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Abstract

Over the past decade genome-wide expression analyses have been often used to study

how expression of genes changes in response to various environmental stresses. Many of

these studies (such as effects of oxygen concentration, temperature stress, low pH stress,

osmotic stress, depletion or limitation of nutrients, addition of different chemical com-

pounds, etc.) have been conducted in the unicellular Eukaryal model, yeast Saccharomyces

cerevisiae. However, the lack of a unifying or integrated, bioinformatics platform that would

permit efficient and rapid use of all these existing data remain an important issue. To facili-

tate research by exploiting existing transcription data in the field of yeast physiology, we

have developed the yStreX database. It is an online repository of analyzed gene expression

data from curated data sets from different studies that capture genome-wide transcriptional

changes in response to diverse environmental transitions. The first aim of this online data-

base is to facilitate comparison of cross-platform and cross-laboratory gene expression

data. Additionally, we performed different expression analyses, meta-analyses and gene

set enrichment analyses; and the results are also deposited in this database. Lastly, we con-

structed a user-friendly Web interface with interactive visualization to provide intuitive ac-

cess and to display the queried data for users with no background in bioinformatics.

Database URL: http://www.ystrexdb.com

Introduction

All organisms encounter various and dynamic changes in

their environments. This also applies to single-cell organ-

isms such as yeast Saccharomyces cerevisiae. The ability to

respond appropriately to such variations is required for op-

timal growth, competitive fitness and cell survival. In case

of yeast it was found that the stress-response strategies

needed to deal with fluctuations in temperature, pH, nutri-

ents, oxygen, induction of osmotic stress and the presence

of various agents such as drugs and toxic compounds, rely

extensively on genome-wide transcriptional changes (1–3).

To study stress responses to diverse environmental changes
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and understand transcriptional regulations, DNA micro-

array technology has often been used (1, 2).

These genome-wide transcription studies have gener-

ated large and diverse data. The challenge is thus to create

a unifying bioinformatics platform and resource where all

relevant data from numerous sources are collected, making

it possible to integrate and effectively query and exploit

these data. Several databases such as ArrayExpress (4) and

GEO (5) have been developed aiming to store and ex-

change gene expression data and associated information.

However, if one would like to use the data deposited in

these databases, one will still need to download and reana-

lyze the data to answer specific biological questions related

to specific research questions. SPELL (6) and MEM (7) are

examples of the databases that put an effort to maximize

exploitation of gene expression data. Their scope lies spe-

cifically on gene coexpression searches over several data

sets. Other databases such as Gene Expression Atlas

(8) have also addressed this issue by providing features to

query readily analyzed gene expression, but they do not in-

clude additional information such as enriched biological

features of gene lists, which are useful for interpretation of

the data.

Here we introduce yStreX, an online resource for yeast

research with specific focus on stress responses. Here, we

use the term ‘stress’ broadly and we apply it to different

types of physical or chemical stresses, such as temperature

or osmotic stress, nutrient stresses, oxygen limitation or

addition of specific compounds that induce stress re-

sponses. We also included transcription data for aging;

aging is not an external agent that induces a stress re-

sponse, but rather an inherent property of the cell that

can be influenced by environmental and genetic

factors. However, an aging cell shows specific transcrip-

tional responses that are related to stress responses, so we

believe it is a valuable and appropriate addition to this

database.

yStreX addresses the growing need to efficiently collect,

utilize, distribute and query analyzed gene expression data

from different original studies. Information from the gene

expression analysis, including statistical values of genes

and enriched biological features of gene lists under specific

conditions can be easily explored through an intuitive user-

friendly Web interface. In addition, creating the specific

compendia of gene expression data allow us to conduct

meta-analyses across different platforms and laboratories

(i.e. combining gene expression data from independent but

related studies), which can enhance statistical power, reli-

ability of the results and generalization of conclusions (9).

To demonstrate different features and illustrate how the

database can be used in original research, we include two

examples.

Data preparation

Gene expression data were retrieved from ArrayExpress

(4) and GEO (5). To enhance statistical reliability, data

sets ‘with less than 2’ repeats/repetitions (biological or

technical replicates, depending on what was available from

the original published study) were discarded. The terms

‘stress’, ‘treat’ and ‘respond to’ were used to search and se-

lect putative data sets that were then manually curated.

The selected data sets came from experiments that included

one or more variations of environmental factor(s), such as

physical or chemical factors mentioned above. We have

retrieved 82 stress-related data sets from both Affymetrix

gene chip and complementary DNA (cDNA) two-color

platforms. For the Affymetrix platform, Piano R package

(10) was used to preprocess the data. The microarray ana-

lysis functions in Piano include important functions in affy

packages (11) including normalization, annotation and

quality control. For the cDNA platform, normalized data

were imported and manually evaluated with GEO2R (5).

To describe experimental conditions in a unified way

(i.e. to allow for comparison between independent experi-

mental setups, and for pooling the data in meta-analyses),

we adapted the concepts of experimental factors (EFs) and

EF values from Gene Expression Atlas (8). In our studies,

we defined an experimental class as a major EF (e.g.

C-source, aeration, inorganic compound) that is examined

for gene expression changes and termed an experimental

subclass as the specific experimental value of the class (e.g.

within the class ‘inorganic compound’, the subclass can be

‘hydrogen peroxide’). Within the subclass, we further con-

sidered in detail for controls and cases (detailed or varied

values) that are to be compared in differential expression

analyses (DEA). We include strains’ description, and

where applicable, we provide information about repeats/

repetitions, as found in the original publication (Figure 1).

Statistical analyses

Each gene expression data set was preprocessed, then

mapped into classes, subclasses and curated as described

above (see Supplementary Table S1 for the list of experi-

mental conditions). Then for each experimental condition,

we performed pairwise DEA to identify significantly differ-

entially expressed genes. We then conducted the gene set

analyses (GSA) on three levels of existing biological know-

ledge: gene ontology (GO) gene sets, transcription factor

(TF) gene sets and pathway (PTW) gene sets (Figure 1).

The GO term gene sets are based on GO annotations for

yeast genes from the SGD database (http://www.yeastge

nome.org). TF gene sets are based on TF–gene interaction

from YEASTRACT (12) and (13), and the PTW gene sets
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are based on the genome-scale metabolic model iTO977

(14). The Piano R package was used for these analyses (10).

For DEA, the Piano uses the linear model fitting proced-

ure of the limma package (15) to compute gene-level statis-

tics (e.g. fold change, t-value and P-value) for each gene in

each experimental condition. The P-values were adjusted

for multiple testing with false discovery rate (FDR) at 5%.

Then the adjusted P-values were used as the input of the

Reporter algorithm (16), which was used for GSA to com-

pile significant gene sets (gene set P-values) among GOs,

TFs and PTWs in each experimental condition. In addition,

fold changes were used to classify the directionality of gene

expression changes, which can facilitate the interpretation

of significant gene sets as described in (10).

Currently, there are 20 subclasses (Supplementary

Table S1) that contain data from two or more independent

but relevant studies. Meta-analysis was performed on each

of those subclasses using metaMA R package (17). The

metaMA uses a moderated effect size combination method,

in which effect sizes were calculated from moderated t-test

(i.e. we used limma) for each study and then were com-

bined before testing for differentially expressed (DE) genes

(FDR at 5%) of a specific subclass. Similar to DEA, the re-

sulting test statistics or gene-level statistics (meta-z-scores)

were the input for GSA, for computing significant gene sets

and for directionality classification of the gene sets. With

provided functions in the Piano, we ran multiple GSAs

using five GSA methods (mean, median, sum, maxmean

and page; see Varemo et al. (10) for details), which only

accept z-scores as input and then combined GSA results to

obtain gene set consensus scores. The Piano uses rank

aggregation approaches to assess consensus scores, and in

this study, the gene set consensus score was the median

rank of each gene set given by different GSA methods (i.e.

the lower the score, the higher rank given by most GSA

methods). Results from all analyses including DEA and

GSA for each condition, and meta-DEA and meta-GSA for

each subclass were deposited in the database, and these re-

sults can be accessed through different functions on the

Web interface.

Database and Web interface

yStreX is a document-oriented NoSQL database, which is

managed under MongoDB (http://www.mongodb.org). Data

stored in the database are results from statistical analyses,

and the data are deposited as sets of documents within differ-

ent collections. We store a considerable amount of data and

results from analyses, i.e. 121 conditions and 410 of statis-

tical comparisons for �6000 genes produces about 2 million

records that we store and manage in the database. The

NoSQL database was chosen because it has emerged as a

preferred database choice for big data applications, and it

does not require a predefined schema in contrast to relational

databases. This is beneficial for scaling out the database

(splitting data across many servers) when the amount of data

grows and cloud computing technology becomes increasingly

available (18–20). The Web interface to explore the data

was implemented on PHP (http://php.net) and JavaScript

(http://en.wikipedia.org/wiki/JavaScript). The Shiny package

(http://www.rstudio.com/shiny) was integrated to present

results from both GSAs and meta-GSAs in the form of heat-

maps and data tables, which can be downloaded from the

functions provided.

Figure 1. Analysis workflow. The diagram shows the workflow in the following steps: input, preprocessing, curation and statistical analyses. Tools

and resources are also listed in the boxes. Microarray data sets from Affymetrix gene chip (CEL file) and cDNA two-color (GPR file) platforms were

retrieved from GEO and ArrayExpress database together with probe/probeset annotation file. The data sets were preprocessed using Piano for

Affymetrix and GEO2R for cDNA platform. Each data set was curated into defined experimental classes and subclasses, and it was considered in de-

tail of experimental conditions (control values, case values, strains and type of repeats) based on its experimental details. Statistical analyses were

performed including pairwise and meta-analysis. Both types of analyses were used to identify differentially expressed genes and enriched biological

features: GO, TF and PTW.
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As shown in Figure 2, there are two main approaches to

query the data: by gene and by condition. By searching by a

gene or a set of genes (i.e. systematic name, gene symbol or

alias), one can retrieve a list of conditions where the gene(s)’

expression exhibited a significant change. For ‘Basic’ search

by gene, it allows for searching by one gene with default

properties; an absolute log2 fold change (jlog2FCj)> 1 and

an adjusted P-value (adj. P-val)< 0.05, which are set for

simple and quick queries. Alternatively, it is possible to

search by a set of genes with different properties such as

log2FC, adj. P-val, experimental class and subclass to con-

strain the query in ‘Advanced’ search. Querying by a condi-

tion will retrieve a set of differentially expressed genes, as a

result of the meta-analyses. This search can be accessed

through a browsing option or searching by a text keyword.

Results

Here we present two different examples of how to query

yStreX and illustrate different features and practicality of

the database.

Example from differential gene expression

analysis: expression of apoptosis genes

during H2O2 treatment

Apoptosis is a type of programmed cell death (PCD) that

has not only been extensively studied in mammalian cells

but also in unicellular Eukarya such as yeast. PCD pathways

can be induced by various environmental factors such as

temperature stress, oxidative stress or induction with several

types of drugs/chemicals. In this example, we queried

yStreX with a set of 51 apoptosis-related genes that were

retrieved from the yApoptosis database (21), and we

searched for genes that significantly changed expression

under oxidative stress induced by H2O2. This example pre-

sents features of the ‘Query by gene’, the retrieval of results

from DEA (see Supplementary Figure S1A) and exemplifies

what can be concluded by analyzing data from differ-

ent studies. With the cutoff of jlog2FCj>2 and adj.

P-val< 0.01, we found 14 apoptosis genes with significantly

changed expression in 15 different studies where yeast was

treated with H2O2. Of the 15 genes, 9 genes were signifi-

cantly upregulated, and 5 genes were significantly downre-

gulated (see Supplementary Table S2). These 15 studies use

a different yeast strain, or different concentrations of H2O2

for induction, or the exposure time to H2O2. Because most

of the apoptosis-related genes are regulated posttranscrip-

tionally (e.g. proteolyic activation, phosphorylation and

subcellular localization) (22), it is not surprising that less

than half of apoptosis-related genes are differentially

expressed in this apoptosis-inducing condition.

In this example, we show how we can use analyses of

the existing data to find new results and propose hypothe-

ses. For example, we found that OYE3 (coding for a

NADPH oxidoreductase) was significantly upregulated in

all 15 studies. It has previously been reported that OYE3

can promote H2O2-induced PCD in yeast (23). This could

imply that ‘specifically’ transcriptional regulation of OYE3

might be an important step in H2O2-induced cell death.

We also found that UBP10 (coding for a deubiquitylating

protease) is significantly downregulated in all H2O2-

inducing conditions. This could imply that there is another

apoptosis gene that is ‘specifically’ transcriptionally regu-

lated under oxidative stress. The yeast metacaspase has

been shown to be activated upon H2O2 treatment (24);

however, genes related to the caspase-dependent cell death

pathway (e.g. DNM1 and MCD1) were not found to be

significantly differently expressed in any study implying

that this pathway is mostly posttranscriptionally regulated.

We show the possibility to retrieve information by

browsing through the genes, in this case AIF1 (Apoptotic

Inducing Factor 1). The ‘Gene summary’ page contains brief

details about the selected gene and shows the list of condi-

tions in which the expression of this gene was found to be

significantly up- or downregulated, which is indicated by a

red or green arrow, respectively. The list of presented condi-

tions where the AIF1 gene is differentially expressed is

arranged by the deceasing fold change (LogFC)

(Supplementary Figure S1B). Yeast AIF1p is a caspase-

independent cell death mediator that translocates from

mitochondria to nucleus, leading to chromatic condensation

and DNA degradation upon apoptotic induction (e.g. with

addition of H2O2 or acetic acid or due to ageing) (25).

There are 33 conditions in which the expression of AIF1

was found to be significantly changed (jlog2FCj> 1 and adj.

P-val< 0.01) (Supplementary Table S2). AIF1 was found to

be downregulated only upon addition of rapamycin.

Lastly, we show the option to retrieve information

through the conditions. The ‘Condition summary’ page

comprises a brief description of the experimental condition

(class and subclass of the experimental setup, case and con-

trol, yeast strain and the type of repeats if applicable) and

a list of significant genes sorted by fold changes

(Supplementary Figure S1B). In this example, yeast strain

BY4742 was exposed to 0.4 mM H2O2. From comparison

between the case (0.4 mM) and the control (untreated),

there are 652 genes with significantly changed expres-

sion, within the specified cutoff jlog2FCj> 1 and adj.

P-val< 0.01). Genes (e.g. OYE3, CTT1, DDR2 and

SOD2) having a role in oxidative stress response and

cell death were strongly upregulated (log2FC> 2)

(Supplementary Table S2). Moreover, well-known general

stress response regulators such as MSN2, MSN4, XBP1
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and GIS1 were identified from GSA, meaning that genes

regulated by these TFs have significantly changed tran-

scription. Enriched TF gene sets can be searched and

downloaded as a heatmap or a tab-delimited text file

through provided links (Supplementary Figure S1B).

Example from the meta-analysis: rapamycin-

induced gene expression

Inhibition of the TOR complex 1 (TORC1) by rapamycin

resembles nutrient starvation, leading to changes in expres-

sion of genes shown to respond to starvation and stress

(26, 27). In this example, we searched for common genes

and consensus gene sets from independent studies that

measured transcription profiles of genes under rapamycin

treatment. This example illustrates how to retrieve infor-

mation from meta-analysis (Supplementary Figure S2A).

By using the ‘Query by condition’, we searched the

‘Rapamycin’ subclass, which contains data sets of 18 con-

ditions from five related studies, done on two different

platforms. Genes with significantly changed expression,

identified by the meta-DEA (with FDR of 5%), were listed

and sorted by the number of conditions that found upregu-

lated genes. ‘Condition summary’ provided at the end of

the page shows every condition combined in the meta-DEA

and the gene-level statistics from DEA of the selected gene

(Supplementary Figure S2B).

In this analysis, we found that genes related to autoph-

agy, cytosol-to-vacuole targeting (CVT) pathway and heat

shock response (e.g. ATG1, ATG3, ATG8, ATG14, APE1,

AMS1, HSP26, HSP78 and HSP42) were upregulated,

whereas genes involved in cell growth or encoding ribo-

some subunits (e.g. TEF4, RPL24, RRP9 and RPL12A)

were downregulated. Subsequently, autophagy

(GO:0006914), CVT pathway (GO:0032258) and cellular

response to oxidative stress (GO:0034599) were found in

the top rank and as the significant GO term gene sets from

meta-GSA. Upon TORC1 inhibition, stress-response TFs

are also identified. These TFs include MSN4, RIM15 and

GIS1 meaning that genes under their regulation were found

Figure 2. Query page. Two main approaches for query data are either by gene of interest or by condition of interest. Advanced search can be used to

set additional properties that can add constrains in the query by gene name. Querying by a condition can be either by selection of the experimental

classed or subclasses from the menu or by using a keyword.
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to be upregulated in all five studies. Besides this, metabolic

adaptation was observed from both GO term and PTW

gene sets, and this included tricarboxylic acid cycle, gly-

cerol metabolism, glycogen metabolism and glutamate me-

tabolism. This result was also confirmed by studies of

essential roles of TORC1 during starvation, as described

previously (28). Enriched gene sets (GO, TF or PTW) can

be explored and downloaded as a heatmap or a tab-de-

limited text file through provided links in the Meta-GSA

result (Supplementary Figure S2B).

Conclusions and Perspectives

Over the past decade, several tools have been proposed for

genome-wide gene expression analysis, as can be found in

Bioconductor packages (http://www.bioconductor.org/).

Typically, these tools carry out tasks to identify differen-

tially expressed genes in a certain condition and infer cor-

relation of differential expression information with

existing biological knowledge (usually referred to as gene

set enrichment analysis) (10).

We have developed yStreX, an online database to col-

lect and distribute results of genome-wide gene expression

analyses, including DEA and GSA. Based on the availabil-

ity of gene expression data from the main repositories

GEO and ArrayExpress, and our criteria about minimal

number of repeats, we identified two main experimental

platforms of interest: Affymetrix and the two-channel

arrays. Because more studies aiming at transcriptional re-

sponses will be using RNA sequencing technology in the

future, we envisage including gene expression data from

this platform into yStreX. The database is specifically tar-

geted for yeast data sets of experiments under several stress

conditions, but it also includes transcriptional data of

aging yeast, as its transcriptional response resembles a

stress response, and direct comparison might be relevant

for many members of the yeast research community.

A well-organized and user-friendly interface allows fast

access and facilitates inference from the readily analyzed

data, which is of practical use for experimental molecular

biologists who do not wish to reanalyze data. This aspect

is usually the limiting factor with databases that are just

collecting and storing raw data, as they require the user to

know in advance about the data and know how to carry

out data analysis. However, such databases can be used in

broader applications. To overcome this issue, we provided

a link back to the original data allowing users to rapidly

access raw data and carry out additional work (which

might not be within the scope of the yStreX).

In addition, bringing together gene expression data and

adapting the concepts of EFs make it possible to perform

meta-analysis, which consequently increases statistical

power, reliability and generalizability of the results, and

makes use of the many experiments that have been carried

out in different laboratories over the years. We demon-

strated with two examples how the database can be readily

used. The first shows the possibility to query many genes

of interest concurrently (in this case, 51 apoptosis-related

genes). Furthermore, we show that one can zoom-in on a

gene of interest (e.g. AIF1) and retrieve the data of its tran-

scriptional regulation under a stress of interest (e.g. oxida-

tive stress by H2O2 induction). The second example shows

the possibility to find common features, thanks to the

meta-analysis approach, which combines data from many

independent but related experiments.

Because of the limited number of high-throughput RNA

sequencing data particularly for stress response studies in

yeast, yStreX currently includes solely data sets from

microarray-based assays. However, by using a document-

oriented database, it is simple and flexible to scale out

yStreX for including large and varied gene expression data

in the near future.

An additional future challenge will be to uncover the

transcriptional regulation of genes as the net result of mul-

tiple stimuli, as for now all results are based on compari-

sons of control versus one case (one stimulus or one testing

condition). We are currently investigating statistical meth-

ods that would be appropriate for such situations.

Moreover, in the future version of the database, we plan to

include more features, more diverse download options and

interactive pathway visualization that will continuously

provide a useful service to the yeast research community.

Supplementary Data

Supplementary data are available at Database Online.
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