
Chalmers Publication Library

Identification and qualitative characterization of high and low lignin lines from an
oat TILLING population

This document has been downloaded from Chalmers Publication Library (CPL). It is the author´s

version of a work that was accepted for publication in:

Industrial crops and products (ISSN: 0926-6690)

Citation for the published paper:
Vivekanand, V. ; Chawade, A. ; Larsson, M. et al. (2014) "Identification and qualitative
characterization of high and low lignin lines from an oat TILLING population". Industrial
crops and products, vol. 59 pp. 1-8.

http://dx.doi.org/10.1016/j.indcrop.2014.04.019

Downloaded from: http://publications.lib.chalmers.se/publication/201958

Notice: Changes introduced as a result of publishing processes such as copy-editing and

formatting may not be reflected in this document. For a definitive version of this work, please refer

to the published source. Please note that access to the published version might require a

subscription.

Chalmers Publication Library (CPL) offers the possibility of retrieving research publications produced at Chalmers
University of Technology. It covers all types of publications: articles, dissertations, licentiate theses, masters theses,
conference papers, reports etc. Since 2006 it is the official tool for Chalmers official publication statistics. To ensure that
Chalmers research results are disseminated as widely as possible, an Open Access Policy has been adopted.
The CPL service is administrated and maintained by Chalmers Library.

(article starts on next page)

http://dx.doi.org/10.1016/j.indcrop.2014.04.019
http://publications.lib.chalmers.se/publication/201958


Identification and qualitative characterization of high and low lignin lines from 1 

an oat TILLING population 2 

Vivekanand Vivekanand1,2*
, Aakash Chawade3

, Mikael Larsson4, 5, Anette 3 

Larsson6 and Olof Olsson3, 7 4 

1Department of Biological and Environmental Sciences, University of Gothenburg, 5 

SE-40530, Gothenburg, Sweden; 2Department of Chemistry, Biotechnology and Food 6 

Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, 7 

Norway; 3CropTailor AB, Department of Pure and Applied Biochemistry, Lund 8 

University, Box 124, SE 22100 Lund, Sweden; 4Department of Chemical and 9 

Biological Engineering, Chalmers University of Technology, SE-41296, Gothenburg, 10 

Sweden; 5Ian Wark Research Institute, University of South Australia, Mawson Lakes 11 

Campus, Mawson Lakes SA 5095, Australia; 6VINN Excellent Center, Chalmers 12 

University of Technology, SE-41296, Gothenburg, Sweden; 7Department of Pure and 13 

Applied Biochemistry, Lund University, Box 124, SE 22100 Lund, Sweden. 14 

 15 

 16 

*Corresponding author. VV : iitbiotech@gmail.com (Vivekanand Vivekanand) 17 

Tel : +47 6496 5810, Fax: ++47 6496 5901 18 

mailto:iitbiotech@gmail.com


Abstract  19 

 To identify differences in seed lignin content, 520 randomly chosen independent 20 

lines were screened in mutagenized oat population and lines with the seed lignin 21 

levels ranging from 20-63 gkg-1 were identified. In commercial variety Belinda, from 22 

which the mutated population was developed, seed lignin level was determined to be 23 

41 gkg-1. In Assiniboia, a Canadian low lignin variety, it was found to be 21 gkg-1. To 24 

investigate if extracted lignin from the mutated lines were also qualitatively different 25 

from Belinda, two lines with the lowest and highest lignin levels were selected for 26 

structural analyses using XRD, UV and FT-IR spectroscopy. Results showed that 27 

there were significant qualitative differences in seed lignin levels in the mutated lines 28 

and in Belinda, and based on this, we predict that lignin from the mutated seeds will 29 

be more digestible in ruminant animals than Belinda seeds. This prediction was 30 

confirmed in preliminary in-vitro digestion experiments. 31 

 32 
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1. Introduction 36 

 Oat (Avena sativa) is grown in significant areas in the USA, Canada, Europe, 37 

China, Brazil and Australia (Zwer, 2004). Oat is mostly consumed as grain with a 38 

yearly world grain production of approx. 25 million tons. Oat grains have high oil 39 

content and the oil is rich in unsaturated fatty acids. It also contains unique galacto-40 

lipids. Oat proteins have the highest proportion of globular proteins amongst any 41 

cereal starch. In addition, oats are rich in essential dietary minerals and health 42 

benefitting 1-3, 1-4 β-D-glucans (Ripsin et al., 1992).  43 

Although, oat provides excellent health benefits for humans, it is mostly used as feed 44 

for cattle. Oat hulls, which make up 25% or more of the total oat seed, have high fibre 45 

content and low digestibility (Thompson et al., 2000). In order to maximize its 46 

utilization for the oat milling industry and cattle producers, an economical method to 47 

improve fibre digestibility of hulls needs to be developed. The major factor limiting 48 

fibre digestion is lignin (Sewalt et al., 1997). Lignin content may be treated as an 49 

excellent indicator of quality for oat marketing and in feed formulations for animals. 50 

If core lignin and free phenolic acid barriers are removed from the fibers, microbial 51 

and enzymatic attachment to hemicellulose and cellulose will increase, which in turn 52 

will lead to an increased fibre digestion (Titgemeyer et al., 1996). It has been 53 

estimated that a more easily digestible oat kernel containing a low lignin hull would 54 

increase the energy value of the feed by approx. 15% (Casler and Jung, 2006). 55 

In 2002, a Canadian variety with a low hull lignin content, AC Assiniboia, was 56 

released (Thompson et al., 2002). It was shown by biochemical analysis that the hulls 57 

from AC Assiniboia contained 1.3% ADL (acid detergent lignin), while other market 58 
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varieties had between 5.4-7.7%. In addition, experiments using cow rumen liquid 59 

indicated that the digestibility of Assiniboia hulls was almost twice as that of other 60 

varieties (Thompson et al., 2002). Thus, an altered lignin level could indeed lead to 61 

change in digestibility and an increased digestibility would substantially improve the 62 

feed value. No differences in yield, kernel quality, and disease resistance could be 63 

detected between Assiniboia and other Canadian market varieties. Assiniboia was 64 

tested in field trials for several years in Sweden, but due to lower yield and poor straw 65 

strength it is not considered suitable for commercial growth.  66 

In this work, by starting from a good commercial variety, SW Belinda, that grows 67 

well in Scandinavia, and by using a recently developed TILLING-population for oat 68 

(Chawade et al., 2010) we identified several low lignin oat lines. By qualitative 69 

characterization of lignin from two high- and two low lignin lines using X-ray 70 

diffraction, UV and FT-IR spectroscopy, we show that there are compositional and 71 

structural differences between the lignins and preliminary digestion analysis 72 

supported that the differences could lead to differences in digestibility. We also 73 

determined the lignin content in leaf and stem tissue in the two low lignin mutants as 74 

well as in Belinda and Assiniboia.  75 

2. Materials and Methods 76 

2.1 Plant material and cultivation 77 

 SW Belinda is a Swedish spring oat variety originally developed by 78 

Lantmännen SW Seeds AB, Landskrona, Sweden. AC Assiniboia is a Canadian low 79 

lignin oat developed by Crop Development Center, Saskatoon, Canada. All plants 80 

were grown in a greenhouse with halogen lamps, with photon flux density of 240 81 
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µmol/m2/sec and photo period of 18 h and day/night temperature of 25 0C/16 0C. 82 

Plants were grown in five litre pots in standard soil as described (Chawade et al., 83 

2010). 84 

2.2 Lignin quantification  85 

 Based on the qualitative analysis of lignin in oat as reported earlier (Chawade et 86 

al., 2010) the lignin content in 520 mutant lines from an oat TILLING-population was 87 

determined by a modified acetyl bromide procedure (Iiyama and Wallis, 1988). 88 

Briefly, from each line, ten seeds (hull+groat) were individually weighed, crushed and 89 

transferred to separate glass test tubes (16 x 150 mm) fitted with PTFE-coated 90 

silicone screw cap. In each tube, perchloric acid (70%, 0.08 ml) was added followed 91 

by the addition of 2 ml of acetyl bromide-glacial acetic acid (1:3, v/v) and incubated 92 

at 70 0C for 15-20 min with intermittent gentle shaking to promote complete 93 

dissolution. The solution was then transferred with the aid of acetic acid to 100 ml 94 

volumetric flasks containing NaOH (2M, 5 ml) and acetic acid (12 ml). The final 95 

volume was adjusted to 50 ml with acetic acid. Blank sample, without any seed was 96 

also run in conjugation with other samples. The absorbance was measured at 280 nm 97 

(UV-2401PC, Shimadzu, Japan) and lignin content was determined as described 98 

(Morrison, 1972). Means were measured from the ten seed samples and standard error 99 

calculated. 100 

2.3 Lignin extraction  101 

 An extractive-free and dry oat powder was obtained by a 2h treatment 102 

ethanol/toluene (1:1, v/v). The powder was then utilized for lignin extraction by the 103 

acidic-dioxane method.  Ten g of dry oat powder was placed in a 250-ml round-104 

bottom flask, and 200 ml of acidic dioxane (dioxane/water, 9:1, v/v and 0.2 M HCl 105 
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solution) was added slowly from the funnel; the flask was connected to a reflux 106 

condenser and N2 gas was blown onto the liquid surface for 20-30 s. The reaction 107 

mixture was heated and refluxed (80-95 0C, 40 min). The mixture was allowed to cool 108 

to around 40-50 0C, filtered and the filtrate was saved. The solid residue was 109 

subjected to a second extraction with 200 ml of the acidic dioxane/water solution for a 110 

period of 30 min as described above. Two more extractions were performed in the 111 

same fashion except that no hydrochloric acid was added to the dioxane/water mixture 112 

in the last (fourth) extraction. Each portion of dioxane filtrate was concentrated 113 

separately on a rotatory evaporator (200 ml to around 40 ml) and finally all 114 

concentrates were pooled and lignin was precipitated by adding the concentrate into 115 

cold distilled water (1600 ml) under stirring. The precipitate formed was pelleted by 116 

centrifugation (9000g, 20 min) and the supernatant was removed. The pellet was 117 

partially dried in a forced air oven (60 0C, 15 min). Lignin residues were dissolved in 118 

4-5 ml of dioxane (100%), filtered through a 0.45µm nylon membrane, and added 119 

dropwise to 50 ml of anhydrous diethyl ether under rapid stirring. The precipitate was 120 

separated by centrifugation (9000g, 15 min, 0 0C) and the entire solubilization in 121 

dioxane and ether wash steps were repeated to remove hydrophobic non-lignin 122 

contaminants. Following the diethyl ether removal, 50 ml of petroleum ether was 123 

added under stirring to thoroughly wash the lignin residue. The residue was then 124 

allowed to settle and the solvent was removed. The final lignin residue dioxane lignin 125 

(DL) was freeze-dried for 8 h and stored at -20 0C until further use.  126 

2.4 X-ray diffraction  127 

 Powdered lignin samples were used for obtaining X-ray diffraction patterns. X-128 

ray diffractograms with 2, ranging from 100 to 400 were collected with a Siemens 129 
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D5000 X-ray diffractometer (Germany) using Brag-Brentano geometry with a 130 

secondary monochromator (CuK radiation, 40kV/40mA, step 0.05 in 2, 6 131 

sec./step). 132 

2.5 UV scanning 133 

 Isolated lignin (5 mg) was dissolved in 10 ml of 95% dioxane:water (v/v) and an 134 

1 ml aliquot was diluted to 10 ml with dioxane:water (50:50, v/v). The scanning was 135 

performed in the range of 250 – 400 nm (UV-2401PC, Shimadzu, Japan).  136 

2.6 Fourier transform infrared (FT-IR) spectroscopy 137 

 Isolated lignin was analysed by FT-IR spectroscopy using a 2000 FT-IR 138 

spectrophotometer (Perkin Elmer, Beaconfield Bucks, England) to examine the 139 

functional groups as well as differences in chemical structures. Lignin sample and 140 

KBr were mixed in a ratio 1:100 and then pressed into transparent thin pellets for 141 

obtaining the spectra at room temperature. FT-IR spectra (40 scans) of each sample 142 

were obtained in the range of 400 - 4000 cm-1. Transmittance mode as a function of 143 

wavenumber (cm-1) was recorded. The spectra were converted to absorbance, 144 

automatically baseline corrected, and normalized using the associated software. The 145 

assignments of absorbance peaks were as per the FTIR database for lignin (Faix, 146 

1991).  147 

2.7 In-vitro digestion 148 

Triplicate samples of 0.5 gram of seeds were individually grinded, transferred to 50 149 

ml Falcon tubes and 30 ml of a pepsin-hydrochloric acid (HCl) solution was added 150 

(Weisbjerg, 2004). The tubes were sealed and incubated in a water bath at 40°C for 24 151 

hours. The tubes were shaken twice during the incubation period and were then 152 

moved to 80°C and incubated for another 45 minutes. The samples were then 153 
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transferred to pre-weighed filter crucibles and washed twice with 100 ml water to 154 

neutralize the samples.  After sealing the bottom of the filter, 30 ml of an enzyme- 155 

acetate buffer solution was added (Weisbjerg, 2004). The filters were sealed and the 156 

samples incubated in a water bath at 40°C for 24 hours followed by 60°C for 19 157 

hours. The samples were washed with 2 x 100 ml boiling water and 2 x 20 ml acetone 158 

and dried at 103°C over-night in an oven. The crucibles were then transferred to a 159 

desiccator, cooled to room temperature and weighed. Finally the crucible were placed 160 

in an ash oven at 500°C and incubated over night, after which they were cooled down 161 

and weighed again. The moisture content in all seed material was determined in a 162 

Denver instrument (Germany BR35).  163 

Reproducibility of results 164 

All experiments were performed in triplicates and the results represent the mean of 165 

three identical experimental setups with  SE.  166 

3. Results and discussion 167 

3.1 Screening of the oat TILLING-population  168 

 Lignin content was determined by the quantitative acetyl bromide method. 169 

Compared to other lignin determination methods the acetyl bromide method is 170 

relatively non-laborious and appropriate for small sample sizes. In this procedure, 171 

lignin is almost entirely dissolved and hence precise absorbance values for total lignin 172 

content are provided with little interference from non-lignin products. When 173 

analysing lignin content in seeds (hull and groat combined) of the oat cultivars 174 

Belinda and Assiniboia, we found it to be 41 gkg-1 and 21 gkg-1, respectively (Table 175 

1). This is in good agreement with previous reports on lignin measurements for 176 

Assiniboia and Belinda (Thompson et al., 2000, Chawade et al., 2010). We then 177 
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screened 520 random lines from the oat TILLING-population and found the lignin 178 

contents to be in a range from 20 - 63 gkg-1 (Fig. 1). Mutant lines #836 (denoted L3) 179 

and #1960 (denoted L4) were found to be the lowest with 20 gkg-1 and 24 gkg-1 of 180 

lignin content respectively, which is in the same range as in Assiniboia. The highest 181 

values were found in mutant line #1849 (denoted H5), (63 gkg-1) and #827 (denoted 182 

H6), (62 gkg-1), with approx. three times higher levels compared to L3 (Table 1).  183 

In addition, lignin contents in leaves and stem of the Belinda, Assiniboia, L3 and L4 184 

were also determined but in these tissues no significant differences were observed 185 

between the different cultivars (Fig. 2). Apparently, the reduced lignin content in the 186 

mutated lines was confined to seeds, which indicate that they could be useful as 187 

breeding lines. In addition, the phenotype of greenhouse grown mutant plants 188 

remained similar to non-mutated Belinda with no visible differences in height, 189 

strength and stability of plants (data not shown).  190 

3.2 X-ray diffraction  191 

 All the X-ray diffractograms from the different lignins isolated from Belinda, 192 

Assiniboia, L3, L4, H5 and H6, respectively showed a broad diffraction of amorphous 193 

halo with a maximum at about 2θ = 22 0C (Fig. 3). Such a diffused pattern, lacking 194 

intense and sharper peak, is typical of resin compounds and are expected for lignin 195 

and its derivatives, as they are non-crystalline polymers. Thus, the X-ray 196 

diffractograms indicates that the lignin samples were composed of amorphous 197 

polymers and that they were cellulose free (Rohella et al., 1996). The conclusion from 198 

the X-ray diffraction measurements is thus that the lignin preparations are of good 199 

quality and lack cellulose. 200 

3.3 UV scanning 201 
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 The obtained UV spectra of all the extracted lignins depicted a typical 202 

absorption band for annual plants, in agreement with previous reports (Fig. 4),  203 

(Seca et al., 2000). In addition, a shoulder at 310-315 nm, which is typical for grass 204 

lignin, was seen in the spectra and indicates the presence of esters of 205 

hydroxycinnamic acid such as p-coumaric or ferulic acid (H)  206 

(Lybeer and Koch, 2005). Another shoulder was observed at 280-284 nm originating 207 

from non-conjugated phenolic groups in lignin, such as sinapyl alcohol (S), coniferyl 208 

alcohol (G) and even p-coumaryl alcohol. 209 

The Belinda spectrum had relatively stronger absorbance at 280-284 nm than at 310-210 

315 nm, indicating relatively high content of guaiacyl (G) units, which is similar to 211 

that of other monocotyledons and is consistent with a guaiacyl rich lignin (Lybeer and 212 

Koch, 2005). In addition, the Belinda spectrum showed a relatively weaker shoulder 213 

at 310–320 nm compared to the other 5 studied lines, indicating that it also contained 214 

lower amounts of esters of hydroxycinnamic acid units.  215 

The spectra obtained for Assiniboia and all mutant lines (L3, L4, H5 and H6) were 216 

almost opposite to the spectra from Belinda, as they exhibited a weaker shoulder at 217 

280 nm and a stronger and higher peak at 310-320 nm (Fig. 4). This suggests that 218 

lignin from Assiniboia and the mutants were similar with lower levels of G units and 219 

higher levels of H units, compared to Belinda. However, the intensity of the shoulders 220 

was higher in the mutants than in Assiniboia, indicating the presence of the same type 221 

of phenolic structures, albeit in different quantities. 222 

One possible reason for the decreased G unit content could be mutations in the COMT 223 

gene, since a down-regulation of COMT reduces lignin by decreasing the G units in 224 
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switchgrass (Fu et al., 2011). However, all of the analysed lignin samples are still of 225 

the HGS type (Xu et al., 2008), as further confirmed by FT-IR. 226 

 227 

3.4 FT-IR analysis 228 

 Lignin is a highly branched phenolic polymer providing many active regions for 229 

chemical and biological interactions with a wide variety of additional functional 230 

groups like hydroxyl-, methoxy-, carbonyl-, and carboxylic groups. Since this can 231 

change the chemical and biophysical properties of the lignin, an analysis of various 232 

active groups attached to lignin is of importance in a functional classification of 233 

lignins. Such analysis can be performed by Fourier Transformed Infrared analysis 234 

(FT-IR) (El Mansouri and Salvado, 2007).  235 

Here, we generated several independent FT-IR spectra for Belinda, Assiniboia and the 236 

different mutated lines, analysed the spectra, indicated possible functional groups 237 

(Fig. 5; a & b, Table 2) and classified the spectra guided by the paper by Faix (1991). 238 

Belinda and the mutants displayed spectra in the fingerprinting region having many 239 

characteristics typical for HGS lignin, such as high absorbance in the 1710-1665 cm-1 240 

range, similar absorbance around 1600 and 1510 cm-1, relatively more intense peaks 241 

around 1328 cm-1, similar absorbance for the peaks around 1267, 1229, the 242 

characteristic HGS peak around 1166 cm-1, a tall peak around 1127 cm-1, much 243 

smaller absorbance around 1031 than around 1229 cm-1 and finally a characteristic tall 244 

peak around 834 cm-1. However, the spectra also showed a clear peak around 1085 245 

cm-1, commonly seen in spectra from G and some GS lignin types, indicating some 246 

structural differences from idealized HGS lignin. The spectra for Assiniboia also 247 

showed a similar HGS character, especially if neglecting the region between 1700-248 
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1500 cm-1, which probably is influenced by associated proteins. There is a clear peak 249 

around 1328 cm-1, similar absorbance around 1267 and 1229 cm-1, the characteristic 250 

HGS peak around 1166 cm-1, much smaller absorbance around 1031 than around 251 

1229 cm-1 and finally a characteristic tall peak around 834 cm-1. A striking difference 252 

from ideal HGS spectra, and from the spectra of the samples derived from Belinda, is 253 

a relatively low absorbance around 1127 cm-1.  254 

Thus, all investigated samples were classified as HGS lignin. However, some 255 

differences from ideal spectra could be seen and a comparative analysis of the 256 

spectrum of different samples revealed slight differences in several characteristic 257 

bands. This indicates that there are structural differences between the lignin from the 258 

different lines, like differences in the ratio of HGS units, different subunit 259 

composition, and differences in associated carbohydrates and proteins. Therefore, in 260 

screening for different seed lignin levels in the oat TILLING population it 261 

hypothesize that the lines were selected that carry mutations in genes encoding key 262 

enzymes in the particular part of the biosynthetic pathway of lignin synthesis that 263 

control monolignol biosynthesis and quality. 264 

From the FT-IR analysis, it is difficult to draw conclusions on the exact differences 265 

between the samples due to the complexity and inherent variability of lignin. 266 

However, some of the differences are highly pronounced and located to a specific 267 

region, and hence were analysed in detail. At large wavenumbers, a prominent peak at 268 

~3,400 cm-1, caused by the presence of OH groups in aliphatic and phenolic structures 269 

(Faix, 1992), appeared in all samples (Fig. 5a). In addition, peaks at ~2,928 and 270 

~2853 cm-1 were also detected, that have been attributed to the presence of 271 

methyl/methylene (C-H) groups in the samples (El Mansouri and Salvado, 2007; Faix, 272 
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1991). In this region, Assiniboia displayed a shift towards smaller wavenumbers of 273 

the peak around 3400 cm-1, as well as opposite ratio between the peaks at 3400 and 274 

2900 cm-1, compared to Belinda. The same reversed peak ratio was seen for the L4 275 

line, most likely reflecting additional methyl substitution, making this line more 276 

similar to of Assiniboia than the other mutants. Another similarity between L4 and 277 

Assiniboia was a shoulder in both spectra at 1739 cm-1. In the region 1750-1600 cm-1, 278 

all samples display complicated peak-patterns associated with C=O groups (see Table 279 

2 for details) and around 1509 cm-1 a peak assigned to aromatic skeletal vibrations 280 

plus C=O stretch is present. At 1634 and 1539 cm-1 non-lignin specific absorbance 281 

was seen, where the latter was visible only in spectra of Assiniboia and Belinda. 282 

Those peaks were most likely caused by amides in associated proteins, as seen from 283 

FT-IR analysis of protein by Kong and Yu (2007), and it can be concluded that the 284 

presence of such proteins were high in Assiniboia, slightly lower in Belinda and even 285 

lower in the mutants. The presence of those non-lignin derived bands complicates 286 

interpretation of the spectra in the region. However, without doubt, the L3 and L4 287 

mutants displayed increased absorbance at 1603 cm-1. For the peak at 1463 cm-1 an 288 

increased absorbance was detected for the L4 mutant. For the peaks at 1366 and 1329 289 

cm-1 increased absorbance was detected for the L3 mutant. Thus, it seems as both the 290 

low lignin mutants contained increased fractions of S or condensed G units, based on 291 

the peak assignment given in table 2. For the double peaks around 1265 and 1240 cm-292 

1 all the mutant spectra as well as that of Assiniboia displayed significantly higher 293 

absorbance at 1240 than at 1265 cm-1, while for Belinda, the relationship was 294 

opposite. This could indicate an increased fraction of condensed G units in Belinda 295 

compared to the mutants and Assiniboia, or alternatively a reduced amount of G units 296 
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for the mutants and Assiniboia compared to Belinda. When comparing the ratio of the 297 

HGS characteristic peak at 1167 cm-1 with the peak at 1128 cm-1 (I1167/I1128), it is clear 298 

that there are differences in ratios of the two peaks in a way that Assiniboia > L4 ≈ L3 299 

> H6 ≈ H5 >Belinda. This indicates that there is a higher proportion of 300 

hydroxycinnamic acid (H) units in lignin from Assiniboia and the mutants compared 301 

to Belinda. This result is in good agreement with the results of UV spectra. 302 

In summary, the FT-IR analysis confirmed the conclusions from the UV-spectra 303 

analysis, i.e. lignin from the reported mutant lines were structurally different from the 304 

lignin isolated from the original Belinda line. Lignins from mutants were more similar 305 

to Assiniboia lignin, having high hydroxycinnamic acid (H units) content and either 306 

lower guaiacyl (G units) content or higher fraction of condensed G units. These 307 

differences may turn out to be beneficial in terms of nutrition and digestibility, as 308 

discussed below. 309 

3.5 Lignin digestion studies 310 

In preliminary experiments, we tested seed lignin digestibility in 836 (L3) and 311 

compared these to Belinda and Assiniboia. This showed that the NDF (Non Digestible 312 

Fiber) values were higher in Assiniboia but lower than in Belinda (Table 3). Thus, this 313 

was in agreement from the predictions made from the lignin structural analysis as 314 

Assiniboia has higher levels of hydroxycinnamic acid. The digestibility was also in 315 

agreement to what was previously found for Assiniboia (Thompson et al., 2000). A 316 

visual inspection of insoluble remaining fibres showed that there were structural 317 

differences between Assiniboia, which were short and finely dispersed, 836 L3 and 318 

Belinda fibres, which were cruder and longer. Such differences will probably affect 319 

both digestibility and rate of decomposition. 320 
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Plant cell walls are almost entirely constituted of ligno-cellulose, which limits 321 

digestion of the wall polysaccharides in the rumen. Although it is not possible to 322 

attribute cell wall digestibility to a single effect or factor, the exact composition and 323 

structure of the lignin will influence the digestibility. Furthermore, the guaiacyl and p-324 

coumaric acid content of lignin appear to be good predictors of digestibility of maize 325 

silage in sheep (Novo-Uzal et al., 2011). One reason for the correlation between lignin 326 

quality and digestibility is that some lignin structures will sterically hinder enzymatic 327 

hydrolysis of cell-wall polysaccharides by shielding otherwise digestible chemical 328 

bonds. This negative effect of lignin on digestibility is greater in grasses than in 329 

legumes (Buxton and Casler, 1993). The main factors influencing the energy 330 

availability in grass and thus its appropriateness as feed are the composition and 331 

concentration of the lignin itself and the presence of hydroxycinnamic acid (H) in the 332 

cell wall (Grabber et al., 1998).  333 

Assiniboia, is more digestible, and thus is more nutritious than oats with higher lignin 334 

contents like e.g in Belinda, which was used in this study. By using various analytical 335 

techniques, we show that Assiniboia hull lignin is rich in esters of hydroxycinnamic 336 

acid i.e. p-coumaric acid (PCA) and ferulic acid (FA). Interestingly, similar structural 337 

features were also detected in all four mutants (L3, L4, H5 and H6) studied here. In 338 

grass cell walls, phenolic acids (PCA) and (FA) are bound to lignin through both ester 339 

and ether linkages although the major part of PCA in the grass hay lignins are 340 

esterified to lignin components, while FA is predominantly ether-linked (Iiyama et al., 341 

1990). During the sheep digestion of grass lignins, the proportion of the lignin that 342 

disappears i.e. dissolves is dependent on the degree of ester-linked PCA and ether-343 

linked FA. Consequently, this indicates that the low lignin H unit rich mutants 344 
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described here may be more digestible. The FA esterified to cell walls is more 345 

digestible/degradable than cell wall esterified PCA. This can partly be explained by 346 

the findings that FA is mainly bound to the cell wall polysaccharides, whereas PCA 347 

are exclusively bound to lignin components (Kato et al., 1984). Ruminal bacteria have 348 

the ability to metabolise FA and PCA and the forage phenolic acid esters are cleaved 349 

extensively during in vivo ruminal fermentation. There are several studies that show 350 

that lignin content and digestibility of feeds follow an inverse relationship (Jung et al., 351 

1997). In addition, on the other hand by comparing the digestibility in sheep for two 352 

oat samples that differed in their lignin content, a higher digestible energy was 353 

recorded in the low-lignin sample (Rowe and Crosbie, 1988). Apparently lower lignin 354 

levels may in some cases improve the digestibility of oat in ruminants. Jung and 355 

Deetz (Jung and Deetz, 1993) reported that the improved digestibility of cell walls is a 356 

result of both the reduced lignin content and its composition. There are soluble 357 

hydroxycinnamic acid esters (e.g. FA) that also contribute to the energy release. 358 

The reported mutants and Assiniboia may be more digestible, and therefore also more 359 

nutritious, as they show lower G and higher H content compared to Belinda both in 360 

the UV- and FTIR spectra. Fu et al., (Fu et al., 2011) observed the same trend in the 361 

switch grass. A down-regulation of the caffeic acid o-methyl transferase (COMT) 362 

gene in the switch grass lowered the lignin content, reduced the G and S units in 363 

lignin and improved forage quality. Digestibility was tested in vitro by both true dry 364 

matter digestibility (IVTDMD) and neutral detergent fiber digestibility (NDFD). 365 

These values increased 9 and 11%, respectively in the transgenic low-COMT line 366 

compared to wild type. Furthermore, COMT activity was also more directly tested by 367 

a reaction to the specific COMT substrates 5-OH coniferaldehyde and caffeyl 368 
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aldehyde, and this showed that the transgenic line had a significant reduction in 369 

COMT enzyme activity (Fu et al., 2011). Reddy et al. (2005) also observed a strong 370 

negative relationship between lignin content and rumen digestibility, but no 371 

relationship was found between lignin composition and digestibility in down 372 

regulated COMT and caffeoyl CoA 3-O-methyltransferase (CCoAOMT) transgenic 373 

lines of alfalfa. Various other reports are also available (Chen et al., 2004) where 374 

COMT has been down regulated in alfalfa and other species leading to lignin 375 

modifications.  376 

To confirm the structural lignin assays we tested the digestibility of lignins from 377 

chosen lines in vitro. There are a number of different methods in the literature for 378 

doing this (Cherney and Cherney, 2003) including in situ determinations of feed 379 

digestibility in fistulated cows. However, such methods are complicated, expensive 380 

and difficult to standardise (Spanghero et al., 2003). A number of alternative methods 381 

have therefore been developed based on the incubation of the sample in rumen fluid 382 

(Tilley and Terry, 1963). However, the quality of the rumen fluid varies, which makes 383 

standardisation difficult (Spanghero et al., 2003). More recently, a method where the 384 

rumen liquid was replaced by a defined enzymatic mixture was developed in 385 

Denmark. It is denoted EFOS (EnzymFordøjeligt Organisk Stof = Enzyme digestible 386 

organic matter) (Weisbjerg and Hvelplund, 1993). The EFOS method is easy to 387 

standardize and gives a significant correlation between the rate of breakdown of not 388 

digestible fibres (NDF) in situ and the digestibility of organic matter (Weisbjerg, 389 

2004) and the EFOS method is now the recommended procedure in the Nordic feed 390 

evaluation system (NorFor) (Åkerlind et al., 2011). In this work, we therefore chose 391 

the EFOS method to estimated lignin digestibility in the different lines and cultivars. 392 
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Our results confirmed the predictions from the structural measurements in that the 393 

Assiniboia lignin displayed the highest digestibility followed by one low-lignin CT-394 

lines, while the Belinda variety showed the least digestibility (Table 3).  395 

4. Conclusions 396 

Our analysis showed that samples were composed mostly of lignin components, 397 

indicating satisfactory lignin purification protocol. Spectroscopic analysis showed 398 

presence of comparatively higher ratios of hydroxycinnamic acid units in Assiniboia 399 

and mutant lines in contrast to Belinda. These mutant lines will be more digestible in-400 

vivo than Belinda variety since grass lignin higher in H content has previously been 401 

reported to be more digestible. This was confirmed in preliminary in-vitro digestion 402 

experiments using EFOS method. Further in-vitro rumen digestion experiments to get 403 

a deeper insight how the lignin structural differences influence degradation of cell 404 

walls by rumen microflora are in progress.  405 
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Figure Caption: 522 

Figure. 1 Screening of TILLING population of oat for lignin mutants (gkg-1). 523 

Figure. 2 Lignin content (gkg-1) in stem and leaf. 524 

Figure. 3 X-ray diffractogram of lignin from Belinda, Assiniboia and mutant lines 525 

(L3, L4, H5, H6) 526 

Figure. 4 UV spectra of lignin from Belinda, Assiniboia and mutants lines (L3, L4, 527 

H5, H6) 528 

Figure. 5 Fourier Transform Infrared spectra of lignin from Belinda, Assiniboia and 529 

mutant lines (L3, L4, H5, H6), relevant wavenumbers are indicated in the figure. (a) 530 

3800-2200 cm-1, (b) 2000-600 cm-1. 531 
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