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Vehicle Self-Localization Using Off-the-Shelf Sensors
and a Detailed Map

Malin Lundgren, Erik Stenborg, Lennart Svensson, Lars Hanstrand

Abstract—In the research on autonomous vehicles, self- Typical information provided by a camera system is shape
localization is an important problem to solve. In this paperwe  and position of lane markings [5], traffic signs or, as in
present a localization algorithm based on a map and a set of Bf [6], arrows, speed limits and pedestrian crossings painted

the-shelf sensors, with the purpose of evaluating this lowest th d. The inf tion f h i often fused
solution with respect to localization performance. The useé test on the road. 1he information from the camera IS olten fuse

vehicle is equipped with a Global Positioning System recedy, a  With measurements from a Global Positioning System (GPS)
gyroscope, wheel speed sensors, a camera providing infortien ~ receiver and internal vehicle sensors [7]-[9]. A potential

about lane markings, and a radar detecting landmarks along problem with this approach is that the localization becomes
the road. Evaluationl shows that the Iocalization.r.esult is wWthin heavily dependant on a single sensor. If the camera stops
or close to the requirements for autonomous driving when lap .

markers and good radar landmarks are present. However, it to function due to glare_, bI_OCkage’ _ng Or_Wom out lane
also indicates that the solution is not robust enough to harid ~ Mmarkers, the whole localization algorithm will break. Some
situations when one of these information sources is absent.  of these issues are possible to solve by using redundant
cameras, but fog and worn out lane markers, for example,
would benefit more from a second sensing technology. One

Self-driving cars have been envisioned for almost as longxkample of this is the work presented in [10], where the
as the car has been around. The self-driving car can briRghicle, in addition to a camera, is equipped with a laser
many benefits to society such as increased traffic safeganner.
comfort and productivity for drivers, as well as better use |n this paper we look specifically at the self-localization
of roads, parking facilities and fuel. problem using one combination of relatively low-cost on-

A self-localization system is an essential component doard sensors. The aim of this work is to evaluate if this
an autonomous car. 20 years ago, in the Prometheus projesit cost solution can solve the localization for the purpose
[1], the approach was to use only on-board sensors for bogh autonomous cars at acceptable levels of accuracy. We use
localization and obstacle detection. Prometheus showad thy sensor set-up containing a camera and a 76 GHz radar,
this was possible, albeit for a limited set of scenarios,, e.dn order not to be limited to the visible light spectrum. The
highway driving. focus of this paper is more on sensor fusion and the addition

More recent localization approaches often utilize a detiil of radar as a sensor in self-localization rather than deietp
digital map in addition to the on-board sensors, in order tgisual lane detection with the camera. In addition to the
cover more complex scenarios. The map typically encodegdar and camera, standard sensors available in most cars
the position of a number of landmarks that are visible usingke wheel speed sensors, gyroscope and GPS receiver are
various types of sensors. By measuring the distance and{@ed. During the data collection, the vehicle was equipped
the angle to the landmarks, it is possible to deduce ongth an RTK-GPS which is only used as a reference in the

location. Two examples of methods for generating a mageneration of a map and as ground truth in the evaluation of
and possible representations of map features, can be foung self-localization algorithm.

in [2] and [3].
The localization problem has been solved to some extent Il. PROBLEM FORMULATION
also in urban scenarios, and at moderate speeds, in theThe aim in this work is to evaluate the potential in
DARPA Urban Challenge [4]. However, all top contendersin available set of sensors, regarding the self-locatinati
in the Urban Challenge relied on a rotating multi-beam lasgferformance. The problem of localization is to estimate the
scanner. Such a device is currently unrealistic, both fst coposition of the ego vehicle in global coordinates, or, as we
and packaging reasons, in a commercial product. do here, relative to a road. The two problems are equivalent
Camera sensing, in combination with a high resolutioivhen the road is accurately described in global coordinates
map of lane markings and other visual landmarks, can ha order to be safely implemented, an autonomous vehicle
considered a low cost set-up eligible for commercializatio requires very accurate position and heading estimates. How
, _ , accurate the localization must be is highly dependent on the
This work was supported by the Strategic Vehicle Researchiamova- . . .
tion Program (FF1), which is funded by the Swedish Agencylforovation ~ SC€nario, the control algorithms, etc. In this paper, we-con
Systems (VINNOVA). M. Lundgren, E. Stenborg, L. Svenssod anHam-  sider position accuracy expressed in lateral and longialdi

marstrand are with the Department of Signals and Systemsin@hs Uni-  arrors, The longitudinal position is defined as the distance
versity of Technology, SE-412 96, Gothenburg, Sweden. &nlgirg is also

with Volvo Car Corporation, Gothenburg Sweden. (E-miftalin.lundgren, _along a referen_ce route on the road while the_ lateral pasitio
erik.stenborg, lennart.svensson, lars.hammarsp@uthalmers.se). is the normal distance to the route. The requirements are set

|I. INTRODUCTION



to lateral errors below 0.2 m and longitudinal errors below 1 1200,

m, which we believe would be sufficient for autonomous

driving in many scenarios. The remainder of this section 1000k [\“\
describes the used sensors and the limitations under whict

the localization is performed. sool

The data available for the localization is collected using
commercially available sensors mounted in a test vehicle.
There is a GPS receiver, a gyroscope and wheel speec
sensors, providing information about position, headipges! ao0t
and turn rate. To sense the surrounding environment, there
is a camera that observes the lane markings, and a forward 200
looking radar detecting objects on and along the road. In
addition to the standard sensors, the vehicle is equipptd wi 0 a0 a0 600 80 1000 1200 1400 1690 1800
an RTK-GPS system which is an accurate reference systen East [m]
that can be used as ground truth in the evaluation of t . . L
localization algorithm and as a reference for generating a'g' 1: The test _track where the evalua_uon scenario 1S

marked with darker blue. The starting point of the

map. A summary of the sensor properties can be found in L !
, evaluation is marked by a large black circle and the
Table I. Information about the reference route and the road : " :
true vehicle position every 20 s is marked by black

600 -

North [m]

Information Rate Field of view squares.
GPS Position, 1Hz -
heading, speed rails, delineator posts and traffic signs in the map. In Zaidit
to these, we include a reference route in the map, which is
Gyroscope Turn rate 50 Hz - . . .
used to define the road aligned coordinate system.
Speedometer Speed 50 Hz - .
A. Lane markings and the reference route
Camera Lane markers 10 Hz | Range: 60 m To efficiently describe the lane markings and the reference
(0.3 megapixel Angle: +30° route in the map, we want a smooth line representation
monovision) that we can fit to the sensor data. There are many different
_ _ descriptions that can be used for this purpose, e.g. bexlin
Radar Guard ralls, defineatoy 40 Hz | Range: 60 M| gaziar splines or clothoids. In this paper we use thirdeord
(76 GHz) posts, traffic signs Angle: £30° Beziér splines to describe lines in the map. We use this
RTK-GPS Reference 100 Hz R representation because it is easily fitted to the collected
data, and provides a natural segmentation that allows us

to consider sub parts of the map. The spline consists of

TABLE I: Summary of the sensors > -
connected third order Beziér curves expressed as:

is collected on the test track depicted in Fig. 1. The trackB(t) = (1—t)>Po+3(1—1)*tP1+3(1—1)t*Py+t°P3, (1)

is a 5 km long rural road where the number of lanes varies.

The main part of the road segments have lane markers af¥@ere ¢ € [0,1] and (Po, Py, Py, P3) are the so-called
many segments have guard rails, delineator posts or traffi@ntrol points. Each curve segment is described by its obntr
signs along the road. During the data collection, there Roints, which are found by solving a least-squares problem
only one vehicle on the track, hence we do not gain anynder the constraints that _the starting pqint of a segment
information about the road shape from detected vehiclel§ the same as the end point of the previous segment, and
On the other hand, there are no vehicles obscuring tigat the tangent vector should have the same direction at
surrounding environment from the sensors. From the teBPth sides of the common control point. By imposing these
track we have data collected during two laps using both tHeonstraints, we ensure that the resulting spline is coatiau

standard sensors and the reference system. and sufficiently smooth. _
The route is measured by the reference system, which
I1l. GENERATING A MAP provides more accurate position measurements compared to

The access to RTK-GPS reference data, together with titee standard GPS receiver mounted in the vehicle. The RTK-
information from the other sensors, allow us to create &PS delivers a position measurement every 10 ms and to
map of the road and its closest surroundings. Having suchtlaese measurements we fit a Beziér spline that describes the
map provides prior knowledge about the road and stationargute in the map, see Fig. 2. The lane marking measurements
objects and enables a matching of the received measuremeants defined relative the vehicle but, using the reference, dat
to features in the global coordinate frame. Considering thtaey are transformed into global coordinates. Then, simila
test track in Fig. 1, we want to describe lane markings, guais for the route, each line can be described by a spline.



of N particles,x\”, and their corresponding weights,”,

1108k according to

1100 . N

1005} ’ p(xklzl:ka M) ~ Z wl(;)é(xk - X](;)). (2)

1090 ) i=1

In (2), Z;.; is the set of all received measurements up to

- time k and M is the map described in Section Ill. We use

1075)- U a bootstrap particle filter which requires a process model

ya for propagating the particles in the prediction step, and a

likelihood for each set of measurements in order to update
the particle weights
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This section proceeds with a motivation of the choice of
Fig. 2: A part of the map where the blue solid line is thestate vector describing the ego vehicle and a description of
reference route, the black dashed lines are the lafge process model. Thereafter, given the state and the map,
markings and the red dots show the radar landmarkgye measurement models required in the particle filter are
Here, the landmarks consist of a guard rail on ongresented.

side of the road and three delineators on the other
side. A. The state vector

When predicting the position of the vehicle, it is desirable
to incorporate the knowledge that the vehicle is travelling
B. Radar landmarks on the road. To facilitate this we describe the vehicle state

: . in local road coordinates which are defined relative the
The available radar measurements consist of pre-processe . . .
) ) ; . . —réference route in the map. That is, the state of the vehicle
estimates of stationary objects, described in a local Vehic

coordinate frame. By transforming the complete set of radar described by the state vector

data into global coordinates, it is possible to clustemestes X1 = [lk, by ke, Ok, wi] T 4)

Into grc.)ups.r_epresentmg pqten'ual Iandmarks. The. pc"B'tlowherelk is the longitudinal distance along the route and
of an identified landmark in the map is then given by . .

" . . ; is, the normal distance to the route. Furthermore, in ¢4),
the mean position of the estimates associated with that

landmark. Both guard rails and more obvious point objectIS the heading angle relative the routg,is the speed in the

o . ; . .~ TNeading direction andy, is the yaw rate relative the turn
such as traffic signs, are described using point source®in t
r?te of the road.

map, see Fig. 2. Objects further away from the road, tha .
. . . -~ To describe the measurements from all sensors except the
generate a sufficient amount of detections, are included in . .
. speedometer, given the state, we use a transformation from
the map as clutter generating features. Examples of cluttey : . Lo
i . oad coordinates to the global map. This transformation is
sources can be bankings or vegetation along the road. The .
. . enotedl'(x;, M) and results in the global state vector
reason for keeping the point sources and the clutter sources

separated, is that the measurements from them behave dif- [E), Nk, cﬁk,vk,dzk]T = T(xx, M) (5)

ferently. For example, the point sources are more likely to . . . ..
Y P P y here (E), Ny) is the two dimensional north-east position

generate measurements while the measurements from e ~ - )
on the map,p, and @, are the global heading angle and

clutter sources spread more. It is worth noting that it i? . L : -
: : s urn rate, respectively, while;, is the speed as given in road
possible to characterize the measurement distributiom frocoordinates

each landmark individually and store the information in the

map. However, we have chosen to only distinguish betwedh Process model

two types of landmarks in the map and incorporate the The process model, that describes how the state vector
differences in the measurement model. evolves over time, is assumed to be a constant turn and
velocity model, which in continuous time is given by:

i(t) = w(t)cos(e(t))

IV. PROPOSED SOLUTION

In this section, we present the proposed self-localization

algorithm. At each discrete time instari, we solve the n(t) = wv(t)sin(p(t))

localization problem by estimating the state vectsy, o) = w(t)

containing the sought properties of the ego vehicle, such b(t) = eu(t)

as position and speed. To handle non-linear models, and at ot) = eult) ©6)

the same time describe potentially multimodal densitiles, t
algorithm is implemented using a particle filter [11]. In bac wheree, (t) ande, (t) are zero-mean Gaussian noise repre-
step, the filter approximates the posterior distributioratsgt  senting changes in speed and yaw rate. Depending on the



choice of discretization method, there are different diter For 0 < z < 2!, this measurement specifies the polynomial

versions of this model, all on the form ) 5
Ypr(x) = ago+ag1r +ag2z” +apzr” (12)

X1 = f(Xk) + Vi, () = L(x)+wi@(z), (13)

where f is a nonlinear function of the state and, ~
N (0, Q) is the process noise. Discrete models based on

Euler approximation and a second order Taylor expansi

are presented and evaluated in [12], where we have used 0 of the road plane onto the camera sensor, lane markgrs
latter one are measured with greater accuracy near the car. Assuming

a linearly increasing standard deviation of the noise, the
C. GPS measurement model variance is given a2, (z) = (r + sz)?, wherer and s

From the GPS we receive measurements on the vehi@€ Positive constants.
position, heading and speed. The measurements are given id) The measurement likelihood: At each time instant, the
longitude-latitude coordinates, but are mapped into thithao camera can detect at most one line on each side of the
east coordinate frame before being used in the localizatiofghicle. Assuming that these measurements are independent
algorithm. The employed measurement model is somewhi&€y can be treated separately. Hence, in the following we

simplistic and ignores both multi-path signals and time©nly consider a singlle measurement. The situation when 'Fhe
correlated noise sensor does not deliver a measurement can be informative,

however, in this paper we do not consider this negative

ereL(z) is the detected line in the map ang®™(x) ~
(0,02%,4(x)) is the measurement noise. Due to the projec-

gp
ﬁ%ps (1) (1) 8 8 8 information and the likelihood in (3) is set to constant in
2P = | s | = 0010 0 T(xk, M)+wir® (8) this case.
w&ps When a lane marking measurement is received, there are
vy 00010 AR :
normally multiple lines in the map that can be considered as
where ngs ~ N(0,R%9) is the measurement noise.the detected line. Starting with thigh line, denoted.;, the

Note that the model is nonlinear due to the transformatiomeasurement-to-line-matching is performed by comparing

T (xp, M). samples from the line in the map to the corresponding
samples of the polynomial in (12). More specifically, we
D. Measurement models for speedometer and gyroscope chose two points on the Beziér curve that describgsn
The speedometer and the gyroscope provide informatidhe map. The points are denotddl; = [El-_,j,Nl-_,j]T for

about speed and yaw rate, respectively. The speed measyre= 1,2, and are chosen such thgf; is near the position
ments provided by the speedometer are described by thwen by T'(x;,M) and P, , is located at a significant
linear model distance ahead, but not beyonf{l. To enable the matching
to the polynomial, the points are transformed to the camera

speed speed speed ’

ae o =vg =100 0 1 0] xk+w ©)  coordinate frame, resulting in the poir@s ; = [%; ;, 9 ;]",
where wzpeed - N(O,C@pee(} is the measurement noise.J :”1,2._ Given that _the measuremes#f*™ originates from
Ignoring the drift in the gyroscope, the model describingh€ ¢th line, the likelihood can then be stated as

the yaw rate measurements can be stated as: 2
cam N cami~. .. . 42 A
Zgyfo _ wgyfo _ [O 00 0 1} T (x5, M) + wgyfo (10) Pz "%k, M, Li) = l_IlN(yk (Zi,j); Ti,j» Ocam(Ti )
=
wherew?™ ~ N(0,02,,) is the noise. L L N )
o Considering all possible lines, the total likelihood for a

E. Camera measurement model camera measurement is

The car is equipped with a camera that observes the lane .., _ cam
markers in front of the car. The camera reports at most tvv%&k Xk, M) = Pea+ (1= Fra) Zwk”p(zk Ik, M, Li)
lines at each timée, one to the right and one to the left. ! (15)

The measurements from the camera are coefficients \herewy,; are the normalized weight depending on the dis-
a third degree polynomial that represents the shape of thgnce between the vehicle aifig, and Pr4 is the probability
detected lane markers. The polynomial is defined in a locaF a false alarm. In this work we approximate (15) by only

2d Cartesian coordinate frame that has its origin fixed to thﬁ)nsidering the most likely measurement to line associatio
center of the rear axle of the vehicle, and wherandy  according to
are straight ahead and to the left, respectively. Besides th
coefficients,ay, ; for i = 0...3, there is also a parameter, (252" %k, M) = Pea + (1 — Pea) Prax; (16)
z%, that defines how far along the-axis the polynomial is o
valid. In total, the measurement vector contains the fdligy Where Fmax is given as
parameters,
Prax = max p(z3"|xx, M, L;). a7)
1

Ziam = [ak,o, ak,1,0k,2, k3, xéc]T (11)



F. Radar measurement model these assumptions, the likelihood can be written:

From the radar processing unit, we receive a set gf(ZR%x;, M)

my Measurements, each a pre-processed estimate of a sta-,_ (v (x,)) m« Np ‘

tionary object. The measurement set is dendffa = = — H {ﬁ+ Zun(V(xk))p(zﬁxk, (Emap Nmap))
{z24™, ..., 229"} where z2{" is described in the same MEs 35 n=1

local (z,y) coordinates as the camera measurements. While Nc _

the radar measurements are given in this local coordinate Z tn (V (%)) (27, 1%k, (Efpapy N,ng))}, (20)
frame the landmarks iM, to which we want to match ~ m=1

the radar measurements, are described in global north-east

dinat Y by t ¢ ‘q th hicle stat Attere V(xg) is the field of view andNp and N¢ de-
coordinates. Hence, Dy transforming the vehicle state Wote the number of point sources and clutter generators,

global coordinates we can easily match the measureme%%pectively in the map. Considering thigh landmark
to landmarks in the map. Given the global vehicle state ' '

[Ek, Nk, @r, vk, 0k)T = T(xx, M), and conditioned on that D(Z[xk, (Fimap Nemap)) S given by the models in (18) and

.. L FENG (19). The expected number of measurements in the field of
the i:th landmark at poSition Epnay, Nmap> IS d(_atected by the view from a landmark is denoted; (V' (xy)), i.e. if thei:th
radar, the produced measurement is described by landmark is located outside the field of view(V (xx)) = 0.

The total expected number of measurements at time

pradar i i denotedu(V (x = J-\LP+NC W(V(xk)).
zgcadar: [yfadar] = h(T(Xka M)a (Emapa Nmap)) + W;ca,?ar M( ( k)) Zl_l a ( ( k))
_ [(Erinap— Ey,) cos @k + (Npap— Ni) sin @y adr V. EVALUATION
(Nmap — Ni) cos @k — (Efap — i) sin Gy, ! In this section we evaluate the presented self-localiratio

(18) filter using data collected on the test track described by the

map. The result is compared to the requirements stated in

where w29 ~ A/(0, R'29) s the measurement uncertain-Section II, i.e., we aim for a lateral error less than 0.2 m
ties. As discussed earlier, depending on if the measuremewiile a longitudinal error up to 1 m is allowed. To get a better
originate from a point source or a clutter source the urtinderstanding of the robustness of the system, the evattuati
certainties differ. More specifically, the noise covariaris is divided into two parts, one where all available sensors

described by are used, and one where either the radar or the camera is
deactivated.
R if landmarki is a point source The evaluation is performed on a part of the test trac_k
R/2dar — { " _ - and the number of detectable lane markings and visible point
R + R if landmarki is a clutter soua:-g) landmarks during the scenario are depicted in Fig. 3.

whereR.. is accounting for the scattering properties of the
clutter sources.

N
5

N

1) Likelihood based on a Poisson assumption: For a given
set of of measurements, at tinke we need to calculate the
likelihood used for updating the particle weights accogdin
to (3). The origin of each measurement is unknown which BRI
leads to data association uncertainties. Summation oeer th 0 W w0 e 80 100 10 140 160 160
association hypotheses is time consuming when there are
many landmarks and measurements. A method for calculat-
ing the needed likelihood without considering all hypotses
explicitly is presented in [13], where the measurementset i
modelled as an inhomogeneous Poisson process.

The assumption that the measurements are described b T T T ST
Poisson processes suits us reasonably well since many o Time [s]
the landmarks, although being points in the map, might o )
generate multiple detections. In the used map, there aréd- 3: The number of visible lane markings and the number
both point sources and clutter generators which are treated ~ Of Point sources within the radar field of view as a
similarly as the targets in [13]. However, the two types of functloln of the reference system time during the data
landmarks are treated separately since they are modelted wi collection.
different expected number of measurements and measure-
ment uncertainties. In addition to the landmarks, we have At each time instantt when the particle weights are
a uniform clutter density with intensityy describing radar updated using new information, an approximation of the
data originating from objects not included in the map. Undemaximum a posteriori estimate is computed as the weighted

Number of lines

30

20

10

Number of landmarks




sum of the particles

o =
o v r w
i

Lateral error [m]
S
(5]

N
=1

-1
This estimate is compared to the ground truth provided by the s -
reference system to get the errors in the computed estimates R e

(a) The lateral error. The requirement on a lateral erroovoe?0 cm is

A. Impl tation details illustrated by the red dashed lines.

To initiate the position, heading and speed in the particle
filter, N = 10* particles are drawn from a density given by
the first GPS measurement and its uncertainties. The yaw
rate is initiated in a similar way using the gyroscope. The
initial particle weights are set twff) =1/N,i=1..N.

The process and measurement noise covariances use

o B N W

|
AN

|
w N
T

Longitudinal error [m]

I I I I I I I
60 80 100 120 140 160 180

o
N
o
N
o

in the implementation are set t€@ = diag{o2,02} = e

; 2 2 gps — (i 2 102 12 2 2 _ 92
d|2ag{5 ’0'52 }’2R u d|ag{10 ,10%,1 ’20'2 }’ Tspeed ™ 2%, (b) The longitudinal error. The requirement on a longitadierror below
Oy = 0.2%, 0&m(x) = (0.25 4+ 0.052)* and for the radar 1 mis illustrated by the red dashed lines.

measurementRy, = diag{2?, 2%}, R = diag{5?, 2%}.

To calculate the likelihood in (15), the probability of fals
alarm is set taPsa = 0.01.

For the radar measurements, and the likelihood in (20),
we useV (x;) according to the field of view in Table I.
For point sources:; (V' (xy)) = 0.7 and for clutter sources N
wi(V(xg)) = 0.2, if the landmark is located withifv (xy). e A
The number of landmarks in the mapi& + No = 751 +
431 = 1182. The clutter intensity is set t6 = 5-10~* which
results in 1.5 expected clutter measurements, in addition t
those generated by the clutter sources, at each scan.

Heading error [deg]

(c) The error in heading angle

B. Performance using all sensors
Using all available sensor data, except for the reference

Speed error [m/s]

system, we run the localization filter and compute the P 20 0 60 8 100 120 140 160 180
estimated position, heading angle and speed according to Tmel _
(21). The errors are illustrated in Fig. 4 together with the (d) The error in the speed estimates

requirements on the accuracy for the lateral and the Iongit%
dinal errors. Comparing the error with the requirements, we
see that during most parts of the scenario, the performance
is within or close to the set limits. More specifically, the
lateral error is below the set limit 87 % of the time and
the corresponding number for the longitudinal error is 94 %.
Taking a closer look at the intervals where the error excee
the limits, we see that it is often during road segments whe

there are no (or at least less than 2) lane markings, such ) LT SR )
there is less longitudinal information in the lane markings

t € [40,60]. It is worth noting that during € [165,175], L .
there is a curve with neither lane markings nor guard raiIsWhen driving on a straight road. The lateral error on theothe
hand is small during segments with lane markings, except

C. Robustness in the beginning where the filter is initiated in the wrong

To study the robustness of the localization algorithm, wtne due to poor GPS measurements. Not using the camera,
repeat the evaluation on the same scenario and with the safig lateral error becomes bigger while the longitudinaberr
data set, but once without using the lane marking measurgays close to the requirements. This is expected as the lane
ments and once without the radar data. This illustrates tHBarkings provide the system with lateral information. To
expected performance on a road without lane markings &cilitate a comparison of the different cases, the resaris
radar landmarks. The results for the position and the hgadigimmarized in Table II.
angle for the two cases are shown in Fig. 5 and 6. The
speed estimates are omitted here since no interesting ebang
were observed. As expected, the overall result becomesThis paper presents a localization algorithm based on a
worse when one of the sensors is left out. For example, tlietailed map and a set of available off-the-shelf sensdrs. T

ig. 4: The estimation error when localization is performed
using all sensors. The grey area illustrates the filter
uncertainties (standard deviation) based on the parti-
cles.

s . .
?8ng|tud|nal error grows when no radar data is availablee Th
blem becomes very cleariat [60, 80] in Fig. 5(b), since

VI. CONCLUSIONS



Lat. error< 0.2 m | Long. error< 1 m
= Using all sensors 87 % 94 %
g A el Without radar 69 % 56 %
e N
% Without camera 23 % 90 %
80 100 120 140 160 180 TABLE II: Percent of the time that the position errors are
Time [s within the requirements, computed from the re-
(a) The error in lateral position. sults in Fig 4,5 and 6.

map contains the position of lane markings and radar land-
marks and was generated using a reference system together
with camera and radar measurements from one data set.
BT o o 1w 1o Lo o 1o Evaluation on a second data set shows that the localization
Time [s] performance is within or close to the requirements set on
(b) The error in longitudinal position. position accuracy on the parts of the road where there are
both lane markings and guard rails. However, the tests where
either the camera or the radar is deactivated, indicatetheat
proposed algorithm is not robust enough to produce accurate
position estimates in all situations. Possible improveimen
for these scenarios can be to use more sophisticated measure
i S S S SR ment models, e.g. incorporate low-level GPS information,
o B 8°Time1[2]° 120 w0 100 %0 or extract more information from the used sensors, such as
() The error in heading angle. information about additional landmarks from the camera.
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Fig. 5: The estimation error when the radar is deactivated. REFERENCES

[1] E. Dickmanns, R. Behringer, C. Brudigam, D. Dickmanns,
F. Thomanek, and V. van Holt, “An all-transputer visual dation-
autopilot/copilot,” in Fourth International Conference on Computer
Vision, 1993, pp. 608-615.

[2] K. Jo and M. Sunwoo, “Generation of a precise roadway map f
autonomous cars,JEEE Transactions on Intelligent Transportation
Systems, vol. PP, no. 99, pp. 1-13, 2013.

[3] A. Schindler, G. Maier, and F. Janda, “Generation of hgghkcision
digital maps using circular arc splines,” IEEE Intelligent \Vehicles
Symposium (1V), 2012, pp. 246-251.

Lateral error [m]

3 . . . . . . . . . [4] “Special Issue on the 2007 DARPA Urban Challenglefirnal of Field
0 20 40 60 80 100 120 140 160 180 Roboatics, vol. 25, no. 8, pp. 423-860, 2008.

Time ] [5] A. Bar Hillel, R. Lerner, D. Levi, and G. Raz, “Recent pregs in

(a) The error in lateral position. road and lane detection: a surveiachine Vision and Applications,

pp. 1-19, Feb. 2012.

[6] T. Wu and A. Ranganathan, “Vehicle localization usingaomark-
ings,” in |EEE Intelligent Vehicles Symposium (1V), June 2013, pp.
1185-1190.

[7] F. Chausse, J. Laneurit, and R. Chapuis, “Vehicle laetibn on
a digital map using particles filtering,” IREEE Intelligent \Vehicles
Symposium, 2005, pp. 243-248.

[8] Z. Tao, P. Bonnifait, V. Frémont, and J. Ibafiez Guznidane mark-

0 20 40 60 80 100 120 140 160 180 ing aided vehicle localization,” IlEEE Intelligent Vehicles Symposium

Time (5] (ITS), 2013.

(b) The error in longitudinal position [9] M. Schreiber, C. Knoppel, and U. Franke, “Laneloc: Lanarking
based localization using highly accurate maps,’IHEE Intelligent
Vehicles Symposium (1V), 2013, pp. 449-454.

[10] A. Schindler, “Vehicle self-localization with highrecision digital
maps,” inIEEE Intelligent \ehicles Symposium (1V), 2013, pp. 141-
146.

[11] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, ‘@tdrial
on particle filters for online nonlinear/non-gaussian Isim tracking,”

-5 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ i |EEE Transactions on Sgnal Processing, vol. 50, no. 2, pp. 174-188,

0 20 40 60 80 100 120 140 160 180 Feb 2002.
Time (<] [12] M. Morelande and N. Gordon, “Target tracking throughoaminated
(c) The error in heading angle turn,” in IEEE International Conference on Acoustics, Speech, and
Sgnal Processing (ICASSP), vol. 4, 2005, pp. iv/21-iv/24 Vol. 4.

Fig. 6: The estimation error when the camera is deactivated3! K- Gilholm, S. J. Godsill, S. Maskell, and D. J. Salmori@pisson
9 models for extended target and group trackir@PIE, October 2005.

Longitudinal error [m]

Heading error [deg]




