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Abstract

The focus of this work is to increase the understanding of lean NO, reduction over silver-alumina
catalysts using hydrocarbons as the reducing agent (HC-SCR), in particular by investigating the effect
of silver loading, the role of platinum doping, and the effect of the type of reducing agent. In
addition, the effects of aging and hydrothermal treatment on the catalytic activity and selectivity,
and the influence of real engine exhausts were investigated, with special attention to the low-
temperature activity. Silver-alumina samples were prepared using a sol-gel method, including freeze-
drying, and evaluated for HC-SCR. The samples were synthesized with varying silver loading, with and
without addition of trace amounts of platinum. NO, reduction activity studies, hydrothermal
treatment and oxidation experiments were performed in a synthetic gas bench reactor using model
hydrocarbons (n-octane, ethane, ethene, ethyne) and commercially available biofuels (NExBTL,
ethanol) as the reducing agent. The samples were characterized with respect to surface area (BET) as
well as the type and relative amount of surface silver species (UV-vis, XPS). An optimized catalyst was
also up-scaled and investigated in an engine bench reactor, with diesel exhausts, using a commercial
biofuel as reducing agent, and with hydrogen supplied via a reformer catalyst.

The results show that silver-alumina catalysts, prepared via sol-gel synthesis, display a high
consistency regarding surface area and the relative amount of different silver species, as the silver
loading is varied. Furthermore, it can be observed that activation for hydrocarbon oxidation generally
proceeds more easily with increasing bond order of the hydrocarbon. For instance, the use of
hydrocarbons with high bond order, e.g. ethyne, as reductant for NO,, results not only in the highest
peak activity for lean NO, reduction but also in considerable high activity in a wide temperature
range mainly thanks to increased activity at low temperatures compared to a corresponding
hydrocarbon with lower bond order. With increasing silver loading, the oxidation reactions are
favored such that both the hydrocarbon and the NO activation occur at lower temperatures. This is
also corroborated by experiments with oxidized hydrocarbons (ethanol) displaying a complete
reduction of NO, over a wide temperature range. As the hydrocarbon chain-length is increased, the
NO, reduction decreases, however, high activity can be seen even when using the commercial
biodiesel, with a reduction of over 70 % in laboratory scale experiments.

Furthermore, it is concluded that as the samples are doped with trace-amounts of platinum, the
activity for lean NO, reduction at low temperatures is enhanced when using n-octane. The catalyst
composition showing the highest activity for NO, reduction, using n-octane as reducing agent, is
found to be a 2 wt. % Ag/Al,0; sample doped with 500 ppm platinum. This catalyst also displays the
highest low-temperature activity, most likely owing to an increased ability to partially oxidize the



hydrocarbon reductant as well as higher adsorption of the hydrocarbon on the surface, attributed to
the Pt doping. The 4 wt. % Ag/Al,0; sample doped with 100 ppm platinum shows high activity in
close to real conditions with the addition of reformate. It can also be concluded that adding
reformate instead of pure hydrogen, to the same H, concentration, results in an equal or even higher
activity for NO, reduction, likely owing to the presence of unreacted hydrocarbons in the reformate.

In conclusion this work shows HC-SCR as a viable concept for NO, reduction, even though many
challenges remain. Low-level platinum doping is shown to increase the activity for NO, reduction,
especially at low temperatures and for higher hydrocarbons. In addition, the in-house synthesized
catalysts are compatible with commercial biofuels for both heavy-duty (NExBTL) and light-duty
(ethanol) vehicles. The real engine experiments also show a promising NO, reduction, both when
using pure hydrogen and reformate.

Keywords: Lean NO, reduction, HC-SCR, Ag/Al,O3, biofuels, ethanol, Pt-doping, catalyst ageing, low-
temperature activity
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1. List of abbreviations

AdBlue Urea-solution (Europe) (32% urea in water)
A/F Air-to-fuel ratio

BE Binding energy

BET Brunauer-Emmet-Teller, method for determening SSA
CEM Controlled evaporator mixer

C/N Carbon-to-nitrogen ratio

DEF Diesel exhaust fluid (US) (32% urea in water)
DOC Diesel oxidation catalyst

DPF Diesel particulate filter

DRIFTS Diffuse reflectance infrared Fourier transformed spectroscopy
EGR Exhaust gas recirculation

EtOH Ethanol

FTIR Fourier transformed infrared spectroscopy
GHSV Gas hourly space velocity, h™

HC Hydrocarbon

HT Hydrothermally

ID Inner diameter

L Length

MeOH Methanol

MK1 Environmental class 1 (Miljoklass 1)

MS Mass spectrometry

NO, Nitrogen oxides (NO+NO,)

oD Outer diameter

PGM Platinum group metals

PSR Pilot-scale reactor



SCR

SGB

SS

SSA

TWC

UV-vis

XPS

Selective catalytic reduction
Synthetic gas bench
Steady-state

Specific surface area, m2/g
Three-way catalyst
Ultraviolet-visual spectroscopy

X-ray photoelectron spectroscopy



2. Introduction

As the market becomes increasingly more globalized, the need for transports has increased
steadily over the last century. In 1990 the number of cars, motorcycles, busses and trucks in the
world was estimated to 650 million [1]. Although extensive research is performed to find
alternatives, the combustion engine will most likely be the dominant system for automotive
propulsion during the coming decennia. Due to the significant impact from the combustion engine on
the environment, ever more stringent emission legislation has been implemented regarding both the
emissions of carbon dioxide (CO,), as well as the emissions of more directly harmful gases, i.e. carbon
monoxide (CO), nitrogen oxides (NO,), particulate matter and unburned fuel [2, 3]. These emission
legislations and the limited resources of fossil fuels are strong drivers for energy-efficient engine
concepts, such as diesel and lean-burn engines [4], which reduce the fuel consumption and thereby
also the emissions of CO, as compared to stoichiometric gasoline engines. Emissions of NO, are
hazardous to the environment, acting as a source to ground level ozone, acid rain and
eutrophication, as well as being directly harmful to humans. The legislated emission levels of NO, for
heavy-duty vehicles have decreased from 8.0 g/kWh in Euro | (1992), to 0.4 g/kWh in Euro VI (2014)
(Fig. 1) [4]. Solving the problem of NO, emission abatement is therefore of crucial importance. The
conventional way of reducing NO, emissions has been by the use of a three-way catalyst (TWC). The
catalyst consists of noble metals (platinum, palladium and rhodium) supported on alumina (y-Al,03)
and ceria (Ce0,), and has the ability to simultaneously oxidize CO and unburned hydrocarbons while
also reducing the NO,. However, the lean environment in the exhaust gas from new engine systems,
with high air-to-fuel ratios, obstructs the NO, reduction in the TWC, which needs to operate closer to
stoichiometric air-to-fuel ratio (A/F= 14.7) [5]. As a result of the increased combustion efficiency i.e.
increased air-to-fuel ratio, the new engine systems also operate at much lower temperatures,
resulting in exhaust temperatures as low as 150°C. This also introduces a true challenge when
designing alternative catalytic techniques.

PM
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0.10
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Figure 1: Progression of emission legislation in Europe for trucks and busses (EURO II-VI).



A number of new techniques have been developed in order to decrease the emission of NO,
from combustion engines. One example is exhaust gas recirculation (EGR) were the inlet air to the
combustion chamber is mixed with exhaust gases, lowering the oxygen concentration in the
combustion chamber and thereby lowering the amount of formed NO, [6]. Other techniques are NO,
storage catalysts were the engine is run at alternating lean and rich phases, storing NO, during the
lean phase and then reducing the stored NO, during the shorter rich phase [5, 7-9] and selective
catalytic reduction (SCR), using either hydrocarbons or ammonia from urea as reducing agent. The
focus of this thesis is selective catalytic reduction of NO, over silver alumina catalysts using
hydrocarbons, i.e. fuel, (HC-SCR), as the reducing agent.

2.1. Biofuels

For the past century the consumption of energy has increased drastically with the main energy
production deriving from fossil sources. These may be in the form of brown coal, used in power
plants for electricity generation or oil based products such as diesel, gasoline etc. As these sources
are finite, concerns regarding the availability of such energy sources have grown. The number of new
oil reservoirs that are discovered annually is decreasing and although the oil companies still find new
reservoirs, they tend to be in areas where increasingly more difficult extraction methods are
required.

In the year 1988, the International Panel on Climate Change (IPCC) was formed with the goal:
“...stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent
dangerous anthropogenic interference with the climate system..." [10]. The committee has since
then produced a number of reports based on publications from a multitude of research groups. The
absolute majority have come to the conclusion that the addition of anthropogenic CO, is the main
cause of global warming. Mathematical models predict a rise of the ocean levels, an increase in
extreme weather phenomena and the disappearance of natural habitats, crucial for the survival of
many endangered animals [11, 12]. Many different strategies have been proposed, but the main goal
for all of them is to reduce the use of fossil fuels.

In order to ensure a high mobility for future generations, alternative sources for energy to the
transport sector is crucial. Many alternatives to fossil fuels have been suggested and implemented,
with the first mass produced cars running on ethanol reaching the market in 1979. Other techniques
like the Fisher-Tropsch (F-T) process [13, 14], used already in Germany during the Second World War
to produce synthetic diesel, is based on the reconstruction of carbon monoxide and hydrogen
(syngas) into long-chained liquid hydrocarbons via a catalyzed reaction. Franz Fisher and Hans
Tropsch developed the F-T process in 1925. The source for the base chemicals needed for the
production of Fisher-Tropsch diesel can vary from coal, used in Germany in the 30’s and 40's, to
syngas produced from biomass e.g. waste food, lumber by-products etc. making it a very versatile
fuel [14-16]. The production process does however require a catalyst, and although research for
improvement of such catalysts continues to this date, many challenges still remain, e.g. selectivity
problems and price of the catalyst. As a result, F-T diesel is still not in a price range that can compete
with fossil fuels.

Other alternatives to fossil fuels are short-chained liquid hydrocarbons e.g. methanol (MeOH),
ethanol (EtOH), biomass-to-liquid fuels (BLT) and dimethyl ether (DME), all with advantages and
drawbacks [17-22]. Ethanol and BLT-fuels have been the focus as alternative fuels in this thesis, with
EtOH mainly being suitable for light-duty vehicles and BTL for heavy-duty, due to the difference in
energy density. The first car, produced by Ford in 1896, was intended to run on ethanol, however as



a result of the fossil fuels being so much cheaper during this period, the ethanol cars were simply too
expensive to drive. Many countries have a mixture of 10 % ethanol and 90 % petrol (E10) as a
standard today [23, 24]. In an attempt to further reduce the emissions of anthropogenic CO,,
legislators are planning an increase of the ethanol content from 10 % to 15 % (E15). Cars running on
ethanol as the main fuel returned to the market in 1979, as a response to the oil crisis, with the
introduction of E85 in many countries, and in some cases even higher ethanol blends have been
introduced e.g. E93 in Brazil with 7% H,0 [25]. The actual environmental gain of switching from
petrol to EtOH is however not as large as one initially might think. The majority of all EtOH is
produced by fermentation of sugar rich feed stock, such as corn and sugar cane, with a fermentation
process reaching approximately 10 % EtOH. In order to achieve higher concentration the finished
fermentation product requires distillation, a very energy consuming process. The crops needed for
the fermentation process also require maintenance, pesticides, harvesting and separation, all of
which are energy consuming steps. Issues have also been raised concerning the usage of fertile lands
to manufacture fuels as opposed to the production of food [26, 27].

The technique of producing liquid fuels via biomass-to-liquid is a promising alternative to fossil
fuels. Although various techniques exist, producing fuels from waste oil is promising, as it would not
compete with other markets and as no distillation is required, the process can be made very efficient.
Currently, due to lack of infrastructure for recycled waste oils, the process utilizes palm oil as the
main raw material, however with increased awareness and potential legislation the finished product
can eventually become CO,; neutral.

2.2. Objectives

The objective of this work is to increase the understanding of the catalytic processes concerning
the lean NO, reduction over silver-alumina catalysts. The work ranges from synthesis and
characterization to activity measurements, both in model scale and engine bench scale. In particular,
the effect of silver loading, the role of platinum-doping, and the effects of aging and hydrothermal
treatment on the catalytic activity, selectivity and low-temperature performance are in focus. In
addition, the study includes the effect of the reducing agent, model hydrocarbons as well as
commercially available biofuels.

The project was performed as part of the second phase of the Mistra project E4, Energy Efficient
Reduction of Exhaust Emissions from Vehicles. The overall goal of the Mistra E4 project is the
reduction of NO, and PM, without increasing the emission of CO,. The second phase of the Mistra E4
project aims to further improve the applied technologies and secure the functionality and stability of
the integrated system. Utilization of suitable renewable fuels as alternatives to fossil fuels to
decrease the emission of anthropogenic CO, is also a key element.






3. Selective Catalytic Reduction

Selective catalytic reduction of NO, is a promising technique to reduce NO, at high air-to-fuel
ratios, for which the TWC lacks in performance. The urea-SCR technique is already implemented in
large parts of the industrialized world, both in the automotive sector and for stationary applications.
However, although urea solutions for the automotive industry, e.g. AdBlue and DEF, are readily
available in many countries, e.g. USA and large parts of Europe, access to urea is still very limited in
the larger part of the world [28]. As the HC-SCR system uses the fuel as the reducing agent, no need
for additional components exists and the system can be utilized for all vehicles world-wide, giving it a
great advantage. The concept of selectively reducing NO, using hydrocarbon as the reducing agent
was first introduced in 1990 by Iwamoto et al. [29] and Held et al. [30], both independently showing
that the presence of hydrocarbons enhanced the lean NO, reduction over Cu-ZSM5 catalysts. These
catalysts were however found to be sensitive to water. Subsequently, catalysts with higher tolerance
to hydrothermal conditions were investigated, which is discussed in detail by Burch [31]. In 1993,
Miyadere showed very high activity for NO, reduction, as compared to previous studies, over silver
supported on alumina in the presence of water [32]. The Ag-alumina system is described in section
3.1

The main reactions in HC-SCR are the NO, reduction, facilitated by the hydrocarbon reductant,
and the competing combustion reaction, where the hydrocarbon is oxidized to CO, by the excess
oxygen. The NO, reduction reaction is divided into three main reactions: 1) the oxidation of NO to
NO, and the formation of surface nitrates and nitrites, Il) the adsorption of hydrocarbons onto the
surface and the partial oxidation of the hydrocarbons forming various oxygenated carbon surface
species and lll) the reaction between the partially oxidized hydrocarbons and the surface nitrogen
containing species, forming N,, CO, and water [31].

One of the main steps, thought to be crucial for achieving high performance at low
temperature, is the activation of the hydrocarbon, i.e. the partial oxidation, before it reacts with the
NO, to form N, [33, 34]. Burch et al. [35] and Arve et al. [36] have proposed that the initial step in
hydrocarbon activation is the dissociation of the first hydrogen from the hydrocarbon reductant. The
dissociation is related to the sticking probability, i.e. hydrocarbon-surface interaction, which is
proportionally dependent on the sticking coefficient and exponentially dependent on the dissociative
chemisorption energy of the molecule on the surface [1]. The oxidation properties of the active
phase and the dissociative chemisorption energy for the hydrocarbon on the surface are therefore of
crucial importance and need to be tuned so that only partial oxidation takes place, without totally
combusting the hydrocarbon.

3.1. Thesilver alumina system

Silver-alumina (Ag/Al,O3) has been pointed out as a potential catalyst for lean NO, reduction,
displaying promising results for a variety of hydrocarbons, including fossil fuels and biofuels [37-42].
One drawback with the Ag/Al,0; system has been that the system requires relatively high
temperatures to achieve high activity, while as the energy efficiency in engines increases, the exhaust
gas temperature decreases. Many new engine designs also include heat recovery systems, which
decrease the exhaust gas temperature in the catalyst even further. Nevertheless, the active
temperature window for HC-SCR over Ag/Al,0; may be shifted towards lower temperatures,
provided a small amount of hydrogen is introduced to the exhaust feed [43-46]. The addition of
hydrogen further results in an over-all increase in the NO, reduction. This phenomenon is referred to
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as the hydrogen effect, described below. The 2 wt. % Ag/Al,0; system has shown high NO, reduction
activity in the presence of hydrogen [32, 39, 46-48]. The added hydrogen does however increase the
fuel-penalty. Recently Kannisto et al. have showed that hydrogen levels as low as 1000 ppm,
produced from onboard fuel-reforming, result in a fuel penalty of about 2% (reducing agent + H,
addition) [49], cf. 0.5% for urea-SCR.

As mentioned previously, the main reactions in HC-SCR are the NO, reduction, by the
hydrocarbon, and the competing reaction where the hydrocarbon is oxidized by the oxygen, i.e.
combusted. To favor the desired reduction reaction and to reach a good low-temperature
performance, the hydrocarbon needs to be activated, i.e. partially oxidized, before reacting with the
NO, [33-37]. This can be achieved by various routes, likely including several active sites. Although the
complete reaction mechanism over Ag/Al,O; is still under debate, several active sites are likely
involved e.g. silver ions, small silver clusters and larger metallic silver particles [50-52]. It has for
instance been suggested that Ag,®" clusters are highly active for the HC-SCR process [53], particularly
for the activation of the reducing agent by partial oxidation. It has been shown that very small silver
clusters (Ag,<8) to a greater extent provide active sites for lean NO, reduction with hydrocarbons as
compared to larger, more metal like, silver particles Furthermore, it has been shown that different
forms of oxidized silver species, like Ag®, Ag,0, or silver aluminate, favor the reduction of NO to N,
[54, 55] whereas metallic silver particles are more active for oxidation reactions [56-58]. These
findings indicate that catalysts, that are active for NO, reduction by hydrocarbons most likely contain
highly dispersed ionic, oxidized and/or Agn‘S+ silver species. To prevent the competing total
combustion reaction of hydrocarbon to CO, and H,0, the oxidation strength of the oxidation sites is
of crucial importance, ensuring that the hydrocarbon is only partially oxidized to active surface
species.

Ways to facilitate the partial oxidation of the hydrocarbon may be to incorporate additional
oxidation sites in the Ag-alumina catalyst or by altering the oxidizing potential of the existing
oxidation sites. Previous studies [49] indicate that trace-amounts of platinum incorporated in the
silver-alumina catalyst, increase the maximum NO, reduction and at the same time decrease the
onset temperature of the HC-SCR reaction. The study suggests that platinum acts as an oxidizing
agent, facilitating partial oxidation of the hydrocarbon and making it more readily available for the
NO, reduction reaction. The authors do however stress that, as platinum is such a strong oxidizing
agent, it is important to keep a low platinum level to reduce the risk of combusting the reducing
agent. It has also been proposed that the addition of platinum chloride increases the adsorption of
hydrocarbons, which could facilitate a higher NO, reduction activity at low temperature since more
hydrocarbons would be available on the surface [59]. The authors ascribe the increase in HC-
adsorption to a change in the acidity of the surface due to chlorine residue from the synthesis.

As stated previously, the addition of hydrogen to the exhaust feed will improve both the activity
of NO, reduction, and lower the operating temperature window, for HC-SCR over Ag/Al,O; catalysts.
This effect was first discovered in the year 2000 by Satokawa et al. [43] and resulted in increased
interest for the Ag/Al,O; catalysts system. The effect has since then been confirmed, for various
hydrocarbons, and the underlying properties of the effect has been investigated thoroughly, e.g. [39,
60-62]. The increase in activity can be seen almost instantaneously on the addition of hydrogen and
disappears as hydrogen is removed from the feed, with very sharp steps in the reduction curve. The
effect does not change over time and the improved activity can be achieved over and over again



when performing pulse experiments. Hydrogen is however not active as a reductant by itself, but
rather as a promoter for the hydrocarbon reductant [60, 61]. Although extensive studies on the
hydrogen effect have been performed, since its discovery, the underlying phenomena behind the
effect are still under debate. The studies discuss e.g. changes in the silver configuration and chemical
state [45, 62, 63], promotion of the partial oxidation of the hydrocarbon [46, 48, 54], and the
removal of inactive surface species which may inhibit the desired reactions [39, 42, 54, 62, 64].

3.2. Deactivation

As catalysts are not consumed in a reaction, but rather provide an alternative reaction pathway,
they should in theory remain in their original state also after the reaction has taken place, however
many factors contribute to the degradation of a catalyst. The degradation processes are divided into
three major mechanisms: poisoning, fouling and thermal degradation [65]. Poisoning occurs when a
material binds strongly to the active sites of a catalyst, preventing the reactants from reaching the
active site and/or influencing the electronic state of the active site and thereby inhibiting the
catalytic processes. Although the poison in some cases can be removed, poisoning is manly an
irreversible process. The poisoning component may be a byproduct in the reactant flow or the
reactants themselves. The latter is referred to as self-poisoning, were a catalytic surface is saturated
with one of the reactants preventing other reactants from adsorbing. An example of this is CO
poisoning on platinum based catalysts during CO oxidation [66, 67]. The light-off for such reactions
occurs at a higher temperature compared to extinction of the reaction. This is due to a complete
coverage of CO on the surface at low temperatures, which prevents oxygen from reaching the
surface. At the light-off temperature, enough CO molecules have desorbed from the surface to
enable adsorption of oxygen and then further reaction to CO,. During the extinction process both
species are adsorbed on the surface, giving rise to a hysteresis behavior.

Fouling is similar to poisoning, however fouling is usually reversible. Instead of a chemical bond
to the active site, a fouling agent physically blocks the surface and the pores, covering the active sites
and the active surface area [68, 69]. Catalysts which have been deactivated by fouling can be
regenerated both by treating them in reactive gases and by subjecting them to elevated
temperatures [70]. Thermal degradation can either be derived from alternating heating and cooling
the material, resulting in the formation of cracks in the support material and thereby loss of surface
area and active material[71]. High temperatures can also result in sintering of small active particles,
which then agglomerate, decreasing the active surface area and thereby the activity of the catalyst
[72]. At high enough temperature also the structure of the support material collapses. The tolerance
towards deactivation in high temperature environment is therefore of great importance.

3.3. Surface structure and adsorption processes

A key property governing the efficiency of a catalyst is the ability for the reactive species to
adsorb onto the surface of the catalyst. During adsorption, the electron density configuration of the
molecule will be distorted, facilitating bond breaking and bond formation at lower energy compared
to a gas phase reaction. The charge density can in some cases drastically change, facilitating bond
breaking of the molecule directly on the surface, e.g. H, dissociation over Pt (533) sites [73]. The
parameters which govern the ability for adsorption are for example the geometry of the molecule,
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Figure 2: Step vs. terrace atomic ratio as a function of silver particle size. Constructed Wulff shapes
for 2 and 5 nm silver particles. Step atoms are highlighted. (Reproduced in part from [52] with
permission of The Royal Society of Chemistry.)

the bond order and the edge groups. In addition, the type of surface plays an important role where
the surface configuration and material are the main factors. When discussing the different types of
active sites on a catalyst surface three main distinctions are made; terrace sites, edge sites and
corner sites [1]. Terrace sites are referred to when a molecule adsorbs onto a flat surface, edges can
derive from plate displacement on a surface between the corners of a site, such as the edge between
the corners on a cube, and the corner sites are the corners themselves. As the active phase cluster
grows in size, the valence electrons will become more dislocated, giving the particle a metal-like
behavior and the difference in electronic cloud distribution will increase between the terrace, edge
and corner sites. For a sufficiently large particle, many sites can be available, e.g. when comparing Ag
particles the ratio between step and terrace sites, varying as a function of particle size and the sites
per particle grows with increasing particle size (Figure 2, Reproduced in part from [52] with
permission of The Royal Society of Chemistry). The number of step sites per mass of active metal
increases with decreasing particle size. In addition to the geometric shape of the particle, the lattice
structure of the particle is also of great importance, e.g. CO adsorption on the p(4x4) structure of
oxidized Ag(111) showing low activation energies for the formation of CO;* from CO [74] and CO
oxidation over an ultrathin MgO film supported on Ag(100) where the reaction barrier mainly
originates from the breaking of the O-O bond cf. the CO-Pt and O-Pt bond on a Pt(111) surface [75].
Apart from the structure and geometry, different active phases of the metals will have different
affinity for adsorbing the reactive species. Regarding the HC-SCR reaction, Burch et al. [35] and Arve
et al. [36] have proposed that the initial step in hydrocarbon activation, is the abstraction of the first
hydrogen from the reductant. The dissociation is related to the sticking probability, which is
proportionally dependent on the sticking coefficient and exponentially dependent on the dissociative
chemisorption energy of the molecule on the surface [76]. Comparing the dissociation energies for
different molecules on e.g. silver and platinum surfaces, the dissociation energy is always lower for
platinum according to Bligaard et al. [77]. The authors report that the dissociative chemisorption for
CH,4 on platinum cf. silver differs by 6.49 eV [77], which is a substantial difference. Further, the
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Brgnsted-Evans-Polanyi (BEP) relation [78, 79] states that the change in activation energy follows the
change in energy of the final state for the chemically dissociated molecule. The BEP relation has also
been verified for metal oxides [76], which ensures that the activation barrier will be lower for the
oxidized Pt particles as well, in relation to the oxidized Ag species. The relative sticking probability
should thus be higher over the Pt species than for the corresponding Ag species in our samples.
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4, Experimental methods

All studies have been performed on in-house synthesized Ag/Al,O; catalysts, prepared via sol-gel
synthesis, with various silver loading and Pt doping. The catalysts were thoroughly characterized with
respect to surface area using BET (Papers |, Ill), Ag particle distribution using UV-Vis (Paper I) and
oxidation state using XPS (Paper I, 1l). The catalytic activity has mainly been evaluated on monolith
samples in synthetic gas flow reactors (Papers I-V), however powder micro reactor was also used in
Paper IV. The surface reactions have also been studied using DRIFTS (Paper Ill). In addition to the lab-
scale experiments, the most promising catalyst was up-scaled and evaluated in an engine bench
setup, using a one-cylinder engine as the exhaust gas generator (Paper V).

4.1. Catalyst preparation
Catalyst powder synthesis

The Ag/Al,O; samples were prepared by a sol-gel method including freeze drying [50]. A sol is
defined as a solid suspension, where the size of the dispersed solid is so small that it prevents the
particles from sedimentation by Brownian motion. The prepared samples had a nominal silver
loading of 2, 4 and 6 wt. %, respectively (Paper |-V). In addition to the pure Ag-alumina, the
corresponding samples were prepared with addition of 100 and 500 ppm platinum. The catalysts are
denoted as: Ag(silver loading in %)Pt(platinum doping in ppm) (Paper I-ll, IV-V), e.g. Ag2Pt100
contains 2 wt. % Ag and 100 ppm Pt. The alumina precursor (aluminum isopropoxide, >98%, Aldrich)
was added to milli-Q water and heated to 82°C during vigorous stirring. Subsequently, the silver
precursor (AgNOs, >99%, Sigma), and for the doped samples a platinum precursor (Pt(NOs),, solution
type K, Heraeus), was added. The pH was adjusted to 4.5 by addition of HNO; (10%, Fluka), resulting
in the formation of a sol. The sol was stirred for 12 h, after which a major part of the solvent was
removed using a heated vacuum system.

When micro-porous materials are thermally dried, localized boiling may occur resulting in
considerable pressure variations in the micro-pours channels. This may cause pores to collapse,
which will reduce the surface area of the material. In addition, finely dispersed atoms/clusters may,
due to the high temperature, migrate to the edge of the pores and agglomerate to larger particles. In
order to preserve the micro-porous structure of the y-alumina, the gel can instead be dried using a
freeze-drying method, where the solvent is removed via sublimation. This prevents both pore
collapse and active phase migration. The samples were initially frozen using liquid nitrogen. The
frozen samples were then subjected to pressures below 5 hPa and -110°C in a Freeze dryer
(SCANVAC, CoolSafe 110-4 Pro) resulting in a cryogel.

The freeze-dried gel, i.e. cryogel, consisting of aluminumoxyhydroxide, is subsequently heated
to 600°C in air where it phase transforms to y-alumina. The sample is placed in an oven and the
temperature is raised at 2°C/min from RT to 600°C. In addition to the solid state reaction, the sample
is also purged from undesired compounds from the synthesis, such as remaining nitrates and carbon
containing species.
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Monolith coating

The majority of the activity measurements were performed on catalyst powders, which were
deposited on monoliths. For the standard Synthetic gas bench experiments (SGB) (Paper I-V), the
monoliths were 20 mm in diameter and 20 mm in length. For the experiments performed in the pilot-
scale reactor (PSR) (Paper V), the monoliths required had a diameter of 85 mm and a length of 90
mm.

A wash-coat slurry was prepared with 20 wt. % (bench-scale) or 15 wt. % (pilot-scale) dry
content, where the dry part consisted of 20 wt. % AIOOH-binder (Disperal P2, Sasol) and 80 wt. %
catalyst powder. The solvent consisted of 50 wt. % H,0 and 50 wt. % ethanol for the bench-scale
monoliths, and 67 wt. % H,0 and 33 wt. % ethanol for the pilot-scale monoliths. Additional solvent
and HNO; were added in order to control the viscosity and pressurized air was used to remove excess
slurry in the monolith channels. The monoliths were submerged in the slurry, dried at 90 °C and then
subjected to a fast calcination at 600 °C in air for 2 to 5 min. The wash-coating procedure was
repeated until sufficient amount of wash-coat (20 wt. % of the final weight) had been deposited,
where after the coated monolith samples were calcined in air (600 °C, 3 h). The pilot-scale monoliths
were subsequently canned prior to their installation in the PSR.

4.2. Catalyst characterization

4.2.1. Surface area measurements

The total surface area of a catalyst can be determined according to the BET-theory [80], which is
based on physical adsorption of gas molecules on a solid surface. The theory assumes that gases
adsorb on a solid surface in infinite mono-layers and that there is no interaction between these
adsorption layers. The Langmuir isotherm, which relates the coverage of the adsorbate on a solid
surface to gas pressure or concentration of a medium above the solid surface at a fixed temperature,
is applied and extended to function for several layers. In practice, physisorption of nitrogen at the
condensation temperature of N, i.e. 77 K, is used and by performing measurements at different
equilibrium pressures, a linear plot can be derived (adsorbed amount vs. pressure). From the slope
and the intercept of this plot, using the known projected area of the nitrogen molecule, calculations
using the ideal gas law and Avogadro’s constant result in the specific surface area of the investigated
material [81]. The measurements in this work were performed using a Micrometrics Tristar 3000
instrument with nitrogen sorption at 77 K (Paper |, II). The samples were dried in vacuum at 225°C for
2 hours before the measurements. The specific surface areas showed a high consistency for all
samples with a high surface area in the range 192 + 23 m?/g.

4.2.2. X-ray photoelectron spectroscopy

One important aspect of the catalyst surface properties is the oxidation state of the active
species, which can be measured using X-ray photoelectron spectroscopy (XPS). XPS utilizes a highly
monochromatic x-ray beam, which irradiates the sample and uses the photoelectric effect [1, 82].
The x-rays are absorbed and photoelectrons are emitted. The kinetic energy of the emitted electrons
is equal to the difference between the energy of the x-rays and the binding energy of the emitted
electrons [82]. The intensity of the emitted photoelectrons is measured as a function of the kinetic
energy [1] and by varying the energy of the monochromatic incoming x-rays, a spectra of the binding
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energies is derived. The sample is initially studied with a fast sweep, locating the existing peaks,
where after the peaks are studied with eight sweeps at high resolution. As the sample is radiated
some charging of the sample may arise. To compensate for this potential charging, all spectra are
calibrated with respect to the carbon C 1s peak at 284.5 eV [83]. The experiments in this work (Paper
II) were performed using a Perkin-Elmer PHI 5000 C instrument, with a monochromatic Al K, source.

4.2.3. UV-vis spectroscopy

The UV-vis spectroscopy gives information about the electronic structure from the absorption
bands between ultraviolet and visible light [84]. The size of the silver species, e.g. silver ions or
metallic silver, correlates to an absorption band, hence by analyzing the absorption spectra, the
different silver species present can be determined. The information relates to the electronic levels in
the atoms, ions, complexes or molecules. When studying solid catalysts, as is the case in this work,
the diffuse reflectance from the powder sample is analyzed. This radiation derives from the incoming
radiation, which is absorbed and then reflected after multiple scattering. The frequency of the
reflected beam relates to the transition energy between different orbitals in the atom.

In this work, the fresh and aged 2 and 6 wt. % Ag-alumina samples, pure or doped with 500 ppm
Pt (Paper I) were studied using a Varian Cary 5000 UV-vis-NIR spectrophotometer, with Labsphere
Spectralon reference.

4.3. Catalyst performance

4.3.1. Gaseous compound measurements

During this work, many techniques have been used in order to determine the composition of
inlet and outlet gases. This chapter describes the techniques used in the different reactor setups,
described below. The main instrument for gaseous species concentration determination has been a
Fourier transformed infrared (FTIR) gas analyzer. In addition, due to detection limits for non-polar
species in the FTIR a chemiluminescence (NO, analyzer) instrument were used.

The outlet gas concentrations in Paper I-lll and V were measured using a FTIR gas analyzer (MKS
instruments, MultiGas 2030 HS). Fourier transformed infrared spectroscopy is a vibrational
spectroscopy which utilizes the infrared region of the electromagnetic spectra [84]. As a sample is
subjected to infrared radiation it induces vibrations in the molecular bonds, provided the dipole
moment of the molecule changes during the radiation. The vibrations are caused by an overlap
between the IR- frequency and the frequency of the molecular bond, especially in the middle region
(4000-200 cm™), which corresponds to the energy of vibration [84]. A molecule does not have to be a
permanent dipole to be IR-active if a dipole is induced by the radiation, however symmetrical
molecules such as O, and N,, cannot be detected with FTIR [85]. The vibrations correspond to
absorption peaks with specific frequencies. A specific molecule bond will have an absorption peak
within a certain frequency range depending on its close surrounding. The quantitative concentration
of the bond can be determined by measuring the area of the absorption peak [84]. The absorption
spectrum is unique for a specific compound, hence both qualitative and quantitative analysis of a
compound is possible, however many species have partially overlapping spectra. This may result in
difficulties when distinguishing between different compounds, hence it is beneficial to have some
knowledge about the samples in advance.
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The advantage of using FTIR, as compared to conventional infrared spectroscopy, is that FTIR
has an interferometer, making it possible to measure all the frequencies in the infrared region
simultaneously, resulting in extremely fast measurements. The IR-beam is first sent through a beam
splitter, where after one part of the beam is reflected on a stationary mirror and subsequently sent
through the sample to the detector. The other part of the beam is reflected in a movable mirror and
then sent back through the sample to the detector, resulting in a difference in the length the light
has to travel, controlled by the position of the movable mirror. The positive/destructive interference
data from the interferometer is a graph of output light intensity versus retardation, retardation being
the difference in path-length for the light hitting the movable mirror and the stationary mirror [86],
respectively.

As stated previously, the FTIR analyzing technique cannot detect molecules which cannot induce
a dipole momentum. In order to monitor symmetric molecules, e.g. H,, N, and O, a mass
spectrometer can be employed. Although very efficient for many species, as the specific mass of the
ions are detected, overlapping signals may occur, e.g. CO and N,. The technique uses an ionization
chamber where the compounds are charged and then separated by their mass-to-charge ratio (m/z)
[87]. The ions are subsequently collected and the number of ions per mass is translated to a mass
spectrum. The ion detector can be constructed in different ways. The main principle is however that
the ion beam is subjected to an electric field, which will bend the beam. For the single focusing
magnetic mass analyzer, the beam is collected in a curved trajectory. The m/z will determine the radii
of the curvature as a function of the field strength and voltage with which the ions are accelerated.
By alternating the accelerating voltage and the field strength, the m/z, i.e. the species, can be
detected. Mass spectrometry was used to analyze the effluent gases for the DRIFTS experiments in
Paper lll.

In Paper IV, the NO, reduction was also measured using a NO, analyzer, which utilize
chemiluminescence in detecting the NO and NO, concentrations. The technique is based on the
emission of light as a result of a chemical reaction. NO reacts with ozone and a luminescent active
NO,* molecule is formed. As the NO, molecule relaxes, it will emit one photon for every NO molecule
that originally reacted, which can be amplified though photomultipliers. In the case of gas composed
of a mixture of NO and NO, the gas is first analyzed for NO, via the NO + O; = NO,* + O, reaction,
where after all the NO, in the feed is converted to NO and then run though a second NO, analyzer. By
subtracting the NO signal, determined by the first analyzer, from the total NO, signal, the NO,
concentration can be determined.

4.3.2. Synthetic gas flow reactors

The catalytic performance for lean NO, reduction was evaluated, both at steady-state (Paper I-Il,
IV-V) and ramped temperature (Paper lll-1V) conditions, in a continuous synthetic gas bench (SGB)
reactor, Figure 3. The SGB was also used for mild ageing of the catalytic samples in Paper Il. In papers
I-V the monoliths were wash-coated onto cordierite monoliths and in Paper IV the catalysts were also
investigated in powder form. The reactor chamber for the monolith experiments consisted of a
horizontally mounted quarts tube (L=80 cm, ID=22 mm), which was heated by a metal coil (PID
regulated, Eurotherm) and insulated with quartz-wool (Paper I-lll, V). The synthetic gas flow reactor
in Paper IV consisted of a quartz tube encased in a tube furnace (Lindberg Blue/M) [88]. The
monolith was wrapped with thermally cleaned fiberglass strands and placed at the outlet of the
reactor chamber. Three type K thermocouples were placed inside the reactor chamber close to the
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monolith; 5 mm upstream, 5 mm downstream, and at the midpoint of the monolith, to monitor
catalyst temperatures. The quartz tube was filled with 3 mm quarts beads upstream of the monolith,
ensuring a uniform temperature profile of the gases. The monolith sample was placed close to the
outlet, maximizing the gas heating, with uncoated monoliths before and after to minimize heat-
losses from radiation, as described by Kannisto et al. [50]. The powder reactor was equipped with U-
shaped quartz tubes (ID = 6 mm) inside a furnace. The catalytic powder (100 mg) was kept in place by
two small quartz wool plugs placed just over a burr in the quartz reactor tube and on top of the
catalytic powder [89, 90]. The temperature was measured using a type K thermocouple, placed in the
center of the catalyst bed, and controlled by PID-controllers (Eurotherm). The inlet gas composition
was controlled by separate mass flow controllers (Bronkhorst Hi-tech, Paper I-lll, V; MKS
Instruments, Paper IV) and the outlet gas composition in Paper |-V was analyzed using a FTIR gas-
analyzer (MKS 2030 HS). In addition, two NO, analyzers were used in Paper IV. Water (corresponding
to 5%) and liquid hydrocarbon (n-octane or NExBTL), used in Paper I-lll, V, were introduced
separately to the reactor chamber via controlled evaporator mixer systems (CEM, Bronkhorst Hi-
Tech). The system is composed of a liquid mass flow controller and a gas mass flow controller for
carrier gas, connected to a small furnace where the HC is vaporized and subsequently feed to the
reactor via heated tubes. In Paper IV water was introduced using a custom vapor delivery system
consisting of a HPLC pump (Eldex Laboratories), which introduced the liquid to a 200 °C inert gas feed
via a stainless steel capillary. The capillary was wrapped around a heating cartridge, prior to being
introduced to the gas. The reducing agent was introduced by a syringe pump (Chemyx) through a
stainless steel capillary into a preheated inert carrier gas stream. All gas pipes up-stream the reactor
was heated to approximately 200 °C in order to prevent reactions prior to the reactor, while
preventing condensation. The GHSV was keep at approximately 35000 h* for all monolith
experiment and the powder experiments were performed at 50 000 h™.

The catalyst samples were pretreated in 10% oxygen and with inert balance gas at 550°C, prior
to all reactor experiments. For all measurements at steady-state, the outlet concentrations were
monitored ensuring that steady-state was reached. The C/N molar ratio was kept constant at 6
during all experiments. The Ag2 and Ag6 samples in Paper Il were also subjected to hydrothermal
treatment at 500°C in 10% O, and 10% H,0, with argon balance, for 12 hours. In Paper lll, the
catalysts were evaluated using transient (cooling) temperature experiments, with ethane, ethene
and ethyne as reducing agents. Formation of nitrogen containing species, other than NO and NO,, i.e.
NH3;, HNCO, N,O and cyanide species, were monitored and the concentrations were determined to
be negligible in papers I-lll and V. In Paper 1V, a significant concentration of NH; was detected when
using EtOH as the reducing agent. These results therefore also contain the NH; yield, but the total
NO, outlet concentration i.e. the basis for the NO, reducing calculations, does not contain NHa.
Instead, the NO, reduction calculations (Papers I-V) were derived in accordance with Eqg. 1 and 2.

NO,=NO + NO, (1)

NO, reduction (%) = 100*(NOyin - NOy,out)/ NOyin (2)
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Figure 3: A synthetic gas bench reactor showing 1) MFC-system, 2) metal coil heated reactor
chamber, 3) CEM-system and 4) FTIR gas analyzer.

The hydrocarbon conversion (Paper |, Il, and IV) was determined according to Eq. 3 and 4.

Cl,out =COoyt + COZ, out (3)

HC conversion (%) = 100*(Cy, out /Ca,in) (4)
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4.3.3. Engine bench reactor setup

The pilot-scale reactor (PSR) experiments (Paper V) were performed at Advanced Technology
and Research, Department of energy efficiency and environment, Volvo Group Trucks Technology,
Sweden. In the PSR experiments the HC-SCR catalyst (Ag4Pt100/Al,03) was evaluated in real exhaust
gases together with hydrogen supplied from a fuel reformer, and from a gas bottle, and NExBTL was
used as reducing agent as well as fuel in the fuel reformer.

The exhaust gases were generated by a genset (DX 6000 TE XL C, Yanmar) propelled by VSD10 diesel.
The genset generated an exhaust gas flow of ~450 dm?/min containing ~420 ppm NO,, depending on
the operation mode. The exhaust gases were initially led through a diesel oxidation catalyst (DOC) (I
=150 mm, @ = 140 mm) with a separate diesel injection. The DOC was used to regulate the heat of
the exhaust gases and the operating temperature for the HC-SCR catalyst. The exhaust gas then
passed through a diesel particulate filter (DPF), removing the particulates, and subsequently to the
Ag/Al,0; HC-SCR catalyst. The Ag/Al,O; catalyst consisted of two sequential monoliths (I = 95 mm, @
=90 mm, Vit = 1.2 dm?®), resulting in an approximate GHSV of 22,300 h™. Prior to the HC-SCR catalyst
an air-assisted diesel injection system and a hydrogen injection nozzle were mounted. The hydrogen
could be fed either from a gas bottle or from the fuel reformer. The gas composition was measured
with an FTIR gas analyzer equipped with a sampling pump (MKS™ 2030 HS). The gas composition
could be monitored either upstream or downstream of the HC-SCR catalyst. The temperature of the
exhaust gases was measured before the HC-SCR catalyst. An overview of the system used in the PSR
experiments can be seen in Fig. 2. The physical and chemical properties of the fuels used during the
experiments are given in Table 1.

The fuel reformer consisted of a vertically mounted stainless steel reactor with external heating. To
avoid bypassing around the monolith, it was wrapped in ceramic tape prior to mounting it in the
reactor. The size of the monolith was 9.4 cm® (I = 30 mm, @ = 20 mm). The gases (N, and synthetic
air) and fuel were regulated by three separate mass flow controllers (MFC) (Brooks Instruments). The
water was pumped with a continuous syringe pump. The water and fuel was introduced and
vaporized prior to the reactor. In front of the monolith a quartz plate was mounted to enhance the
mixing of the reactants and ensure complete evaporation of the liquid reactants. The reformate
could either be used as hydrogen source for the HC-SCR or be analyzed by an IR gas-analyzer (Sick
Maihak). The concentrations of CO, CO,, CH,4, O, and H, were analyzed based on dry reformate. The
GHSV was approximately 20,000 h™ H,0/C = 3.8 and 0,/C = 0.4. The fuel reformer was operating at
two different operating points, depending on the H, concentration (~1200 ppm or ~2000 ppm H,) in
the exhaust gas feed. The volumetric flow of reformate produced at the two operating points were
3.2 dm*/min and 3.9 dm>®/min, and the temperatures were 800 and 850 °C, respectively. The H,0/C
ratio used in the PSR setup was higher, cf. the SGB setup, to enable a higher cleaning rate of the
catalyst surface, since the catalyst could potentially be exposed to diesel in liquid state due to
limitations in the diesel injection system.
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Figure 4: Schematic sketch of the pilot-scale setup used for evaluating the HC-SCR catalyst together
with real exhaust gases produced from a genset engine. The hydrogen could either be introduced
from the separate fuel reformer or directly from a gas bottle. The fuel used in the fuel reformer as
well as reducing agent was the commercial biodiesel, NExBTL. The gas and liquid flows to the fuel
reformer were controlled by mass flow controllers (MFC). Prior to the HC-SCR catalyst, a diesel
particulate filter (DPF) was mounted to remove the particulates from the engine. To enable heating
of the exhaust gases, a diesel oxidation catalyst (DOC) with separate HC dosing was used.

4.3.4. DRIFTS reactor setup
The Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) system utilizes the

same technique as FTIR, described in 4.3.1, however the system is constructed to investigate the
adsorbed species on the catalytic sample surface cf. gas in FTIR (Paper Ill).

The flow though DRIFTS reactor experiments in Paper Ill were performed using a Bio-Rad
FTS6000 spectrometer equipped with a high temperature reaction cell (Harrick Scientific, Praying
Mantis™) [9, 91]. The gas composition, introduced to the DRIFT cell, was controlled using separate
mass flow controllers (Bronkhorst Hi-Tech, low A P), and the outlet gas composition was monitored
continuously by a quadrupole mass spectrometer (Balzers QMS 200) via a quartz capillary. The
sample was pretreated with 10% oxygen at 500 °C for 30 min and then pure Ar at 450 °C for 20 min
at a total flow rate of 100 mL/min. Background spectra (60 scans at a resolution of 1 cm™) were
collected for fresh samples under Ar atmosphere. Step-response experiments were subsequently
performed at 450 °C, where the hydrocarbon (C,H; and C;H;) and NO supply was switched on and
off. IR spectra with 1 cm™ spectral resolution were collected with an acquisition frequency of 0.1 Hz.
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5. Results and discussion

This thesis aim to cover a wide scope, ranging from the active sites and stability of the Ag/Al,0;
system, to effects of, and challenges from, up-scaled catalytic samples evaluated at real engine
conditions. The results will be discussed in the following fashion; the first section (5.1) relates to the
active sites of the catalyst. The section covers characterization of the samples, thermal stability and
the effect of platinum doping (Paper I-Il, IV). The second section (5.2) describes the influence of
different reducing agents, ranging from model hydrocarbons (n-octane, C,H,) to real hydrocarbon
fuels (NExBTL, EtOH) and how the platinum doping influences these aspects (Paper I-V). The last
section (5.3) describes the process of up-scaling, with real exhaust effects, and the benefits and
challenges which relates to such experiments (Paper V).

5.1. Influence of the active phase

The Ag-alumina catalysts were investigated using both UV-vis spectroscopy (Paper 1) as well as X-ray
photoelectron spectroscopy (XPS) (Paper |, 1) in order to retrieve information about the nature and
distribution of the silver species. The state of silver is thought to be of crucial importance in regards
to the activity for NO, reduction [52]. XRD was also used, however due to the amorphous nature of
the alumina, and the small Ag cluster/particle sizes, this method was deemed redundant. Previous
UV-vis studies on Ag/Al,O; suggest that ionic silver species (Ag*) show absorption peaks in the range
between 190 and 230 nm [92, 93]. Peaks at 290-350 nm are ascribed to small silver clusters (Agné"),
and peaks over 390 nm are suggested to derive from metallic silver (Ag°) [92, 93]. The UV-vis studies
were performed on both fresh and aged pure Ag-alumina samples, as well as on Ag-alumina catalysts
doped with 500 ppm of platinum. Sol-gel synthesized pure y-alumina was used as a reference and
this spectrum was subtracted from the Ag-alumina data, resulting in a graph displaying the silver
absorption intensity only. The adsorption bands of different silver species have been studied
intensely, and the absorption spectra were deconvoluted as follows: silver ions (Ag*) P1=230 nm [92],
silver clusters (Ag,>*) P2=300 nm and P3=360 nm [92], and metallic silver (Ag°), ascribed to peaks
above 390 nm, was determined by best fit to 425 nm and 545 nm. The absorption spectrum for Ag6,
in Paper I, with deconvolution peaks as well as the sum of the peaks, are shown in Figure 5. The area
of the specific peaks in relation to the total absorption gives the relative amount of the different
silver species. The results, shown in Table 1, indicate that the relative amount of Ag’, Ag.>* and Ag®
species remains very similar in response to both alteration of the silver loading and to Pt doping
(Paper I). The overall UV-vis absorption increases for the samples in the order Ag2 < Ag2Pt500 < Ag6
< Ag6Pt500. The peaks around 230 nm and 360 nm are clearly visible for all samples and the peak at
300 nm is visible for the 2 wt. % Ag samples.

The UV-vis data indicate that the ratio of ionic silver species, small silver clusters and metallic
silver particles are similar for the Ag2, AgPt500, Ag6 and Ag6Pt500 samples (Paper I). However, a
slight increase of the ionic species, at the expense of the metallic ones, is observed as the silver
loading is increased (Table 1). Platinum doping appears to alter the ratios slightly for the 2 wt. % Ag
sample, with a small increase of observable ionic species, but no change in the relative ratio is seen
upon doping of the Ag6 sample. This may be related to the abundance of silver for this sample,
rendering the effect of platinum negligible. Furthermore, no additional UV-vis peaks characteristic for
platinum are observed for the Pt-doped samples, most likely due to the low amounts of Pt doping.
However, as the levels of platinum are very low, absorption peaks for Pt is thought to be hard to
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Figure 5: UV-vis spectrum (with alumina spectra subtracted) for Agé with total absorption (dotted
line), deconvolution peaks (P1-P5) and the sum of the deconvolution peaks (solid line).

detect. The overall UV-vis results indicate that no significant differences in relative ratio of silver
species can be seen for the four samples.

In addition to UV-vis spectroscopy, the samples were investigated using XPS. The binding energy
for the Ag 3ds;, peak as well as the distance between the Ag 3ds,; and the Ag 3ds, peaks, for the
above mentioned Ag2, Ag2Pt500, Ag6 and Ag6Pt500 samples (Paper 1), as well as for the fresh and
aged 2 and 6 wt. % samples (Paper Il), are shown in Table 2. The results from pure and Pt doped
samples show that the Ag3ds,, peak is centralized around 367.7 eV, similar to results by Bukhtiyarov
et al., validating the existence of Ag" species [94], with a peak to peak distance between 5.9 and 6.2,
in accordance with literature data [95]. The results further indicate that the ratio between different
silver species does not change with silver loading and/or Pt-doping.

Table 1: Sample denotation, specific surface area (BET) and relative amount of Ag’, Agn6+ and Ag°
(UV-vis) of the Ag/Al,03 samples.

Sample composition Sample SSA®  Ag™®  Ag.™c  Ag™
designation (m%/g) (%) (%) (%)
2 wt. % Ag/AlL0; Ag2 189 11 38 51
2 wt. % Ag/Al,O3 w. 500 ppm Pt Ag2Pt500 215 14 39 47
6 wt. % Ag/Al,0; Ag6 167 17 37 46
6 wt. % Ag/Al,Os w. 500 ppm Pt Ag6Pt500 182 17 37 46

? BET surface area. " Ag’ ionic silver, P1 at 230 nm [92]. € Agn6+ silver clusters P2=300 nm and P3=360 nm [92].
d Ag® metallic silver P4=415 nm and P5=545 nm.
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Table 2: Binding energy for the Ag3ds,, peak and the distance between the Ag3ds;, and the Ag3d;,
peaks for fresh and aged 2 and 6 wt. % Ag/Al,0; samples (Paper Il) as well as 2 wt% Ag/Al,0;, with 0
and 500 ppm platinum, 6 wt. % Ag/Al,0s, with 0 and 500 ppm platinum (Paper I).

Ag2 Ag2 Agb Ag6 Ag2Pt500 Ag2Pt500 Ag6Pt500 Ag6Pt500
fresh aged fresh aged fresh aged fresh aged
BE (eV) 367.5 367.9 367.9 367.9 367.6 367.7 367.7 367.7
ABE (eV) 6.1 6.1 6.1 6.2 5.9 5.9 6.0 5.9

As catalyst durability is a key property in exhaust after treatment, the influence of hydrothermal
aging was investigated (Paper Il). The samples were hydrothermally (HT) treated at 500°C in the
presence of 10% H,0 and 10% O, with argon balance for 12 hours in order to study the initial
deactivation. The Ag2 and Ag6 samples were investigated in order to evaluate the influence of Ag-
loading on the lean NO, reduction performance for fresh and aged catalysts, using n-octane as
reducing agent. The influence of varying the reducing agent was also investigated and is further
discussed in section 5.2. In general, the hydrothermal treatment results in a slight increase in the
lean NO, reduction activity for the samples. Furthermore, a higher silver loading results in an
increased activity for NO, reduction. Whilst the fresh 2 wt. % Ag sample exhibit somewhat higher NO,
reduction at temperatures between 225 and 325°C, as compared to the HT-treated sample, the
activity of the Agb sample appears to be relatively unaffected by the HT-treatment in this
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Figure 6: NO, reduction from flow reactor experiments for fresh (closed markers) and hydrothermally
treated (open markers) 2 (m, O0) and 6 wt. % (e, 0) Ag/Al,O; using n-octane as reducing agent. Inlet
gas composition: 200 ppm NO, 10 % O,, 1000 ppm H,, 5 % H,0 and Ary,, C/N=6. GHSV = 33, 200 h.
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Figure 7: The NO to NO, conversion from NO oxidation experiments in excess oxygen is illustrated for
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temperature interval. Above 350°C, HT-treatment results in a slight increase in the NO, reduction
over both catalysts, reaching a maximum of 66% at 350°C for the Ag2 sample and a maximum of 78%
at 375°C for the Ag6 sample (Figure 6). This indicates that aging at these conditions does not
influence the nature of the silver to any significant degree. The effect of ageing at higher
temperatures was also investigated (Paper ll). It can be seen that ageing at temperatures up to 650°C
is beneficial for the NO, reduction activity of the samples, with an increase in reduction of up to 15%.
However, when the ageing temperature exceeds 650°C the activity decreases severely. Furthermore,
the maximum activity is located around 350°C for both the fresh samples and the samples aged
between 500 and 650°C. However, when aging is carried out at temperatures of 700°C and above,
this maximum shifts towards higher temperatures.

Doping Ag/Al,0; catalysts with trace amounts of platinum proved to be beneficial for the low
temperature NO, reduction activity of the catalysts (Paper I, IV, V). A series of 2, 4 and 6 wt. % silver
alumina samples, pure and doped with 100 or 500 ppm of platinum, were evaluated in order to
further understand the effect of the Pt-doping. The effect of platinum doping on the NO, reduction
ability can be seen in Figure 8. The activity for NO, reduction for the samples without Pt doping
follow a typical volcano shape, with an increase in activity observed as the temperature is increased
up to around 350°C. Above 350°C, the competing combustion reaction becomes dominant,
consuming the reductant, and the NO, reduction decreases. The Ag2 and Ag4 samples show similar
performance for NO, reduction up to 325°C. At higher temperatures however, the Ag2 sample show
higher NO, reduction. The Ag6 sample show slightly lower NO, reduction below 325°C, compared
with the Ag2 and Ag4 samples, but displays the highest NO, reduction above 350°C.
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Introducing Pt to the samples generally improves the low-temperature activity for lean NO,
reduction. However, although the activity for NO, reduction over the Ag2Pt100 sample resembles
that of the pure Ag/Al,O; samples, increasing the silver loading to 4 and 6 wt. % Ag results in
decreased activity for NO, reduction at high temperatures. The Pt doped 4 and 6 wt. % Ag samples
also display local minimum in NO, reduction around 325°C, also visible for the Ag2Pt500 sample. The
NO, reduction for these samples increases again as the temperature reaches 350°C, although the
activity does not reach that of the pure Ag/Al,0; samples. The Ag2Pt100 sample shows the highest
activity for NO, reduction above 350°C. The results from the samples doped with 500 ppm Pt show
an even higher activity at low temperatures, with the highest activity for the Ag2Pt500 sample. The
decrease in activity, localized around 325°C, is observed over all Pt doped samples and becomes
more prominent and starts at lower temperatures as the silver loading is increased.

To explain the dual activity regime of the Pt doped samples above and below 325°C, the effect
of NO oxidation was investigated (Figure 7). The outlet concentrations of NO and NO, indicate that
the ratio between NO and NO, is quite similar for the pure silver alumina samples with NO as the
dominant NO, species over the entire temperature range. For the samples doped with platinum
however, the NO/NO, ratio is altered, showing a higher NO, concentration at low temperatures. At
high temperatures NO is again the dominating gas phase NO, species. For the samples with 100 ppm
Pt doping, the NO and NO, concentrations are similar for the 2 and 4 wt. % Ag samples, whereas the
NO, concentration is substantially higher for the 6 wt. % Ag sample. Further, for the samples doped
with 500 ppm Pt, the change in NO concentration is substantial, with increasing NO concentration for
increasing silver loading at higher temperatures. The NO, concentration follows the opposite trend
with high concentrations at low temperatures, decreasing with increasing temperature. Previous
studies [64] have shown that varying the inlet NO/NO,—ratio generally have a negligible influence on
the overall NO, reduction, and that the effect of introducing NO, in the feed even is negative for the
overall reduction of NO, when using n-octane as reducing agent [64]. Meunier et al. [96] found a
promotional effect when using NO, as reactant, however these experiments were performed with
low oxygen concentrations using C3Hg as reducing agent. During such conditions, a strong oxidizing
agent as NO, might be beneficial.

The overall results show that, as the catalysts are doped with platinum, the oxidation of NO to
NO, is changed, but as stated before this is not thought to play a major role in the NO, reduction
reaction under the present reaction conditions. No clear trend from the NO oxidation experiments or
the NO/NO, concentration during the NO, reduction experiments is found that can explain the
change in NO, reduction activity observed for the platinum-doped samples. The change is instead
believed to be related to the oxidation of the reducing agent, further discussed in 5.2.

However, the HC oxidation experiments show that the addition of platinum alters the HC
oxidation properties for the Ag-alumina catalysts, resulting in two oxidation regimes. This double
regime behavior, with a minimum HC conversion at 325°C, is related to the NO, reduction activity
also showing two reduction regimes. As the temperature increases, the amount of available
hydrocarbons on the surface increases, possibly owing to that the inactive nitrates desorb allowing
more hydrocarbons to adsorb on the surface. For the high-loaded samples with 500 ppm platinum
the amount of hydrocarbon starts to poison the surface and the NO, reduction activity starts to
decrease. As the temperature reaches 325°C, the hydrocarbon oxidation over the pure silver sites
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Figure 8: NO, reduction (top) as well as outlet concentration of NO and NO, (bottom) from NO,
reduction experiments in flow reactor for 2 wt. % (m), 4 wt. % (e) and 6 wt. % (A ) Ag/Al,O; samples
without Pt (left column), with 100 ppm Pt (center column) and with 500 ppm Pt (right column). Inlet
gas composition: 200 ppm NO, 10 % O,, 1000 ppm H,, 5 % H,0, Ar,, and n-octane as reducing agent
with a C/N molar ratio of 6. GHSV = 33,200 h™.

starts and the excess hydrocarbon is purged from the surface, resulting in a decrease in activity with
a minimum around 325°C, where after the activity is recovered. Hence, the change in HC oxidation
performance and the increase in hydrocarbon adsorption on the surface are suggested to be the
underlying reason for the two reduction regimes for NO,. This effect leads us to suggest that,
although the NO to NO, formation likely is of some importance, it is the increase in sticking
probability, i.e. hydrocarbon-surface interaction, and partial oxidation of the hydrocarbon, owing to
the added platinum, that is the main factors leading to the increase in NO, reduction at low
temperatures for the Pt-doped samples. This implies that the doped samples have more available
hydrocarbons on the surface, owing to higher sticking probability, and the increase in low-
temperature NO, reduction is actually a result of this effect.

The silver loading can be seen to significantly influence both the NO, reduction activity as well as
the temperature for maximum reduction, independent of reducing agent (Paper I-Ill). As the ratio
between the surface silver species is constant for the different silver loadings (Paper Il), the number
of active sites probably plays a major role. A higher number of sites would decrease the distance
between the different sites, likely increasing the interaction between the oxidative and reductive
sites. Paper llI-lll also illustrates the importance of the nature of the reducing agent with emphasis on
carbon-carbon bond order, hydrocarbon branching and surface sticking probability.
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In concussion, the nature of the active phase is of great importance when designing an Ag/Al,O;
catalyst, with respect to both activity and durability. The synthesis route used in this work has been
shown to result in a higher number of small silver species, particularly active for the NO, reduction
reaction. The number of small silver species is however not the only parameter of importance when
designing the catalyst. The use of different types of reducing agents, discussed in the next chapter,
will result in different sticking probabilities and oxidation barriers. This will hence require more or
less oxidizing metallic silver sites in order to activate the reducing agent, making it accessible in the
NO, reduction reaction.

5.2. Influence of reducing agent

The fuel supply for the transport sector contains a large variety of fuels, both fossil and
renewable and, as discussed in the “Biofuels” section, the supply and variety of renewable fuels will
likely grow. In order to ensure a robust and reliable NO, reduction system, the influence of different
fuels on the HC-SCR process must be understood. Properties such as HC-chain length, oxygen content
and over-all stability of the reducing agent can greatly affect the NO, reduction. One key factor is
likely the accessibility of the hydrocarbon, i.e. the amount of adsorbed surface hydrocarbons and the
stability of the HC in gas phase with respect to temperature and its reactivity. The effect of different
reducing agents was investigated in Paper I-V, ranging from a commercial biodiesel (NExBTL), a
representative hydrocarbon for gasoline (n-octane), ethanol and ethanol/gasoline blends, and model
hydrocarbons such as C, compounds with different bond order (C,H,, C,Hs and C,Hg). The use of
NEXBTL, a biomass-to-liquid product derived from vegetable oils and animal fats consisting of n-
(<10%) and iso- (>90%) paraffins [97], has been shown to result in reduced engine-out emissions of
NO,, HC and CO at heavy-duty conditions, when blended with other diesel fuels e.g. EN590 and EC1
cf. conventional diesel fuels [97].

This section will initially focus on commercial fuels and then gradually move to model
hydrocarbons. The use of real fuels as reducing agents in laboratory scale does not only pose
problems in a practical sense, but also results in a far more complex chemistry. The main difficulty
during the experiments in this study was, however, related to practical applications. For example,
environmental class 1 (MK1) diesel was initially considered as a candidate during the selection of
reducing agents, however no consistent and reliable way of introducing MK1 was possible using the
available equipment. This was most likely due to the aromatic content amongst other factors, hence
NEXBTL was chosen as the most complex reducing agent, containing no aromatic compounds, and
also fulfilling the objective of using renewable fuels. NExBTL was used both during standard NO,
reduction conditions (Paper Il, V) and when investigating thermal stability of the catalyst (Paper Il) in
order to compare a model hydrocarbon (n-octane) to real fuels. The thermal stability of the catalyst
was found to be high both when using n-octane and NExBTL (Figure 9).
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Figure 9: NO, reduction from flow reactor experiments for fresh (closed markers) and hydrothermally
treated (open markers) 2 and 6 wt. % Ag/Al,0; samples using n-octane (m, 0) or NEXBTL (e, O) as
reducing agent. Inlet gas composition: 200 ppm NO, 10 % O,, 1000 ppm H,, 5 % H,0 and Ar,, C/N=6.
GHSV =33, 200 h™.

Furthermore, to investigate the effect of various types of hydrocarbons, the hydrocarbon
oxidation was studied in addition to the NO, reduction. As stated previously, NExBTL consists mainly
of iso-paraffins [93] and has an approximate carbon chain-length of 16 carbon atoms compared to
eight for n-octane. This difference will most likely influence the adsorption behavior of the
hydrocarbons, and the high amount of branching in the NExBTL can lead to increased adsorption as
compared to the n-octane. This is also supported by results from Lindfors et al. [98], where branched
hydrocarbons display a lower activity, for both NO, reduction and HC oxidation, compared to straight
hydrocarbons. This effect was investigated over samples with different silver loadings. The 6 wt. % Ag
sample does have higher number of oxidation sites than the 2 wt. % Ag sample (Paper ) and should
hence be able to oxidize the adsorbed hydrocarbon to a higher degree, facilitating a slightly higher
HC conversion. A sharp increase in HC conversion can be seen for all samples above 300°C (Figure 10
and Figure 11), both during the HC oxidation and the NO, reduction experiments. This is likely owing
to the reduction of Ag surface oxide species to metallic silver [99], increasing the oxidative properties
and improving the HC oxidation activity. In addition, the length and branching of the hydrocarbon
chain likely influences the type of oxygenated hydrocarbon species formed on the surface [98].
Hence, the surface coverage of NExBTL and/or NExBTL derived species would likely be higher in
comparison with the case of n-octane, effectively poisoning the catalyst surface. This could
potentially lead to a reduction of the amount of nitrogen-containing species on the surface and is
thought to be the reason for the lowered NO, reduction activity when changing from n-octane to
NExBTL.
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Figure 10: Hydrocarbon conversion and, CO and CO, formation over temperature for the Ag2 and
Ag6 samples during NO, reduction experiments, using n-octane and NExBTL as reducing agents. Inlet
gas composition: 200 ppm NO, 10 % O,, 1000 ppm H,, 5 % H,0, Arp, and n-octane or NExBTL as
reducing agent with a C/N molar ratio of 6. GHSV = 33,200 h™..

As stated above, the surface properties of the catalyst are of high importance when studying
oxidation properties. To further understand the oxidation of the hydrocarbon over the Ag-alumina
surface, separate hydrocarbon oxidation experiments using n-octane (Paper IlI) and hydrocarbons
with different carbon-carbon bond order i.e. alkane, alkene, and alkyne (Paper Ill) were performed.
Paper Il also includes Ag-alumina samples doped with platinum. When comparing hydrocarbon
oxidation results for the Pt-doped and pure Ag catalysts (Figure 11), the n-octane conversion for the
Pt-doped samples starts at much lower temperatures. For instance, the n-octane conversion for the
Ag2Pt500 sample starts already at 250°C, which should be compared to well above 300 °C for the
corresponding un-doped Ag sample, similar to the steep increase in the HC-oxidation for n-octane
and NExBTL during NO, reduction experiments using pure Ag-alumina catalysts (Figure 10). The HC
conversion for the Ag6Pt500 sample starts before 225°C, however the conversion increase levels out
at 325°C, similar to the drop in NO, reduction activity (Figure 8). Although the platinum decreases the
onset temperature for HC oxidation, the Ag6 sample also displays a higher oxidation capacity cf. Ag2,
seen when comparing the different C, compounds (Paper Ill). In general the hydrocarbon oxidation
using C,H, hydrocarbons proceeds at lower temperatures and results in higher CO, formation over
the Ag6 sample as compared to the Ag2 sample. For example, when using the C,H, hydrocarbon, the
Ag2 sample shows HC-conversion (seen from CO, formation) at 300 °C (Figure 13) whereas the Ag6
sample starts already at 250°C. This is particularly evident in the case of C,H, oxidation, which starts
around 350°C over the Agb sample but not below 450°C over the Ag2 sample. For both catalysts, the
lowest activation temperature is observed for ethyne (C,H,) oxidation, which starts around 270 and
300 °C for the Agb and Ag2 samples, respectively. This is probably connected to the presence of a
higher amount of metallic silver species in the Ag6 catalyst compared to the Ag2 catalyst, facilitating
total oxidation in agreement with previous studies [50, 100]. Generally, the silver species most likely
attain a more metallic structure as the temperature is increased (>300°C), as stated before [99],
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which likely results in an adsorption/oxidation equilibrium balance, where the rate of oxidation is
similar to the rate of adsorption. Hence, the surface coverage of hydrocarbons decreases and other
species, i.e. NO,, can adsorb and react. Moreover, the UV-vis and XPS results indicate that increasing
the silver loading leads to an increase in the total number of oxidation sites (the individual Ag species
ratios being constant), which results in an increase in HC oxidation at high temperature, for the high-
loaded Ag samples. The increased hydrocarbon oxidation at low temperatures for the Pt-doped
samples can, on the other hand, likely derive from increased adsorption energy of the hydrocarbon
on the surface. Comparing the dissociation energies for different molecules on silver and platinum
surfaces, the dissociation energy is always lower for platinum according to Bligaard et al. [77]. The
authors report that the dissociative chemisorption for CH, on platinum cf. silver differs by 6.49 eV
[77]. The Brgnsted-Evans-Polansky (BEP) relation [78, 79] states that the change in activation energy
follows the change in energy of the final state for the chemically dissociated molecule. Although the
energy difference is likely smaller for long-chained hydrocarbons, the sticking probability, i.e.
hydrocarbon-surface interaction, on platinum is still prone to be higher than on silver.
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Figure 11: HC oxidation for the Ag2, Ag2Pt500, Ag6 and Ag6Pt500 samples. Top: HC conversion.
Bottom: CO and CO, formation. Inlet gas composition: 150 ppm n-octane (equivalent to C/N=6 using
200 ppm NO), 1000 ppm H,, 5 % H,0, 10 % O, with Ar,,. GHSV = 33,200 h™.
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Although the metals in the present samples may be more or less oxidized, the BEP relation also holds
for oxides [76] which ensures that the activation barrier will be lower for the oxidized particles as
well. Thus, the relative sticking probability should be higher over Pt species than over the
corresponding Ag species. Furthermore, assuming that incorporation of platinum increases the
adsorption of hydrocarbons, the Ag2Pt500 sample should be more susceptible to hydrocarbon
poisoning compared to the Ag6Pt500 sample, due to its lower number of oxidation sites. The
Ag6Pt500 sample will instead reach adsorption/oxidation equilibrium at lower temperatures and
hence have a higher overall HC conversion and a higher HC conversion at lower temperatures.
Previous studies have suggested that the activity for NO, reduction over Ag-alumina is affected by
many parameters, such as the ratio between oxidation and reduction sites [50], the dissociative
chemisorption of hydrocarbons [101, 102] and, in relation to this, the influence of C-C bond strength,
steric effects and sticking probability [51]. The promotional effect of the platinum addition to the
silver-alumina system could possibly be ascribed to all of these parameters. Pt may change the
amount of chemisorbed hydrocarbon on the surface and thereby change the required ratio of red/ox
sites for efficient partial oxidation of the hydrocarbon. It may also alter the effective oxidation
properties of the surface.
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Figure 12: Hydrocarbon conversion (top) as well as CO and CO, formation (bottom) from NO,
reduction experiments in flow reactor for 2 wt. % (m), 4 wt. % (e) and 6 wt. % (A ) Ag/Al,O; samples
without Pt (left column), with 100 ppm Pt (center column) and with 500 ppm Pt (right column). Inlet
gas composition: 200 ppm NO, 10 % O,, 1000 ppm H,, 5 % H,0, Ar,, and n-octane as reducing agent
with a C/N molar ratio of 6. GHSV = 33, 200 h™.
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The oxidation, or activation, of the HC is closely related to the reduction of NO, and to
understand the underlying reasons for the increased HC oxidation and NO, reduction with increasing
C-C bond order, many aspects need to be taken into consideration. Steric effects resulting in
differences in the hydrocarbon activation/oxidation have been discussed for C-H bond interaction
with the catalyst surface. However, in the present case the C-C bond activation is likely more
important than the activation of the C-H bond, not necessarily breaking the C-C bond but activating
the molecule towards further reactions. The adsorption of the hydrocarbon is also dependent on the
shape and orientation of the C-C electron orbitals. The electrons in the m-bonds in ethene and
especially ethyne, for which the m-electron cloud has a cylindrical shape, can easily interact with the
catalyst surface and thereby form new bonds between the unsaturated hydrocarbon and the surface.
Furthermore, the difference in steric hindrance is to a high extent reflected in the sticking

probability.

Comparing the hydrocarbon conversions (n-octane) for the Ag2 and Ag6 samples in Figure 11
(no NO, present) and Figure 12 (NO, reduction conditions), a higher HC conversion can be seen
during the NO, reduction experiments. The conversion for the Pt-doped samples, Ag2Pt500 and
Ag6Pt500, is seen to differ less in response to the presence of NO, however the low temperature HC
conversion is higher for the NO, reduction experiments. The higher HC conversion at low
temperature is likely owing to the presence of reactive nitrite species. As the HC conversion is
calculated from the CO and CO, formation (Eg. 3 and 4), the difference in HC conversion could also
be ascribed to the formation of other partially oxidized carbon containing species during the HC
oxidation experiments, e.g. acetates. Figure 14 shows the NO, reduction and CO and CO, formation
during oxidation of C, hydrocarbons in the presence of NO and excess O, over the Ag2 and Agb6
samples during extinction ramp experiments. The NO, reduction pattern is generally similar for both
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Figure 13: Formation of CO and CO, during temperature programmed extinction experiments with
C,H, (blue), C,H,4 (red), and C,Hg (black) over Ag2 and Agb6 catalyst. Inlet gas composition: 600 ppm C,
hydrocarbon, 10% O,, Arn,. GHSV: 32, 000 h™.

32



catalysts although the temperature windows are shifted to lower temperatures and the maximum
NO, reduction is slightly lower for the Agé sample. The highest NO, reduction is achieved when C,H,
is used as reducing agent, over both catalysts, reaching 87% at 412 °C and 82 % at 330 °C for the Ag2
and Agb samples, respectively. For both catalysts the C,H, also shows the widest temperature
window for NO, reduction. The maximum NO, reduction for C,H, and C,Hg is 71 and 81%,
respectively, over the Ag2 sample and approximately 70%, for both the reductant, over the Agé6
sample. The temperature windows for NO, reduction with these hydrocarbons are similar, showing
no significant activity below 350 and 400°C for the Ag6 and Ag2 samples, respectively.

As the oxidation of the hydrocarbon reductant is of great importance, the work on C,
hydrocarbons was also extended to include oxygen containing hydrocarbons. The main differences
when using oxygenated hydrocarbons are the increase in NO, reduction and the very low or absent
effect of hydrogen addition. The study on oxygenated hydrocarbons was done in combination with
non-oxygenated hydrocarbons by using ethanol, EtOH/CsHs and EtOH/gasoline blends as reducing
agents (Paper IV) over both powder and monolith coated catalyst samples. The study was performed
on both in-house sol-gel prepared samples as well as on a commercial Ag/Al,O; (Catalytic Solutions
Inc.). The selection of catalysts also include Pt doped Ag/Al,0; catalysts. The study shows a
remarkably high NO, reduction with a high selectivity towards NHs. The powder study was used as
the basis in the determination of suitable candidates for monolith experiments with more in-depth
analysis (Figure 15). The 1500 ppm (C/N=6) EtOH powder experiments showed similar behavior at
temperatures up to 400 °C, with 15 °C lower onset temperature for the Ag4 cf. CSl and Ag2Pt100.
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Figure 14: Formation of CO, CO, and reduction of NO, during temperature programmed extinction
experiments with C,H, (blue), C;H, (red), and C,Hg (black) over Ag/Al,O3 catalyst with 6 wt. % (left
panel) and 6 wt. % (right panel) nominal silver content. Inlet gas composition: 200 ppm NO, 600 ppm
C, hydrocarbon, 10% O,, Arp,. GHSV: 32, 000 h™.
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Figure 15: NO, reduction results from fixed powder bed reactor experiments over CSI (black), Agd
(red) and Ag2Pt100 (blue) samples. Right panel: 1500 ppm EtOH (C/N=6), middle panel: 750 ppm
EtOH (C/N=3) and right panel: 750 ppm EtOH + 500 ppm Cs;Hg (C/N=6) as reducing agent Inlet gas
composition: 500 ppm NO, 10 vol. % O,, 5 vol. % H,0, and N3 pajance- GHSV = 50000 ht.

The temperature window for the Ag2Pt100 extends approximately 70 °C over the other two samples.
When the EtOH concentration is decreased to 750 ppm (C/N=3) the Ag2Pt100 sample maintains a
high reduction, however at a narrower temperature window, whereas the pure Ag sample, CSI and
Ag4, only reach a maximum of 60 % and 65 %, respectively. The reduction is recovered for the Ag4
sample when 500 ppm C3Hg is added to the 750 ppm EtOH. The addition of C3Hg does however
appear to hinder the NO, reduction for the CSI and Ag2Pt100 samples which display lower reduction
compared to when only 750 ppm EtOH was used.

The Ag4 and Ag2Pt100 samples were subsequently wash-coated onto cordierite monoliths and
evaluated in a synthetic gas bench reactor, using EtOH/gasoline mixtures as reducing agent (Figure
16). The mixtures are denoted as E(concentration of EtOH), i.e. E85 contains 85 % EtOH and 15 %
gasoline and all experiments were carried out at a C/N ratio of 6. The results show a much higher NO,
reduction over the Agd4 sample than over the Ag2Pt100 sample, with the Ag4 sample displaying a
light-off temperature approximately 50 °C before the Ag2Pt100 sample, contrary to the powder
reactor results. In addition, the E85 and E100 results show very similar reduction for the Ag4 sample,
whereas the E100 shows strictly higher reductions cf. E85 over the Ag2Pt100 sample. The E50 results
over the Ag4 sample displays slightly lower reduction at temperatures below 450°C, where after the
reduction is high cf. E85 and E100. The Ag2Pt100 sample results however, show no improvement at
high temperatures when using E50, but instead an overall decrease in NO, reduction activity is
observed. The HC conversion, derived from the formation of CO and CO,, is almost identical when
comparing E100 and E85 for the two catalysts individually. The HC conversion light-off for the Ag4
sample also begins approximately 50 °C before the Ag2Pt100 sample correlating with the NO,
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Figure 16: NO, reduction results (top panels), NH; yield (middle panels) and CO + CO, yield (bottom
panels) from synthetic gas flow reactor experiments for 2 wt. % Ag/Al,O; with 100 ppm Pt (left
panels) and 4 wt. % Ag/Al,O; (right panel) using EtOH/gasoline blends as reducing agent. Blends are
denoted as E100 (m), ES5 (@) and R50 (A ). Inlet gas composition: 500 ppm NO, 10 vol. % O,, 5 vol. %
H,0, and N, pajance- The C/N molar ratio was 6 and GHSV = 35 000 ht.

reduction light-off. It can be noted that the promotional effect of addition of platinum seen during
the powder experiments is not visible for the monolith experiments.

A remarkable result from the EtOH-SCR over Ag/Al,O; catalysts is the NH; formation. At low
levels the formation of NH; is considered as an unwanted byproduct, however at levels of the
magnitude showed here it is possibly an asset if the system is used for passive SCR. Combining a
system of this type with e.g. an ammonia storage catalyst and a NH;-SCR catalyst could very well
result in an interesting system. As stated in the introduction, the addition of a urea tank in light duty
vehicles is undesirable due to space limitation, hence NHs-SCR has been considered as a heavy duty
technology only. In addition, one key challenge with HC-SCR is keeping down the fuel penalty derived
from the hydrogen reformation of the fuel and the consumption of fuel as reducing agent. As the
EtOH-SCR does not require H, in order to achieve high reduction, this contribution to the fuel penalty
is avoided. If the EtOH-SCR system would be connected to a down-stream NHs-storage/SCR catalyst,
the produced ammonia could be utilized for NO, reduction. Switching EtOH to the Ag-alumina
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catalyst on and off could result in a cycling between HC-SCR, reducing NO, and charging the NHs-
storage/SCR catalyst, followed by a NH3-SCR, which consumes the stored ammonia, reducing the fuel
penalty even further.

In conclusion, we have shown that the type of reducing agent is a crucial factor when designing
a HC-SCR catalyst. The results from using long-chained hydrocarbons such as NExBTL as reducing
agent compared with model hydrocarbon such as n-octane vary significantly. The underlying reasons
behind this is e.g. branching of the hydrocarbon relating to the sticking probability and the C-C bond
order relating to both the sticking probability, due to more or less favorable electron orbitals, and
also to the partial oxidation, i.e. activation, of the HC. Oxidized hydrocarbons such as ethanol display
a much higher activity for NO, reduction compared to for example C,H,; even without the presence of
hydrogen. When designing a Ag/Al,O, catalyst one must therefore take the intended reducing agent
into account.

5.3. Effects of system integration

HC-SCR over Ag/Al,0; has been investigated intensively during the past few decades and
numerous papers regarding the effects of alternate synthesis routs, reducing agents, mechanistic
surface reactions and the hydrogen effect has been published. The number of applied studies with
real exhausts is however fewer. Studying the bridge between laboratory scale experiments and a
more applied approach was the final aim of this research project, and the study is presented in Paper
V were we attempt to illustrate advantages and difficulties for this type of up-scaled experiments and
how they relate to laboratory scale experiments. Initially, the Ag/Al,O; system was investigated in
order to ensure that a suitable catalyst was chosen. Papers I-lll investigated the effects of silver
loading and platinum doping resulting in a deeper understanding of what would be required in
engine bench trials. These studies, in combination with a laboratory scale investigation on a synthetic
gas bench (SGB, 4.3.1) reactor, indicated that the Ag4dPt100 sample was the most suitable candidate
for the up-scaled engine experiments on the pilot-scale reactor (PSR, 4.3.2) setup. In addition to the
catalyst itself, the interaction between the catalyst and the reducing agent had to be considered. Not
only must the catalyst and reducing agent be compatible, the delivery system must also
accommodate the specific reducing agent. Following the work by Kannisto et al. [49, 52], Paper Il
investigated the potential for using a more diesel like hydrocarbon as reducing agent. The Swedish
environmental Class 1 (MK1) diesel was initially considered, however due to the composition of the
HC the fuel could not be introduced to the system with satisfactory precision. Instead, the
commercial biodiesel NExBTL was chosen, as it behaved satisfactory in the reactor system and as it
displayed high NO, reductions (Paper Il). In addition, it complied with the project goals of working
towards sustainable fuels. The hydrogen effect has also been a research area of great interest since
its discovery in year 2000 [43], although few applicable solutions for hydrogen addition in real
applications have been proposed. One advantage with the HC-SCR technique is that the system
utilizes components already available on the vehicle. If a hydrogen tank would be required this
advantage is lost. This study wishes to illustrate the feasibility for onboard applications, requiring a
reliable source of hydrogen. For this reason, a Rh/Ce0,-ZrO, fuel reformer was added to the system,
having shown high reliability and durability in previous studies [103, 104]. The fuel used in the
reformer was also the commercial biodiesel NExBTL. The study was done in collaboration with the
catalysis group at the Royal Institute of Technology (KTH), Stockholm.
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As stated previously, the most promising catalyst candidates from Papers I-1ll were studied using
a SGB setup in lab-scale in order to determine the best candidate for the pilot-scale reactor (PSR)
experiments, as well as to ensure an overall functioning system and a functional integration between
HC-SCR and the reformer system. The NO, reduction activity of three HC-SCR catalysts (Ag2, Ag4,
Ag4Pt100) was investigated in a synthetic gas bench reactor (SGB) setup, using a hydrogen-rich gas
from the fuel reformer at three different H, concentrations. As the Ag4Pt100 catalyst showed the
largest variation in promotional effect as a function of hydrogen concentration (Figure 19), this
catalyst was up-scaled and evaluated in the PSR setup, connected to a one-cylinder diesel engine as
the exhaust generator. These experiments were performed using both bottled hydrogen, at three
different concentrations, and by using hydrogen supplied from the fuel reformer, at two different
concentrations. The HC-SCR catalyst was up-scaled 200 times cf. the size of the SGB scale monoliths,
allowing the system to process a complete engine exhaust flow with reasonable space velocities. In
this setup the HC-SCR catalyst was exposed to real operating conditions using real exhaust gases. The
PSR setup enabled comparative experiments between hydrogen originating from bottle and from
fuel reformer. One issue that the HC-SCR system shares with the NH3-SCR system is the need for a
well dispersed reducing agent, although not to the same degree. As no decomposition of the
hydrocarbon reducing agent is desired, only vaporization, the system will initially not require the
same level of complexity. However, as mentioned briefly in the chapter concerning the effects of the
reducing agent, the thermal stability of the reducing agent is crucial. During the pilot-scale
experiments, a lowered NO, reduction could be observed related to the C/N ratio. More in-depth
studies of the reducing agent later revealed that for some conditions, the temperature in the HC
injection zone exceeded 400°C, resulting in a thermal decomposition of the reducing agent (Figure
18). In order to maintain a high reaction temperature in the HC-SCR catalyst, a substantial flow
needed to be injected in the DOC, resulting in elevated temperatures in the injection zone. The HC
amount which actually reached the HC-SCR catalyst was hence decreased with as much as 50 %
resulting in a C/N ratio of approximately 2.

Hydrogen generation

Different ways of introducing hydrogen to the exhaust stream prior to the HC-SCR catalyst has
been discussed in both the academic and industrial part of the scientific community. This study
therefore utilized a potential onboard hydrogen generator, i.e. a fuel reformer. Prior to the
integration experiments the aging characteristics of the fuel reformer catalyst was thoroughly
investigated in the bench-scale fuel reformer setup, described in detail by Granlund et al. with
NExBTL [103]. The most important feature for onboard fuel reforming in vehicle applications is the
actual amount of hydrogen produced. In addition, the diesel slip, i.e. the unconverted fuel passing
through the reformer is of great importance, due to fuel penalty considerations.

The main components in the reformate are H,, CO,, CO and H,0, however the presence of by-
products are not negligible. These by-products were monitored by the FTIR gas analyzer at similar
operating conditions utilized in the SGB experiments. The reformate composition is shown in Figure
17, where the concentrations of the by-products are displayed as C;-concentrations originating from
each HC species in the fuel reformer outlet. A concentration of 2000 ppm C; in the reformate
corresponds to a concentration of 10 — 40 ppm C; in the feed to the HC-SCR catalyst. As the fuel
reformer was run at different temperatures for the different operation points i.e. hydrogen
concentrations, the outlet concentration varied, however HC-SCR active HC-species are present at all
temperatures.
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Figure 17: Composition of the reformate at H,0/C ~2.5 and 0,/C ~0.5 and GHSV ~20,000 h™. The
concentrations of the by-products are displayed as C; derived from the different HC species. The
species are denoted as: (H) diesel, (®) CH,, (<) propene, and (») ethene.

A high activity over the HC-SCR catalyst is relying on an evenly distributed flow of reducing
agent, i.e. fuel. If the fuel is exposed to high temperature the long hydrocarbon chains will
decompose. The decomposition can be either cracking or partial and total oxidation. In the PSR
setup, the reducing agent was injected through an air-assisted capillary, mounted right after the
DOC. As stated before, the main purpose of the DOC was to heat the exhaust gas stream in order to
reach higher reaction temperatures in the HC-SCR catalyst. As a consequence, the reducing agent
was exposed to temperatures higher than the reaction temperatures of the HC-SCR catalyst. To fully
understand the thermal decomposition of NExBTL, the decomposition was investigated in SGB
experiments (Figure 18). The values are presented as percent of total C; for each HC species. At
temperatures below 300 °C the majority of the hydrocarbons are present as diesel with just a
fraction of CO and CO,. However, the NExBTL starts to thermally decompose slightly above 300 °C.
The initial decomposition is followed by a sharp decrease in the diesel fraction and an increase in CO,
and propane formation, followed by an increase in CO formation. This means that the dominating
process, when treating NExBTL thermally is complete oxidation, with CO, and water as the main
products. More surprisingly is that the methane, ethyne and ethane fractions remain negligible
throughout the chosen temperature interval. Neither formaldehyde, nor propene or ethene is
formed to a great extent, but remains around 2 %. The temperature at the injection point of the
reducing agent did in some cases reach 450 °C. This caused a decrease in the detected diesel signal,
at the same time as the signals of the decomposition products increased. This corresponds well with
the results from the thermal decomposition experiments. At 450 °C the contribution to total C; from
diesel is as low as 45 %, meanwhile CO, reaches almost 30 % and propane is approximately 20 %.
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Figure 18: Thermal decomposition of NExBTL in 10 vol. % O,, 5 vol. % H,0 and N paance- The species
are denoted as: (H) diesel, (A) CO,, (V) CO, and (@) propane.

NOx reduction experiments

In order to compare experiments of the type performed in previous papers (Papers I-IV), the
study was performed both using synthetic gas flow reactor and an engine pilot-scale reactor. The SGB
experiments were also performed in order to evaluate which of the three HC-SCR catalysts that
would be most suitable for up-scaling.

The SGB reactor experiments were performed on three Ag/Al,0; HC-SCR catalysts (Ag2, Ag4 and
Ag4Pt100) using hydrogen supplied by the fuel reformer and with NExBTL as reducing agent. The
experiments were performed at four hydrogen concentrations 0, 1000, 1500 and 3250 ppm H,
(Figure 19). The promotional effect from adding hydrogen is clearly seen for all three catalysts. In
addition, it can be observed that the effect of adding hydrogen is not proportional to the H,
concentration. The improvement in NO, reduction is most prominent at low temperatures and
decreases as the temperature increases. The hydrogen effect can be seen over the entire
temperature range for the Ag2 catalyst, whereas the effect is negligible for temperatures above 400
°C for both the Ag4 and Ag4Pt100 catalysts (Figure 19). This is likely due to the increased amount of
oxidation sites for these two catalysts, oxidizing the majority of the H, to H,0 at higher temperatures.
The catalyst showing the lowest effect of H, for reduction of NO, at higher temperatures is the
Ag4Pt100 sample. Platinum is a well-known oxidation catalyst and at higher temperatures it is likely
to consume the H, though oxidation to water, preventing it from taking part in the NO, reduction
reactions [16]. At low temperatures however, the largest difference in activity when adding hydrogen
is seen for the Ag4Pt100 catalyst. This catalyst also shows the most distinct change in activity as a
function of the H, concentrations. Hence, the Ag4Pt100 sample was up-scaled and evaluated in the
PSR setup equipped with an engine (genset, DX 6000 TE XL C, Yanmar) and a separate fuel reformer
for hydrogen production. The Ag4Pt100 HC-SCR catalyst was evaluated, using both bottled hydrogen
(Figure 20, top panel) and hydrogen from the fuel reformer (Figure 20, bottom panel). Due to the
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complexity of the reactor system concerning the actual total gas flow, which varied with the engine
load and other factors, the H, concentration could not be chosen with the same accuracy as in the
SGB experiments. The hydrogen was therefore introduced at three concentrations from bottle
(~1400, ~2800 and ~7000 ppm), and two concentration from the fuel reformer (~1200 ppm and
~2000 ppm). The resulting NO, reduction displayed was 25, 42 and 53 % at ~236 °C for the bottled
hydrogen, respectively, and 16 % at 233 °C and 37 % at 245 °C for the reformate, respectively. The
NO, reduction was calculated by analyzing the total NO, concentration both upstream and
downstream of the HC-SCR catalyst with an FTIR gas analyzer. During the PSR experiments, the C/N
ratio was lowered to approximately 4, in order to reduce the adsorption of diesel residues on the HC-
SCR catalyst. At higher C/N ratios, a slow decrease in NO, reduction could be observed over time.
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Figure 19: NO, reduction results from SGB reactor experiments for 2 wt. % (top panel), 4 wt. %
(middle panel) and 4 wt. % with 100 ppm(w) Pt (bottom panel) Ag/Al,O; samples. Hydrogen
concentrations are denoted as 0 ppm (m), 1000 ppm (@), 1500 ppm (A ) and 3250 ppm (V). Inlet gas
composition: 200 ppm NO, 10 vol. % O,, 5 vol. % H,0, and N; paance With NEXBTL as reducing agent.
The C/N molar ratio was 6 and GHSV = 33,200 h™.
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When the reducing agent was removed, a decreasing CO and diesel signal could be detected for as
long as 15 min. This indicated that carbonate species were adsorbed on the catalytic surface, possibly
blocking the active sites, which also has been observed previously [26]. This was also observed when
no hydrogen was added to the feed, hence no reliable data could be collected at these conditions.
The results from the PSR study show similar trends as the SGB experiments. The NO, reduction
activity is significantly increased with addition of bottled hydrogen at low temperatures and as the
temperature is increased the promotional effect is less pronounced (Figure 20, top panel) with no
statistical difference above 350 °C. As no data are available for conditions without hydrogen, the
actual promotional effect cannot be determined, however when adding 1400 ppm H, cf. to 7000
ppm H, from bottle, the NO, reduction increases with a factor of two from 25% to 53%. When using
hydrogen produced in the fuel reformer, the same trend can be observed, although the promotional
effect is present over the entire temperature range. The maximum NO, reduction activity of up to
55% was achieved using bottled hydrogen (7000 ppm H,) at temperatures below 325 °C. It should
also be noted the when using hydrogen from the fuel reformer, approximately 28% NO, reduction is
reached with 2000 ppm H, around 300 °C cf. approximately 32% NO, reduction with 2800 ppm H,
from bottle. This illustrating the beneficial effect of reformate as compared to bottled hydrogen,
likely owing to the HC-SCR active by-product in the reformate.
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Figure 20: NO, reduction results from pilot-scale reactor experiments over a 4 wt. % Ag/Al,O; catalyst
doped with 100 ppm(w) Pt with bottled hydrogen (top panel) and hydrogen from a fuel reformer
(bottom panel). Bottled hydrogen concentrations are denoted as ~1400 ppm (@), ~2800 ppm (A),
~7000 ppm (V). Hydrogen was supplied from the fuel reformer at a low concentration (~1200 ppm,
O) and a high concentration (~*2000 ppm, <). Inlet gas composition: ~420 ppm NO,, ~10 vol. % O,,
~5 vol. % H,0, Ny paiance and NEXBTL as reducing agent with a C/N molar ratio of ~4 and GHSV ~ 22,300
h™.
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6. Conclusions

This work demonstrates high catalytic activity for lean NO, reduction over the silver alumina
catalyst for model hydrocarbons, ethanol and for a commercial biodiesel as the reducing agent for
NO, (Paper I-V). The results show that silver-alumina catalysts, prepared via sol-gel synthesis, display
a high consistency regarding surface area, and nature and relative amount of surface silver species,
as the silver loading is varied. The samples also display high tolerance towards hydrothermal ageing
(Paper I-1l). For n-octane, the silver-alumina samples display higher NO, reduction after ageing up to
650 °C, compared to fresh samples, whilst the activity for lean NO, reduction decreases after ageing
at 700 °C and above. A higher silver loading results in a higher NO, reduction and a more efficient use
of the reducing agent. Additionally, it is shown that the catalytic performance of the silver-alumina
sample is stable when subjected to mild hydrothermal treatment (500 °C), which further enhances
the efficiency of the reducing agent.

Furthermore, it is concluded that as the samples are doped with trace amounts of platinum, the
activity for lean NO, reduction at low temperatures increases for non-oxygenated hydrocarbons. In
addition, it is shown that both the silver loading and the type of reducing agent have a crucial effect
on the catalytic performance. A systematic study of the influence of different hydrocarbon reducing
agents has been performed, covering C, compounds (CH,, C,H4, C,Hg and ethanol), n-octane and
commercial biodiesel (NExBTL). The carbon-carbon bond order (C,H,, C;H4, and C,Hg) and silver
loading (2 and 6 wt. %) on the formation of partial oxidation products and lean NO, reduction
performance over silver-alumina catalysts is presented. Flow reactor experiments show that the
highest activity for the C,H, hydrocarbon oxidation and lean NO, reduction is achieved when C,H, is
oxidized in the presence of NO. This is in accordance with the stronger interaction between ethyne
and the metal surface, owing to the easily accessible m-electrons, a favorable molecular orientation,
and higher sticking probability for C,H, compared to the other C, hydrocarbons studied. For the
studied hydrocarbons, the temperature window for NO, reduction is broadened and shifted towards
lower temperatures as the C-C bond order increases. Increasing the silver loading from 2 to 6 wt. %
is favorable for the oxidizing reactions, leading to activation of both hydrocarbons and NO, at lower
temperatures. Utilizing oxidized hydrocarbons as the reducing agent (ethanol) results in a
considerable improvement in NO, reduction, a lowered onset temperature and a wider temperate
window, compared to non-oxygenates, without any addition of hydrogen. The results also show that
low-level doping of platinum has little or no beneficial effect on the NO, reduction for ethanol. When
utilizing longer non-oxygenated hydrocarbons however, the addition of platinum is beneficial. The
catalyst composition with the highest activity for NO, reduction, when using n-octane as the reducing
agent, is found to be a 2 wt. % Ag/Al,O3; sample doped with 500 ppm platinum (Paper 1). This catalyst
displays the highest low-temperature activity, most likely owing to an increased amount of partially
oxidized hydrocarbons on the surface as well as a change in the oxidation potential attributed to the
Pt doping. A higher hydrocarbon adsorption could mean that a lower amount of reducing agent
would be required for Pt-doped silver-alumina catalysts as compared to the corresponding un-doped
samples, which will improve fuel efficiency.

In conclusion, silver-alumina catalysts prepared via the sol-gel method show high activity for NO,
reduction at low temperatures, with high resistance towards hydrothermal ageing. The addition of
platinum can be seen to increase the activity for NO, reduction at low temperatures, particularly for
long-chained hydrocarbons. The catalysts are also shown to be compatible with renewable fuels,

43



although the activity for NO, reduction is lower for biodiesel as compared to n-octane. Knowledge of
the catalytic processes, like the activation of the reducing agent and the NO, related chemistry, is of

major importance for catalyst development. A detailed understanding of these processes will result
in better ability to tailor catalysts for e.g. future fuels.
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