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Abstract

The African trypanosome, Trypanosoma brucei, is a unicellular parasite causing African
Trypanosomiasis (sleeping sickness in humans and nagana in animals). Due to some of
its unique properties, it has emerged as a popular model organism in systems biology.
A predictive quantitative model of glycolysis in the bloodstream form of the parasite has
been constructed and updated several times. The Silicon Trypanosome is a project that
brings together modellers and experimentalists to improve and extend this core model
with new pathways and additional levels of regulation. These new extensions and ana-
lyses use computational methods that explicitly take different levels of uncertainty into
account. During this project, numerous tools and techniques have been developed for
this purpose, which can now be used for a wide range of different studies in systems
biology.

1. INTRODUCTION

Trypanosoma brucei, a unicellular bloodstream parasite transmitted by

tsetse flies, is the causative agent of African Trypanosomiasis (sleeping sick-

ness in humans and nagana in animals; Barrett et al., 2003). In recent years, it

has emerged as a popular model organism in systems biology (Barrett,

Bakker, & Breitling, 2010), due to the wealth of information obtained in

biomedical studies and the many advantages it offers: reproducible cultiva-

tionmethods exist and quantitative analysis is well established. A quantitative

mathematical model of central energy metabolism in the bloodstream form

of the parasite was one of the first predictive kinetic models of a complex

biological system (Bakker, Michels, Opperdoes, & Westerhoff, 1997), and

this model has been iteratively updated after experimental testing and vali-

dation (Albert et al., 2005; Bakker et al., 2000; Bakker, Michels,

Opperdoes, & Westerhoff, 1999; Haanstra, van Tuijl, et al., 2008;

Helfert, Estévez, Bakker, Michels, & Clayton, 2001), yielding one of the

most extensively curated kinetic metabolic models currently available.

The Silicon Trypanosome (SilicoTryp) is a project that brings together

computational systems biologists and trypanosome experts to address
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multi-level regulation of trypanosome physiology on a new scale. Using a

Bayesian approach that explicitly takes multiple levels of uncertainty into

account, the project aims at re-analysing the core model of glycolysis and

extends it in two directions: metabolic extensions towards new pathways

(“horizontal” extensions) and inclusion of transcription and translation

(“vertical” extensions). Explicitly including our uncertainty, both in the

parameter values and the topologies of the different extensions, allows us

not only to quantify our level of confidence in the results but also to deter-

mine, in an unbiased manner, pitfalls and inconsistencies that might have

gone unnoticed if the modelling was done without uncertainty awareness.

The horizontal extensions initially focus on the pathways controlling

redox balance in trypanosomes: the trypanothione pathway, which is critical

for parasite survival in the host, and the pentose phosphate pathway that links

the trypanothione pathway to glycolysis by providing the necessary

NADPH. Adding these two pathways requires knowledge of the kinetic

parameters of all enzymes involved. In order to obtain the most accurate

parameter values for these additional enzymes, a new buffer was developed

to mimic as closely as possible the conditions in the cytosol of the parasite, as

has previously been done for yeast (van Eunen et al., 2010). The first enzyme

characterised in this buffer was trypanothione synthetase, the final enzyme of

the trypanothione biosynthesis pathway, using a method that integrates lab-

oratory experimentation and modelling to explore alternative model topol-

ogies (Leroux, Haanstra, Bakker, & Krauth-Siegel, 2013).

In addition to these metabolic extensions, the SilicoTryp project aims at a

vertical extension of the model by including additional levels of control:

transcription and translation. In trypanosomes, transcription rates (with very

few exceptions) play little role in the regulation of mRNA concentrations

since transcription by RNA polymerase II is not regulated for individual

genes (Siegel, Gunasekera, Cross, &Ochsenreiter, 2011). Instead, regulation

is achieved at the levels of pre-mRNA- and mRNA-processing and degra-

dation. These levels of control are modelled based on the previously

published ordinary differential equations model of phosphoglycerate kinase

(PGK) transcription and translation (Haanstra, Stewart, et al., 2008).

The necessary parameters are acquired using deep sequencing (RNAseq).

These estimates will be particularly uncertain, compared to metabolic

enzyme parameters, and this provides an additional motivation for using a

fully uncertainty-aware modelling strategy.

The uncertainty-aware modelling requires a rigorous method for

updating our initial (prior) beliefs on the parameter values of the models,
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when new data becomes available. For this purpose, it was necessary to

develop a computationally efficient Monte Carlo variance reduction

method (Papamarkou, Mira, & Girolami, 2014). Two types of large-scale

experimental data are generated within the SilicoTryp project to drive

the iterative updating process: steady-state concentration of metabolites

and metabolic fluxes were measured using liquid chromatography–mass

spectrometry (LC–MS) in standard conditions, and a collection of RNAi

mutants were constructed, to examine the behaviour of the system under

a variety of perturbations. The mutants in this collection will be

characterised at the metabolome, transcriptome and proteome level, provid-

ing new data to further refine the extended model and reduce our uncer-

tainty on model topology and parameter values.

2. UNCERTAINTY IN THE GLYCOLYSIS MODEL

SilicoTryp explicitly deals with uncertainty at multiple levels (exper-

imental data, kinetic parameter values, model topology) in every aspect of

the project. It aims at applying the general framework of Fig. 3.1

(Vyshemirsky & Girolami, 2008; Xu et al., 2010).

The T. brucei glycolysis model, as previously published (Albert et al.,

2005; Bakker et al., 2000, 1997; Bakker, Michels, et al., 1999; Haanstra,

van Tuijl, et al., 2008; Helfert et al., 2001) (Fig. 3.2), used a single set of

parameters values. Some basic uncertainty analysis was included by scanning

a range of values for selected parameters individually (Bakker et al., 1997) or

comparing two alternative topologies (Bakker, Michels, et al., 1999), but the

combined effect of uncertainty in all parameters was not evaluated system-

atically, nor were the plausible distributions of parameter values explicitly

defined. Therefore, an important step in the SilicoTryp project was to col-

lect information not only on the (experimental and biological) uncertainty

of all parameter values in the previously published model but also on the

uncertainty of the topology of the metabolic network.

2.1. Parameter uncertainty in the glycolysis model
In order to evaluate uncertainty on the parameter values of the glycolysis

model, a Mediawiki-based website was created, the SilicoTryp wiki

(http://silicotryp.ibls.gla.ac.uk/wiki). In this wiki, the sources and calcula-

tions underlying the values for every parameter of the glycolysis model were

documented (see e.g. in Fig. 3.3). This detailed source of documentation

allowed us to define probability distributions for each parameter, hence
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Figure 3.1 General Bayesian framework for explicitly handling uncertainty in the SilicoTryp project.



Figure 3.2 Glycolysis in T. brucei as previously published (Albert et al., 2005). Abbrevi-
ations: Glc-6-P, glucose 6-phosphate; Fru-6-P, fructose 6-phosphate; Fru-1,6-BP, fructose
1,6-bisphosphate; DHAP, dihydroxyacetone phosphate; GA-3-P, glyceraldehyde
3-phosphate; Gly-3-P, glycerol 3-phosphate; 1,3-BPGA, 1,3-bisphosphoglycerate;
3-PGA, 3-phosphoglycerate; 2-PGA, 2-phosphoglycerate; PEP, phosphoenolpyruvate.
Reprinted from Achcar et al. (2012), under the Creative Commons Attribution License.
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representing our prior beliefs on what the true parameter values are (Achcar

et al., 2012).

Using these distributions, sets of plausible parameters were sampled.

A large collection of variant models, each with a different set of sampled

parameters, was then simulated, allowing us to quantify confidence intervals

for different model properties, such as steady-state concentrations and fluxes

or control coefficients resulting from the parameter uncertainty (see

Fig. 3.4). This strategy allowed us not only to gain knowledge on how con-

fident we are about the model predictions but also to detect fragilities of the

model in an unbiased way, highlighting areas of themodel behaviour that are

in contradiction with experimental data (Achcar et al., 2012). We showed,

for example, that only in 40% of our sampled models is the control over the

glucose consumption flux mostly held by the glucose transporter, as

described before with the fixed parameter model (Bakker, Michels, et al.,

1999; Bakker, Walsh, et al., 1999). In the equally plausible scenarios repre-

sented by the remaining 60% of the models, this control is shared between

several other glycolytic enzymes, and which enzymes share control over the

glucose consumption flux depends on the parameter sets considered (Achcar

et al., 2012).

Figure 3.3 Example page of the SilicoTryp wiki. Chemical and rate equations are
described, and sources for each parameter are documented in detail.
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Figure 3.4 Evaluation of parameter uncertainties and their effect on the model results. Reprinted with permission from Breitling, Achcar, and
Takano (2013). Copyright 2013 American Chemical Society.



2.2. Topological uncertainty in the glycolysis model
In addition to evaluating the effect of parameter value uncertainty, we

explored the effect of topological uncertainty in the glycolysis model

(Xu et al., 2010). Although T. brucei central energy metabolism has been

exceptionally well studied for a long time, some areas of its network con-

nectivity remain controversial. Indeed, the previously published model con-

sidered the glycosomes, organelles where most of the glycolytic enzymes are

localised (see Fig. 3.2), as impermeable compartments into which all

required metabolites need to be transported via specific transporters. This

hypothesis was reinforced by both theoretical (Bakker et al., 2000) and

experimental (Haanstra, van Tuijl, et al., 2008) findings that mislocalising

the glycolytic enzymes to the cytosol causes a lethal accumulation of sugar

phosphate. This confirmation of theoretical predictions by experimental

results has been considered one of the major successes of the T. brucei

glycolysis model.

However, recently, size-specific pores have been discovered in the

glycosomal membrane (Gualdron-López et al., 2012). These pores are

essentially chemically non-selective holes and their presence implies that

small metabolites can diffuse freely across the membrane, while only the

largest molecules would be retained inside the glycosomes. This creates

additional potential links in the metabolic network, between cytosol and

glycosome, which are not yet fully understood, but need to be considered

in the metabolic modelling.

Another aspect of topological uncertainty is due to the fact that we know

that enzymes are imported into the glycosome fully folded (Häusler,

Stierhof, Wirtz, & Clayton, 1996; Michels et al., 2005); of course, these

might be fully sequestered in transit by the protein import machinery,

but there is also a concrete possibility that there could be some residual activ-

ity of glycosomal glycolytic enzymes in the cytosol. Cytosolic activity of the

relevant enzymes has so far been poorly characterised and is generally

neglected in modelling.

To test the effect of increasing permeability of the glycosome, a series of

models was constructed (Achcar, Barrett, & Breitling, 2013). These models

have increasingly permeable glycosomes, ranging from the impermeable

glycosomes of the previous models (model 1a has a similar topology as

the models published since 1999 (Bakker, Michels, et al., 1999), model

1b has a similar topology as the model of 1997 (Bakker et al., 1997)) to

glycosomes permeable to all metabolites up to the size of ATP (model 6).
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For each of these models, the uncertainty on the parameter values was taken

into account as previously (Achcar et al., 2012). This was then extended by

also including the uncertainty on the percentage of activity of the glyco-

somal enzymes in the cytosol. The resulting collection of models was sim-

ulated, and results were compared to experimental data (metabolite

concentrations and fluxes) by computing log-likelihoods: the higher the

log-likelihoods the better the match between simulations and experiments

(see Fig. 3.5). Our results show that, quite surprisingly, the semi-permeable

models that let metabolites smaller than fructose 6-phosphate (model 3) or

smaller than fructose 1,6-bisphosphate (model 4) freely diffuse, agree with

the experimental data at least as well as the impermeable model (model 1a).

This is consistent with the idea that only compartmentation of ATP is

required. Contrary to the common intuition that organelles like the

glycosome function as tightly sealed compartments, at least for glycosomal

glycolysis a certain degree of leakiness for smaller metabolites appears to

be fully compatible with its function.

Figure 3.5 Log-likelihood (goodness of fit to experimental data) of models with increas-
ing glycosome permeability and cytosolic activities of the glycosomal enzymes. The
higher the log-likelihood, the better the match between simulations and experimental
results. Each model is simulated with a range of parameter sets that describes our uncer-
tainty about the parameter values. See Achcar et al. (2013) for details. Modified with per-
mission from Achcar et al. (2013). Copyright 2013 John Wiley and Sons.
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In addition, the analysis allowed us to show that, for all topologies with a

semi-permeable glycosome tested, the fraction of residual cytosolic activity

of some glycolytic enzymes probably plays a crucial role in explaining

parasite physiology.

3. METABOLIC EXTENSIONS OF THE MODEL

With the uncertainty-aware model of central carbon metabolism

established, the SilicoTryp project could aim at including the trypanothione

and pentose phosphate pathways and the associated extra levels of uncer-

tainty into the model.

3.1. The pentose phosphate pathway
InT. brucei, the pentose phosphate pathway is localised in both the cytosol and

theglycosomewhere its presencebreaks thebound-phosphatebalance thatwas

thought to be essential (Bakker et al., 2000; Haanstra, van Tuijl, et al., 2008).

This phosphate “leak” needs to be solved either by finding a viable model that

does not need bound-phosphate to be balanced in the glycosome, or by adding

reactions to restore this balance. One solution within each of these two cate-

gories of solutions was tested (Kerkhoven et al., 2013).

The first solution tested maintained the bound-phosphate balance by

adding ribokinase to the glycosome (hypothesis 1 of Fig. 3.6). In the context

of impermeable glycosomes, ribokinase would work in the direction of pro-

ducing ATP and ribose. To be able to model this solution, the enzyme was

characterised biochemically (Kerkhoven et al., 2013). However, despite

being sufficient theoretically, the results showed that this enzyme alone can-

not maintain the bound-phosphate balance. The second solution modelled

involves breaking the bound-phosphate balance by introducing an

ATP/ADP translocator. However, modelling shows that this translocator

would need to be very tightly regulated for the parasite to be viable. This

makes it unlikely that such an antiporter alone could represent a solution

and more reactions are probably involved in the regulation of the bound-

phosphate balance.

Despite the topological uncertainty that remains, both of these model

versions can already be used to some extent. Both of them handle oxidative

stress in the same way, and the models have been used to test possible mech-

anisms to explain why the third enzyme of the PPP, 6-phosphogluconate

dehydrogenase (from 6-PG to Rul-5-P in Fig. 3.6), is essential for parasite

survival. The resulting predictions were then tested experimentally and it
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was shown that a positive feedback loop related to 6-PG inhibition of phos-

phoglucose isomerase was not responsible for the 6-phosphogluconate

dehydrogenase essentiality in T. brucei (Kerkhoven et al., 2013), in contrast

to the situation in many other organisms.

Figure 3.6 Two hypotheses tested to solve the topology of the pentose phosphate path-
way. In black, the reactions of the glycolysis model, in grey the reactions introduced to
model the pentose phosphate pathway. Abbreviations are not present in Fig. 3.2: 6-PGl,
6-phosphogluconolactone; 6-PG, 6-phosphogluconate; Rul-5-P, ribulose 5-phosphate;
Rib-5-P, ribose 5-phosphate; TS2, trypanothione disulfide; T(SH)2, trypanothione.
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3.2. The trypanothione pathway
3.2.1 The pathway topology
In order to extend the model with the trypanothione pathway, a main con-

tributor to redox balance in T. brucei, we first had to determine the stoichio-

metric map of this pathway. We constructed a stoichiometric map of the

trypanothione pathway based on the literature and LC–MS data (see

Fig. 3.7). Cells were grown in the presence of 50% 13C-labelled glucose over

48 h, after which their metabolites were extracted and analysed using LC–

MS (Kim, D.H., Achcar, F. et al., in preparation). The partially labelled

metabolome allowed us to rule out the presence of the methionine salvage

pathway (marked 1 in Fig. 3.7) in T. brucei. Indeed, if this pathway—

recycling methylthioadenosine (MTA) into methionine—was occurring,

we should detect some four carbon-labelled methionine. However, methi-

onine is clearly detected as fully unlabelled, indicating that the pathway is not

complete (Kim, D.H., Achcar, F. et al., in preparation).

One question that remains open is the origin of ornithine in vivo. Previ-

ous data indicated that trypanosomes lack arginase (Vincent et al., 2012), the

Figure 3.7 Stoichiometric map of the trypanothione pathway. The blue asterisks indi-
cate whichmetabolites are found 13C labelled when all glucose carbons are 13C labelled.
The turquoise asterisks indicate which metabolites are labelled when glutamine is
labelled. The methionine salvage pathway, marked as 1, does not seem to be active
in T. brucei (see text). The origin of ornithine, marked as 2, remains uncertain. Abbrevi-
ations: Orn, ornithine; Gly, glycine, Met, methionine; g-GC, g-glutamylcysteine; SAM,
S-adenosylmethionine; dcSAM, decarboxylated S-adenosylmethionine; Spd,
spermidine; Gsp, glutathionylspermidine; MTA, methylthioadenosine; MTR-1P, met-
hylthioribose 1-phosphate; Glc, glucose; G6P, glucose 6-phosphate; Pyr, pyruvate;
TS2, trypanothione disulfide; T(SH)2, trypanothione.
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enzyme that produces ornithine from arginine, which is the common source

of ornithine in eukaryotic cells including other parasites (Vincendeau,

Gobert, Daulouède, Moynet, & Djavad Mossalayi, 2003). It was also shown

that in the presence of ornithine, T. brucei is capable of using it directly, and

therefore it was hypothesised that the cells use ornithine directly from the

medium. However, measurements of the metabolite composition in the

growth medium over time (Kim, D.H., Achcar, F. et al., in preparation;

see below) showed that the ornithine concentration is quite low in the

growth medium (Creek et al., 2013; see Section 5.2) and does not change

over time (staying between 15 and 20 mM in the medium; it was measured as

54.4�16.1 mM by Martens-Lobenhoffer et al. in blood (Martens-

Lobenhoffer, Postel, Tr€oger, & Bode-B€oger, 2007), i.e. the same order

of magnitude). This suggests that there probably is another route to the pro-

duction of ornithine in T. brucei, and its origin is currently being examined.

3.2.2 Uniform assay conditions
Usually, enzyme activities are measured under non-physiological optimum

conditions. For a reliable in silicomodel and to reduce our uncertainty about

the parameter values, the data should preferably be obtained under condi-

tions that mimic the milieu in which the pathway is active in the cell

(van Eunen et al., 2010). The importance of physiological conditions to

measure metabolic functions was recently demonstrated: the use of an

“in vivo-like” assay medium yielded enzyme kinetic parameters that substan-

tially improved a computational model of yeast glycolysis (van Eunen,

Kiewiet, Westerhoff, & Bakker, 2012). Such a buffer had not been used

forT. brucei before. Based on the available literature, we therefore developed

a new phosphate buffer system at pH 7.0 in which measurements are done at

37 �C (Table 3.1), mimicking the physiological environment of the

enzymes in the cytosol of bloodstream-form parasites (Leroux et al., 2013).

3.2.3 A detailed focus on one enzyme: Trypanothione synthetase
We first employed our in vivo-like assay to characterise kinetically the

enzyme of the final step in trypanothione (T(SH)2) synthesis. T. brucei

trypanothione synthetase (TryS) generates T(SH)2 from glutathione

(GSH) and spermidine (Spd) in two consecutive ATP-dependent reactions

(Comini et al., 2004; Oza, Ariyanayagam, Aitcheson, & Fairlamb, 2003). In

the first step, glutathionylspermidine (Gsp) is formed, which is then com-

bined with a second GSH to yield T(SH)2. In vitro, TryS also displays ami-

dase activity and can, in total, catalyse five different reactions: ATP
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hydrolysis, formation of Gsp and T(SH)2 as well as hydrolysis of the conju-

gates to regenerate GSH and Spd. As the mechanism of TryS is rather com-

plex, a rate equation could not be easily formulated. To obtain a deeper

insight in the exact molecular mechanism of the synthetase reactions of

TryS, we formulated alternative kinetic models with different topologies

of the catalytic cycle. Each elementary reaction step was modelled by a

mass-action kinetic equation. The model parameters were then fitted by

evolutionary programming to the extensive matrix of steady-state data

obtained for different substrate/product combinations using our in vivo-like

buffer. In the process of building the model, a strong interaction between

experimental and modelling efforts proved to be essential. New enzyme

kinetic experiments were designed to provide data to help discriminate

between different models. Moreover, when the fit to the data was sub-

optimal model topology was adjusted in an iterative cycle (see Fig. 3.8).

The best model describes the full kinetic profile of TryS and is also able to

predict time profiles of (intermediate) product formation that were not used

in the fitting of the parameters, and thus serve as validation data (Leroux

et al., 2013). It also provides a mechanism for inhibition by the substrate glu-

tathione and the product trypanothione. In our in vivo-like assay, some of the

kinetic constants proved markedly different from earlier measurements in

other buffer systems (Oza et al., 2003; Torrie et al., 2009). Major alterations

were a threefold higherKi value for GSH, a rise of theKm value for Spd from

139 to 687 mM and a reduction of the kcat from 5.2 to 2.8 s�1. These

Table 3.1 Characteristics of the in vivo-like buffer system for the cytosol
of bloodstream T. brucei
Parameter Value Reference(s)

Temperature 37 �C

pH 7.0 Nolan and Voorheis, (2000a) and

Thissen and Wang (1991)

[Phosphate] 10 mM Moreno et al. (2000)

[K+] 100 mM Nolan and Voorheis (2000b)

[Na+] 15 mM Nolan and Voorheis (2000b)

[Mg2+] 10 mM Fuad et al. (2011)

[Cl�] 120 mM Nolan and Voorheis (2000b)

Ionic strength 200 mM
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observations are further demonstration of the importance of mimicking the

physiological environment.

4. TRANSCRIPTION/TRANSLATION EXTENSIONS
OF THE MODEL

One of the aims of the SilicoTryp project is to include transcription

and translation in the model, resulting in dynamic enzyme levels, instead

of using fixed Vmax values for all enzymes. This will be done using a module

of four differential equations for each enzyme (see Fig. 3.9), based on the

previously published model of phosphoglycerol kinase transcription and

translation (Haanstra, Stewart, et al., 2008). Regulation of enzyme concen-

trations in T. brucei is typically achieved by controlling the pre-mRNA-

processing rate (ksplicing in Fig. 3.9), the translation rate (ktranslation) and/or

Figure 3.8 Workflow applied for dissecting the kinetic mechanism of trypanothione
synthetase. Modified with permission from Leroux et al. (2013). Copyright 2013 American
Society for Biochemistry and Molecular Biology.
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the degradation rates. To measure the pre-mRNA and mRNA degradation

and processing rates, RNAseq experiments were done and are currently

being analysed.

4.1. The pre-mRNA-processing rates
Genes in trypanosomes are transcribed as polycistronic precursor messages

(pre-mRNA) that are destined for either trans-splicing into mature mRNA

or degradation. In order to measure the rate of pre-mRNA-processing for

each gene, cells were treated with Actinomycin D for 5 min to inhibit

mRNA transcription. RNA was then extracted and, after being depleted

from rRNA, two biological replicates and two controls were subjected to

transcriptome-wide deep sequencing (RNAseq, an average of 50 million

reads of length 50mer, using Illumina HiSeq 2000). A decrease in pre-

mRNA read counts in treated cells will be due to the splicing of the pre-

mRNA in the absence of transcription. The ratio of pre-mRNA read counts

(treated cells over untreated) was then used to estimate the rate of mRNA

Figure 3.9 Transcription/translation module that will be added for every enzyme of the
model. The module is based on the model published by Haanstra, Stewart, et al. (2008).
The rate constants of the various processes involved are indicated by k, and m are the
specific growth rate of the trypanosomes, and ribosomes represents the number of ribo-
somes per molecule of mRNA.
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processing. A difficulty in differentiating between reads from pre-mRNA

sequences and those due to spurious transcription events in the same region,

led us to limit our analysis to the 20 nucleotides immediately upstream of

known splice acceptor sites. Although this had the drawback of limiting

the number of examined regions, this filter increases our confidence about

the origin of the reads.

Preliminary results indicate that 50% of the transcripts have a half-life of

less than 2 min, but some showedmuch longer apparent half-lives.We spec-

ulate that this is due to persistence of bi-cistronic RNAs, perhaps in the cyto-

plasm (Fadda, A. et al., in preparation).

4.2. mRNA decay rates
In order to measure mRNA degradation rates, cells were treated with both

Actinomycin D and Sinefungin to inhibit both transcription and splicing.

RNA was extracted at several time points after transcription inhibition,

depleted from rRNA and subjected to deep sequencing (an average of

25 million 75mer reads, or 200 million 50mer reads, using Illumina GAIIX

and HiSeq 2000, respectively). Since all trypanosome mRNAs carry the

same 39-nt spliced leader (SL) at the 50-end, the abundance of the SL can

serve as a proxy for the abundance of total mRNA. This allowed us to nor-

malise the read counts using the total mRNA decay pattern across the same

time points. Then, amounts of total mRNA were measured relative to the

steady state (Fadda, Färber, Droll, & Clayton, 2013), and mRNA half-lives

were first estimated using an exponential model.

It has been shown, however, that in a transcription inhibition experi-

ment, while the majority of transcripts decay exponentially, others exhibit

a slow-to-fast or fast-to-slow decay pattern. In our work, we see the same

pattern. Therefore, we used a Markov chain model developed earlier by

Deneke, Lipowsky, and Valleriani (2013) to analyse the data for transcripts

that do not show exponential kinetics. Transcripts exhibiting non-

exponential decay are presumed to be degraded in a multi-step reaction,

in which more than one rate-limiting step exists, and where the age of

the transcript becomes relevant to its rate of degradation. This is now further

studied with a particular focus on the mRNAs encoding enzymes of the gly-

colytic and redox pathways, many of which show non-exponential decay.

The mRNA kinetic data are furthermore being complemented with

information on the translation rates for each transcript, using a ribosome

profiling (Ingolia, Ghaemmaghami, Newman, &Weissman, 2009) strategy.
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The number of ribosomes on each mRNA is determined by treating cell

lysates with RNase to digest the mRNA except those stretches protected

by ribosomes. The protected RNA fragments are then purified and

sequenced, and the rate of translation estimated by assuming a linear rela-

tionship between the ribosome number on a transcript and the rate of

translation.

5. EXPERIMENTAL DATA TO REDUCE MODEL
UNCERTAINTY AND REFINE PREDICTIONS

In order to reduce our uncertainty about both model topology and

parameter values, further experimental data are needed, in addition to the

transcription dynamics work described above. Data collection within

SilicoTryp focused initially on steady-state metabolite concentrations and

fluxes, which are directly informative for model refinement.

In addition, a collection of RNAi mutants was constructed with the

aim of providing additional information on the system’s behaviour upon

perturbation.

5.1. Measurements of concentrations and fluxes
Intracellular and extracellular concentrations and fluxes weremeasured using

LC–MS.However,mass spectrometry intensities are not always linearly pro-

portional to the concentrations due to ion suppression effects (Annesley,

2003). In addition, variations in instrumental response and degradation of

metabolites of interest during sample preparation can also result in a biased

quantitative result (Vuckovic, 2012). To overcome this problem, we need

to spike a fixed amount of the 13C-labelled metabolite into each calibration

sample (Mashego et al., 2004). Being chemically identical but having a dif-

ferentmass, this compoundwill be similarly ion suppressedwithin thematrix

entering the mass spectrometer, but distinguished from unlabelled com-

pound since its mass is slightly different. Therefore, the ratios of intensities

of the 12C-metabolite over the 13C-metabolite are directly proportional to

the concentrations of 12C-metabolite. Using a calibration curve, the concen-

tration of themetabolite can be determined in any sample if the same amount

of 13C-metabolite that has been used for the calibration curve is added to the

sample. However, 13C-labelled compounds are expensive and difficult to

obtain. Therefore, uniformly (U)-13C-labelled E. coli metabolite extracts,

obtained by growing E. coli in M9 minimal medium with (U)-13C-labelled

glucose as the sole carbon source (Kiefer, Portais, & Vorholt, 2008), were
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used as standards in the SilicoTryp project. This approach also offers the

advantage that it potentially allows simultaneous quantification of all metab-

olites that can be detected in both Escherichia coli and T. brucei.

Using this method, we quantified 44 intracellular metabolites and

32 metabolites in the growth medium over a 57-h time course (starting from

the low cell density of 3800 cells/ml to maintain the cells in exponential

growth throughout the time course). Based on the 32 medium metabolite

dynamics, we could quantify the fluxes of six metabolites that are constantly

produced or consumed by the cells using the absolute concentrations and the

cell densities at the same time points. Seven metabolites did not show any

significant changes in concentration over time; for example, ornithine levels

did not seem to change in the spent medium, which was unexpected since

previous work had demonstrated that ornithine is taken up by the cells.

Nineteen metabolites, all amino acids or nucleotides, showed changes of

concentrations that are not compatible with constant production or con-

sumption by the cells, but are compatible with the presence of peptidases

and nucleosidases which degrade proteins and nucleic acids to their

corresponding monomers. Indeed, it is known that T. brucei excretes pep-

tidases and nucleosidases into the medium (Bossard, Cuny, & Geiger,

2013; Geiger et al., 2010; Knowles, Black, & Whitelaw, 1987).

From these results, and the 13C-labelling experiments (see above), we

could, for example, determine that about 2–3% of the pyruvate produced

by cells grown in the simplified medium (Creek et al., 2013; see

Section 5.2) is converted to alanine before being excreted. These results

can now be used to extend the model and reduce our uncertainty about

topology and parameter values.

5.2. Perturbations: RNAi cell lines
In order to provide information on the effect of reduced level of selected

enzymes on the levels of mRNA, protein and the metabolome, we gener-

ated 28 stable RNA interference (RNAi) cell lines: 8 of them targeting genes

of the polyamine pathway (the part of the trypanothione pathway that leads

to the production of Spd in Fig. 3.7), 12 of the redox metabolism and 8 of

the pentose phosphate pathway (see Table 3.2).

The RNAi cell lines were generated in monomorphic 2T1 Trypanosoma

brucei brucei, selected among other available cell lines as it provides a unique

target sequence at a single ribosomal RNA locus, and has been validated for

robust inducible expression and has a higher RNAi efficiency (Alsford,

Kawahara, Glover, &Horn, 2005). To confirm the specific down regulation
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Table 3.2 List of RNAi mutants constructed and the previously published phenotypes

Gene ID Protein

Growth
reduction/
phenotype References

Polyamine pathway

Tb09.v1.0380 Spermidine synthase Spermidine

auxotrophy,

depletion of

T(SH)2 and cell

death

Xiao,

McCloskey, and

Phillips (2009)

Tb11.01.5300 Ornithine decarboxylase Depletion of

reduced thiols

and cell growth

arrest

Fairlamb,

Henderson,

Bacchi, and

Cerami (1987)

Tb927.6.4410 S-adenosylmethionine

decarboxylase

60–90% Alsford et al.

(2011)

Tb927.6.4470 Prozyme, activator of

SAMDC

100% Alsford et al.

(2011)

Tb927.6.4840 Methionine

adenosyltransferase

No effect Alsford et al.

(2011)

Tb927.6.4890 S-adenosylmethionine

synthase

Unknown Alsford et al.

(2011)

Tb927.8.1910 Acetylornithine

deacetylase

No effect Alsford et al.

(2011)

Pentose phosphate pathway and related enzymes

Tb927.10.2490 Glucose-6-phosphate

1-dehydrogenase

Growth arrest,

cell death

Cordeiro,

Thiemann, and

Michels (2009)

Tb11.02.4200 6-

Phosphogluconolactonase

None Alsford et al.

(2011)

Tb09.211.3180 6-Phosphogluconate

dehydrogenase

70–100% Alsford et al.,

(2011)a

Tb927.8.6170 Transketolase None Alsford et al.

(2011)

Tb927.10.12210 Ribulose-5-phosphate

3-epimerase

None Alsford et al.

(2011)

Tb11.03.0090 Ribokinase 70–80% Alsford et al.

(2011)

Continued
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Table 3.2 List of RNAi mutants constructed and the previously published
phenotypes—cont'd

Gene ID Protein

Growth
reduction/
phenotype References

Tb927.4.1350 Glyoxalase II 20–80% Alsford et al.

(2011) and

Wendler, Irsch,

Rabbani,

Thornalley, and

Krauth-Siegel

(2009)

Tb11.01.0700 Ribose 5-phosphate

isomerase

>90% Alsford et al.

(2011)

Redox metabolism

Tb927.3.3760 Tryparedoxin Growth arrest

and enhanced

sensitivity against

hydrogen

peroxide

Alsford et al.

(2011) and

Comini, Krauth-

Siegel, and Flohé

(2007)

Tb09.160.2020 Thioredoxin None Alsford et al.

(2011) and

Schmidt,

Clayton, and

Krauth-Siegel

(2002)

Tb927.2.4370 Trypanothione synthetase Depletion of Gsp

and T(SH)2,

growth arrest,

loss of viability,

enhanced

sensitivity against

hydroperoxides

and drugs

Comini et al.

(2004) and

Ariyanayagam,

Oza, Guther, and

Fairlamb (2005)

Tb927.7.4000 Glutathione synthetase 10–80% Alsford et al.

(2011)

Tb927.10.12370 g-Glutamylcysteine

synthetase

Depletion of

GSH and

T(SH)2, cell

death and loss of

virulence

Huynh, Huynh,

Harmon, and

Phillips (2003)
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of these enzymes at the protein level, RNAi cell lines where antibodies

are available were selected, induced and tested by Western blot. So far, all

RNAi lines tested by Western blot show down regulation of the protein

of interest. The effects of ablating some of these enzymes have already

been published, but most remain to be fully characterised (see Table 3.2).

From the pentose phosphate pathway, only the glucose 6-phosphate

1-dehydrogenase (Cordeiro et al., 2009) and the 6-phosphogluconate dehy-

drogenase (Hanau, Rippa, Bertelli, Dallocchio, & Barrett, 1996) have been

characterised previously.

Table 3.2 List of RNAi mutants constructed and the previously published
phenotypes—cont'd

Gene ID Protein

Growth
reduction/
phenotype References

Tb927.10.10390 Trypanothione reductase Growth arrest,

loss of viability

and virulence

Krieger et al.

(2000)

Tb11.01.7560 Glutathione peroxidase,

putative

>90% Alsford et al.

(2011)

Tb11.12.0016 Glutathionylspermidine

synthetase

No effect Alsford et al.

(2011)

Tb09.160.4250 Peroxiredoxin-type

tryparedoxin peroxidase

(cytosolic)

Loss of viability

and enhanced

sensitivity against

hydrogen

peroxide

Alsford et al.

(2011) and

Wilkinson,

Horn,

Prathalingam,

and Kelly (2003)

Tb927.4.2450 Protein disulfide

isomerase I

15–60% Alsford et al.

(2011)

Tb927.3.4240 Thioredoxin, putative 40–80% Alsford et al.

(2011)

Tb927.5.950 Monothiol glutaredoxin 3 50–100% Alsford et al.

(2011)

Tb927.8.1990 Peroxiredoxin-type

tryparedoxin peroxidase

(mitochondrial)

None Alsford et al.,

(2011) and

Wilkinson et al.

(2003)

aKerkhoven et al. (2013).
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Most of the evaluation of phenotypes in previous work has been carried

out in a medium containing a vast excess of many metabolites. Comparing

fresh and spent medium metabolomes revealed that most metabolites, how-

ever, are not consumed by trypanosomes. We therefore created a new

medium from which those metabolites not consumed by trypanosomes

were removed (Creek et al., 2013). Parasites grew equally well in this

medium, which better reflects serum concentrations of many metabolites.

Remarkably, experiments in the simplified medium revealed phenotypic

effects that were hidden in the classical medium. For example, T. brucei

bloodstream forms became over 100-fold more sensitive to antifolate drugs

in the absence of the high concentrations of folate that are present in the

classical medium (Creek et al., 2013).

The individual stable RNAi cell lines available now for each of our main

genes of interest will allow us to confirm these results and also measure the

changes in metabolites upon depletion of any particular enzyme as well

as the effects, if any, on mRNA or protein levels of other enzymes. These

perturbation responses will then inform the model debugging and refine-

ment process.

6. CONCLUSION

The SilicoTryp project aimed at extending the core glycolysis model

of the unicellular parasite T. brucei with the trypanothione pathway, and the

translation and transcription of the enzymes involved. All of this work

required newly developed modelling methods that explicitly take the mul-

tiple levels of biological and uncertainty into account. Hence, we first docu-

mented in detail the sources of the parameters of the existing core glycolysis

model. This detailed information allowed us to re-evaluate this model taking

our uncertainty about the parameter values into account (Achcar et al.,

2012). In addition, we also questioned the topology of this model by ana-

lysing and comparing alternative possibilities (Achcar et al., 2013). These

analyses formalised what our current levels of uncertainty are regarding

the core glycolysis model. In the future, we aim at reducing these uncer-

tainties using Bayesian inference methods, which use new experimental data

to update our belief on parameter values and model topology (see Fig. 3.1).

Because of the complexity of the models we are dealing with, we developed

a new state-of-the-art variance reductionmethod specifically for this purpose

(Papamarkou et al., 2014).
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Although modelling attempts have been made for part of this pathway

both in T. brucei (Gu, Reid, Higham, & Gilbert, 2013) and T. cruzi

(Olin-Sandoval et al., 2012), working towards the introduction of the

trypanothione pathway introduced a new set of challenges. First, introduc-

ing the pentose phosphate pathway, the link between glycolysis and the

trypanothione pathway, revealed new uncertainties about the topology of

this pathway in T. brucei. We were nevertheless able to predict relevant

behaviours of the system based on the alternative versions of the model

(Kerkhoven et al., 2013). Then, to be able to introduce the trypanothione

pathway per se, we again had to clarify some topological questions. We were

able to do so using 13C-labelled metabolites and LC–MS. For example,

we showed that MTA is not recycled to methionine in T. brucei. However,

deciphering the origin of ornithine in vivo will require further investigation.

In addition to investigating the topology of this pathway, new kinetic

parameters of the enzymes involved have to be measured. To reduce our

uncertainty about this new kinetics, we designed a new in vivo-like buffer.

Using this new assay system and a method based on a strong interaction

between modellers and experimentalists, we deciphered in detail the com-

plex mechanism of the trypanothione synthetase, the last enzyme of the

trypanothione biosynthesis pathway (Leroux et al., 2013).

Introducing the possibility of dynamic regulation to these pathways at

the transcriptional and translational levels requires new sets of parameters

that have to be measured using specific methodologies. These regulatory

steps will be introduced to the models using a module of four differential

equations based on the previously published model of PGK transcription

and translation (Haanstra, Stewart, et al., 2008). We designed appropriate

methodology to measure the parameters needed based on deep sequencing

(RNAseq).

All of these new additions introduced many new parameters and addi-

tional topological uncertainties. To enable reduction of these uncertainties

using a Bayesian methodology, we collected additional data about metabo-

lite concentrations and fluxes, using a new method based on LC–MS data.

Intracellular and extracellular concentrations and fluxes were collected in the

wild type cell line. In the future, we also plan to collect metabolite concen-

trations in mutant cell lines to produce new information about the system

under perturbation. Therefore, 28RNAi cell lines targeting critical enzymes

in our system were constructed and verified. We will now be able to grow

these cell lines in uniform controlled conditions to characterise the

metabolomic and transcriptomic response to these perturbations.
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This work opens many novel perspectives: our main aim now is to apply

our newly developed Bayesian inference methods to our models and data,

starting with small models and gradually increasing model size. While the

first small models will be analysed, new enzymes kinetics will be acquired,

but also the deep sequencing data will be analysed and the RNAi mutants

studied. Each additional dataset acquired will allow us to reduce our uncer-

tainty on some part of the model. We argue that the conceptual framework

we are developing here to study the metabolism of T. brucei, including the

explicit quantitative consideration of topological and parameter uncertainty,

can be applied to study any biological system and offers powerful new

approaches to enable the robust and predictive simulation of cellular

function.
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