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A B S T R A C T

Human body models (HBMs) for vehicle occupant simulations have recently been extended with active

muscles and postural control strategies. Feedback control has been used to model occupant responses to

autonomous braking interventions. However, driver postural responses during driver initiated braking

differ greatly from autonomous braking. In the present study, an anticipatory postural response was

hypothesized, modelled in a whole-body HBM with feedback controlled muscles, and validated using

existing volunteer data. The anticipatory response was modelled as a time dependent change in the

reference value for the feedback controllers, which generates correcting moments to counteract the

braking deceleration. The results showed that, in 11 m/s2 driver braking simulations, including the

anticipatory postural response reduced the peak forward displacement of the head by 100 mm, of the

shoulder by 30 mm, while the peak head flexion rotation was reduced by 188. The HBM kinematic

response was within a one standard deviation corridor of corresponding test data from volunteers

performing maximum braking. It was concluded that the hypothesized anticipatory responses can be

modelled by changing the reference positions of the individual joint feedback controllers that regulate

muscle activation levels. The addition of anticipatory postural control muscle activations appears to

explain the difference in occupant kinematics between driver and autonomous braking. This method of

modelling postural reactions can be applied to the simulation of other driver voluntary actions, such as

emergency avoidance by steering.

� 2014 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Numerical human body models (HBMs) are used for research
and development of vehicle occupant protection systems [1,2].

Recently, an interest in simulation not only of the crash phase,

but also of the pre-crash phase, of road accidents has led to

implementation of active muscles and control strategies in

HBMs. Feedback control is suitable to model occupant postural

responses in autonomous braking interventions [3,4]. In volunteer
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experiments, it was found that during driver initiated braking,

drivers more effectively maintained their initial posture than

during autonomous braking interventions [5,6]. For example,

forward head displacements for males (n = 11) were 35 (SD 37)

mm on average in driver braking; this is significantly less

(p < 0.05) than the 98 (SD 65) mm found for autonomous braking

of the same magnitude, 11 m/s2 [5]. Driver initiated braking differs

from autonomous braking in that the driver performs a voluntary

action. The driver rapidly shifts his foot from the accelerator to the

brake pedal, extends the hip and thigh, and plantarflexes the ankle

with relatively high muscle efforts [7].
For other types of voluntary actions, anticipatory postural

responses are found before activation of the prime movers [8–12].
For instance, prior to step initiation, anticipatory postural
adjustments initiate a forward and lateral movement of the body
mass [9]; during falling anticipatory muscle activity prepares the
body for impact [10]; lifting of the arm while standing generates
leg muscle activation 50–100 ms prior to activation of the prime
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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movers of the arm [11]. These anticipatory responses are generated
by the central nervous system (CNS) in a feed-forward manner to
generate approximate correcting muscle activations in various
body parts prior to postural perturbations [12]. In the present
study, a method to model anticipatory postural responses in HBMs
for occupant simulation is investigated and applied to study
maximum driver braking.

2. Methods

A whole body Finite Element (FE) HBM, the THUMS1 AM50 v3.0
[2], was used in this study (Fig. 1). The model contains rigid bodies
(e.g., the vertebrae) and deformable parts (e.g., the intervertebral
discs, ribs, skin, and internal organs), totalling 68 100 solid
elements, 75 700 shell elements, and 3400 one-dimensional
elements. Some changes were made to the THUMS1 for this
study [4]. The hip joints were modelled with ball joints positioned
in the femoral head [13]. As the current study included frontal
loading only, the irrelevant hip degrees of freedom, abduction–
adduction and medial–lateral rotation, were constrained by high
passive stiffnesses (20 000 Nm/rad). The knee and ankle joints
were modelled with revolute joints positioned according to
[14,15], respectively. The FE solver LS-DYNA1 version 971, release
6.1.0 (LSTC Inc., Livermore, CA, USA) was used. Pre- and post-
processing were done with LS-PREPOST1 v4.0 (LSTC Inc.,
Livermore, CA, USA) and MatLab1 R2012b (The Mathworks Inc.,
Natick, MA, USA).

2.1. Musculoskeletal feedback control model

The THUMS1 model has previously been complemented with
348 line muscle elements representing the muscles of the neck,
lumbar and abdominal areas [4], and the upper extremities [16]. A
Hill-type muscle material is used, in which the maximum
isometric stress is 1 MPa for the upper extremity muscles [17]
and 0.5 MPa [18] for the other muscles in the model. Two different
values were chosen to give the model maximum isometric
strengths of similar magnitude as that of volunteers. For example,
in elbow flexion and extension, the model strength is 86 Nm and
48 Nm compared with volunteers 78 (SD 11) Nm and 50 (SD
11) Nm [19]. For cervical flexion and extension the model strength
is 32 Nm and 48 Nm compared with volunteers 30 (SD 5) Nm and
40 (SD 8) Nm [5], measured relative to T1.[(Fig._1)TD$FIG]
Fig. 1. The controller angles for the (1) head, (2) neck, (3) lumbar spine, (4) left and

(5) right shoulder all use the angle of the body part with respect to the vertical axis.

The (6) left and (7) right elbow controllers utilize the relative angle between the

humerus and ulna. Soft tissues of the trunk, neck, and upper extremities and half the

seat are not shown to disclose the musculoskeletal structure of the model.
To model postural control and response to external loads, seven
proportional, integral, and derivative (PID) controllers were
implemented. The control signals are defined as the angle in the
sagittal plane between the vertical axis and a vector defined by two
nodes in the model, and for the elbow controllers as the angle
between vectors spanning the humeri, from the centre of the
glenohumeral joint to the elbow, and ulnae, from the elbow joint to
the distal end of the ulna (Fig. 1). The lumbar vector extends from
the sacrum to the vertebral body of T10, the cervical vector from
the vertebral body of T1 to the mid occipital condyles, and the head
vector from the mid occipital condyles to the head centre of
gravity. Head centre of gravity is determined according to the mass
distribution of the models skull, flesh, and brain. The PID
controllers are hypothesized to represent vestibular and proprio-
ceptive feedback; they generate a control signal, u(t), computed
according to:

eðtÞ ¼ rðtÞ � yðt � TdeÞ (1)

uðtÞ ¼ kp � eðtÞ þ ki �
Zt

0

eðtÞdt þ kd �
deðtÞ

dt
(2)

The joint angle, y(t � Tde), is compared with the reference, r(t),
and the control signal is proportional to the error, e(t), between the
two, Eq. (2), with proportional feedback gain, kp, integrative
feedback gain, ki, and differential (velocity) feedback gain, kd. The
proportional and velocity gains can be considered as generic
representations of reflexes responsible for the maintenance of
posture, i.e. muscle spindle feedback [20] and vestibular reflexive
stabilization [21], while the integrative controller corrects any
residual error and maintains the desired posture in the presence of
gravity. The transport delay, Tde, accounts for the time needed for
the neural signal to be conveyed to and from the CNS. Tde was
34 ms for the elbow and 30 ms for the shoulder [22] controller. For
the head and neck Tde was 20 ms, i.e. a shorter delay was estimated
due to the proximity to the spinal cord, matching the 18 ms delay
reported for the cervicocollic reflex in cats [21]. For the lumbar
controller, Tde was 25 ms, which is relatively close to the 30 ms that
has been reported for the lumbar spine muscles [23]. The control
signal, u(t), is converted to a muscle activation request by scaling
with the maximum isometric strength of each controlled muscle
group. The scaled activation request is passed through a muscle
excitation–contraction dynamics model consisting of two coupled
first order filters [24], giving a muscle activation level, Na(t). A
generic muscle recruitment strategy divides the muscles of each
controlled joint into either flexors or extensors, with the same
activation level. Co-contraction of muscles around the controlled
joints is implemented as a lower bound on the muscle activation,
i.e. all muscles always have a prescribed minimum activation level
as selected below.

2.2. Lower extremity muscle implementation

For the lower extremities, Hill-type line muscles were added,
see Table 1. To account for the curvature of the gluteus maximus
around the pelvis and of the quadriceps and patellar tendons over
the knee, the Hill-elements were coupled in series with stiff
(10 000 N/engineering strain) ‘‘seat belt’’ elements. These ele-
ments were fed through slip rings attached to the pelvis for the
gluteus maximus and to the distal head of the femur and proximal
head of the tibia for the quadriceps and patellar tendon.

2.3. Maximum driver braking simulations

Volunteer kinematics, interaction forces, and muscle contrac-
tion levels in 11 m/s2 driver braking events from 70 km/h to a



Table 1
Lower extremity muscles in the HBM. Muscle origin and insertions point taken from the anatomical descriptions of [25]. The physiological cross sectional areas (PCSAs)

are from [26]. Actions of the muscles in the model: HF – hip flexion; HE – hip extension; KF – knee flexion; KE – knee extension; PF – plantar flexion; DF – dorsiflexion. NEL –

number of elements. Muscle data for the upper body and extremities are presented in [4,16].

Muscle NEL Origin Insertion PCSA (mm2) Action Activationa

Adductor longus 1 Front of pubis Linea aspera, mid femur 650 HF 0.26

Adductor magnus 4 Inferior ramus of pubis Linea aspera, along femur 2130 HE 0.54

Biceps femoris 2 Ischial tuberosity and linea aspera,

mid femur

Lateral condyle of tibia 1680 HE, KF 0.26

Gastrocnemius 2 Medial and lateral condyles of femur Calcaneal tuberosity 3130 KF, PF 0.43

Gluteus maximus 3 Iliac crest and coccyx Gluteal tuberosity on femur 3040 HE 0.54

Iliacus 1 Iliac fossa Lesser trochanter 1020 HF 0.26

Pectineus 1 Pectineal line Linea aspera, proximal end 290 HF 0.26

Psoas 1 L2 vertebra Lesser trochanter 790 HF 0.26

Rectus femoris 1 Anterior inferior iliac spine Quadriceps tendon 1390 HF, KE 0.57

Sartorius 1 Anterior superior iliac spine Proximal, medial surface of tibia 190 HF, KF 0.26

Semi-membranosus 1 Ischial tuberosity Medial tibial condyle 1910 HE, KF 0.26

Semitendinosus 1 Ischial tuberosity Proximal, medial surface of tibia 490 HE, KF 0.26

Tibialis anterior 1 Proximal, lateral side of tibia Medial cuneiform 1100 DF 0.18

Vastus 3 Anterior, upper third of femur Quadriceps tendon 7750 KE 0.54

a Activation levels selected in simulations of voluntary braking based on normalized electromyogram (EMG) data from volunteers in emergency braking events reported by

Behr et al. [7].
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complete stop were reported by Östh et al. [5]. In the present study,
data from eleven male subjects, average height of 178 (SD 5) cm
and weight of 78 (SD 6) kg, was used for comparison with the HBM
response. The HBM was positioned in an FE model of the test
vehicle seat (Fig. 1) with a standard automotive three-point seat
belt, passing over the pelvis, chest, and left shoulder of the model.
Belt force was measured in the top shoulder belt mount. The hands
of the HBM were attached to a simplified steering wheel, and
compressive force in the steering column was recorded. The brake
pedal was modelled according to its geometry in the test vehicle
and translated 50 mm to place it symmetrically under the right
foot of the HBM. The deceleration load was applied to the seat. To
[(Fig._2)TD$FIG]
Fig. 2. Head centre of gravity and shoulder kinematics, evaluated at the centre of the right

contraction added; ANT – anticipatory control added. These are compared with the me

angle, (c) and (f), corresponds to the head controller angle.
simulate voluntary braking, pressing the brake pedal with the right
leg was modelled by open loop control by application of constant
muscle activation levels after t = 0 s, Table 1, taken from the
maximum effort normalized electromyogram (EMG) data in
emergency braking events reported by Behr et al. [7]. The left
leg muscles were activated with 6% of the activations for the right
leg to provide foot rest interaction forces of the same magnitude as
in the volunteer tests.

Three postural control strategies were evaluated. First, REF, a
reflexive baseline strategy using controller gains and co-contrac-
tion levels, previously validated for 11 m/s2 autonomous braking
events [16]. In this baseline strategy, all reference signals, r(t), were
glenohumeral joint, for the HBM: REF – base line with reflexive control only; CC – co-

an volunteer (Vol.) response � 1 standard deviation (SD) from [5]. The head rotation



[(Fig._3)TD$FIG]

Fig. 3. The forces shown here are SB – shoulder belt, SC – steering column, BP –

brake pedal, and FR – foot rest for the HBM with the REF – base line, CC – co-

contraction, and ANT – anticipatory control strategies. These are compared with the

Vol. = mean volunteer response � 1 standard deviation (SD) from [5].
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constant equal to zero; hence, postural feedback control was
aiming to maintain the initial posture. Proportional gains of 6 Nm/
rad, 12 Nm/rad, 88 Nm/rad, 54 Nm/rad, and 97 Nm/rad were used
for the head, neck, lumbar, shoulder, and elbow controllers
respectively. The differential gains were 4 Nms/rad, 4 Nms/rad,
12 Nms/rad, 22 Nms/rad, and 3 Nms/rad, while integral gains were
8 Nm/rads, 14 Nm/rads, 0 Nm/rads, 51 Nm/rads, and 48 Nm/rads,
for each controller (in the same order). Furthermore, for all muscles
an initial co-contraction level as a percentage of full muscular
activation was estimated; in the REF strategy the head, cervical,
and lumbar muscles had a co-contraction of 3% and the upper
extremity muscles 4%, based on the range found for volunteers
during quiet driving [5].

Second, CC, in which the average peak initial co-contraction
found in the volunteer data [5] was applied as constant for the
whole event (head and neck 11%, lumbar 6.5%, elbow 14%, and
shoulder 21%) together with the baseline (REF) controller gains.

Third, ANT, in which the hypothesized anticipatory postural
response was applied together with the reflexive gains and co-
contractions used in CC. This was modelled with a time dependent
reference value in the PID controllers, r(t), which is proportional to
the vehicle acceleration pulse but advanced 0.05 s, to make the
onset timing of the anticipatory muscle response similar to those
reported experimentally [11]. At 11 m/s2 deceleration, the refer-
ence for the head controller was 0.15 rad extension from the initial
position, for the neck 0.46 rad, the lumbar spine 0.64 rad, and the
elbows 0.09 rad. For example, for the neck controller, a propor-
tionality constant of 0.042 rad/m/s2 (i.e. 0.46 rad/11 m/s2) was
used. These values were chosen so the model generated correcting
moments of the same magnitude as the volunteers, calculated from
normalized EMG and maximum voluntary strength. Furthermore,
the integral gains for the head and neck controllers were half of
that in the baseline strategy (REF).

3. Results

Resulting kinematics, interaction forces, and muscle activation levels for the

HBM simulations are shown in Figs. 2–4, with the volunteer corridors. With the

base line control strategy (REF), the simulated forward displacements, measured for

the head centre of gravity and the centre of the right glenohumeral joint (Fig. 2(a

and d)), head rotation (Fig. 2(c)), and shoulder flexion angles (Fig. 2(f)) were too

large compared with the volunteer corridor. Increasing the co-contractions (CC)

reduced the oscillations, but not the magnitude of the kinematic responses. For the

anticipatory control strategy (ANT), the model is inside the volunteer kinematic

corridors for most of the events, except for the head and shoulder Z displacements

(Fig. 2(b and e)). During steady state braking, in the 1.5–1.7 s interval, the average

head X displacement for the base line strategy (REF) was 99 mm, with increased co-

contraction (CC) it was 121 mm, and with the anticipatory control strategy (ANT)

44 mm. The base line (REF) and co-contraction (CC) head kinematics are of similar

magnitude as head X displacements of 98 (SD 65) mm for volunteers in autonomous

braking [5], while the anticipatory control strategy (ANT) is more similar to the 35

(SD 37) mm for braking drivers [5].

The main difference between the control strategies with respect to the

interaction forces (Fig. 3), was that for the anticipatory control (ANT) there is no

initial peak in shoulder belt force, as found for the other two controller strategies,

71 N (REF) and 65 N (CC). With the prescribed constant muscle activations for the

lower extremities, the model generated a brake pedal force of 380 N in all

simulations.

With the anticipatory control (ANT), a rapid increase in lumbar extensor

activation was seen shortly after t = 0 s, because the reference for the lumbar

controller was changed (Fig. 4(b)). A similar increase was seen for the cervical

extensors, but the difference, when compared with REF and CC, was not as apparent.

For the elbow extensors and shoulder flexors (Fig. 4(c and d)) the largest activation

was found for the baseline (REF) strategy. For the antagonistic muscles (Fig. 4(e and

h)) constant co-contraction activations as prescribed were found for all control

strategies.

4. Discussion

A novel method to model anticipatory postural responses in
car occupant models during driver braking was presented. It is
implemented using a PID-feedback control algorithm that employs
joint angles to generate correcting muscle activations. The
reference signal for the PID-controllers is changed so that the
error, relative to the initial position, multiplied by the proportional
gain of the controller, generates a restoring moment of the same
magnitude as can be derived from maximum voluntary contrac-
tion normalized EMG recordings in the corresponding volunteer
tests (approx. 1 Nm for the head, 3.5 Nm for the neck, 56 Nm for
the lumbar, 9 Nm for the elbow). The reference signal was
advanced in time relative to the acceleration pulse, which mainly
influences the initial response of the model. For the shoulder a
constant reference equal to the initial position was used, since a
limited net moment was found in the volunteer data [5]. For the
anticipatory control simulations, the integral gains of the head and
neck were reduced, because the integrated error half-way through
the simulation generates an extension moment that is too large.



[(Fig._4)TD$FIG]

Fig. 4. Muscle activation levels for the HBM with REF – base line, CC – co-contraction, and ANT – anticipatory control strategies, compared with the mean maximum voluntary

contraction normalized EMG of Vol. = volunteers � 1 standard deviation (SD) in driver maximum braking tests [5].
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As the anticipatory response is proportional to the braking
deceleration simulated, the model has the potential to predict
other driver braking scenarios. It was also noticed that higher co-
contraction levels, as evaluated with the CC postural control
strategy, provided a more damped kinematic HBM response than
the baseline strategy but did not improve the prediction of the
postural response of braking drivers.

The current HBM has ‘‘joint’’ sensors at the neck, lumbar spine,
shoulder and elbows, and a spatial orientation sensor for the head

(Fig. 1). The vestibular organs sense head motion in space, but

certainly no joint sensors like those in the model exist in other

body parts. However, the integrated visual, vestibular, and

somatosensory information most certainly provide joint angle

information; as stated by Winter [8], the CNS is ‘‘. . .totally aware of

the problems of controlling a multisegment system’’ (p. 194), in the

motivation to use an inverted pendulum to model quiet standing.
The anticipatory control is based on the scaled acceleration

curve, with the assumption that the CNS can predict the upcoming
acceleration, resulting from driver initiated braking. All drivers in
the volunteer study [5] that provided the validation data for the
HBM were experienced drivers. They have performed driver
braking frequently at varying deceleration levels. Hence, it is
reasonable that their CNS expects the coming perturbation and
provides an effective anticipatory postural response. Drivers
performing emergency braking in a fixed base vehicle simulator
[27], braced by moving rearward into the seat and extended their
arms and legs. This motion is the same as the change of reference
for the PID-controllers will impose, but here and in the volunteer
test counterpart it is counteracted by the acceleration of the
braking car.

In the present study, the inclusion of an anticipatory postural
response was able to capture the postural response of car drivers in
voluntary braking, while previously feedback control has sufficed
for autonomous interventions [3,4]. Collision mitigation systems
that aim to protect vehicle occupants by autonomous braking are
often combined with auditory and visual alerts [28]. Such
warnings, or the activation of a pre-tensioned seat belt [5], might
cause a startle response [29], i.e. a short simultaneous contraction
of all muscles. The combination of feedback control, anticipatory
control, and startle responses in combined braking scenarios
remains to be investigated. However, the model presented can also
represent startle responses by the inclusion of open loop muscle
activation impulses, for example through an impulse change of the
prescribed co-contraction levels.

To conclude, driver anticipatory postural responses during
driver braking were modelled in an HBM through changes of the
reference positions for feedback controllers that regulate muscle
activation levels. The addition of anticipatory postural control
muscle activations could explain the difference in occupant
kinematics between driver and autonomous braking. This method
of modelling postural reactions should have application for
simulation of other driver voluntary actions, such as emergency
avoidance by steering.
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