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a b s t r a c t

An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories
that convert sugars into chemicals. These processes range from the production of bulk chemicals in
yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in
the continuous search for improved performance of such production systems is the development and
application of mathematical models. To be of value for industrial biotechnology, mathematical models
should be able to assist in the rational design of cell factory properties or in the production processes in
which they are utilized. Kinetic models are particularly suitable towards this end because they are
capable of representing the complex biochemistry of cells in a more complete way compared to most
other types of models. They can, at least in principle, be used to in detail understand, predict, and
evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for
supporting the design of the bioreactor or fermentation process. However, several challenges still remain
before kinetic modeling will reach the degree of maturity required for routine application in industry.
Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling
methodology concepts, including model network structure, kinetic rate expressions, parameter estima-
tion, optimization methods, identifiability analysis, model reduction, and model validation, but several
applications of kinetic models for the improvement of cell factories are also discussed.
& 2014 The Authors. Published by Elsevier Inc. On behalf of International Metabolic Engineering Society.

This is an open access article under the CC BY-NC-SA license
(http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Throughout the World there is a desire to move towards
sustainable production of energy, fuels, materials and chemicals,
and biobased production of transportation fuels and chemicals is
expected to contribute significantly towards reaching this objec-
tive. This has resulted in the advancement of industrial biotech-
nology, where microbial fermentation is used for the conversion of
bio-based feedstocks to fuels and chemicals (Nielsen and Jewett,
2008; Tang and Zhao, 2009; Otero and Nielsen, 2010; Du et al.,
2011; Sauer and Mattanovich, 2012). Not only has this resulted in a
significant expansion of traditional processes such as bioethanol
production, which has increased from 10 billion liters produced in

2010 to 75 billion liters produced in 2012, but it has also resulted
in the introduction of novel processes for the production of
chemicals that can be used for the production of polymers, e.g.
lactic acid that goes into poly-lactate and 1,3 propanediol that goes
into Soronaŝ. With these successes the chemical industry is
looking into the development of other processes for the produc-
tion of platform chemicals that can find application in the
manufacturing of solvents and polymers. Traditionally the fermen-
tation industry used naturally producing microorganisms, but
today there is a focus on using a few microorganisms, often
referred to as platform cell factories, and then engineering their
metabolism such that they efficiently can produce the chemical of
interest. This engineering process is referred to as metabolic
engineering, and it involves the introduction of directed genetic
modifications. Due to the complexity of microbial metabolism,
both due to the large number of interacting reactions and the
complex regulation, there has been an increasing focus on the
use of mathematical models for the identification of metabolic
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engineering targets (Patil et al., 2004; Cvijovic et al., 2011;
Wiechert and Noack, 2011; Soh et al., 2012).

Industrial biotechnology can benefit from mathematical models
by using them to understand, predict, and optimize the properties
and behavior of cell factories (Tyo et al., 2010). With valid models,
improvement strategies can be discovered and evaluated in silico,
saving both time and resources. Popular application of models thus
includes using them to suggest targets for metabolic engineering
leading to increases in yield, titer, and productivity of a desired
product. Since these quantities not only depend on the genetic
constitution of cells but to a large extent also on how the cells are
utilized, models can additionally play a critical role in the optimiza-
tion and control of the bioreactor and fermentation processes. Other
possible model focus includes expanding the range of cell factory
substrates, minimizing the formation of undesired by-products,
increasing product quality, and guidance in the choice of cell factory
when introducing a novel product.

Many biological processes or systems of importance to biotech-
nology, such as the metabolism of a cell culture during a fed-batch
process, cellular stress responses, or the decision making during the
cell cycle, are non-stationary in their nature. These systems are
characterized by their dependence on time and the fact that the
effect of inputs to the systems depends on the systems history. The
most common way of modeling such dynamic systems is to set up
mathematical expressions for the rates at which biochemical reac-
tions of the systems are taking place. The reaction kinetics are then
used to form mass balance equations which in turn describe the
temporal behavior of all biochemical species present in the modeled
system. Mathematical models of this type are usually referred to as
kinetic models but the literature sometimes tends to use the terms
dynamic and kinetic models interchangeably due to their largely
overlapping concepts as far as biological models are concerned.
Reaction kinetics being the fundamental building block of kinetic
models, they are clearly distinguished from the large body of
so-called genome-scale metabolic models (GEMs) which mainly
focus on the stoichiometry of reactions (Thiele et al., 2009; Sohn
et al., 2010; Chung et al., 2010; Österlund et al., 2012). Although
kinetic models are frequently being used to describe dynamic
behaviors, they are equally important in the study of processes that
may be stationary or close to stationary, such as cell metabolism

during exponential phase, since they can relate the properties of a
(quasi) steady-state to the kinetic properties of the model
components.

This review looks at the work-flow and methods for setting up,
analyzing, and using kinetic models, focusing on models and
modeling methodology with relevance for industrial biotechnology.
The paper is divided into three main parts. The first part discusses
and describes different aspects of the model building procedure,
including defining the model focus, how to set up a model
structure, determine parameter values and validate the model.
The second part looks at how kinetic models have been used once
they are set up. Applications of kinetic cell factory models for
improving production, substrate utilization, product quality, and
process design are reviewed. In the last part, a number of advan-
tages and challenges of kinetic modeling are listed and some future
perspectives of kinetic modeling in biotechnology are discussed. A
complete overview of the organization can be found in Table 1. To
increase the readability, especially for readers who are not experi-
enced modelers, parts of the material which are of technical or
mathematical nature are displayed in special boxes. The models and
methods on which this review has been based have been supplied
by the partners of SYSINBIO (Systems Biology as a Driver for
Industrial Biotechnology, a coordination and support action funded
by the European commission within the seventh framework pro-
gramme) and through a thorough literature review.

2. Setting up kinetic models – Modeling framework

The kinetic modeling procedure can be divided into a number
of steps which are illustrated in Fig. 1. Since the choices and
decisions made at the different steps are dependent both on the
objective of the modeling and on the previous steps, the exact
details of how a model is set up will be different from case to
case. Also, some steps will probably have to be iterated several
times before a complete model can be presented (van Riel, 2006).
For instance, the model structure will most certainly evolve
during the model building process, having new elements added
and other removed or changed. Parameter estimation may have
to be performed again as new data sets are collected, and
different types of analysis on the finished model may lead to
new applications that was not initially foreseen. This type of
iterative work-flow is not unique for kinetic models of cell
factories, but apply for modeling efforts in general (Ljung,
1987). The steps of the kinetic modeling procedure are now
described briefly, and then followed by elaboration and in-depth
discussions on some of their aspects.

Purpose: The first step of modeling is to define the purpose of
the model, an important step as it includes the very reason for
setting up a model in the first place. Typical questions are: Why do
we model? What do we want to use the model for? What type of
behavior should the model be able to explain? The majority of the
goals of modeling cell factories are related to understanding and
predicting their behavior when perturbing them either internally
through genetic modifications, or externally by changing various
environmental factors. The model purpose defines the complexity
of the modeling problem and will influence all subsequent steps of
the modeling procedure.

Network structure: The model network structure is the wiring
diagram of the model. It defines the network of interconnected
elements that are assumed to be important for the modeling task in
question. For instance, it will contain elements such as compart-
ments, concentrations of metabolites, enzymes and transcripts, and
reactions (including transport across membranes), including their
effectors and stoichiometric coefficients. It also defines the inter-
faces of the model with the un-modeled exterior.

Table 1
Organization of this review.

Contents
1 Introduction
2 Setting up kinetic models – Modeling framework

2.1 Purpose
2.2 Model structure

2.2.1 Representation of network structure
2.2.2 Kinetic rate expressions
2.2.3 Approximate kinetic rate expressions
2.2.4 Stochastic kinetics

2.3 Parameter determination
2.3.1 Computing the estimate
2.3.2 Identifiability analysis and experimental design
2.3.3 Model reduction

2.4 Validation
3 Using kinetic models

3.1 Improving production
3.1.1 Local parameter sensitivity analysis
3.1.2 Simulating larger changes
3.1.3 Optimization problems

3.2 Improving substrate utilization
3.3 Improving product quality
3.4 Improving process design

4 Advantages, challenges and perspectives
4.1 Advantages
4.2 Challenges
4.3 Perspectives
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Kinetic rate expressions: Having defined the model network
structure, the next step in the modeling process is the determina-
tion of the mathematical expressions that define the interactions
between the different components. The model network structure
already delivers information about which elements should take
part in the mathematical expressions. Kinetic rate expressions can
be derived from actual reaction mechanisms, with different
degrees of detail, or be represented by approximate expressions
capturing the essential quantitative and qualitative features of a
reaction. The complexity of a reaction's kinetics is defined by the
scope of the reaction, the scope of the model and the biochemical
knowledge about the reactions. Both deterministic and stochastic
formulations of the reaction rates may be used.

Model structure: When the network structure and kinetic rate
expressions have been determined, the structure of the kinetic
model is complete. The model can now be written as a set of mass
balance equations with explicitly given kinetic expressions, which
determines the time trajectories of the modeled species, and a list
of model outputs indicating which parts of the modeled system
that are being observed in experiments, see Box 1.

Parameter determination: Next, the numerical values of the
parameters appearing in the rate expressions, the initial condi-
tions, and the outputs need to be determined. Parameter values
are sometimes established one by one, either from targeted
experiments measuring them directly or from other types of
a priori information on individual parameter values. In contrast,
parameter values can also be determined simultaneously in an
inductive way by utilizing the implicit information in measure-
ments of other quantities than the parameters themselves, using
parameter estimation methods. If the parameter estimation pro-
blem does not have a unique solution, the space of admissible
parameter values can be further constrained using physicochem-
ical and thermodynamics laws. Subsequently, from such a reduced
space parameter values can be determined by using Monte-Carlo
sampling techniques.

Validation: With the parameter values determined, the quality
of the model should be assessed. Such model validation can
consist of both qualitative reasoning as well as formal statistical
testing. In addition to explaining experimental data used for
setting up the model, it is common to further validate the model's
predictive power based on new sets of experimental data that was
not used previously in the modeling process.

Usage: When a model has been established it can be used in a
number of different ways to answer the questions for why it was

created. This involves various types of what–if analysis that
explores different scenarios and investigates the impact of model
assumptions. Examples of model usage include analysis of flux
control in a pathway, in silico evaluation of metabolic engineering
strategies, and design of optimal process conditions.

2.1. Purpose

Building models of biological systems is a way of collecting,
organizing, and representing knowledge and hypotheses. The
models can be thought of as formalized descriptions of what is
known expressed by precise mathematical statements. They can
be used for a variety of purposes including hypothesis testing,
understanding how different components of a system work
together to achieve some function or behavior, and learning about
system components which are hard to access experimentally. Most
importantly in the context of industrial biotechnology, they can be
used for making predictions about the effects of genetic engineer-
ing, e.g. deleting or overexpressing a metabolic enzyme, and for
optimizing the design and conditions of bioreactor or fermenta-
tion processes, e.g. determining the details of a fed-batch feeding
strategy.

A common goal for many cell factory production processes,
especially those for low-value products, is the desire to increase
either yield, titer, or productivity, or combinations thereof. As a
consequence, these quantities are ultimately what models should
aim to describe and they are defined in Box 2. Which quantity is
most relevant for a particular process is determined by a large
number of factors such as the value and market size of the
product, the substrate availability and cost, and the downstream
processing. Although the models presented in this review do not
always work directly with the above quantities, the models are
usually describing aspects of cells and production processes that at
least indirectly affect them and they should therefore always be
kept in the back of the mind.

Essentially, any kinetic model whose purpose is to describe
some aspects of the cellular machinery, or of the production
process, that may impact the performance of a cell factory is of
interest to biotechnology. Because there are many different types
of cell factories and a plenitude of interesting products to be
produced by them, the range of purposes and focus of potentially
relevant kinetic models is wide. Depending on the problem they
may address cellular processes such as metabolism, protein
maturation and secretion, signaling, gene regulation, stress

Box 1–Mass balance equations and model outputs.

Combining the stoichiometric information from the model network structure with the symbolic form of the kinetic rate expressions,
mass balance equations with explicitly given kinetics can be set up for all dynamic components of the modeled system. In the
deterministic, continuous case, these equations can be written as

dxðtÞ
dt

¼ S � vðxðtÞ;uðtÞ;θÞ ð1Þ
and their associated initial conditions are

xð0Þ ¼ x0ðθÞ: ð2Þ
Here, xðtÞ denotes an m-dimensional vector of time-dependent state variables, S a stoichiometric matrix of dimension m � n, and
vðxðtÞ;uðtÞ;θÞ an n-dimensional vector of reaction rates which are dependent on the state variables, a vector of input variables uðtÞ, and a
set of parameters θ. Eq. (1) sometimes needs to be extended to take volume changes of the respective compartment into account, for
example the dilution of intracellular species in growing cells. Additionally, it may be necessary to supplement the ordinary differential
equations in Eq. (1) with a set of algebraic equations for certain models. Since the quantities measured in experiments are not necessarily
the same as the model state variables, a function hðxðtÞ;θÞ is also needed to relate xðtÞ to a vector of model outputs

yðtÞ ¼ hðxðtÞ;uðtÞ;θÞ: ð3Þ

J. Almquist et al. / Metabolic Engineering 24 (2014) 38–6040



responses, cell cycle progression and apoptosis, as well as external
or environmental factors like temperature, pH, osmolarity, product
and by-product toxicity, and not least the type and operation
mode of the bioreactor or fermentor. When describing the above
features of cell factories a model may be specifically designed for a
particular application, such as a specific pathway for the produc-
tion of a special metabolite, or it can describe more general
functions of the cell that may be exploited in different applica-
tions, such as primary metabolism or the protein synthesis
machinery. The diversity in the purposes and scopes of kinetic
models in biotechnology is reflected in the wide range of time-
scales of commonly modeled processes. Fig. 2 shows how impor-
tant processes such as signaling, the action of metabolic enzymes,
gene expression, protein secretion, the cell cycle, and bioreactor
processes have characteristic timescales that span and cover
almost ten orders of magnitude. Also the size of kinetic models
can be very different, ranging from single enzymes (Chauve et al.,
2010; Hattersley et al., 2011), to entire pathways (Hynne et al.,
2001), to larger models comprising several interacting modules or
pathways (Klipp et al., 2005b; Kotte et al., 2010).

2.2. Model structure

Contemporary kinetic modeling is increasingly targeting cells at
the molecular level, describing components like genes, enzymes,
signaling proteins, and metabolites. From a metabolic engineering
perspective this is in principle advantageous since it is at this level
that genetic alterations eventually would take place. In a process
referred to as a bottom-up or forward modeling, mechanistic
descriptions of a system's components are integrated to form a
description of the system as a whole (Bruggeman and Westerhoff,
2007). The central idea of this approach is that the behavior of a
system emerges from the interaction of its components, and,
importantly, that the behavior can be calculated if the properties of
the components and their interactions have been characterized in
sufficient detail. In principle the bottom-up concept can also be
applied to merge already existing models of cellular sub-systems into
larger models (Klipp et al., 2005b; Snoep et al., 2006). As indicated in
Fig. 1 a kinetic model consists of a network structure, a correspond-
ing set of rate expressions, and their associated parameter values.
Knowledge of all three parts is needed to form a complete model.Fig. 1. Illustration of the main steps of the kinetic modeling procedure.

Box 2–Production process quantities.

If we let the time dependent functions xðtÞ;pðtÞ, and c(t) denote the biomass concentration, the specific productivity, and the specific
substrate consumption, respectively, of a cell factory production process with a duration time T , the accumulative yield can be
defined as

R T
0 xðtÞpðtÞ dtR T
0 xðtÞcðtÞ dt

; ð4Þ

the titer as
Z T

0
xðtÞpðtÞ dt ; ð5Þ

and the productivity as

1

T

Z T

0

xðtÞpðtÞ dt : ð6Þ
Note that the T in the expression of the productivity might itself be a parameter for optimization. For models that only consider situations
where p(t) and c(t) are approximatively constant, such as for a continuous cultivation or perhaps for a population of cells growing in
exponential phase, the yield can instead be quantified by p=c and the titer and productivity can both be replaced by looking at the specific
productivity p if only a particular profile of x(t) is considered.
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Determination of the network structure and the symbolic structure
of rate expressions in kinetic models are usually done according to
the bottom-up approach (but exceptions exist, see for instance
Mettetal and Muzzey, 2008). It is dependent on experimental studies
characterizing the properties of the individual components appear-
ing in the model, information that is collected directly from the
literature or compiled in databases. For some systems the compo-
nents have been characterized in such detail that the bottom-up
approach can be applied in its entirety (Bruggeman et al., 2005), also
including the determination of all parameter values. However, it is
common that some or all of the parameters are unknown and
instead determined indirectly from system-level measurements of
other quantities using parameter estimation methods, a strategy
sometimes referred to as a top-down or inverse approach.

While the biochemistry and biophysics underlying the decision-
making when setting up the model structure is in some cases well
understood, this is generally far from true (Kaltenbach et al., 2009).
Undoubtedly, network structures and rate expressions will be set
up in incomplete or even incorrect ways. It may thus seem logical
trying to infer the model structure from system-level data, in the
same vein as the inverse problem of parameter estimation, but
because of the countless possibilities of network structures and
symbolic forms of rate expressions, a top-down approach is not
feasible for this part of the model building process. One strategy for
handling uncertainty in the model structure is to work with an
ensemble of models with different structures. This approach has
for instance been employed in a study of the TOR signaling
pathway in Saccharomyces cerevisiae (Kuepfer et al., 2007). Other
efforts have focused on the development of computational tools
that support the handling of such model families (Haunschild et al.,
2005). The problem can also in part be tackled by using different
kinds of flexible standardized kinetic rate expressions that can
display a large range of kinetic behaviors depending on their
parameter values. In this way part of the structural identification
problem can be turned into a parameter estimation problem (Chou
and Voit, 2009; Srinath and Gunawan, 2010). In another variant of
the bottom-up approach, addressing the issue of determining a
suitable network structure, Hildebrandt et al. (2008) proposed a
strategy where mechanistic modeling on the molecular level is
combined with an incremental adding of model components in a
systematic way. Starting from a basic backbone model, the effect of
each added component can be evaluated to gain insight into its
contribution to the overall behavior of the system. The authors of
that study used the procedure to construct a model for optimizing
the production of single-chain antibody fragment in S. cerevisiae,
focusing on the chaperon binding protein and the foldase protein
disulfide isomerase.

In contrast to the molecular level model structures, coarse-grained,
lumped descriptions of biological systems and their parts are some-
times employed instead. Setting upmodels with less complex network
structures can be a good way of capturing known higher-level
mechanisms, such as the activity of a complete pathway, even though
not all molecular mechanisms are understood. This is especially true
for models of protein production and the protein secretion machinery
where many details are still unidentified. For example, Wiseman et al.
(2007) used a simplified treatment of the endoplasmic reticulum
pathways for protein folding, degradation, and export to study their
contributions to protein homeostasis and protein export efficiency.
Similarly, the intricate details of the pathways of the unfolded protein
response (Curtu and Diedrichs, 2010) were condensed into a minimal
model featuring the basic mechanisms (Trusina et al., 2008; Trusina
and Tang, 2010). Despite the simplified treatment the model could
provide insight into the function of this homeostatic-restoring system,
in particular in addressing the differences between yeast and mam-
malian cells and the role of translation attenuation. An even simpler,
but nevertheless very useful, model of recombinant protein secretion
in Pichia pastoris was presented by Pfeffer et al. (2011). This model is
unique in that it was able to quantify the degree of intracellular
protein degradation under production like conditions. A study addres-
sing sustained oscillations in continuous yeast cultures is yet another
example of successful modeling using a relatively simple model
structure (Heinzle et al., 1982). At the extreme end of simple network
structures there are of course also the so-called unstructured models
which only use a single state variable to describe the cell biomass in
addition to a few state variables accounting for extracellular substrates
and products (Menezes et al., 1994; Por̈tner and Schäfer, 1996; Carlsen
et al., 1997; Ensari and Lim, 2003; Sarkar and Modak, 2003; Liu and
Wu, 2008; Yüzgeç et al., 2009). Such models are for the most part just
phenomenological representations of what is empirically observed. An
exception is a type of unstructured kinetic models that are derived
using prior knowledge of intracellular reactions; based on a stoichio-
metric description of a metabolic network, a set of macroscopic
reactions connecting the extracellular substrates and products are
determined by decomposing the network into its elementary flux
modes (Provost and Bastin, 2004; Haag et al., 2005; Provost et al.,
2006; Teixeira et al., 2007; Dorka et al., 2009; Zamorano et al., 2013).

A drawback of all the less detailed network structure approaches
mentioned above is the missing or complicated links between entities
of the model and the actual molecular entities inside the cell. These
links are particularly important if the model is to be used for
identification of explicit targets for strain improvement by genetic
engineering. However, depending on the purpose of modeling, a
model with a simpler structure may still be useful. It can for instance
foster a better general understanding of the system behavior or give

Fig. 2. Characteristic timescales for signaling, the action of metabolic enzymes, gene expression, protein secretion, the cell cycle, and bioreactor production processes.
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insights of the system that can be used as a starting point for further
detailed modeling. A less detailed model can also be used for making
predictions without explicit reference to the underlying, un-modeled
reactions at the molecular level. For instance, to accurately simulate
the concentration profiles of substrate, product, and biomass during a
fermentation, which may be valuable for process design, a simple
unstructured model may be sufficient. Thus, in situations where a
simple model structure is believed to meet the requirements of the
modeling purpose, nonessential details should be avoided since they
will only make the modeling process unnecessary cumbersome.

2.2.1. Representation of network structure
The goal of the model network structure is the collection of all

necessary and available biological information that will be con-
verted into a mathematical representation. However, the network
structure also serves as a basis for discussion between biologists
and engineers, physicists or mathematicians. The graphical repre-
sentation is therefore an important aspect of the model network
structure. An accurate and standardized visual language facilitates
the communication between researchers, especially for those
with different backgrounds, and it rationalizes the interchange of
models and biological knowledge, reducing the risk of misunder-
standings and ambiguity. The Systems Biology Graphical Notation
(SBGN) (Le Novère et al., 2009) was developed by members of the
systems biology community to address these issues and is now
emerging as a standard for graphical notation. The use of SBGN
in biochemical modeling was recently reviewed by Jansson and
Jirstrand (2010). Tools for visualization of model simulation
results, arranged in the form of a network structure map, have
also been developed (Oldiges et al., 2006; Noack et al., 2007).

2.2.2. Kinetic rate expressions
The kinetic rate expressions are the symbolic expressions that

describe the reactions and interactions between the elements of the
network structure. Determination of the numerical values of the
parameters occurring in them are discussed later. A fundamental
type of reaction kinetics is the so-called law of mass action. It states
that the reaction rate is proportional to the concentrations of the
reactants, or the reactant for a unimolecular reaction, and it is
frequently used as a description for elementary reactions (reactions

with one step). Kinetics of multi-step reactions, such as those of
enzymes and transporters, can be derived by combining the mass
action kinetics of their elementary reactions (Goryanin and Demin,
2009). The resulting dynamical systems are usually simplified based
on time-scale considerations (Klipp et al., 2005a; Almquist et al.,
2010a), or on symmetries, such as the commonly used assumption
of identical and independent behavior of ion channel subunits
(Almquist et al., 2010b). Typically the simplification is done to the
point where the internal dynamics of the reaction process is lost,
and the description has reduced to an explicit function of the
reactants and any effectors. The reduction also means that many of
the parameters appearing in the final rate expressions are aggre-
gates of elementary reaction parameters and therefore do not
always have the same type of biochemical interpretability. An
example of a well-known rate expression derived from elementary
reactions is the Michaelis–Menten kinetics. It is obtained by
separation of slow and fast dynamics and it is usually used to
describe enzyme kinetics where the concentration of substrate is
much higher than the concentration of the enzyme. A thorough
treatment of the Michaelis–Menten approximation and its connec-
tion to the underlying dynamic system of elementary reactions was
recently presented by Chen et al. (2010).

Determination of kinetic rate expressions is complicated by the
fact that mechanisms of enzymes, transporters, and other complex
biochemical reactions are often unknown (Costa et al., 2011). In those
cases where reaction mechanisms have been derived through careful
experimental studies, detailed modeling of the different reaction
steps can produce rate expressions with complicated symbolic forms
and large numbers of associated parameters (Goryanin and Demin,
2009), making subsequent model analysis and parameter determina-
tion difficult tasks. It must also not be forgotten that all kinetic rate
expressions, no matter how comprehensive in their details, are just
models. They have limitations in their applicability, they may be
incomplete, or even incorrect. For instance, the experimental condi-
tions under which a rate expression was established may differ from
those of the living cell being modeled, making the kinetics inap-
propriate. In addition, reaction rates will to different degrees of
extent depend on variables that were not considered in the deriva-
tion, such as pH, temperature, ionic strength, or the cooperative
effect of enzyme effectors.

Box 3–Approximative kinetic formats.

Generalized mass action (GMA) describes reactions by power law kinetics with non-integer exponents (Savageau, 1976). GMA allows
an analytical steady-state solution to be calculated for linear pathways.

S-systems also use power laws kinetics but here the individual reaction rates are aggregated into two reactions for every mass
balanced biochemical species (Savageau, 1976). This approximation makes analytical solutions of steady-states possible also for
branched pathways, but at the risk of introducing large errors and unrealistic results in certain situations (Heijnen, 2005).

Log-linear kinetics approximates reaction rates with a linear expression of logarithmic dependencies on reactants and effectors
(Hatzimanikatis and Bailey, 1996, 1997). However, the enzyme concentration appears among the linear terms and the reaction rate is
thus not proportional to the enzyme concentrations, something that is generally observed.

Lin-log kinetics (Visser and Heijnen, 2003; Heijnen, 2005) is also a linear expression of logarithms but with the difference that the
enzyme concentration is a multiplicative factor to this linear sum, giving a reaction rate that is proportional to enzyme concentration.
Like the power law approximations of GMA and S-systems, the log-linear and lin-log approaches enable analytic solutions of steady
states. However, unlike the scale-free power laws, their concentration elasticities go towards zero for high concentrations, which is in
agreement with the downward concave behavior of most enzymes’ kinetics (Heijnen, 2005).

Convenience kinetics is a generalization of Michaelis–Menten kinetics that covers arbitrary reaction stoichiometrics (Liebermeister
and Klipp, 2006a). It can be derived from a non-ordered enzyme mechanism under the assumption of rapid equilibrium between the
enzyme and its substrates and products. The convenience kinetics differs from the above rate laws in that it is saturable and can
handle concentrations that are equal or close to zero, the latter situation being known to cause problems for kinetics containing
logarithmic functions (Wang et al., 2007; del Rosario et al., 2008). It has also been described how to avoid violating the laws of
thermodynamics by using thermodynamically independent system parameters (Liebermeister and Klipp, 2006a).

Modular rate laws is a family of different rate laws which were presented with an emphasis on thermodynamical correctness
(Liebermeister et al., 2010).
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2.2.3. Approximate kinetic rate expressions
Since most kinetic rate expressions are unknown, and because

of the complexity and unreliability of those who are claimed to be
known, a number of different approximative kinetic rate expres-
sions have been suggested as alternatives. These rate expressions
have in common that their symbolic structures are intended to be
simple but yet flexible enough to describe many types of reaction
kinetics. They aim for a small number of parameters to facilitate
parameter determination, and some of them are designed to have
good analytical properties or to guarantee correct parameteriza-
tion from a thermodynamical point of view. Because of their
standardized formats they simplify the modeling-building process,
also encouraging automatic construction of kinetic models
(Liebermeister and Klipp, 2006a; Borger et al., 2007; Adiamah
et al., 2010; Liebermeister et al., 2010). Some of the approximative
rate expressions used in kinetic modeling (generalized mass
action, S-systems, log-linear, lin-log, convenience kinetics, and
modular rate laws) are briefly described in Box 3.

The use of approximative rate expressions have been compared
both to other approximative rate expressions as well as to traditional
mechanistic formulations of reaction kinetics in a number of
modeling studies. For example, a lin-log model (Visser et al., 2004)
was derived based on a already established mechanistic model of
the central carbon metabolism in Escherichia coli (Chassagnole et al.,
2002), and was found to give similar simulation results despite its
simpler structure and fewer parameters. In three parallel models of
sphingolipid metabolism in yeast (Alvarez-Vasquez et al., 2004), the
power law formats, GMA and S-systems, were compared to Michae-
lis–Menten kinetics. It was found that the models behaved similarly
both with respect to steady states and dynamics responses. The
performance of GMA, convenience kinetics, and Michaelis–Menten
kinetics was compared in a number of model variants describing the
biosynthesis of valine and leucine in Corynebacterium glutamicum
(Dräger et al., 2009). Hybrid models consisting of both approxima-
tive kinetics and mechanistic kinetics have also been evaluated and
concluded to be suitable approaches (Bulik et al., 2009; Dräger et al.,
2009; Costa et al., 2010).

2.2.4. Stochastic kinetics
A deterministic formulation of reaction kinetics will gradually lose

its validity as the number of reacting molecules becomes small. As a
rule of thumb, there should be at least 102–103 molecules per reactant
(Chen et al., 2010) when describing reactions with deterministic
models. Metabolic reactions, the most commonly modeled aspects
of cell factories, typically fulfill the requirements for deterministic
modeling. However, low numbers of reacting molecules and stochastic

behavior can occur in for instance signaling (Wang et al., 2006), gene
expression (Paulsson, 2004), and protein secretion (Love et al., 2010),
processes potentially relevant in cell factory applications. Modeling of
these and other processes is therefore in some cases best done using
stochastic approaches that take the randomness of biochemical
reactions into account (Ullah and Wolkenhauer, 2010). Such simula-
tions have for instance been used for models of S. cerevisiae to study
the GAL network (Ramsey et al., 2006), and the Ras/cAMP/PKA
signaling pathway (Cazzaniga et al., 2008) including the nucleocyto-
plasmic oscillations of the downstream transcription factor Msn2
(Gonze et al., 2008). For more details on stochastic kinetics see Box 4.

2.3. Parameter determination

Parameters in kinetic models are essentially determined in two
different ways; either one at a time, considering the different
components and processes of the model individually, or by collectively
calibrating the parameters to make the model fit measurements of the
intact system. The two approaches are often combined by setting
some parameters to previously known or measured values while
simultaneously fitting the remaining ones (Zi et al., 2010).

Following the first approach, there are studies where the model
building process has been complemented by experimental work
aiming to measure parameter values directly (Teusink et al., 2000),
but more commonly parameters are set to values already reported in
the literature (Alvarez-Vasquez et al., 2004). These values can some-
times be found in databases compiling experimental information on
kinetic parameters (Kanehisa and Goto, 2000; Rojas et al., 2007;
Schomburg and Schomburg, 2010; Scheer et al., 2011). A serious
problem with this approach is that it usually means that parameter
values will have to be collected from different sources, involving
different experimental conditions, different physiological states of the
cells, different strains, or even different organisms (Costa et al., 2011).
Notably, it is also common that such parameter values are derived
from in vitro measurements, where conditions may differ drastically to
those of in vivo systems (Minton, 2001, 2006), an approach which has
been shown to have shortcomings even if great care is taken (Teusink
et al., 2000). The above issues are being tackled by the development of
standardized experimental systems imitating in vivo conditions for
specific organisms or cell types (van Eunen et al., 2010). Sometimes
model parameters are determined in even less accurate ways, for
instance according to rule of thumb-like considerations such as using
generic rate constants for protein–protein associations or by educated
guessing of enzyme Km values (Hoefnagel et al., 2002). Finally, there
are many parameters whose values cannot be determined directly due
to the limitations of experimental techniques.

Box 4–Stochastic kinetics.

Models with stochastic reaction kinetics can be based on either discrete or continuous state spaces. In a discrete stochastic model, the
state of the system corresponds to the exact numbers of different types of molecules. Since it is impossible to predict the individual
reactions changing the state of the system, the system must instead be described by the probability of being in each possible state.
Knowing the transition probabilities between states, referred to as the reaction propensity, the time evolution of the probabilities for
the different states can be described by a differential equation known as the master equation. Because of the large number of possible
states even for the most simple biochemical systems it is not feasible to solve the master equation in most practical applications.
What can be done, however, are (repeated) realizations of the stochastic process described by the master equation using the
stochastic simulation algorithm (Gillespie’s algorithm) (Gillespie, 1976), or extensions of it such as tau-leaping (Gillespie, 2001).

Another strategy to deal with the discrete stochastic process of the master equation is to approximate it by a continuous stochastic
process. This is typically done by the use of stochastic differential equations known as Langevin equations, enabling simulations that
are more efficient (Higham, 2001; Adalsteinsson et al., 2004). Although Langevin equations can be rigorously derived to approximate
the discrete stochastic process described by the master equation (Gillespie, 2000; Lang et al., 2009), they can also be used to introduce
randomness to an ordinary differential equation in an ad hoc manner (Hasty et al., 2000; Ghosh et al., 2012). The continuous process
described by a Langevin equation can also be expressed by the corresponding deterministic partial differential equation for the
dynamics of the probability distribution, the Fokker–Planck or Kolmogorov forward equation (Jazwinski, 1970; Gillespie, 2000; van
Kampen, 2007).
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The alternative to determining parameters one by one is to
collectively calibrate the parameters to make the model reproduce
experimental measurements of other quantities than the parameter
themselves. This way of indirectly determining parameters is referred
to as parameter estimation (but also as system identification, model
fitting, or model calibration). The parameter estimation problem can
be seen either as the geometrical problem of minimizing the distance
between the model output and the corresponding experimental data,
or it can be interpreted statistically as the problem of maximizing the
likelihood of observing the data given a model that takes the
experimental uncertainty into account. It can be shown that these
views on parameter estimation are related. Specifically, when the
geometrical approach uses a (weighted) sum of squares as the distance
measure it is equivalent to when the statistical approach model

measurement errors as additive, independent, and normally distrib-
uted. For more details on how the parameter estimation problem is
formulated see Box 5. Some of the challenges of parameter estimation
include large qualitative and quantitative uncertainties faced in
biological systems, and parameter estimation for large-scale models.
In these cases, it is common that multiple sets of parameter values can
make the model reproduce the measurements. When the lack of
sufficient information in experimental data results in a population
rather than in a unique set of parameter values, an alternative to
conventional parameter estimation methods might be more appro-
priate (Miskovic and Hatzimanikatis, 2010; Soh et al., 2012;
Chakrabarti et al., 2013). In this approach, the space of admissible
parameter values is first reduced by applying physicochemical and
thermodynamic constraints integrated with available measurements.

Box 5–Formulating the parameter estimation problem.

The parameter estimation problem can be formulated as the following minimization problem. Consider N measured data points,
DN ¼ d1; ;dN , taken at time points t1; ; tN , which are described by a scalar-valued model output, y(t) (at the expense of a little more
notation the line of though easily extends to the case with vector-valued outputs, see for instance Raue et al., 2009). Now an objective
function V ðθÞ can be defined for some distance measure of the vector of residuals, ½d1�yðt1;θÞ; ;dN�yðtN ;θÞ�. For instance, using a
weighted sum of squares as a measure of the distance, the objective function, VSSðθÞ, becomes

VSS ðθÞ ¼ ∑
N

i ¼ 1

ðdi �yðt i ;θÞÞ2
s2
i

ð7Þ

where s2
i is the weight for the ith data point. The parameter estimate, θ̂, is then the set of parameters that minimizes VSSðθÞ

θ̂ ¼ arg min
θ

VSSðθÞ: ð8Þ
The parameter estimation problem can also been seen from a statistical view point, treating experimental observations as realizations of
random variables (Ljung, 1987). If the model is assumed to be a perfect description of the system, the deviation of each observed data
point, di, from the model prediction, yðt iÞ, must originate from a measurement error, ϵi , here assumed to be of additive nature

di ¼ yðt i Þþϵi : ð9Þ
By changing the model of the outputs in Eq. (3) to

yðtÞ ¼ hðxðtÞ;uðtÞ;θÞþϵ; ð10Þ
the observed data can at any time point be seen as a deterministic part, as previously, plus the realization of the random numbers in the
vector ϵ. If the measurement errors are assumed to be independent and normally distributed, with zero mean and variance s2

i for the ith
data point (again considering a scalar-valued model output), the likelihood of observing DN given θ, LðθÞ, can be written as

LðθÞ ¼ c ∏
N

i ¼ 1

exp �ðdi �yðt i ;θÞÞ2
2s2

i

" #
ð11Þ

where c is a constant not affecting the optimum of the likelihood function. The parameter vector θ̂ that maximizes LðθÞ is called the
maximum likelihood estimate. Using the fact that the logarithm is a strictly monotonically increasing function, the problem of maximizing
LðθÞ with respect to θ can be replaced with the problem of minimizing the negative logarithm of the likelihood function

�2 ln LðθÞ ¼ �2 ln cþ ∑
N

i ¼ 1

ðdi �yðt i ;θÞÞ2
s2
i

; ð12Þ

making the optimization problem equivalent to the sum of squares minimization described in Eq. (8). Therefore, the geometrical approach
using a weighted sum of squares as discrepancy measure will coincide with the statistical approach if measurement errors are
independent and normally distributed. More generally, any conceivable model of the measurement error like the one used here will
correspond to some kind of distance measure of the vector of residuals.

The likelihood function above describes the probability of observing the data DN given the parameters θ. It is also possible to treat
the parameters themselves as random variables (Ljung, 1987; Secrier et al., 2009). Using Bayes’ rule, the probability density function
for the parameters given the data, pðθjDNÞ, or the posterior, can be written as

pðθ9DNÞ ¼ pðDN jθÞpðθÞ
pðDNÞ ppðDN θÞpðθÞ�� ð13Þ

and the parameter set maximizing pðθjDNÞ is called the maximum a posteriori estimate. The posterior distribution is a combination of the
likelihood (of observing DN given the parameters) and any prior knowledge of the parameters. Prior knowledge could for instance come
from typical distributions of similar parameters, or from previous estimates which did not include the data used for the likelihood. If there
is no prior information about parameter values, i.e., the prior is a uniform distribution whose logarithm adds nothing but a constant to the
objective function, the maximum a posteriori estimate is reduced to the maximum likelihood estimate. The Bayesian approach with
maximum a posteriori estimation has for example been applied to a model of the threonine synthesis pathway (Liebermeister and Klipp,
2006b).
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Then, the reduced solution space is sampled using Monte-Carlo
techniques to extract a population of alternative sets of parameter
values.

2.3.1. Computing the estimate
When an objective function describing a model's ability to

reproduce the experimental data have been formulated – be it a
likelihood function based on a probabilistic model of model predic-
tion errors, or some other function – the parameter estimate is
obtained by locating its optimum. This is accomplished by different
ways of iteratively searching through the parameter space, usually
taking constraints on admissible parameter values into account, and
a large number of different optimization algorithms have been
designed for this task, see Box 6. However, the problem is compli-
cated by the fact that most models of biological systems contain
nonlinearities and many of these models have large number of
parameters to be estimated. A high dimensional parameter space in
combination with strong nonlinearities can result in complexly
shaped objective functions with many local optima. Such multi-
modality makes it hard to assess whether the global solution to the
optimization problem has been located or if only a local optimum has
been found. Adding further to the problem are the often vast and
relatively flat parts of the parameter space, which only shows a weak
response in the objective function (Transtrum et al., 2010) and
consequently may delay the convergence of the search. As the
objective function is not given as an explicit function of the model

parameters, its values for a certain parameter vector must be
determined by solving the model equations. Every iterate of the
optimization algorithm therefore requires one or more evaluations of
the model equations and the majority of time spent on computing
the estimate is typically used for integrating ODEs (Chou and Voit,
2009). The main challenges when optimizing the objective function
are thus to locate the global optimum, and doing this in
reasonable time.

2.3.2. Identifiability analysis and experimental design
An important but sometimes overlooked aspect of parameter

estimation is the level of confidence in the obtained estimates and
whether it is possible at all to uniquely assign values to the parameters
(Cedersund, 2006; Gutenkunst et al., 2007b; Ashyraliyev et al., 2009;
Roper et al., 2010; Raue et al., 2011; Erguler and Stumpf, 2011;
Meshkat et al., 2011; Hattersley et al., 2011). To accurately estimate
parameters requires a balance between the information content in the
experimental data and the complexity level of the model. However, it
is widely acknowledged that kinetic models often are over-
parameterized and too complex in their structures in relation to
available quantitative data (Nikerel et al., 2006, 2009; Schmidt et al.,
2008; Sunnåker et al., 2010; Schaber and Klipp, 2011). Some models
have intrinsic symmetries that allow transformations of state variables
and parameters in a way that does not change the model output. Such
redundant parameterization leads to a likelihood function that instead
of a unique minimum has a completely flat valley, meaning that there

Box 6–Optimization.

Two main categories of optimization methods can be distinguished, so-called local and global methods. Local methods require some
kind of initialization of parameters, a position in the parameter space from where to start the optimization. This parameter set can
come from in vitro measurements of reaction kinetics or other kinds of estimates, perhaps reported in the literature, but may also
require guessing. The initial parameter set is then improved by repeated application of the optimization algorithm. Many local
methods determine their direction of search in the parameter space based on the gradient and Hessian of the objective function at the
present point in parameter space (Nocedal and Wright, 1999). The Newton method uses the exact Hessian, but quasi-Newton
methods approximating the computationally costly Hessian using gradients, like the SR1 or BFGS algorithms, are more commonly
used. For least squares problems, which are the most common in biochemical modeling, the Hessian approximation of the Gauss–
Newton and Levenberg–Marquardt (Marquardt, 1963) methods are especially appropriate (Nocedal and Wright, 1999). The gradient of
the objective function needed by these methods are typically computed by finite difference approximations. However, numerical
solutions of the model equations using adaptive step length ODE solvers are known to introduce ”quantification errors” to the
objective function, making it non-smooth on small scales (Bohlin, 2006; Carlsson and Nordheim, 2011). The finite difference
approximation may thus become an unreliable description of the gradient and gradient-based methods can as a consequence
experience difficulties. To overcome such problems the gradient can instead be determined by integration of the so-called sensitivity
equations (Ljung and Glad, 1994a; Skaar, 2008; Carlsson and Nordheim, 2011). Another strategy of handling issues with non-smooth
objective functions is the use of non-gradient based methods like the Nelder–Mead method (Nelder and Mead, 1965), the Hooke–
Jeeves method (Hooke and Jeeves, 1961), or the principal axis method (Brent, 1973). Although such methods are robust and easy to
implement, they generally have much slower convergence in terms of the number of objective function evaluations.

Since the objective function typically has several local optima the choice of initial values is crucial for finding the global optimum using
local methods. The inefficiency of local methods in finding the global optimum (Mendes and Kell, 1998; Moles et al., 2003) has spurred the
development of global optimization methods that search the parameter space more comprehensively. A common drawback with these
algorithms is a slower rate of convergence. Some of the popular global methods include simulated annealing (Kirkpatrick et al., 1983;
Nikolaev, 2010), a large number of different genetic and evolutionary algorithms (Sarkar and Modak, 2003; Yüzgeç et al., 2009; Chou and
Voit, 2009; Ashyraliyev et al., 2009), and particle swarms (Kennedy and Eberhart, 1995), and their performance has been compared in
several studies (Moles et al., 2003; Dräger et al., 2009; Baker et al., 2010).

Most successful is the combination of local and global search methods. Such hybrid methods benefit both from the global
methods’ ability to explore the parameter space and from the faster convergence rate of the local methods once close to a (local)
optimum. As an example, the results obtained by Moles et al. (2003) using the global SRES method (Runarsson and Yao, 2000, 2005)
were substantially improved by different combinations with local methods (Rodriguez-Fernandez et al., 2006b), and further
strengthened by a systematic strategy for when to switch from the global to the local method (Balsa-Canto et al., 2008). Even more
promising results have been obtained with a hybrid approach based on a scatter search metaheuristic (Rodriguez-Fernandez et al.,
2006a). An enhanced version of the scatter search (Egea et al., 2010) has also been shown to benefit from a cooperative parallelization
(Balsa-Canto et al., 2012), as illustrated in a comparison with a non-cooperative parallelization of the algorithm on the parameter
estimation problem of the 193 parameter E. coli model by Kotte et al. (2010).

Several of the local, global, and hybrid methods mentioned above are available throughmodeling software tools like SBML-PET (Zi and
Klipp, 2006), the Systems Biology Toolbox (Schmidt and Jirstrand, 2006; Schmidt, 2007), COPASI (Hoops et al., 2006; Mendes et al., 2009),
PottersWheel (Maiwald and Timmer, 2008), and AMIGO (Balsa-Canto and Banga, 2011).
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are several parameter sets that are equally likely to have produced the
measured data. Models of this type are said to be structurally
unidentifiable (Bellman and Åstrom̈, 1970; Pohjanpalo, 1978). It should
be emphasized that this property is only dependent on the model
structure itself, including the set of measured model outputs and the
known input variables, but not on the quality or quantity of data used
for estimation. The analysis of structural identifiability can therefore be
done a priori, meaning that neither experimental data, nor a certain
parameterization, is required.

Structural identifiability is a necessary condition for an unam-
biguous estimation of parameters. It may however not be suffi-
cient because it can happen that even though the likelihood
function has a unique minimum for some parameter set, the
surroundings of this minimum could be very flat. Consequently
there may be other parameter sets with potentially very different
values that are almost as likely. Such diverse parameter sets
yielding very similar outputs have for example been observed in
a model of the methionine cycle dynamics (Piazza et al., 2008)
and in a model of monoclonal antibody production in Chinese
hamster ovary (CHO) cells (McLeod et al., 2011). This situation is
referred to as a lack of practical identifiability. Unlike structural
identifiability, this property does depend on the amount, quality,
and time points of experimental observations. Methods for deter-
mining practical identifiability also require that a parameter
estimate has already been obtained, and can therefore not be

applied a priori. A review of methods for identifiability analysis is
found in Box 7.

When estimating model parameters from experimental data,
decisions have to be made about what kind of experiments to
perform. It is rare that all state variables can be measured and
typically there are several quantities appearing in the model for
which experimental methods exist but come at a high cost in
terms of time- or resource-consumption. In these situations,
identifiability analysis can be a useful tool to guide the experi-
mental design. For instance, the structural identifiability of a
model depends on the set of model outputs but it is not only
interesting to know whether a particular set of measured outputs
renders the model identifiable but it is also of great interest to
learn which potential sets of outputs that have to be measured in
order to ensure structural identifiability. Addressing this question,
an algorithm was developed in the group of Jirstrand and collea-
gues (Anguelova et al., 2012) that a priori finds so-called minimal
output sets, which are sets of outputs that when measured results
in an identifiable model. The algorithm has been implemented in
Mathematica (Wolfram Research, Inc., Champaign, USA) and used
successfully in the analysis of models with over 50 parameters
(Anguelova et al., 2012). Since methods that only determine
structural identifiability will not be able to detect practical
identifiability, they can never be used to prove the feasibility of a
certain experimental design. Rather, because approaches like the

Box 7–Identifiability analysis.

One algorithm for determining structural identifiability has been presented by Sedoglavic (2002) which is particularly interesting.
Unlike previous efforts (Vajda et al., 1989; Audoly et al., 2001; Margaria et al., 2001) this method does not suffer from the limitation of
only being applicable to smaller systems. In fact, a recent implementation of the algorithm, which was also extended to handle
parameterized initial conditions, has been successfully applied to models with a size of about 100 state variables and 100 parameters
using a standard desktop computer (Karlsson et al., 2012). The results obtained by Sedoglavic are so far unfortunately not
disseminated in the biological modeling community, one of the reasons perhaps being the use of the related term observability
instead of the, in the biological field, more common term identifiability. It should be noted that this method, and all other methods
based on the so-called rank-test, are testing for so-called local structural identifiability. Thus, these methods will identify redundant
parameterizations that correspond to completely flat and continuous regions in the likelihood function but there may still be an
enumerable set of non-neighboring single points in the parameter space, also resulting in identical model output, which are not
detected by this analysis. One situation, where multiple parameter sets are possible and where local structural identifiability analysis
might be insufficient, is when measuring one or more components of a pathway containing an upstream reaction which is catalyzed
by two or more isoenzymes whose concentrations and activities are not explicitly measured. If the different enzymes are described by
the same type of model structure, permutations of concentrations and kinetic parameters for the set of isoenzymes results in models
with identical output. The models themselves are however not identical because the different parameter sets have different
implications when interpreting the properties and functions of the actual enzymes and their corresponding genes. Methods for the
analysis of global structural identifiability exist (Ljung and Glad, 1994b; Bellu et al., 2007) but are typically only applicable to smaller
systems with just a few state variables and parameters (Roper et al., 2010), or systems with a particular structure (Saccomani et al.,
2010), and therefore so far of lesser interest in the analysis of most models addressed in this review. A notable exception is the
successful application of the generating series approach to a medium-sized model of the NFkB regulatory module (Chis et al., 2011).
Though, potential issues with non-identifiability in the global sense could be eliminated if there is a priori knowledge about parameter
values that can be used as a starting guess when computing the estimate or to discard an incorrect solution to the parameter
identification problem.

A simple way of evaluating how accurately parameters can be identified in practice is to look at the standard parameter confidence
intervals determined from a quadratic approximation of the log-likelihood function around its optimum. However, due to the frequent
combination of limited amounts of experimental data and model outputs that depend non-linearly on the parameters, this type of
confidence intervals can be unsuitable (Raue et al., 2011; Schaber and Klipp, 2011). Another way of assessing the accuracy of the
parameter estimates is to use exact confidence intervals determined by a threshold level in the likelihood. A method to calculate such
likelihood-based confidence intervals based on the profile likelihood was recently proposed (Raue et al., 2009, 2010). Here, all
parameter directions of the likelihood function are explored by moving along the negative and positive directions of each parameter
while minimizing the likelihood function with respect to the remaining parameters (which means that one studies the projection of the
likelihood onto a specific likelihood-parameter axis plane). The confidence intervals are determined by the points where these
likelihood profiles cross over a certain threshold, and the confidence levels are determined by the level of that threshold. If the profile
likelihood for a parameter never reaches the threshold in either the negative or positive direction, or in neither, the confidence interval
of this parameter extends infinitely in at least one direction. According to this approach, parameters with unbounded confidence
intervals are defined as non-identifiable. This definition would make no sense for confidence intervals determined from the likelihood
curvature at the point of the estimate, since these are always finite (with the exception of a completely flat likelihood resulting from a
structural non-identifiable parameter). Profiling can also be applied to posterior distributions (Raue et al., 2013).
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minimal output sets do not require any wet-lab efforts at all, the
appropriate use of such structural identifiability analysis is to
beforehand disprove any experimental design that is bound to fail
in identifying the parameter values, and to give well-founded
suggestions of which additional quantities that have to be mea-
sured to resolve the identifiability issues. Insights obtained in this
way can potentially save a lot of valuable laboratory resources. The
analysis of practical identifiability will on the other hand require
an existing set of measurements, but it can not only determine
which parameters that are impossible to estimate uniquely but
also those that are too poorly constrained. This type of analysis is
therefore able to confirm if a given set of measurements really is
sufficient for parameter identification in practice. If this is not the
case, and additional measurements are required, practical iden-
tifiability analysis can be used to improve the experimental design
in more specific ways than methods like the minimal output sets,
for instance by indicating certain time points at which the
measurement of a particular quantity is most efficient in (further)
constraining a parameter value (Raue et al., 2009, 2010). Thus,
structural and practical identifiability analysis fulfills different
needs and can be said to have complementary roles when used
for experimental design.

2.3.3. Model reduction
It was shown above that identifiability analysis can guide the

experimental design so that the correct type and amount of data
required for system identification is collected. Another way of
achieving the balance between model and data is to decrease the
complexity of the model by different model reduction techniques.
These techniques aim at simplifying models to reach an appro-
priate level of detail for experimental validation (Klipp et al.,
2005a), and if done properly the reduced model retains the
essential properties of the original model. Model reduction can
also be performed on models where the parameters have already

been identified and whose applicability has been validated. In
these cases the purpose of the reduction is to facilitate the
understanding of essential structures and mechanisms of the
model and to decrease the computational burden of simulation
and analysis. Methods for model reduction are discussed in Box 8.

In addition to the more formal methods mentioned in Box 8, a lot
of model reduction is often done by the modeler already when setting
up the network structure and formulating the rate expressions. For
instance, different post-translationally modified versions of a protein
might de described by a single lumped state variable, concentrations
of co-factors might be excluded as state variables and consequently
not considered in the rate expressions of reactions in which they
participate, reactions which are thought to be marginally relevant for
the problem at hand might be left out from the model, known rate
expression might be simplified and described by approximate kinetic
formats as explained previously, and quantities that are changing
slowly in the characteristic time scale of the model, such as the
synthesis and degradation of enzymes during a much faster metabolic
process, may be considered frozen and hence set constant. Decisions
like these are usually dependent on a combination of the purpose of
the model, the modelers experience and intuition, and prior knowl-
edge of the modeled system.

2.4. Validation

Before a model is ready to be used its quality should be
established. This is done not only by evaluating the model's ability
to explain the experimental data used for parameter estimation
but also by comparing some of its predictions to new data that was
not used earlier in the model building process (Ljung, 1987). If a
priori information is available on values of parameters with a
biophysical interpretation, these should be compared to the
estimated values as a feasibility check. Additionally, other aspects
of the model, such as the predictions of unobserved state variables,

Box 8–Model reduction.

Two popular categories of model reduction methods are the ones based on time-scale separation and lumping. The time-scale
separation approach is based on defining a time-scale of interest and neglecting changes in state variables that occur on slower time-
scales and approximating state variables and processes associated with faster times-scales using the quasi-steady-sate and the quasi-
equilibrium approaches (Klipp et al., 2005a; Nikerel et al., 2009). Thus, the dynamics of some state variables will be replaced by either
constants or algebraic relations. If the time-scales of the reactions in a system are not known, several reduced versions of a model
may be considered (Almquist et al., 2010a) or further assumptions could be made (Almquist et al., 2010b). Lumping, on the other
hand, transforms the original state variables to a set of new state variables in a lower dimensional state space (Okino and
Mavrovouniotis, 1998). The choice of which state variables to lump together is frequently based on time-scale considerations, which
results in groups of quickly equilibrating state variables being completely eliminated and replaced by a new state variable. One
example of model reduction through lumping can be found in a study of secondary metabolism pathways in potato (Heinzle et al.,
2007). Here, the steady-state assumptions which were used to motivate the lumping of different metabolites were derived from
experimental work. Even though model reduction through lumping and time-scale separation often overlap, this is not always the
case. Examples of time-scale separation not involving lumping include setting slowly varying variables to constant values, and
examples of lumping not involving time-scale separation include mean concentration models of cellular compartments, i.e., reaction–
diffusion equations represented without the spatial dimension. Other model reduction techniques include sensitivity analysis
(Degenring et al., 2004; Danø et al., 2006; Schmidt et al., 2008) and balanced truncation (Liebermeister et al., 2005). The previously
mentioned profile likelihood approach to practical and structural identifiability analysis can also be used for model reduction (Raue et
al., 2009, 2010, 2011).

In most models with relevance for biotechnology the model components, such as state variables, their rates of change, and
parameter values, have precise physical meaning. A successful model reduction should therefore not only preserve the input–output
relations, which may be sufficient in other disciplines where models are used, but also preserve the interpretation of model
components (Cedersund, 2006). These ideas are central in a recently developed method that reduce models by lumping (Sunnåker et
al., 2010). Based on the approximation that state variables involved in fast reactions are in quasi-steady-state, interconnected groups
of such quickly adjusting states are identified and lumped together. The distribution among the original states of a lump is determined
analytically by so-called fraction parameters. These parameters can be used to retrieve the details of the original model, which is
known as back-translation, thereby allowing better biochemical interpretation of analysis and simulations done with the reduced
model. The method has also been extended to be able to handle nonlinear models and was successfully applied to a model of glucose
transport in S. cerevisiae (Sunnåker et al., 2011).
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may be interrogated with respect to their biological plausibility.
Quality controls like the above are referred to as model validation.
Strictly speaking, however, a model can never be validated. It may
explain all experimental data generated sofar but it can never be
proven to correctly account for future experiments. What is meant
by validation is rather that the model has withstood repeated
attempts to falsify or invalidate it. The rationale here is that the
more experiments that have been successfully explained by the
model, and the more reasonable it is with respect to a priori
information about the biological system, the more it can be trusted
to correctly predict future experiments. If a model fails to pass the
validation step, researchers need to revise their model by suitable
iteration of the modeling steps outlined in Fig. 1.

The ability of a model to explain experimental data is fre-
quently judged by visual inspection of the respective time-series
(Heinzle et al., 2007; Li et al., 2011; Cintolesi et al., 2012) or by
qualitative comparison of model characteristics (Gonzalez et al.,
2001). A qualitative comparison may for instance involve an
investigation of whether the model can produce certain observed
behaviors such as oscillations, homeostasis, or switching. Such
analysis is sometimes actually performed before parameters have
been formally determined, typically using some initial estimate of
the parameter values, which might result in models being dis-
carded already at this point. While these less rigorous assessments
may be a good first step of the validation procedure there are also
formal statistical tests for determining the quality of a model, see
Box 9. Regardless of the outcome of statistical tests and formal
methods of validation, it should not be forgotten that these are
best used as support for decisions made by the modeler
(Cedersund and Roll, 2009) and that the ultimate validation is
whether the model can fulfill the purpose for why it was created in
the first place (Ljung, 1987).

Sometimes validation is done by qualitatively different types of
data than what was used for model identification. For instance, the
biological system can be measured under new external conditions
(Shinto et al., 2007; Oshiro et al., 2009), resulting in a different
operating point, new types of input schemes (such as steps, pulses,
periodic pules, or staircases) may be used (Klipp et al., 2005b; Zi
et al., 2010), data can be collected on previously unmeasured
molecular species, and validation experiments can be conducted
on modified versions of the original system, i.e. mutants, where
enzymes or other components are inactive, constitutively active, or
have been underexpressed, overexpressed, or completely deleted

(Alvarez-Vasquez et al., 2005; Klipp et al., 2005b; Wang et al., 2006;
Zi et al., 2010; Cintolesi et al., 2012). When models can successfully
explain such new data, it is a strong indication that the mechanistic
principles and assumptions behind the model are sound.

3. Using kinetic models

From a biotechnology perspective, a complete and validated
model according to the steps outlined previously is usually not in
itself the ultimate goal of modeling. The real value of a model lies
instead in using it to predict, evaluate, and explore different
scenarios or assumptions involving the modeled system and its
surrounding environment. An established model should thus
foremost be seen as a tool that can be used to answer questions
about the cell factory and it should be used as a complement or
alternative to performing actual experiments in the lab.

3.1. Improving production

A major question which has been attempted to be answered
using kinetic models is how to rationally design directed metabolic
engineering strategies that will improve a cell factory's ability to
produce a desired product. This requires models that can predict
the behavior of the cell in response to genetic alterations like gene
deletion or overexpression. One way of using kinetic models to
identify suitable targets is to perform a local parameter sensitivity
analysis. A more thorough treatment of the problem involves
simulating larger changes in the levels of enzymes and other
components.

3.1.1. Local parameter sensitivity analysis
The aim of a local parameter sensitivity analysis is to determine

the degree of change of some model property like a flux, a
concentration, or a more complex quantity such as the area under
the curve of some state variable, in response to a change in the
model parameters. As the parameters may represent quantities that
can be manipulated by genetic engineering, such as enzyme con-
centrations, the analysis provides predictive links between potential
targets and their effect on the cell factory behavior. Since a local
analysis only considers small or even infinitesimal perturbations
around a point in parameter space, it is not indented to mimic any
actual changes in, for example, an enzyme concentration. However, a

Box 9–Validation.

Model validation is typically done by analyzing the deviation between the measured data and the model outputs, Ei ¼ di�yðt iÞ. For a
model to be good these residuals should be sufficiently small and uncorrelated. First of all, if the parameters have been collectively
estimated, the model should be able to satisfactorily describe this ‘training’ data. For instance, the size of the residuals can be tested
by a w2 test (Jaqaman and Danuser, 2006; Cedersund and Roll, 2009) and the correlation of residuals can be tested by a run test or a
whiteness test (Cedersund and Roll, 2009). Secondly, the residual analysis should be performed also with new data that were not
previously used. This is done to assure that a good fit is not just because a too complex model has been over-fitted to the particular
data points of the estimation set. Validating a model with fresh data means that unless new data can be collected after parameter
estimation, some data has to be saved. This can be a problem if there is not much data to begin with. A common approach to this
situation is the use of resampling methods (Molinaro et al., 2005) where the model validation procedure is repeated and averaged
over different partitions of the original data into training and validation sets. One such method is k-fold cross-validation, which has for
instance been used in modeling of the TOR pathway (Kuepfer et al., 2007).

Model validation sometimes also involves comparison between competing models describing the same biological system, to see
which one is ‘most valid’ (Schaber et al., 2012). Two common criteria used to find the most suitable model include the Akaike
information criterion (AIC) (Akaike, 1974) and the Bayesian information criterion (BIC) (Schwarz, 1978), and two common tests that
also address the statistical significance of model discrimination are the likelihood ratio test (Kreutz and Timmer, 2009; Cedersund and
Roll, 2009) and the F-test (Jaqaman and Danuser, 2006; Cedersund and Roll, 2009). Other approaches to model discrimination, which
included the dependence of model discrimination on experimental design, have been explored in studies on formate dehydrogenase
production in Candida boidinii (Takors et al., 1997) of and L-valine production in C. glutamicum (Brik Ternbach et al., 2005).
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local parameter sensitivity analysis is easy to perform, gives a concise
and transparent output, and despite its limitations it does have some
predictive power allowing the results to be used as guidelines for
identifying reasonable metabolic engineering targets.

A popular application of kinetic models is a special type of
sensitivity analysis called metabolic control analysis (MCA) (Fell,
1992; Nielsen, 1998; Visser and Heijnen, 2002), the basis of which
was already developed in the seventies (Kacser and Burns, 1973;
Heinrich and Rapoport, 1974). It is concerned with the problem of
quantifying how the control of steady-state flux is distributed
among the enzyme-catalyzed reactions of a pathway. Two of the
central quantities in MCA are the elasticity coefficients and the
flux control coefficients (FCCs), defined in Box 10. They are both
measures of sensitivity that have been scaled to obtain dimension-
less numbers.

Normally there are many non-zero FCCs, meaning that there is
no single rate-limiting enzyme but that the control of a flux
instead is distributed over several reactions. However, it is likely
that some reactions have larger values of their FCCs than others,
indicating that these reactions are the ones primarily controlling
the flux. The enzymes of those reactions may consequently be
promising targets for successful metabolic engineering of the
pathway. Given a kinetic model the FCCs can readily be calculated
directly from its steady-state(s). The steady-state can be obtained
either by simulations asymptotically approaching it, or by analy-
tical or numerical solutions of the model equations. Alternatively,
the FCCs may for linear pathways be determined indirectly from
the summation and connectivity theorems using elasticity coeffi-
cients derived from the individual reaction rates of the model.

Sensitivity analysis in the form of MCA has been applied to a
variety of kinetic models describing many different kinds of cell
factories and types of products. It has for example been used to
determine suitable genetic targets for improved production of
lysine in C. glutamicum (Hua et al., 2000). This study found that
lysine production was primarily controlled by the enzymes aspar-
tokinase and lysine permease. The outcome of the analysis was
verified experimentally by overexpression of aspartokinase, result-
ing in a significant increase in lysine production. However, the

lysine flux did not increase as much as would be expected from the
sensitivity analysis, suggesting that model predictions of this type
are best used as supporting guidelines and that they never should
be taken as indisputable facts. Further verification of the model's
predictive capability was obtained by overexpression of the low
flux-control enzyme dihydrodipicolinate, which only had a very
limited effect on the production rate. Recently, Cintolesi et al. (2012)
applied MCA to a model of ethanol production from glycerol in E.
coli. Their analysis suggested that the control of the glycerol
fermentation was almost exclusively shared between glycerol
dehydrogenase and dihydroxyacetone kinase. The validity of this
prediction was confirmed by the 2.4-fold increase in glycerol to
ethanol flux observed when simultaneously overexpressing both
enzymes. It was additionally seen that overexpression of other
enzymes involved in glycerol metabolism, but whose flux control
coefficients were close to zero, did not lead to increased rates of
glycerol consumption and ethanol synthesis. The use of MCA is not
limited to fluxes of metabolites but can be applied to the steady-
state flux of any chemical entity. For instance, Gonzalez et al. (2001)
used MCA to study monoclonal antibody synthesis in eukaryotic
cells. They came to the conclusion that control of antibody produc-
tion is shared between different steps of the synthesis pathway and
that this division depends on the extracellular conditions and the
physiological state of the cell. Their predictions were shown to
compare qualitatively well with previously published experiments.
Other examples of MCA applied to kinetic models include glycerol
synthesis in S. cerevisiae (Cronwright et al., 2002), valine production
in C. glutamicum (Magnus et al., 2009), the central carbon metabo-
lism (Chassagnole et al., 2002) and production of threonine
(Chassagnole et al., 2001), tryptophan (Schmid et al., 2004), and
serine (Nikolaev, 2010) in E. coli, L-cysteine production in Pseudo-
monas sp. (Huai et al., 2009), production of lactic acid (Oh et al.,
2011) and compounds of the acetolactate branch (Hoefnagel et al.,
2002) in Lactococcus lactis, and the penicillin biosynthetic pathway
in Penicillium chrysogenum (Theilgaard and Nielsen, 1999). Except
for the work by (Hoefnagel et al.), which is further discussed in the
next subsection, the model predictions of those studies were not
tested by actually constructing the correspondingly modified

Box 10–Metabolic control analysis.

Consider a pathway, possibly containing branching points, consisting of metabolites xi, and reactions rates vj which are catalyzed by
enzymes with concentrations ej. The elasticity coefficients (ECs) are then defined as

ϵjx i
¼ xi

v j

∂vj

∂xi
; ð14Þ

which means that for each reaction of the pathway there is a set of ECs measuring its sensitivity to the concentrations of the different
metabolites. Each EC is a property of an individual enzyme and is therefore independent of the activity of the other enzymes in the
pathway. For any steady-state flux J in the pathway the flux control coefficients (FCCs) are defined as

CJ
j ¼

ej

J

∂J
∂ej

: ð15Þ

They quantify the degree of control exerted by the different enzymes on a steady-state flux of the pathway as a whole. This means that an
FCC for one of the enzymes can depend on the properties of the other enzymes, and the FCCs are therefore system properties. The ECs and
the FCCs are related by the summation theorem

∑
j

CJ
j ¼ 1 ð16Þ

which states that the sum of all FCCs is 1, and by the connectivity theorem

∑
j

CJ
j ϵ

j
x i
¼ 0 ð17Þ

which states that for each metabolite, the sum of the product of the FCCs and the ECs with respect to that metabolite is zero. The full
details of MCA comprise additional sensitivity coefficients which are related through similar theorems. Thus, MCA is not just a sensitivity
analysis but also a theoretical framework that formally describes the connection between properties of a system and its components.
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microbes. There are also computational studies where MCA has
been combined with parameter sampling approaches in order to
examine the effect of parameter uncertainty (Pritchard and Kell,
2002; Wang et al., 2004; Wang and Hatzimanikatis, 2006a, 2006b;
Miskovic and Hatzimanikatis, 2010).

Other types of local parameter sensitivity analysis are also
abundantly represented in the literature. For example, Oshiro et al.
(2009) determined the impact of parameter perturbations in a
kinetic model describing the dynamics of lactic acid production in
xylose fermenting L. lactis. Based on their results, the enzymes
around the pyruvate node were proposed as targets for genetic
manipulation. Some of these authors had also previously carried
out a similarly designed sensitivity analysis of acetone–butanol–
ethanol production in Clostridium acetobutylicum (strain N1-4,
formerly known as Clostridium saccharoperbutylacetonicum)
(Shinto et al., 2007). Here, several genetic engineering strategies
for increased butanol production were suggested, including
decreasing the activity of CoA transferase for butyrate and increas-
ing the activity of the reverse pathway of butyrate production. This
model (Shinto et al., 2007) was later improved by Li et al. (2011)
who arrived at similar conclusions in their sensitivity analysis. In
addition to looking at single parameters, their analysis also
considered all combinations of parameter pairs. Though, as the
size of parameter perturbations was small, the combined effects of
simultaneously changing two parameters always equaled the sum
of the separate parameter effects and no nonlinear crossover
effects were thus found. Unfortunately did neither the L. lactis
study nor the Clostridium studies genetically implement the
proposed strategies. In recent work on CHO cells, McLeod et al.
(2011) used sensitivity analysis to investigate which cellular
process that controlled the production of a recombinant mono-
clonal antibody. The sensitivity analysis was repeated to specifi-
cally target different days of a two week fed-batch process. Unlike
the modeling study by Gonzalez et al. (2001) it was found that
control was divided almost exclusively between transcription,
degradation, and translation of mRNA, and that this control
structure did not change appreciably during the different phases
of culturing. The authors consequently suggested that genetic
engineering strategies for their system should focus on these
processes, but the validity of their predictions was not tested
experimentally.

3.1.2. Simulating larger changes
The theory behind MCA and other local sensitivity approaches

is based on small perturbations of the parameter values and the
resulting sensitivities are normally only valid in the vicinity of the
nominal parameter values. Realistic cases of genetic manipulation
will on the other hand likely involve larger changes in the levels of
gene product concentrations. The extent to which the results of a
local analysis of the model can be extrapolated to larger perturba-
tions differs from case to case and cannot generally be determined
(Visser et al., 2004; Schmid et al., 2004; Nikolaev, 2010). However,
if a kinetic model has been formulated there is usually no reason
for limiting the model analysis to local parameter sensitivities. Just
as the control coefficients of MCA can be calculated directly from
model simulations, the model can in principle be used for
simulating any kind of perturbation of its components. By simu-
lating more extensive changes to models, metabolic engineering
scenarios can be explored in more realistic ways. In this respect,
such approaches are more powerful compared to the traditionally
used sensitivity analysis like MCA, and the predictions made have
the potential to be much more accurate. Though, performing
simulations that involve large changes in the model parameters,
or even changes to the model structure, may require that the
model has good predictive power not only for the specific

physiological setting for which it was developed but also for other
operating points, something that cannot generally be assumed to
be true. Therefore, the more extensive the perturbations to the
model are, the more careful one should be when interpreting the
results.

One example of model-based analysis of actual metabolic engi-
neering strategies was provided by Hoefnagel et al. (2002). Based on
MCA-derived candidate targets for increasing the production of
acetoin and diacetyl in L. lactis, they proceeded with simulations of
larger changes in the concentrations of two enzymes. First, a mutant
with a lactate dehydrogenase deletion was simulated. This did
indeed lead not only to a substantial flux towards the acetolactate
synthase branch but also to a reduction in glycolytic flux, indicating
potential problems with growth rates for such a strain. Then, a 40-
fold overexpression of NADH-oxidase was simulated also resulting
in some of the flux being diverted into the acetolactate branch.
Finally, a simulation combining the two modifications was per-
formed and it predicted that 92% of the flux through the pyruvate
node would go into the desired direction, and that the glycolytic flux
would be less affected. This fraction should be compared to a
negligible 0.1% measured in the wild-type strain. The model predic-
tion was tested, and at least to a certain degree confirmed, by an
experiment which showed that 75% of the pyruvate ended up as
acetoin in a strain where lactate dehydrogenase had been knocked
out and NADH-oxidase was overexpressed. In another purely
computational study, Chen et al. (2012) developed two separate
kinetic models of glycolysis and the pentose phosphate pathway in
S. cerevisiae and CHO cells. The authors then used the yeast model to
analyze the impact of metabolic engineering targeting the produc-
tion of dihydroxyacetone phosphate. Specifically, a deletion of the
enzyme triose phosphate isomerase was simulated by setting its
activity to zero. The rate of dihydroxyacetone phosphate production,
and its yield on glucose, for this in silico deletion mutant was
subsequently determined under different glucose uptake rates. Yet
other studies have simulated the effects of realistically sized pertur-
bations in the central metabolism of E. coli (Usuda et al., 2010; Kadir
et al., 2010), comparing their results to experimental data.

3.1.3. Optimization problems
Even though the analysis of a specific metabolic engineering

strategy is relatively easy to implement in silico given a kinetic
model, there are still at least in theory infinitely many possible
strategies to consider (assuming a continuum of expression levels)
and it may be unclear which particular ones to try out in simula-
tions. To overcome this difficulty, scenarios involving perturbations
to model parameters are sometimes formulated as optimization
problems (Hatzimanikatis et al., 1996a, 1996b; Mendes and Kell,
1998; Chang and Sahinidis, 2005; Pozo et al., 2011). A typical
objective function to be optimized would be the rate of formation
of the desired product and the optimization procedure may more-
over be subject to constraints regarding the maximum changes in
levels of enzymes and metabolites. All methods that can be used to
compute the parameter estimates, described in Box 6, are typically
applicable also for these problems. Using the output from kinetic
models to set up optimization problems is perhaps the most
rigorous and ambitious way of approaching the search for metabolic
engineering targets.

Different optimization approaches to determining appropriate
levels of metabolic enzymes have been used in a number of purely
simulation-based studies for various aspects of microbial metabo-
lism, including the production of ethanol in S. cerevisiae (Polisetty et
al., 2008), citric acid in Aspergillus niger (Alvarez-Vasquez et al.,
2000; Polisetty et al., 2008), and of serine (Visser et al., 2004; Vital-
Lopez et al., 2006; Nikolaev, 2010), tryptophan (Marín-Sanguino
and Torres, 2000; Schmid et al., 2004), and L-(-)-carnitine (Alvarez-
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Vasquez et al., 2002) in E. coli. The simultaneous production of
serine and tryptophan in E. coli has also been considered using a
multi-objective optimization strategy (Lee et al., 2010).

3.2. Improving substrate utilization

An interesting prospect in the development of competitive cell
factories is the expansion of their range of substrates. One example is
the improved use of lignocellulosic biomass for ethanol production
made possible by the introduction of genes for xylose utilization in S.
cerevisiae. To assist in the evaluation of directed genetic engineering
efforts towards improved efficiency in catabolism of this pentose
sugar, Parachin et al. (2011) used a kinetic modeling approach for
analyzing two different scenarios. One model was set up to represent
a strain in which extracellular xylose reaches the pentose phosphate
pathway through membrane transport followed by conversions by
the enzymes xylose reductase, xylitol dehydrogenase, and xyluloki-
nase. This model also featured a membrane transport reaction for the
excretion of the intermediate metabolite xylitol. Additionally, another
model was constructed for an alternative pathway comprising xylose
isomerase and xylulokinase. In both these models the effects of a 10-
fold overexpression as well as a severe knockdown (a 10-fold
decrease in activity) of the different enzymes were examined.
Simulating overexpression of xylose reductase in the first catabolic
pathway slightly not only increased the ability to consume xylose but
it also led to an increased excretion of xylitol. Conversely, not only the
knockdown of xylose transport capacity decreased the xylitol forma-
tion but also the xylose consumption. Changing the activity of xylitol
dehydrogenase, either by overexpression or knockdown, only had a
marginal effect on model simulations. The best outcome was
observed when xylulose kinase was overexpressed. This resulted in
a slight increase in xylose consumption combined with a dramatic
decrease in excretion of xylitol. Similarly, for the pathway using xylose
isomerase, the model analysis suggested overexpression of xylulose
kinase to be the best alternative for improving the utilization of
xylose. The predictions of the models were in essence validated
experimentally by aerobic and anaerobic cultivation of the corre-
spondingly engineered yeast strains.

Other kinetic modeling contributions aiming for improved
utilization of substrate includes enhancement of glucose uptake
in E. coli (Visser et al., 2004; Nishio et al., 2008; Nikolaev, 2010)
and application of the aforementioned MCA to the catabolism of L-
arabinose (de Groot et al., 2005) and xylose (Prathumpai et al.,
2003) in Aspergillus nidulans and Aspergillus niger. Of those studies,
only Nishio et al. (2008) proceeded to validate their predictions in
experimental follow-ups.

3.3. Improving product quality

For complex products such as glycoproteins, the quality of the
product may be subject to improvement by genetic manipulations.
The patterns of glycosylation have impact on in vivo activity,
immunogenicity, and product half-life and their importance has
encouraged the development of glycoengineered yeasts (Hamilton
and Gerngross, 2007; Ye et al., 2011; Nett et al., 2012), serving as
an alternative to production of human-like glycoprotein in animal
cells. Kinetic modeling has been employed to describe glycosyla-
tion in mammalian cells (Krambeck and Betenbaugh, 2005;
Hossler et al., 2007). Expanding on an earlier model (Umaña and
Bailey, 1997), Krambeck and Betenbaugh (2005) set up a model
describing the non-linear kinetics of the enzymes involved in N-
linked glycosylation in CHO cells. They were able to use their
model to simulate how the glycosylation profile changes when the
concentration of maturing protein in the Golgi increases. Specifi-
cally, they investigated a scenario where the concentration was
increased 4-fold in order to represent a hypothetical cell line with

an increased specific productivity. The results of their simulations
showed that the distribution of different glycoforms changes in
response to the increased productivity, indicating a potential
problem with reduced product quality. The authors then explored
in silico the possibility of restoring the original glycosylation
pattern in the high producer by means of changing the levels of
glycosylation enzymes and the availability of uridine diphosphate
N-acetylglucosamine. By just adjusting the level of a single
enzyme, N-acetyllactoseaminide α-2,3-sialyltransferase, more
than half of the deviation could be reverted. Other solutions,
involving changes in several targets, that almost completely
restores the glycan distribution were also proposed based on the
analysis. Models such as this are clearly interesting tools for
making predictions of how to preserve correct glycosylation in
high producing cells, but possibly also for how to engineer new
glycan patterns.

3.4. Improving process design

In addition to predicting the effects of internal perturbations
to a cell factory, kinetic models are also useful for predicting
their behavior in response to various external conditions.
Understanding the interplay between the cell and its environ-
ment is valuable since it can be used for improving the
fermentation or bioreactor process. To describe the complete
production process, a model which can reproduce cellular
properties such as the rate of growth, substrate consumption,
and product formation, is combined with a model of the
bioreactor in which the cells are cultivated. Bioreactor models
are usually set up as quite simple dynamical systems based on
mass balances of substrates, products, biomass, and viable cells,
normally assuming ideal mixing (however, highly complex
models also exists Lapin et al., 2010). Considering the bioreactor
as part of the modeled system is necessary for calculating the
quantities discussed in the section on model purpose, like
productivity and final titer. Not only are both the time trajec-
tories for biomass concentration and the specific rates of
consumption and production need for their determination but
the dynamics of these variable are usually dependent on one
another (Maurer et al., 2006; Douma et al., 2010) and their
dynamics must be dealt with simultaneously.

To be useful for the design or optimization of fermentation or
bioreactor processes, the models of the cell metabolism need only
be predictive in a input–output sense. As long as this is the case it
does not matter whether they are mechanistically correct repre-
sentations of intracellular biochemistry or just empirical models.
Because of the challenges of setting up mechanistic models on the
molecular level, the production processes have traditionally been,
and commonly still are, modeled with either unstructured kinetic
models or by other simplified model designs (DiMasi and Swartz,
1995). Such kinetic models have been used to describe both
continuous and fed-batch cultivations. For continuous cultures,
modeling has for instance been used to study growth and
metabolism of mammalian cells (DiMasi and Swartz, 1995) and
the effect of oxygen uptake on L-lysine production in Corynebac-
terium lactofermentum (Ensari and Lim, 2003). Models have also
been used for optimizing operating conditions such as the dilution
rate in order to maximize production of protein in S. cerevisiae
(Carlsen et al., 1997) and L-(-)-carnitine in E. coli (Alvarez-Vasquez
et al., 2002). The model-based predictions in both of these studies
turned out to agree very well with experiments. In industry many
processes are run in fed-batch mode and kinetic models of fed-
batch processes have for example been used to study penicillin
fermentation in P. chrysogenum (Menezes et al., 1994) and produc-
tion of proteins in mammalian cell lines like baby hamster kidney
(Teixeira et al., 2007), murine hybridoma (Dorka et al., 2009), and
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CHO (Xing et al., 2010). Several investigators have also used similar
models for the optimization of fed-batch feeding profiles (Sarkar
and Modak, 2003), for instance to maximize astaxanthin produc-
tion in Xanthophyllomyces dendrorhous (Liu and Wu, 2008) or
protein production in E. coli (Levisauskas et al., 2003) and P.
pastoris (Maurer et al., 2006), and for maximizing production of
biomass while at the same time minimizing ethanol formation in a
S. cerevisiae fermentation (Yüzgeç et al., 2009). The predicted
optimal cultivation strategies in all of these studies were shown
to compare well with validation experiments and did indeed
lead to significantly improved fed batch processes. As well
as using kinetic process models for optimizing operational strate-
gies in advance, kinetic models are also potentially useful for
online control (Chae et al., 2000; Teixeira et al., 2007; Yüzgeç et al.,
2009).

Although models with simpler structures have proven useful
in many cases, models of production processes and cell cultiva-
tion with increasing mechanistic details of intracellular reac-
tions are now starting to appear (Bettenbrock et al., 2006;
Shinto et al., 2007; Oshiro et al., 2009; Kadir et al., 2010; Li et
al., 2011; Nolan and Lee, 2011). In fact, kinetic models of
substantial complexity, which have been successful in describ-
ing how the metabolic state of cells varies with the external
conditions, have recently been presented for both E. coli (Kotte
et al., 2010; Usuda et al., 2010) and S. cerevisiae (Moisset et al.,
2012). In addition to detailed representations of primary meta-
bolic reaction networks, these models include genetic regula-
tion of enzyme concentrations. One of the advantages of using
more detailed models of the production process is that it allows
the synergistic effects of metabolic engineering and process
conditions to be evaluated, something which was recently
explored in a mainly computational study addressing CHO cell
metabolism (Nolan and Lee, 2012).

4. Advantages, challenges and perspectives

4.1. Advantages

The general strength of the kinetic modeling approach is that it
quantitatively takes into account the factors that determine the
rate of reactions. Compared to the modeling paradigm of the
constraint-based stoichiometric models, which mainly is focusing
on which reactions that can occur and the proportions of their
reactants and products, kinetic models also define when and to
what extent reactions take place. For an enzymatic reaction, for
instance, not only can the effects of substrate and product
concentrations be incorporated into the kinetic rate expression,
but also the effects of co-factors, activators, inhibitors, and other
modulators of enzyme activity. The ability of kinetic models to
incorporate detailed information about reactions gives them a
number of advantageous properties. Though, it must be empha-
sized that the advantages listed below partially reflect the poten-
tial capabilities of kinetics models, and not necessarily what is
routinely achieved for all kinetic models.

The principles of kinetic modeling are applicable for all parts of
the cell as well as the extracellular environment. Thus, a kinetic
model can not only describe the rates of several interlinked
enzyme-catalyzed reactions and the corresponding dynamics of
the interconverted metabolites, but it may also include additional
layers accounting for the rates of synthesis and degradation of
transcripts and enzymes, as well as the rates of reactions involved
in various sensing mechanisms and signal transduction. The many
different levels of control, regulation and coordination of biochem-
istry are essential features of living cells (Heinemann and Sauer,
2010) and a modeling framework with a broad applicability is

clearly an advantage if one desires to study the integration of
different cellular processes. A kinetic model of the cell factory is
furthermore easily embedded in a dynamic model of the bior-
eactor process itself. GEMs, on the other hand, are less flexible and
work best for modeling fluxes of metabolites.

Kinetic models can assist in understanding the complex beha-
viors of biological systems. Although the qualitative behavior may
be intuitive, such as end-product inhibition in a linear pathway,
understanding both the qualitative and quantitative aspects of
how system behavior emerges from the properties of its compo-
nents and their interactions is generally not trivial. In fact, even
really small molecular circuits with just a few components are
capable of producing non-intuitive dynamic behaviors such as
adaptation, homeostasis, irreversible switching and oscillation
(Tyson et al., 2003). Modeling behavior like these requires a kinetic
approach and is beyond the scope of GEMs. One interesting
example of how kinetic modeling has provided insight into the
emergence of complex behaviors is the model of metabolic
adaption in E. coli (Kotte et al., 2010). Here, a kinetic formulation
of the reactions of the central metabolism, including their tran-
scriptional and translational regulation, was shown to be capable
of reproducing system-level metabolic adjustments through a
mechanism termed distributed sensing of intracellular metabolic
fluxes. This can be compared to the incorporation of Boolean rules
for known gene regulation in GEMs (Herrgård et al., 2006). Since
the regulatory information is explicitly hard-wired into the model,
this strategy can never offer the same explanatory power in terms
of actual molecular mechanisms.

Kinetic modeling can turn understanding of how cell factories
work into predictions about how to improve them. When models
have been set up linking relevant aspects on the system-level with
the properties of the system components, they become valuable
for predicting and optimizing the performance of cell factories.
Ideally, the model components represent things that can be
manipulated such as expression levels or process parameters,
but also when model components are more abstract there may
be general predictions achievable that still are useful. Kinetic
models are unique in that predictions and optimizations are
quantitative and can be very detailed, going beyond the regime
of gene addition and deletion typically identified from flux balance
analysis of GEMs. Thus, if such details are desired, kinetic models
are conceptually superior to GEMs which instead are better suited
for pathway-oriented problems involving prediction of the steady-
state flux-capabilities of metabolic networks.

4.2. Challenges

A number of challenges must be addressed and overcome for
biotechnology to capitalize from the advantages of kinetic model-
ing. The overall challenge lies in producing predictive models of
high quality that really can make a difference for improving cell
factory performance. Although this review has presented a number
of studies where models have been used for predicting metabolic
engineering targets, some of which have been experimentally
verified, we are still far away from having kinetic models that are
sufficiently good to be used for in silico design of industrially
competitive cell factories. In this respect, kinetic models have not
reached the same degree of maturity and industrial applicability as
the much more successful GEMs.

The difficulty of producing high quality predictive models is
that it requires a lot of detailed information about the system that
one wishes to model. If too little information is available, the
strengths and advantages of the kinetic modeling approach cannot
be realized. Unfortunately kinetic modeling efforts frequently
suffer from incomplete and uncertain knowledge of the underlying
biochemistry with respect to both network structures, kinetic
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rate expressions, and parameter values (Schaber et al., 2009;
Kaltenbach et al., 2009; Soh et al., 2012). Thanks to the many
reconstructions of genome-scale metabolic networks, the path-
ways and stoichiometry of metabolic reactions are often mapped
out quite well, but regulatory mechanisms, both at the level of
enzyme–metabolite interaction and at the transcriptional and
translational level, are usually characterized to a lesser extent.
For systems involving other types of reactions, such as protein
secretion networks or signal transduction, knowledge of compo-
nents and interaction is usually scarce, making the formulation of
the network structure a challenging task (Schaber and Klipp,
2011). Little is also known about the exact mechanisms of the
majority of reactions, meaning that the structure of kinetic rate
expressions is also mostly unknown. Though, if a network struc-
ture as defined here (including qualitative knowledge about
reaction modifiers) can be formulated, this issue can to some
degree be circumvented using approximative kinetic rate expres-
sions. The challenge of determining suitable structures for kinetic
models should not be underestimated. While the literature often
emphasizes the lack of quantitative information regarding para-
meter values, the lack of qualitative information based on which
the model structure is set up may prove to be an even more
difficult problem, at least when modeling certain parts of the
cellular biochemistry. Nevertheless, the limited information about
parameter values also deserves a lot of attention. Already in
smaller models there are typically lots of parameters with
unknown values and determining them is indeed a challenge.
Even in those cases where parameter values are claimed to be
known as the result of studying individual components, models
that agree with experimental data of system properties do not
automatically follow. A well-known example illustrating this point
is the study of glycolysis in S. cerevisiae by Teusink et al. (2000).
Here, kinetic parameters were determined experimentally under
standard conditions in vitro for most of the glycolytic enzymes.
When the individual enzyme kinetics were pieced together
to form a model of the entire pathway, the model predictions
deviated substantially from the in vivo behavior in some parts.
This and other examples suggest that the accumulated uncertainty
introduced by in vitro measurements, differences in experimental
protocols, using data from different organisms, etc., make the
resulting models questionable. If possible, modelers should try to
make a transition from the bottom-up philosophy of determining
parameter values, and instead collectively estimate them using
in vivo data with the same scope as that of the system being
modeled. As shown in this review, rigorous mathematical frame-
works have been established for this task and there are several
available methods for solving the resulting optimization problems.
There are also established methodologies within identifiability
analysis and model reduction which will help in achieving well-
posed estimation problems.

Producing the right kind of data is critical for parameter
estimation in kinetic models. Ideally, methods from identifiability
analysis and experimental design should assist in laying down the
directions for what data to collect, rather than uncritically basing
these decisions common practice or on intuition. Performing
relevant analysis and simulations before even a single experiment
has been performed can potentially save both time and resources,
and lead to better models. Of course, it may then turn out that the
construction of a particular model is best done with the aid of data
that is currently not routinely produced. To estimate parameter in
larger scale models it is for instance expected that high-
throughput time-series data will be a crucial factor. Thus, kinetic
modeling can act as a driver for the development of new experi-
mental techniques as well as a better use of existing ones.

The time it takes to set up kinetic models must be reduced.
Since modeling projects can be very different in their scopes and

purposes it is hard to find a recipe that fits all scenarios and as a
result the modeling procedure often becomes rather slow, typi-
cally involving a lot of manual work and case-to-case considera-
tions by the modeler. One part of the solution towards a faster
modeling cycle may be for the kinetic modeling community to
continue to strive for a higher degree of standardization and
automization. This is important not only for the representation
and implementation of models, but foremost for the methods and
workflows used to set them up. In this respect, valuable insights
may come from looking at workflows for setting up GEMs
(although the methods of course are different) where a substantial
number of models have been produced in relatively short time.

If the routine generation of highly predictive kinetic models
would become a reality, this will in turn pose new challenges for
molecular biologists. As the predictions of metabolic engineering
strategies derived from such models might be quantitatively very
precise, an equally high precision in their implementation may
potentially be needed to materialize the full potential of those
predictions. This may require a precision in molecular biology
methods that is currently not achievable, for instance such as very
finely tuned expression levels or precise alteration of the catalytic
properties of an engineered enzyme. In fact, the lack of such
precision is already today preventing an exact implementation of
the detailed results from the previously mentioned computational
studies on optimal levels of metabolic enzymes.

4.3. Perspectives

It is not unrealistic to envision a future scenario where indust-
rially relevant strategies for cell factory improvements based on
classical methods gradually become exhausted or obsolete, and
where the design is successively replaced by model-driven methods
(Otero and Nielsen, 2010; Miskovic and Hatzimanikatis, 2010;
Cvijovic et al., 2011). The most mature mathematical models of
today, the GEMs, are the obvious candidates for this transition and
they have already generated valuable results (Bro et al., 2006; Lee et
al., 2006; Asadollahi et al., 2009; Becker et al., 2011; Neuner and
Heinzle, 2011; Park et al., 2011). However, as the lower-hanging
fruits of computational strategies are collected, the stoichiometric
models will eventually also run into problems of predicting new
targets. In this long-term perspective, kinetic models may well
become a strong driving force for advancing the industrial applica-
tion of cell factories. Two of the future aspects that are likely to be
important for moving kinetic modeling forward are how their size
and coverage can be increased and how they should deal with the
previously mentioned limitations and uncertainty in the information
needed to set them up.

In the future we will need to start producing large-scale kinetic
models. The organization of the different biochemical reactions
and pathways of the cell is characterized by a high degree of
interconnectivity, for example through common precursor, energy,
and redox metabolites. Because of this, changes in one part of the
network of reactions may have unexpected consequences for other
parts, rendering a global system perspective necessary. In the light
of this complexity, one of the reasons for the successful application
of stoichiometric models for predicting metabolic engineering
targets is the fact that they can be set up on the genome-scale.
Their aim for completeness means that they are re-usable for
many kinds of problems and their popularity has even encouraged
community consensus reconstructions of metabolic networks for
S. cerevisiae (Herrgård et al., 2008). In addition to an extensive
coverage of metabolism, recent work on GEMs is taking a genome-
scale perspective also on the transcriptional and translational
machinery (Thiele et al., 2009) as well as on protein secretion
pathways (Feizi et al., 2013). The GEMs clearly have the advantage
of being suitable for large scales, but they ultimately lack the
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details required for a full characterization of the cell. Existing
kinetic models, on the other hand, are usually set up on a small or
at most medium scale. They are often built under rather specific
assumptions which make them less adaptable for re-use in new
situations and their lack of standard impedes the possibilities of
merging smaller models into larger ones. Moving towards large-
scale kinetic models, especially for the most important platform
cell factories, will hopefully allow for better predictions and widen
the possible model applications. Although the routine construction
and use of genome-scale kinetic models definitely lies many years
ahead, there are however already some emerging efforts towards
the formulation of kinetic models with a more complete coverage.
Various modeling methodologies have been proposed aiming to
move large-scale modeling from stoichiometric constraint-based
approaches to the kinetic domain (Famili et al., 2005; Smallbone et
al., 2007; Jamshidi and Palsson, 2008; Ao et al., 2008; Adiamah et al.,
2010; Smallbone et al., 2010), but their usefulness for cell factory
improvements remains to be proven. Important results have been
achieved for consistent reduction of metabolic networks (Soh, 2013),
which may contribute towards genome-scale kinetic models through
facilitating intermediate large-scale steppingstones (Chakrabarti et al.,
2013). The idea of a community of modelers that together drives the
development of large-scale kinetic models is potentially also inter-
esting. Clearly, it is very difficult at this stage to predict which
particular parts of the kinetic modeling procedure will be most
crucial for eventually achieving kinetic genome-scale models. If it at
all is possible given our current capabilities, it will likely involve a
combination of the different topics covered within this review. In
parallel with these developments, the constraint-based approaches
have been modified to account for the dynamics of fluxes by
sequential solutions of different steady states. These rather popular
methods of so-called dynamic flux balance analysis (Mahadevan et
al., 2002; Lee et al., 2008; Oddone et al., 2009) are however not
addressing the kinetics of reactions, and are therefore still limited in
this sense. Though, the concepts of dynamic flux balance might
become useful in hybrid strategies where stoichiometric models and
kinetic models are combined.

The awareness of the limited and uncertain information available
for setting up kinetic models, especially large models, should lead to a
critical examination of modeling strategies. One way in which
modelers are facing up to the challenge posed by uncertainty is the
inclusion of uncertainty itself as a part of the models. As shown in this
review there is an increasing trend of publications addressing the
uncertainty of both structure (Chou and Voit, 2009; Kaltenbach et al.,
2009; Schaber et al., 2012), and of parameters, both directly (Pritchard
and Kell, 2002; Liebermeister and Klipp, 2005; Piazza et al., 2008;
Contador et al., 2009; Kotte and Heinemann, 2009; McLeod et al.,
2011) and indirectly through sampling of enzyme state spaces (Wang
et al., 2004; Wang and Hatzimanikatis, 2006a, 2006b; Miskovic and
Hatzimanikatis, 2010, 2011). The presence of nested uncertainties of
model structure and parameter values has also been emphasized
(Schaber et al., 2009; Schaber and Klipp, 2011). Taking an even more
fundamental approach to the uncertainty of molecular cell biology,
researchers should also continue to investigate the prospect of
accounting for uncertainty of parameters, reaction rates, and networks,
using kinetic models based on stochastic differential equations, some-
thing which has been successful in other fields of biological modeling
(Berglund et al., 2012). Related approaches can additionally be used to
account for the uncertainty and variation between individual cells in a
population (Almquist et al., 2008). Fueled by novel experimental
techniques such as single cell metabolomics (Heinemann and
Zenobi, 2011) and single cell level cultivation (Grünberger et al.,
2012), cellular heterogeneity is a topic of growing interest (Lidstrom
and Konopka, 2010) but its implications for cell factory design are
largely uncharted territory. Based on these trends, further develop-
ment of kinetic modeling strategies that can handle uncertainty will

likely be one essential ingredient for generating better cell factory
models in the future. As part of such efforts it should be particularly
important to elucidate the impact of uncertainty on the predictive
power of models Gutenkunst et al. (2007a,b).
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