,1
n,n Ǎ1,0

n,n 0̌

Ǎ0,1
n,n Ǎ0,0

n,n Ǎ0,−1
n,n

0̌ Ǎ−1,0
n,n Ǎ−1,−1

n,n

⎞
⎟⎠, B̄n,n±1 =

⎛
⎜⎜⎝

B̌
1,1
n,n±1 B̌

1,0
n,n±1 0̌

B̌
0,1
n,n±1 B̌

0,0
n,n±1 B̌

0,−1
n,n±1

0̌ B̌
−1,0
n,n±1 B̌

−1,−1
n,n±1

⎞
⎟⎟⎠,

(A14)

t̄n =

⎛
⎜⎝

ť1
n

ť0
n

ť−1
n

⎞
⎟⎠, �̄n =

⎛
⎜⎝

�̌1
n

�̌0
n

�̌−1
n

⎞
⎟⎠,

the t-matrix equation becomes

t̄n = �̄1δn,1 + �̄0δn,0 + �̄−1δn,−1 + B̄n,n+1 t̄n+1 + Ān,nt̄n + B̄n,n−1 t̄n−1. (A15)

A recursive solution to Eq. (A15) can be found by defining the auxiliary matrices,

X̄n,n+1 = [1̄ − Ān,n − B̄n,n+1X̄n+1,n+2]−1B̄n,n−1 for n � N,

X̄n,n+1 = 0̄ for n > N, (A16)

X̄n,n−1 = [1̄ − Ā−n,−n − B̄−n,−n−1X̄−n−1,−n−2]−1B̄−n,−n+1 for − n � −N,

X̄−n,−n−1 = 0̄ for − n < −N,

which results in the initial condition,⎛
⎜⎝

[1̄ − Ā1,1 − B̄1,2X̄2,3] −B̄1,0 0̄

−B̄0,1 [1̄ − Ā0,0] −B̄0,−1

0̄ −B̄−1,0 [1̄ − Ā−1,−1 − B̄−1,−2X̄−2,−3]

⎞
⎟⎠

⎛
⎜⎝

t̄1

t̄0

t̄−1

⎞
⎟⎠ =

⎛
⎜⎝

�̄1

�̄0

�̄−1

⎞
⎟⎠. (A17)

The t matrices can then be obtained recursively from the
auxiliary matrices according to

t̄n = X̄n,n+1 t̄n−1, (A18)

t̄−n = X̄−n,−n−1 t̄−n+1. (A19)

These t matrices are then used to calculate the perturbed
lead Green’s functions and subsequently the charge and spin
currents through the junction.

The calculation of the currents starts by noting that the lead
Green’s functions can be divided into two categories depending
on if the quasiparticles they describe have trajectories leading
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towards or away from the interface. These Green’s functions
are called incoming and outgoing propagators ǧi and ǧo,
respectively, and are given by [52]

ǧi,o
α (t,t ′) = ǧα(t,t ′) + [(ǧα ± iπ 1̌) ◦ ťα ◦ (ǧα ∓ iπ 1̌)](t,t ′).

(A20)
The charge and spin currents can then be calculated as the
difference between these propagators according to

jμ
α =

∫
dε

8πi
Tr

{
κ̂μ

[
ĝi,<

α (ε,t) − ĝo,<
α (ε,t)

]}
, (A21)

where we have defined κ̂0 = eτ̂3 for the charge current and
κ̂ i = diag(σi,σyσiσy)/2 for a spin current with a polarization
in the i = x,y,z direction. With the help of Eq. (A20), the
currents can then be obtained as

jμ
α =

∫
dε

4
Tr{κ̂μ[ťα,ǧα]<◦ }, (A22)

which, with the help of Eqs. (A7) and (A8), can be written as

jμ
α (t) =

∑
n,m

exp[−i(nϕ0 + mχ0) − i(nωJ + mωL)t]
(
jμ
α

)m

n
,

(A23)
where(

jμ
α

)m

n
=

∫
dε

4
Tr

{
κ̂μ

[
ť
(
εm
n

)
ǧ
(
ε0

0

) − ǧ
(
εm
n

)
ť
(
εm
n

)]<}
(A24)

are the current components of Eq. (3).

APPENDIX B: TUNNEL-LIMIT EXPRESSIONS

In the tunnel limit v0,vS 
 1, analytical expressions for
the charge and spin currents can be obtained. Defining
δV ± = [eV − 2� ± ωL]/2�, the height of the charge current
steps at δV ± 
 1 generated by the spin precession can be
approximated in the tunnel limit by

jc
± ≈ �(δV ±)e�

2

π
v2

s sin2(ϑ)I ([eV ± ωL]/2�), (B1)

where � is the Heaviside step function, I (a) =
[2aE(

√
1 − 1/a2) − K(

√
1 − 1/a2)/a], and K and E are the

complete elliptic integrals of the first and second kinds, respec-
tively. In the limit ωL 
 2�, one obtains I ([eV ± ωL]/2�) ≈
π
2 [1 + 3

2δV ±], and the heights of the charge current steps at
V = (2� ± ωL)/e are thus ∝v2

s sin2 ϑ .
The spin background current can be divided into a spin-

filter current and a spin-pump current j s
B = j s

filter + j s
pump in

the tunnel limit. The spin-filter current is given by j s
filter =

ez(�/2π )(D↑ − D↓)I (eV/2�) for eV � 2� and reproduces
the results of Ref. [17]. The spin-pump current can correspond-
ingly be approximated by j s

pump,± ≈ ±ezj
c
±/2e. For eV >

2� + ωL and ωL 
 �, the total spin-pump current is given
by j s

pump = ez(3/4)v2
s sin2(ϑ)ωL and is hence proportional to

ωL and does not depend on the bias voltage.
The dc spin-transfer torque components, can, in the tunnel

limit, be expressed as

γL,0 ≈ −�

π

v2
S

ωL

Re

[
I τ

0

(
eV + ωL

2�

)
− I τ

0

(
eV − ωL

2�

)]
,

(B2)

and

γH,0 ≈ �

2π

v2
S

ωL

cos(ϑ)Im

[
I τ

0

(
eV + ωL

2�

)

− 2I τ
0

(
eV

2�

)
+ I τ

0

(
eV − ωL

2�

)]
, (B3)

where

I τ
0 (a)=2

(
i

{
2|a|

[
K

(
1

|a|
)

− E

(
1

|a|
)]

− 1

|a|K
(

1

|a|
)}

− sgn(a)

{
2|a|E

(√
a2 − 1

|a|
)

− 1

|a|K
(√

a2 − 1

|a|
)})

.

(B4)

The first-harmonics terms are given by γL/H,1 =
γ c

L/H,1 cos(ωJ t) + γ s
L/H,1 sin(ωJ t) where the components

of the dampinglike torque are given by

γ c
L,1 ≈ − �

πωL

v2
SRe

[
I τ

1

(
eV + ωL

2�

)
− I τ

1

(
eV − ωL

2�

)]
,

(B5)

γ s
L,1 ≈ �

πωL

v0vS cos(ϑ)Im

[
I τ

1

(
eV + ωL

2�

)
− 2I τ

1

(
eV

2�

)

+ I τ
1

(
eV − ωL

2�

)]
, (B6)

where I τ
1 (a) = −2i K(|a|). The components of the fieldlike

torque are

γ c
H,1 ≈ − �

πωL

v2
S cos(ϑ)Im

[
I τ

1

(
eV + ωL

2�

)
− 2I τ

1

(
eV

2�

)

+ I τ
1

(
eV − ωL

2�

)]
, (B7)

γ s
H,1 ≈ − �

πωL

vSv0Re

[
I τ

1

(
eV + ωL

2�

)
− I τ

1

(
eV − ωL

2�

)]
.

(B8)

APPENDIX C: THE SPIN POLARIZATION OF THE
SHAPIRO CURRENT

The spin polarization of the Shapiro current is a direct
consequence of the symmetries of the properties of the t

matrices calculated using Eq. (A15). The spin raising/spin
lowering ťm=±1

n matrices can be shown to contain t matrices
of the form t̂m=±1,X

n = tm=±1,X
n diag{σ±1, − σyσ

±1σy}, where
σ±1 = [σx ± iσy]/2 and X stands for one of the retarded
(R), advanced (A), or Keldysh (K) Nambu matrices. Then,
one immediately obtains the result that the Shapiro current
is spin polarized in the xy plane and hence can be written
in the form j i

Shapiro = ∑
n,m=±1 e−i(nϕ0+mχ0)(j i)mn δ(V − V m

n ),
where i = x,y,z. Defining (j i)nδ(V − Vn) ≡ ∑

m=±1[(j i)mn +
(j i)m−n]δ(V − V m

n ), where Vn = ±ωL/2en, one can write the
nth component as ( jShapiro)n = R̂†( j )nR̂δ(V − Vn), where
n � 1 and the transformation R̂ = exp[ i

2 (−nϕ0 ± χ0)Ĥ · σ ]
rotates the vector ( j )n around the direction of the external
magnetic field Ĥ through an angle −nϕ0 + sgn(Vn)χ0.
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The physical explanation for the existence of the spin-
polarized Shapiro steps is the following. Consider a phase-
biased SQPC coupled to a precessing spin and with a bias
voltage eV = 0. As was shown in Refs. [31,32], the resulting
quasiparticle scattering leads to induced superconducting spin-
triplet correlations in the leads close to the tunnel interface.
In general, spin-triplet correlations may be characterized by a
complex d vector that is given by � = d · σ iσy and points
along the direction of zero-spin projection of the Cooper
pairs. If one similarly defines dα vectors for the induced
spin-triplet correlations in lead α of the phase-biased SQPC,
one finds that the dα vectors have a time dependence similar
to that of the t matrices described above, viz. dα(t,V =
0) = dz

α + d1
αe−iωLt + d−1

α eiωLt , where dz
α describes a time

independent z component and d±1
α are complex vectors in

the xy plane [32]. These spin-triplet correlations are able
to support a spin-triplet supercurrent that is correspondingly
given by jα(t,V = 0) = j z

α + j1
αe−iωLt + j−1

α eiωLt , where
j z
α is a z component and j±1

α contains xy components.
Replacement of the phase bias with a voltage bias that is
on-resonance leads to a rectification of the higher harmonics of
the time-dependent current. Since the higher harmonics in this
case are nothing but j±1

α e∓iωLt , the Shapiro steps are xy spin
polarized. The existence of a dc current that is spin polarized
in the xy plane implies that the rotational symmetry around
the z axis is broken and that the magnitude of the Shapiro
currents depends on the initial angle of the nanomagnet’s mag-
netization direction χ0 analogous to the ϕ0 dependence of the
Shapiro steps displayed by microwave-irradiated Josephson
junctions [41,53,54].
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