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Abstract 

 
The current thesis investigates over-the-air (OTA) performance characterization of small 

antennas and wireless terminals in rich isotropic multipath (RIMP) environment, as well as in 

pure line-of-sight (LOS) environment when taking into account the random positions and 

orientations of the mobile terminals caused by the realistic user behavior. The latest mobile 

wireless terminals such as smart phones and tablets can be used in any random orientation 

thereby making even a received LOS-component appear as a random voltage at the antenna ports 

over time. The terms "RIMP" and "Random-LOS" are coined to represent the two limiting 

environments for OTA performance characterization of mobile terminals. In practice, RIMP 

environment can be emulated using reverberation chambers while the LOS environment can be 

emulated using anechoic chambers. Mobile terminals are mostly used in indoor multipath 

environments, e.g. homes, offices and shopping malls. Therefore the main focus of this thesis is 

on measuring and simulating OTA performance of small antennas and wireless devices in RIMP 

environment. The paper [A1] is related to using RIMP as a reference environment, and contains a 

study of the comparison between 2D and 3D multipath environments for single-port and multi-

port antennas. 

Recently, the OTA testing of 4G Long Term Evolution (LTE) devices has become very 

important in order to characterize the implemented Multiple-Input Multiple-Output (MIMO) and 

Orthogonal Frequency Division Multiplexing (OFDM) technologies. Features such as adaptable 

modulation scheme, system bandwidth, coding rate, and diversity have made communication 

system more robust and adaptable to the environment. We introduced in 2011 a new theory 

based on an ideal threshold receiver in order to model the Total Isotropic Sensitivity (TIS) and 

the OTA throughput of LTE devices including their diversity gains due to MIMO and OFDM. 

This model was later tested for different LTE system bandwidths and coherence bandwidths in 

papers [B1-B3], and it has shown to give very good agreement with measurements in RIMP. 

Measuring and modeling the OTA performance of the latest wireless commercial devices have 

always been interesting. However, such commercial devices are often a black box and most of the 

technical details are kept as business secrets. Under such circumstances, we benefit from the 

Universal Software Radio Peripheral (USRP) which is an inexpensive and flexible Software 

Defined Radio (SDR). It provides a radio platform to design a reliable communication link where 

all important settings such as modulation, frequency, sampling rate, antenna gain, etc. are defined 

on software by the user. The USRPs are good alternatives to both devices-under-test (DUTs) as 

well as measurement instruments. For the first time, we demonstrate that USRPs can measure 

both active and passive OTA performance inside the reverberation chamber in papers [C1, C2]. 

The OTA performance characterization of single-port mobile terminals has been studied for 

several years now. Today, LTE mobile terminals are equipped with multiport antennas which 

must be characterized for OTA environments. The study of OTA performance characterization 

of a two-port mobile phone mockup on both sides of the head following standardized talk 

positions is presented in papers [D1, D2]. 



 

ii 
 

At Chalmers University, a unique multiport ultra-wideband (UWB) self-grounded bow-tie 

antenna has been designed and developed during the last few years. The OTA performance 

characterization of this antenna has been completed by measurements and simulations in RIMP 

environment. The results are presented in papers [E1, E2]. 

The OTA performance of compact UWB antennas designed for mobile phone applications at 

Linköping University, Sweden, and for body-centric wireless communications at École 

polytechnique fédérale de Lausanne (EPFL), Switzerland are presented in papers [F1, F2]. A 

unique study comparing drive test measurements and reverberation chamber measurements is 

presented in paper [F3]. Another interesting paper which introduces a new real-life OTA 

measurement method to improve cellular network performance is appended as paper [F4]. 

During the last decade, several multipath environment models and simulation tools have been 

developed.  Similarly, Rayleigh-lab and ViRM-lab are developed at Chalmers University to study 

convergence and validation of efficiency, correlation, and diversity gain measurements in 

reverberation chamber. Moreover, we can also compare different multipath environments as well 

as different devices in different environments. This thesis presents some results based on these 

simulation tools which show excellent agreement with the measurements. The description of 

these simulation tools with some examples is presented in papers [G1, G2]. 

Keywords: OTA, LOS, RIMP, LTE, MIMO, SDR, USRP, TIS, TRP, Throughput, Rayleigh, 

Reverberation chamber. 
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1 . Introduct ion  

raditionally, antennas were widely used for line-of-sight (LOS) communication in 

different civilian and military applications like radios, TV transmissions, satellite 

communications, microwave links, radars, etc. A number of research studies were carried 

out especially to develop methods to measure the performance of these LOS antennas. As a 

result, the anechoic chamber was developed as a tool to measure LOS antennas and wireless 

devices. As shown in Fig. 1.1, it has absorbing material on all surfaces (i.e. walls, floor, and 

ceiling) to emulate the free-space or ideal LOS environment. Many years later, handheld devices 

such as mobile phones became very popular. These devices are most often present in a non-line-

of-sight (NLOS) or multipath environment. Therefore, different methods were developed to 

measure performance of antennas used in these devices. Today, there is a variety of measurement 

tools for characterizing over-the-air (OTA) performance of wireless mobile terminals and small 

antennas in multipath environments. The reverberation chamber is our favorite tool for OTA 

measurements due to its small size, efficiency, price, and better accuracy. As shown in Fig. 1.2, it 

is a metallic cavity which emulates rich isotropic multipath (RIMP) environment [1, 2]. The 

comparison of anechoic and reverberation chambers can be studied from [3-6]. The performance 

of Multiple-input Multiple-output (MIMO) antenna systems and mobile terminals can be 

measured inside the reverberation chamber. The measurements show the same improvement in 

performance as that from theory, e.g. due to antenna diversity in a MIMO system [7]. 

 

Figure 1.1. Anechoic chamber – a large room with absorbing material on all surfaces. 
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Figure 1.2. Reverberation chamber – a small metallic cavity with moving stirrers. 

Today, it is common to measure OTA performance of both passive (e.g. antennas) and active 

devices (e.g. mobile terminals) inside a reverberation chamber. This helps us to compare antenna 

performance as well as complete system performance. For example, it has been used to measure 

radiation efficiency, correlation, diversity gain, and capacity of MIMO antennas [7-10], sensitivity 

of RFID tags [11], and OTA throughput of MIMO LTE systems [12-16]. Fig. 1.3 shows a LTE 

device inside a reverberation chamber during MIMO OTA measurements. Further details on 

LTE throughput measurements and simulations are presented in Chapter 4. 

 

Figure 1.3. Huawei E398 LTE USB modem connected to two external antennas inside 

reverberation chamber during MIMO OTA throughput measurements. 

The measurement accuracy of the reverberation chamber studied in [17-24] shows that it 

performs very well with a standard deviation within ±0.5 dB. The environment inside the 

reverberation chamber is controlled in terms of coherence bandwidth [25-27]. Furthermore, it 
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has been shown that the measurements performed inside the reverberation chamber are 

repeatable. Some recent examples of passive and active measurements inside reverberation 

chamber can be found in [7, 16].  

The LTE throughput measurements inside reverberation chamber are performed for a 

commercially available LTE device, e.g. Huawei E398 LTE USB modem. It is important to be 

able to measure the performance of LTE wireless devices and to be able to identify good and bad 

devices. However, it is difficult to get full control over the device and to get detailed information 

about it. To overcome this situation and get more control over hardware and software, we used a 

Software Defined Radio (SDR). Today, the most extensively used SDR is called Universal 

Software Radio Peripheral (USRP). It is developed by Ettus Research and its parent company 

National Instruments (NI). Fig. 1.4 shows USRPs during a conducted throughput measurement. 

 

Figure 1.4. USRPs connected via digital attenuator during conducted throughput measurements. 

Both USRPs and the attenuator are controlled via LabVIEW program on the computer. 

USRPs allow us freedom to design a communication system in LabVIEW and enable us to 

accurately test different scenarios e.g. OTA throughput with inverse power allocation, diversity 

combination schemes, etc. Therefore, it is easier to evaluate, compare, and model system 

performance since we have all information we need and control over every single bit. To the best 

of our knowledge, we are the first to evaluate the OTA performance of USRPs using 

reverberation chamber. The measurement and simulation results are presented in Chapter 6. 

The latest LTE mobile phones are equipped with multiport antennas. The measurements and 

simulations of a multiport mobile phone mockup in RIMP have shown good agreement in [28]. 

The simulations use far-field patterns to calculate the diversity gains for different standard talk 

positions on both sides of the head as defined in [29]. A practical mobile phone mockup together 

with the head and hand phantom taken from examples in CST Microwave Studio is shown in 

Fig. 1.5. 
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Figure 1.5. A practical mobile handset model together with head and hand phantom taken from 

examples in CST Microwave Studio. 

While fixed antenna systems are being measured in anechoic chamber (emulating free-space 

environment) and mobile terminals are being measured in reverberation chamber (emulating 

multipath environment), there still exist real-life situations when mobile terminals experience a 

LOS component in a multipath environment. The randomness due to user is very important but 

has often been ignored. We argue that LOS experienced by a mobile terminal will become 

completely random due to random position and orientation of the terminal with respect to the 

nearest base station [1, 30]. We use the terminology “random LOS” to express a pure LOS 

which, due to the user, becomes random in three-dimensional space i.e. 3D-random. The OTA 

performance of wireless devices with random position and orientation in the two extreme 

environments i.e. random LOS and RIMP is studied in this thesis. Our hypothesis is:  

 

 

“If the performance of device is good in both extreme environments i.e. RIMP and pure-LOS, 

then its performance will be good in real-life environments as well.” [31] 

 

 

The OTA performance of a MIMO antenna system depends mainly on its total embedded 

radiation efficiency and the correlation between the antenna ports in RIMP while spatial coverage 

and polarization diversity are the two additional key factors that determine the OTA performance 

in random LOS. This means that the MIMO antenna system with high radiation efficiency, low 

correlation, isotropic antenna pattern, and dual polarization is the ideal antenna which will 

perform best in both extreme environments i.e. RIMP and random LOS. 

Recent progress at our research group has led to the development of an ultra-wideband (UWB) 

self-grounded bow-tie antenna [32-35]. The OTA performance of this UWB MIMO antenna is 

studied in RIMP and in random LOS. Due to its wide bandwidth, high efficiency, and compact 

size it has attracted a lot of applications. Today, it is also used as a multiport base station antenna 

for reverberation chambers by Bluetest AB. The performance of this antenna is presented in 

Chapter 8. 
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Figure 1.6. Graphical models of two different versions of four-port  

UWB self-grounded bow-tie antenna. 

At Chalmers University, we have also developed numerical tools to simulate channel models and 

estimate OTA performance of small antennas and wireless terminals. Examples of such 

simulation tools are: (i) Rayleigh-lab [36] which is based on random number generator, and (ii) 

ViRM-lab [37] which is a ray-based simulation tool. These tools are open source and were initially 

developed to study convergence of radiation efficiency, diversity gain, and MIMO capacity in 

RIMP. After some years of development in the code, now we can also study random LOS and 

MIMO performance. Rayleigh-lab and ViRM-lab are further discussed in Chapter 9. 
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2. Multipat h Envir onme nt  

multipath environment is simply an environment in which the signal from one antenna 

takes multiple paths to arrive at another antenna. The signal experiences different 

phenomena such as reflection, refraction, diffraction, interference, and scattering in the 

environment due to multipath propagation. The signals in a multipath environment interfere 

constructively and destructively. The peaks in the received fading signal appear due to 

constructive interferences and deep nulls appear due to destructive interferences. Due to 

different propagation effects, the received signal amplitude, phase, and polarization become 

random. Mobile terminals, e.g. tablet computers, mobile phones, etc., undergo strong fading in 

multipath environments such as urban and indoor environments. The instantaneous fading of the 

signal is completely random for different frequency, space, time and polarization. Different 

techniques such as diversity in frequency, space, time, or polarization can be used to overcome 

deep fading nulls and improve the performance of the mobile terminals in multipath 

environments. A multipath environment is usually characterized by the distribution of the fading 

signal e.g. Rayleigh fading, Rician fading, etc.; delay spread or coherence bandwidth; coherence 

time or Doppler spread; number of scatterers; position and distribution of scatterers; polarization 

imbalance. 

 

 

 

 

 

Figure 2.1. Illustration showing incoming waves with random angle-of-arrival, polarization angle, 

amplitude and phase in 2D (left) and 3D (right) multipath environments. 
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Several groups such as 3GPP, CTIA, COST, etc. have proposed different models for propagation 

in multipath environments. Often it becomes a point of discussion if the multipath environment 

model should be 2D or 3D, as shown in Fig. 2.1. It is argued in some studies that in real-life 

multipath environments the waves are mostly in the horizontal plane forming a 2D multipath 

environment. We use ray-based multipath simulation tool called ViRM-lab, and show that 

measurements performed in a 2D multipath environment will depend on the position and 

orientation of the mobile terminal [2, 37]. Different positions and orientations in a 2D multipath 

environment will give different results. On the other hand, in a 3D multipath environment the 

results are always unique and do not depend on the position and the orientation of the terminal. 

A comparison of simulated apparent diversity gain (ADG) performance of two dipoles in 2D and 

3D multipath environments is presented in [2], also shown in Fig. 2.2. The channels on all 

antenna ports are combined using selection combining (SC) scheme to calculate ADG. 

 

Figure 2.2. Apparent diversity gains of two parallel and co-linear dipoles in 2D and 3D multipath 

environments. 

The reverberation chamber is a metallic cavity and has stirrers to stir the energy by mechanical 

movement of the plates inside the chamber as shown in Figs. 1.2 and 2.4. The device-under-test 

(DUT), e.g. laptop, lies on the platform stirrer which rotates the DUT inside the multipath 

environment. The long metal sheet between the transmit antenna and the DUT is to block LOS-

component for better accuracy in the measurement results. The reverberation chamber emulates 

rich isotropic multipath (RIMP) environment [1]. The angle-of-arrival (AoA), phase, and 

polarization angle of these incoming waves are uniformly distributed. The received complex 

voltages at the antenna ports are complex Gaussian distributed. The reverberation chamber has 

been used for measuring active and passive devices in RIMP environment for more than 10 

years. The antenna radiation efficiency, correlation, and diversity gain are examples of passive 

measurements while the total radiated power, total isotropic sensitivity, and throughput are 

examples of active measurements inside reverberation chamber. 

The measurement and simulation for OTA characterization of an antenna or a DUT in RIMP 

environment are independent of the shape of its radiation pattern, and its position and 
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orientation in the environment. The cumulative distribution function (CDF) of the received 

voltages at the antenna port with 100% antenna efficiency always follows Rayleigh distribution in 

RIMP environment for omnidirectional and directional antennas. This shows that the 

measurements in RIMP environment are independent of the shape of the far-field radiation 

patterns. A comparison of two incremental electric dipoles and two pencil beams in RIMP 

environment is shown in Fig 2.3 in terms of diversity gain performance and Shannon’s channel 

capacity. The pencil beams with -3 dB half beamwidth of 45 degrees are used. From the results in 

Figs. 2.2 and 2.3, it is clear that the diversity gain and channel capacity converge to a unique value 

in a 3D multipath environment independent of the position and orientation of the device, and 

the shape of its far-field radiation patterns.  

 

 

 

Figure 2.3. Apparent diversity gain (top) and Shannon’s channel capacity (bottom) of two dipoles 

and two pencil beams in 3D and 2D multipath environments. 
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Figure 2.4. A drawing of an interior view of reverberation chamber (one wall is partly removed) 

with plate stirrers and a rotating platform stirrer carrying the device-under-test. 
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3. 3D-Rando m P ure -LOS  

raditionally, the LOS channel is known as a fixed and deterministic channel because the 

environment between the two LOS antennas does not change e.g. microwave links, TV 

transmission, satellite communication, etc. As a consequence, the phase, amplitude, and 

polarization are fixed for the LOS antenna system. In contrast to LOS channel, the mobile 

terminals experience a NLOS channel or multipath which is neither fixed nor deterministic; it is 

varying randomly in all dimensions, i.e. space, frequency, time, and polarization. The mobile 

terminals are mostly used indoors, e.g. home, office, shopping center, etc., where there are many 

moving and scattering objects around the mobile terminal.  

Although the mobile terminals are most often present in scattering environments yet there are 

situations in which these mobile terminals are present in pure-LOS e.g. mobile terminals very 

close to the micro base station in a non-scattering environment. Now we question ourselves if 

this pure-LOS channel looks like the traditional LOS channel which is fixed and deterministic. 

Yes, it is a fixed and deterministic LOS channel provided that the position and orientation of the 

terminal is fixed. In reality, the user is random in position and orientation and therefore the 

mobile terminal. If we assume that the mobile terminal has a random position and orientation in 

a three dimensional space, then the pure-LOS channel will appear as a 3D-random pure-LOS 

channel at the antenna port of mobile terminal. We simulate the 3D-random pure-LOS model by 

using a single incoming LOS wave with fixed amplitude, uniformly distributed phase, angle-of-

arrival, and polarization angle. The randomness in the LOS-component of the channel has been 

presented for diversity gains in [1]; for capacity of mobile multiple-antenna wireless link in [38]; 

for MIMO OTA-tests in Rician fading in [39]. 

From the illustration of random orientation of Huygen’s source in pure-LOS in Fig. 3.1, it is 

easier to understand the 3D-random pure-LOS channel model due to the randomness of the 

user. The random position of the terminal makes the phase of the incoming wave appear 

random. The random orientation of the terminal makes the angle-of-arrival of the incoming wave 

and the polarization-angle appear random at the antenna port of the mobile terminal. 

The simulated results in random-LOS are presented in Fig. 3.2 that show CDFs of the received 

voltages at each port of the antenna on a mobile phone mockup and its MRC-combined diversity 

channel [40]. Originally, the diversity gain was defined for a single user in a RIMP environment, 

typically at 1% CDF level. Recently, the diversity gain is defined for a bunch of users with 3D-

random orientation and position of the mobile terminal, i.e. in random-LOS [1], typically for 1% 

users with worst performance. For measuring the diversity gain in random-LOS, we introduce a 

new unit dBR i.e. difference of power-levels in dB relative to ideal Rayleigh. From the results in 

[40], it can be observed that antennas with regular shape far-field patterns, e.g. dipole antennas, in 
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random-LOS do not follow ideal Rayleigh distribution. Far-field patterns are irregular in shape in 

real-life scenario due to the effect of chassis, user head, hand, and body, and therefore will more 

likely follow the Rayleigh distribution.  

 

Figure 3.1. Illustration of random orientation of the Huygen’s source in the presence of LOS. 

From illustration in Fig. 3.3, it is shown that the orientation of the phone is not fixed. When a 

user holds a phone on the right side of the head, the marked arrow is in a horizontal direction. 

The direction of this arrow becomes vertical when the user holds the phone on the left side of 

the head. The LOS-component is fixed but appears random due to the random orientation of the 

terminal. 

 

Figure 3.2. CDFs of two-port antenna on a phone mockup in RIMP and random-LOS with 

linearly polarized (LP) incoming waves. 
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The diversity gain in 3D-random pure-LOS is defined in terms of dBR i.e. diversity gain with 

reference to ideal Rayleigh CDF, typically defined at 1% CDF-level. This is shown in Fig. 3.2. 

 

Figure 3.3. A user holding a phone with a marked arrow on right side (left) and left side (right) of 

the head shows that the direction of arrow changes from horizontal to vertical respectively. 

The study of random pure-LOS can be extended in future e.g. by studying diversity gain and 

throughput for LTE MIMO terminals.  
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4. Model for T hrou ghp ut of Wi reless Devices 

oday LTE is one of the latest telecommunication standards for mobile phones after its 

predecessors GSM and WCDMA. The main advantage of using LTE is higher 

throughput by contributions from MIMO and OFDM diversity gains. The flexibility to 

choose modulation scheme, bandwidth, block size, code rate, MIMO-multiplexing or MIMO-

diversity has made the system quite robust to adjust to the environment in different Signal-to-

Noise Ratio (SNR) regimes. On the other hand, this makes the system design more complicated. 

In this chapter, a simple theoretical model based on a threshold receiver model for simulating the 

OTA throughput performance of LTE devices is presented. The model has been tested on a 

commercially available LTE device and the simulated results are in good agreement with the 

measurements performed in a reverberation chamber [15]. 

The proposed model is very simple and includes the effect of spatial-diversity (MIMO) and 

frequency diversity (OFDM). The model is shown in (4.1) below: 

         (     ⁄ ) (4.1) 

     (     ⁄ )       (     ⁄ ) (4.2) 

    (     ⁄ )  ∫    (    ⁄ )

  

 

   (4.3) 

Here,   is throughput,   is maximum achievable data-rate,    is threshold power,     is average 

signal power received by the terminal,   is received signal power,     is probability density 

function,     is cumulative distribution function, and      stands for complementary    . 

In our study, the threshold power    is always a measured quantity and it is fixed for a given 

combination of system configuration and receiver terminal. It is measured in an Additive White 

Gaussian Noise (AWGN) channel (i.e. no fading) by connecting a cable directly between the 

external antenna-port of the LTE terminal and the LTE base-station. The measurement setup is 

illustrated in Fig. 4.1. 

To use (4.1) for estimating the OTA-throughput of an LTE device, we need to calculate the 

     of the MRC-combined diversity channel, which includes spatial diversity due to MIMO 

and frequency diversity due to OFDM. The total number of channels to compute the      of 

the diversity channel is known simply by multiplying number of frequency diversity channels 
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   , number of transmit antennas   , and number of receive antennas    as shown in (4.4). The 

number of frequency diversity channels     is calculated simply by taking the ratio of system 

bandwidth and coherence bandwidth as shown in (4.5). 

 

                  (4.4) 

         ⁄  (4.5) 

 

The larger the coherence bandwidth   , the smaller will the frequency diversity     be for a 

given system bandwidth    and vice versa. Similarly, the larger the system bandwidth   , the 

larger will the frequency diversity     be. But larger system bandwidths    require higher SNR to 

support higher data-rates. 

The measurement setups for both conducted measurements and OTA measurements are shown 

in Fig. 4.1 below: 

 

Figure 4.1. Conducted measurement setup (left) and OTA measurement setup (right) 

The model has been tested for both different coherence bandwidths and different system 

bandwidths in [16], also shown in Fig. 4.2. The coherence bandwidth of the channel inside 

reverberation chamber is controlled by lossy objects inside the reverberation chamber. The 

relationship between coherence bandwidth    and delay spread   inside reverberation chamber is 

shown below [26]: 

     √   ⁄  (4.6) 

In Fig. 4.2 we can see that the OTA throughput is increasing with the increasing average power. 

Also, the slope of the throughput curves (representing the frequency diversity) is different for 

different coherence bandwidths    for a given system bandwidth   . The results show LTE 
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throughput of 2×2 MIMO using transmit-diversity for fixed 64-QAM modulation scheme. In 

reality, the modulation scheme is adaptable and not fixed. Higher modulation schemes such as 

64-QAM and 128-QAM are supported at higher power levels, and lower modulation schemes 

such as 16-QAM and 4-QAM are supported at lower power levels. At the time of writing this 

thesis, there is no commercial LTE base station simulator available which can provide adaptive 

modulation schemes. 

 

 

Figure 4.2. OTA-simulations (top) and -measurements (bottom) of 2×2 MIMO LTE throughput 

for system bandwidths of 20, 15, 10, and 5 MHz; coherence bandwidths of 10, 5, and 2.5 MHz. 
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The proposed model for estimating throughput in (4.1) shows the relationship between CDF and 

throughput. This relationship can be seen in Fig. 4.3, i.e. diversity gain at 1% CDF-level is the 

same as the diversity gain at 99% throughput-level. 

 

 

Figure 4.3. Theoretical (dashed) and measured (solid) lines for relative throughput (upper) and 

corresponding CDFs (lower) for LTE device with two-port MIMO antenna. Pt= -83.7 dBm. 

Similarly, we can model LTE throughput of 2×2 MIMO system when each transmit antenna is 

transmitting a different data-stream i.e. multiplexing as shown in [13]. An illustration of a digital 

receiver block diagram in 2×2 MIMO-multiplexing configuration is shown in Fig. 4.4. When 

MIMO is used in spatial multiplexing configuration, parallel data streams can be transmitted over 

the wireless fading channel. Interference between the data streams can be removed using suitable 

pre-processing and post-processing techniques. 
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Figure 4.4. Digital receiver block diagram of a 2×2 MIMO system operating in spatial 

multiplexing configuration. 

The throughput in the MIMO-multiplexing case is doubled because   the maximum achievable 

data-rate is now doubled compared to the MIMO transmit-diversity case. Since we use two 

receiver chains, the average of the threshold powers of the receivers      will be used as shown 

below: 

      
       

 
 
  
 
(
 

  
 
 

  
)  

  
 
(
     
    

) (4.7) 

We have assumed here that both receivers in the MIMO device are the same and their threshold 

powers     and     can only vary due to their antenna efficiencies    and   . In reality there can 

be devices which have receivers with dissimilar performances due to differences in the system 

design and implementation. We leave these complexities for further studies and use our simple 

formula for estimating throughput of wireless devices which includes the gains due to spatial 

diversity as well as frequency diversity. 
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5. New Method for Measu ring Receive r Sensitivi ty  

he total isotropic sensitivity (TIS) is one of the most significant OTA measure for the 

evaluation of the receiver quality of wireless devices often mentioned in the 

specifications of wireless electronic devices such as mobile phones, WiFi routers, and 4G 

modems. The TIS is a measure of the average sensitivity of a complete communication system 

including receiver sensitivity, antenna efficiency, and noise, when the averaging is performed over 

the complete 3-dimensional sphere. The sensitivity of the receiver is the minimum required signal 

strength at which the receiver will work in an ideal LOS channel or AWGN. Traditionally, the 

TIS of a DUT has been measured in anechoic chambers but today it is also measured in 

reverberation chambers. The introduction of 4G LTE standards brings improvement in the TIS 

of a system by spatial diversity and multiplexing gains due to MIMO and frequency diversity gain 

due to OFDM. The TIS measurements are extremely time consuming, and do not show the 

effect of frequency diversity. On the other hand, the throughput measurements clearly show the 

effect of diversity due to MIMO and OFDM. The measurement setup for both TIS and 

throughput is the same, see Fig. 5.1; however, the measurement procedure is different. The TIS 

and throughput measurement procedures are explained in detail in the attached paper [B3]. 

 

Figure 5.1. A measurement setup for total isotropic sensitivity and throughput measurements. An 

LTE base station is connected to a reverberation chamber using cables. The DUT is inside the 

reverberation chamber and connected to external antennas. 

For a given antenna configuration and given settings such as frequency, modulation and coding 

schemes, and bandwidth the receiver sensitivity of a DUT is fixed. Furthermore, the receiver 
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sensitivity is dependent on the performance of the receiver hardware components as well as the 

signal processing algorithms built into the DUT. We have shown that for an ideal SISO system 

with 100% antenna radiation efficiency erad and no noise coupling, the TIS is equal to the receiver 

threshold power    . Mathematically, this can be expressed as: 

       
   
    

 (5.1) 

The derivation of (5.1) is given in paper [B3]. We will show using Figs. 5.2 and 5.3 that our 

method can estimate TIS for all antenna system configurations i.e. both SISO and MIMO, and 

also for cases where there is frequency diversity due to OFDM.  

Figure 5.2 shows results from a simulation of a SISO system without frequency diversity (left 

figure) and with frequency diversity (right figure). The blue lines represent the thresholds of an 

ideal threshold receiver due to varying quality of the channel in different static stirrer positions 

inside the reverberation chamber. For given software and hardware configurations, both the 

threshold and the sensitivity of the threshold receiver are fixed, so why do we see different 

thresholds if it is supposed to be fixed? The reason is that the instantaneous path loss is random 

for each stirrer position and, when doing this investigation, we use the average path loss inside 

the reverberation chamber. Therefore, it seems that the instantaneous receiver threshold     

(represented by blue lines in Fig. 5.2) is random by changing the stirrer position.  

 

Figure 5.2. The TIS and throughput of a SISO system without frequency diversity (left), and with 

frequency diversity (right). 

We can also reason that the spatial distribution of incoming waves towards the DUT is different 

in different stirrer positions and therefore the instantaneous     depends very much on the shape 

of the radiation pattern. If we use an extreme example of pencil beam antenna in a stirrer 

position in which none of the incoming waves are in the direction of main beam then the base 

station will have to increase the average power level     of the cell to get 100% throughput on an 

ideal threshold receiver. This example represents a very bad channel condition and as a result the 

threshold of the receiver will be very high e.g. a blue line at -60 dBm in Fig. 5.2. In other words, 

the base station has to transmit higher average power in bad channel conditions and vice versa.  
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The red line in Fig. 5.2 is the threshold of the receiver     at -80 dBm which is known from 

conducted throughput measurement of the device. The green line represents the TIS which is 

also at -80 dBm and calculated by following the formal TIS measurement procedure defined by 

wireless industry standards. The value of      is calculated by using     values of all blue lines in 

Fig. 5.2 when the throughput is 100% and then averaging them using the formula given below 

[41]: 

      (
 

 
∑

 

     

 

   

)

  

 

 

(5.2) 

Here   is the stirrer position number and   is the total number of stirrer positions. Equation 

(5.2) is valid under the assumption that the average path loss in the reverberation chamber and 

the cable losses are calibrated out. The TIS and throughput measurements in the reverberation 

chamber are independent of the position and the orientation of the DUT. The black curve 

represents the OTA throughput, which has a smaller slope when there is no OFDM (Fig. 5.2 - 

left), and a larger slope when there is OFDM (Fig. 5.2 - right).  

From Fig. 5.2 it can be concluded that: (a) for an ideal threshold receiver, the TIS of a 1×1 SISO 

system is the same as    , (b) the TIS does not depend on the frequency diversity of the system, 

and (c) the higher the frequency diversity, the closer the OTA throughput is to the threshold of 

the receiver. Ideally for 1×1 SISO system with a threshold receiver and without frequency 

diversity, the TIS is equal to the average power level at 36% OTA throughput. OTA throughput 

and TIS measurements are related to each other because they are both measured using the same 

measurement setup inside the reverberation chamber, and therefore experience the same 

multipath environment. Moreover, it makes sense to use the OTA throughput to represent the 

receiver sensitivity because the throughput is much faster and easier to measure. 

In Figs. 5.3 and 5.4, we illustrate the effect of increasing frequency diversity order     on the 

OTA throughput curves for both 1×1 SISO and 2×2 MIMO antenna configurations 

respectively. We observe that the slope of the OTA throughput curve becomes larger and the 

throughput curve converges to an ideal threshold-like curve when there is the effect of OFDM. 

To estimate the TIS from the OTA throughput of SISO and MIMO systems with any frequency 

diversity order    , the corresponding theoretical throughput-level is needed. Table 5.1 gives 

theoretical throughput levels for a number of SISO and MIMO configurations. 
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Figure 5.3. OTA throughput curves for 1×1 SISO for increasing orders of frequency diversity. 

 

Figure 5.4. OTA throughput curves for 2×2 MIMO for increasing orders of frequency diversity. 

The 2×2 MIMO OTA throughput curves converge at -83 dBm, which is 3 dB better than the 

threshold. Therefore, a -3 dB shifted threshold curve representing TIS is added in Fig. 5.4. Then 

we find the OTA throughput levels at which TIS can be estimated for 2×2 MIMO systems in 

different frequency diversity orders. Therefore, we can conclude from Fig. 5.3 that the TIS of an 

ideal threshold receiver is equal to the threshold for SISO systems only. From here we see that 

there is a need to generalize (5.1) to describe any M×M MIMO system. Mathematically, it can be 

expressed as follows: 

 

 

     
    ⁄

    
 

(5.3) 

Equation (5.3) shows that as   increases (i.e. the size of the MIMO system increases), the better 

will be the TIS of the MIMO system compared to the threshold    . This is exactly what we see 

in Fig. 5.3. Note that for an ideal DUT we assume antenna radiation efficiency      equal to 

100% and no mutual coupling between the antenna ports. 
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TABLE 5.1.  OTA THROUGHPUT (TPUT) LEVEL TO ESTIMATE TIS  

            
OTA TPUT-level to estimate TIS 

X [%] 

1 1×1 36% 

2 1×1 40% 

3 1×1 43% 

4 1×1 43% 

7 1×1 45.5% 

∞ 1×1 0-100% 

1 2×2 43.5% 

2 2×2 45.2% 

3 2×2 46.5% 

4 2×2 47.2% 

7 2×2 48% 

∞ 2×2 0-100% 

The values in Table 5.1 are obtained using the ideal theoretical throughput curves shown in Figs. 

5.3 and 5.4. Comparing SISO and MIMO systems in Figs. 5.3 and 5.4, we also observe that both 

the OTA throughput curves and the TIS for 2×2 MIMO systems (with transmit and receive 

diversity) is 3 dB better than for 1×1 SISO systems. The threshold will be fixed in both cases e.g. 

-80 dBm. 
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6. Software Define d Radios fo r MIMO OTA Testing  

uring the last decade, software defined radios (SDR) have been developed to serve the  

wireless industry and academia as a platform for experimentation in various research 

projects. It is a powerful and inexpensive radio platform where the radio link 

parameters are defined on software. The SDRs are often used as test beds and enable us to test 

and compare e.g. different signal processing algorithms, antenna configurations, modulation 

schemes, etc. In other words, we can characterize different hardware and software components 

of a radio link. The most popular SDR at the time of writing this thesis is called Universal 

Software Radio Peripheral (USRP) which is designed and developed by Ettus Reaserch and its 

parent company National Instruments (NI), see Fig. 6.1. A USRP is a simple general purpose 

radio platform and can be used for any application. We found it quite useful as an inexpensive 

instrument for OTA testing of single port and multiport antennas, and MIMO communication 

systems inside reverberation chamber. 

 

Figure 6.1. A Universal Software Radio Peripheral (USRP) from National Instruments. 

As seen in Fig. 6.1, the USRP-2920 has two RF ports, clock input port, MIMO expansion slot, 

Gigabit Ethernet port, and power input. The circuit board of USRP is shown in Fig. 6.2 which 

consists of a mother board and a daughter board. The mother board provides basic 

functionalities such as power regulation, analog-to-digital conversion (ADC), digital-to-analog 

conversion (DAC), processor, and clock generation. The daughter board provides functionalities 

such as Digital Up Conversion (DUC), Digital Down Conversion (DDC), and signal 

conditioning. The USRP-2920 has a tunable RF transceiver and covers all important bands such 

as FM radio, GSM, GPS, radar, and ISM bands. Table 6.1 shows the technical specifications of 

USRP-2920 [42]. 

Building a simple communication system using the USRP is quite easy and requires only the basic 

understanding of its hardware and software, and we will briefly discuss these here. The USRP 

hardware is connected to a computer via Gigabit Ethernet cable from where it is controlled by 

the software. It has both the transmitter and the receiver chain on the same circuit board. The 

USRP hardware serves as an interface which accepts base-band input signals from the computer 

and outputs RF signal when used as a transmitter, and vice versa when used as a receiver. These 
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signals are transmitted and received using user-defined carrier frequency, sampling frequency, 

modulation and coding schemes, antenna configuration, amplifier gain, data, packet structure, 

and packet length. A complete transmitter and receiver chain of USRP-2920 together with its 

circuit board is shown in Fig. 6.2. 

   

Figure 6.2. A circuit board (left) and a functional block diagram (right) of USRP-2920. 

TABLE 6.1.  TECHNICAL SPECIFICATIONS OF NI’S USRP 

Characteristics USRP-2920 

Frequency of operation 50 MHz – 2.2 GHz 

Typical maximum input power 0 dBm 

Typical maximum output power 17-20 dBm (for 0.05 – 1.2 GHz), 
15-18 dBm (for 1.2 – 2.2 GHz) 

Digital-to-analog converter 2 channels, 400 MS/s, 16 bit 

Analog-to-digital converter 2 channels, 100 MS/s, 14 bit 

The USRP can be controlled by a variety of different software such as Matlab, GNU Radio, and 

LabVIEW. We chose NI’s LabVIEW (short for Laboratory Virtual Instrument Engineering 

Workbench) because of better support from NI for USRP drivers. LabVIEW is a graphical 

programming language where different blocks are connected together by drawing wires between 

them. In Fig. 6.3, it is shown that a USRP is connected to a computer via Gigabit Ethernet 

interface, and a snapshot of LabVIEW based example code which implements USRP based 

transmitter. All the results in this chapter are based on USRP packet transmitter and packet 

receiver example code (available online at NI’s webpage) with some minor modifications to serve 

the needs for our application. 
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Figure 6.3. A USRP connected to a computer and controlled by LabVIEW (left), and a 

LabVIEW based GUI to control USRP transmitter (right). 

The USRP packet transmitter converts the user defined data (e.g. text, image, audio, etc.) into 

binary format and packs the bits into packets. The packet structure is user defined which typically 

consists of guard bits, sync bits, packet number, data bits, and cyclic prefix. We use packet 

transmitter and packet receiver implemented in LabVIEW to establish a quick and reliable 

communication link between the transmitter and the receiver. The USRPs are connected to 

antennas inside reverberation chamber for OTA measurements as illustrated in Fig. 6.4 (left), and 

connected directly via cables for conducted measurements as illustrated in Fig. 6.4 (right). Packet 

Error Rate (PER) is measured at the receiver to determine the downlink performance of the 

communication system.  

 

Figure 6.4. Illustration of MIMO OTA measurement setup inside reverberation chamber (left) 

and conducted measurement setup using cables (right). 

In Fig. 6.4, the USRPs are connected to a digital attenuator to attenuate the USRP transmitter 

power. This is done in order to measure and compare the system performance at low power 

levels when PER is high. We will show some examples of active measurements (e.g. throughput, 

total radiated power, and total isotropic sensitivity) and passive measurements (e.g. efficiency, 

correlation, and diversity gain) using USRPs in combination with reverberation chamber. 
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We measured conducted throughput, shown in Fig. 6.5, to compare receiver threshold and 

downlink throughput of USRP at different carrier frequencies    (left) and at different sampling 

frequencies    (right). The results are shown in Fig. 6.5 where we observe a different throughput 

for different settings.  

                

Figure 6.5. Conducted throughput of USRP for carrier frequency of 900 and 1800 MHz (left), 

and sampling frequency of 400, 800, and 1200 kHz (right). 

We measure OTA throughput in reverberation chamber to compare different diversity 

combining schemes i.e. Selection Combining (SC) and Maximal Ratio Combining (MRC) and to 

compare SISO and MIMO antenna configurations. We observe in Fig. 6.6 (left) that MRC and 

SC combining schemes follow the ideal theoretical curves. Similarly, we observe in Fig. 6.6 (right) 

that MIMO and SISO throughput curves also have a good agreement with theory. The 

conducted and OTA throughput simulation results are based on the throughput model 

introduced in Chapter 4. The measured results show good agreement with simulated results. 

                 

Figure 6.6. Comparison of OTA throughput of USRPs for MRC and SC diversity combining 

schemes (left) and for 1×1 SISO and 2×2 MIMO antenna configurations (right). 

The Total Radiated Power (TRP) is a quality measure of a transmitter while Total Isotropic 

Sensitivity (TIS) is a quality measure of a receiver. In Fig. 6.7, we show measured TRP and TIS of 

a USRP for a frequency range of 600-2200 MHz, and the results show very good agreement with 

estimated results. We measured the TRP using the USRP as well as the Power Spectrum Analyzer 

2×2 MIMO 

Transmit & Receive Diversity 
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(PSA) and the results from both instruments agree very well. We measured the TIS of a 1×1 

SISO system in flat fading, using two different methods (i) formal TIS measurement method [41], 

and (ii) newly suggested method [43] which uses OTA throughput. Again, the results show good 

agreement. 

              

Figure 6.7. Total Radiated Power of USRP (left) and Total Isotropic Sensitivity of USRP (right). 

Passive measurements using USRP inside reverberation chamber were also successful. 

Traditionally, for passive measurements we use Vector Network Analyzer (VNA) which is an 

expensive instrument. Nevertheless, VNA is able to measure reflected wave while USRP is not. 

Therefore, we can measure only high efficiency antennas using USRP, assuming that       . In 

Fig. 6.8, we show antenna efficiency and correlation between two antennas can be measured by 

using USRPs in combination with the reverberation chamber. The results measured using VNA 

have fair agreement to the USRP measured results. The accuracy of the USRP measured results 

can be improved by further investigation. 

              

Figure 6.8. Single-port antenna efficiency (left) and correlation between two antenna ports (right) 

measured using VNA and USRP. 

In short, the USRP is an inexpensive and flexible software radio platform. The shortcoming of 

the USRP-2920 are: (i) it is very time consuming to measure OTA performance using USRP 

compared to traditional measurement instruments available today, (ii) it is not a calibrated device, 

so it is necessary to calibrate it before using it to measure other wireless devices, (iii) the 
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frequency range is limited, and (iv) there is a power leakage between transmitter and receiver 

ports of a USRP and therefore it cannot be used in transceiver mode without any correcting 

measures. The new models of USRPs have improved performance which enables us to build 

larger and more complicated communication systems. These can also be tested in reverberation 

chamber in future. 
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7. Characteriza tion of Mult ipor t Mobile Te rmi nals  

he performance characterization of single port mobile terminals has been studied a lot 

during the last decades. With the advancement in technology, LTE has become the latest 

standard for today’s cellular communication systems. Unlike previous standards, LTE 

requires the use of multiple antennas inside the handset. The multiple antennas provide more 

possibilities to increase data throughput on a mobile phone but on the other hand it is 

challenging to accommodate more antennas in a limited space. A CST model of a practical two-

port mobile phone mockup is shown in Fig. 7.1.  

 

Figure 7.1. A model of two-port mobile phone in CST Microwave Studio. 

The performance characterization of this practical mobile phone model is done using simulations 

in RIMP and random-LOS, and measurements in the reverberation chamber together with SAM 

head and hand phantom. This is done when the terminal is placed on both sides, i.e. right hand 

side (RHS) of the head and left hand side (LHS) of the head. The material properties of the head 

phantom are shown in Table 7.1. 

TABLE 7.1.  MATERIAL PROPERTIES OF HEAD PHANTOM  

Material 
Material Properties 

         

Head 
Phantom 

(Shell) 

3.7 0.028 1 

Head 
Phantom 
(Liquid) 

41.33 16.91 1 
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The simulated S-parameters from CST are presented in Fig. 7.2. The two frequency bands of 

operation are 0.7-1.0 GHz & 1.7-3.2 GHz. The phone mockup is located on both sides, i.e., RHS 

and LHS, of the head according to the standardized talk positions, i.e., cheek position and tilt 

position.  

           

Figure 7.2. Simulated S-parameters of two-port mobile terminal in CST located on right (left) and 

left sides of the head (right) in the standard cheek position. 

The simulated and measured diversity gains on both sides of the head in each talk position are 

shown in Fig. 7.3. From results it is observed that the measured and simulated diversity gains 

have good agreement in general with the exception of a few lower frequency points in the tilt 

position. 

           

Figure 7.3. Measurements and simulations of diversity gains when two-port mobile terminal is on 

the right and left side of the head for cheek position (left) and tilt position (right). 

The study of correlation between far-field patterns, in paper [D2], on both sides of the head is 

done using the same two-port mobile phone mockup (see Fig. 7.1) which is simulated in CST 

Microwave Studio. The purpose of the study is to characterize the performance in LOS 

environment when using the mobile phone on right side and left side of the head. The study 

shows that the correlation between the far-field patterns on both sides of the head depends on 

the chosen coordinate system. The correlation is approximately 1 (i.e. high correlation) when the 
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far-field patterns are presented in the co-ordinate system fixed to the mobile phone. The same 

patterns show the correlation of approximately 0 (i.e. no correlation) when they are presented in 

the co-ordinate system fixed to the environment. From Fig. 7.4, we can see that UVW co-

ordinate system which is fixed to the head (or environment) is the same on both sides of the 

head. The XYZ co-ordinate system which is fixed to the mobile phone has a difference of 90-

degrees i.e. vertical direction on one side of the head becomes horizontal on the other side and 

vice versa. In multipath environments such as RIMP, the position, orientation, and shape of the 

radiation pattern does not affect the performance. In other environments such as random-LOS, 

the shape of the radiation pattern does have a strong impact on the performance.  

 

Figure 7.4. A model of two-port mobile phone mockup with SAM head phantom in  

CST Microwave Studio showing XYZ and UVW coordinate systems. 

The correlation between far-field patterns on both sides of the head is presented together with 

the effect of SAM head and hand phantom, and only with the head phantom in Figs. 7.5 and 7.6. 

 

 

Figure 7.5. Magnitude of complex correlation between far-field functions on the right and left 

sides of the head when the coordinate system is aligned to the environment i.e. UVW coordinate 

system. 
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Figure 7.6. Magnitude of complex correlation between far-field functions on the right and left 

sides of the head when the coordinate system is aligned to the terminal i.e. XYZ coordinate 

system. 

The correlation between the far-field patterns for port 1, with head and hand phantom in Fig. 

7.6, shows deviation which is clearly due to the position of fingers affecting the pattern 

differently. The results for port 2 are not affected because they are covered by the hand palm on 

both sides in approximately the same way. 
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8. Characteriza tion of UWB Bow-Tie Ante nna  

ecently, an ultra-wideband (UWB) bow-tie antenna has been developed at Chalmers 

University of Technology, Sweden. It is a four-port antenna which is an extension of 

self-grounded bow-tie antenna shown in [32]. It is named bow-tie antenna after its shape 

which has a resemblance to a bow-tie. The details of design and developments of this antenna 

and using genetic algorithms for optimization are shown in [33, 34]. A compact size UWB 

multiport antenna with very low mutual coupling between the antenna ports brings with itself a 

lot of possible applications and interests in research and development for wireless MIMO 

communication systems. For example, the antenna can be used in WiFi, LTE base station, etc. 

The CST model of the UWB four-port bow-tie antenna is shown in Fig. 8.1. 

 

Figure 8.1. CST model of four-port self-grounded bow-tie antenna. 

The performance of bow-tie antenna in terms of S-parameters is shown in Fig. 8.2. These S-

parameters are obtained from electromagnetic simulations of this prototype antenna in CST 

Microwave Studio. The operating frequency range for this UWB antenna is 0.5-16 GHz. It has 

high embedded radiation efficiency and low correlation between the antenna ports. The 

embedded radiation efficiency is defined in [7]. The formulas in terms of S-parameters for 

embedded radiation efficiency        and total embedded radiation efficiency             of 

embedded element number   when there are total   elements and no ohmic losses, are shown 

below in (8.1) and (8.2) respectively:  

 
        

  ∑ |   |
  

   

  |   | 
            |   |

  
(8.1) 

CHAPTER 

8 

R 

Characterization of UWB Four-Port 

Bow-Tie Antenna 
 



P a g e  | 38 

 
 

                              ∑ |   |
  

   
 (8.2) 

where         denotes mismatch efficiency. Since all antenna petals are symmetrical or anti-

symmetrical with respect to each other, they have similar radiation efficiency as shown in Fig. 8.3.  

 

Figure 8.2. Simulated S-parameters of 4-port self-grounded bow-tie antenna from CST. 

          

Figure 8.3. Embedded radiation efficiencies of ports 1 &4 (left) and ports 2 & 3 (right) calculated 

by CST (red color) and calculated by S-parameters from CST (blue color). 

The correlation between the ports in a RIMP environment is very low, i.e. smaller than 0.1, as 

shown by simulated results in Fig. 8.4. The results are verified by measurements in a 

reverberation chamber, see paper [E1]. This is due to the fact that mutual coupling between the 

ports is lower than -10 dB as shown in Fig. 8.2. The correlation between the antenna ports can be 

calculated by using far-field functions [7] or S-parameters[44]. The formula for calculating 

correlation   in terms of S-parameters for an antenna with no ohmic losses is shown in (8.3). 
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Figure 8.4. Magnitude of complex correlations between port 1 and port 2, 3, and 4 using S-

parameters. 

The CDFs of each antenna port and MRC-combined diversity channels in a RIMP environment 

for the whole frequency of operation are plotted in Fig. 8.5. The diversity gains are calculated at 

1% CDF-level from Fig. 8.5 and plotted in Fig. 8.6 which shows that there is a clear 

improvement in the diversity gains for the whole frequency range of the antenna when we 

increase the spatial diversity from 2-port to 3-port and 4-port diversity antenna. The 

improvement is seen over the whole wide bandwidth, which makes this antenna very useful for 

many practical applications.  

 

Figure 8.5. CDFs of each antenna port and 2, 3, and 4-port MRC-combined diversity channel  

Diversity Gain 
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Figure 8.6. Apparent diversity gains at 1% CDF-level for 2, 3, and 4-port diversity antenna in 

RIMP environment. 

The antenna diversity gain is quite close to the ideal MRC-combined 2-port, 3-port, and 4-port 

diversity antennas i.e. 11.7 dB, 16.4 dB, and 19.1 dB respectively. This is due to the very high 

embedded radiation efficiencies (see Fig. 8.3), and very low cross-correlations between the 

antenna-ports (see Fig. 8.4). The low apparent diversity gain at 0.5 GHz is partly due to lower 

total embedded radiation efficiencies and higher correlation, and partly due to not very accurate 

simulated far-field patterns at this frequency. This can be further investigated and improved. A 

comparison of the simulated and the measured apparent diversity gain can be seen in paper [E1]. 
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9. Simula tion Too ls 

imulation tools are quite essential to test new ideas e.g. random-LOS channel model, and 

to validate established ideas e.g. RIMP channel model. They provide cost effective method 

to convey useful information in a pedagogical way. At Chalmers University, we have 

developed two multipath simulators i.e. Rayleigh Lab and Visual Random Multipath Lab (ViRM 

Lab). Both simulators are developed in MATLAB and are open source. The graphical user 

interface (GUI) of Rayleigh Lab is shown in Fig. 9.1. 

The Rayleigh Lab is based on random number generator in MATLAB. The purpose of this tool 

is to simulate the response (i.e. complex voltage samples) on the antenna ports in RIMP 

environment i.e. Rayleigh fading channels. It is already known that the channel in RIMP 

environment is independent of the shape of the far-field radiation pattern and the orientation and 

position of the antenna. Therefore, it is easier to simulate complex Gaussian distributed channels 

using random number generator instead of using far-field patterns and simulating RIMP 

environment.  

 

Figure 9.1.The GUI of Rayleigh Lab – a pedagogical multipath simulator. 

The Rayleigh Lab simulates an array of complex voltage samples at each antenna port in a 

Rayleigh fading environment. The distribution of these voltage samples is complex Gaussian. The 

different channels on each antenna port are combined using either SC or MRC combining 
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scheme. It is a simple pedagogical tool for studying convergence using random numbers. We can 

study convergence of radiation efficiency, correlation, diversity gain, and capacity of a MIMO 

system. The simulation tool provides a user-friendly GUI, as shown in Fig. 9.1. The GUI allows 

user to input values for different parameters e.g. embedded element efficiencies and correlation 

to calculate diversity gain and capacity. Two different cases can be compared side-by-side based 

on the user-inputs. The study of standard deviation in the measurements of efficiency, diversity 

gain, and capacity can also be performed using Rayleigh-lab.  

The ViRM Lab is a ray-based simulation tool which is also developed in MATLAB. This tool 

uses antenna far-field patterns and simulates RIMP environment using isotropically distributed 

incoming waves towards these far-field patterns with random angle-of-arrival. Different studies 

including the comparison of 2D and 3D multipath environments, and performance 

characterization in random-LOS are accomplished using this tool. The far-field patterns from 

different electromagnetic simulation software such as CST Microwave Studio and High 

Frequency Structural Simulator (HFSS), and measured patterns from anechoic chamber can be 

imported into ViRM Lab. The procedure to run a simulation using functions built in ViRM Lab 

can be explained better by the flowchart shown in Fig. 9.2.  

 

Figure 9.2. Flow chart of a ray-based multipath simulation tool – ViRM Lab. 

Firstly, the environment or the channel model is defined in which the antenna is present, e.g. 

RIMP, random-LOS, etc. An environment is setup by defining number of incoming waves, AoA 
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and distribution of AoA of these waves, polarization, and amplitude and phase of the incoming 

waves.  

Secondly, antenna setup is performed by loading the measured or simulated embedded far-field 

pattern(s) of the antenna into ViRM Lab. The location(s) and the orientation(s) of the antenna(s) 

are also user-defined i.e. either fixed or random.  

Thirdly, the simulation setup is defined by defining the number of complex voltage samples to be 

simulated on each antenna port of a multiport antenna. The number of samples can be a function 

of (i) time, (ii) space, i.e. fixed or random positions and orientations of the antenna, or (iii) 

number of antennas.  

Fourthly, the simulated complex voltage samples at the antenna ports are calibrated by 

normalization e.g. by using isotropic antenna as a reference antenna for calibration.  

Finally, a performance metric of interest e.g. efficiency, correlation, diversity gain, capacity, or 

throughput can be chosen for performance evaluation. This can help us to (i) compare 

performance of the same antenna in different environments e.g. 2D and 3D multipath 

environments, and (ii) compare performance of different antennas in the same environments e.g. 

dipoles and pencil-beams in RIMP environment. 
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10. Conclusion & Fut ure Wor k  

his thesis is a compilation of results and discussions on the following topics: using rich 

isotropic multipath environment as a reference environment for OTA characterization 

of small antennas and mobile devices in multipath; using randomness of the users in 

terms of random positions and orientations of hand-held devices in pure-LOS environment; 

using simple theoretical models to estimate OTA throughput, PoD, and TIS of wireless devices 

with MIMO and OFDM; and using simulation tools to validate measurements. In short, this 

thesis provides arguments in favor of using RIMP and random-LOS as two extreme reference 

environments for the characterization of mobile wireless terminals. These arguments are 

supported very well by simulations and measurements. At the time of writing this thesis, there is 

not a single channel model that can define all possible environments for mobile wireless devices 

including user randomness. The results in this thesis provide evidence that RIMP is a good 

reference environment for measuring mobile devices in multipath. RIMP provides a unique value 

for radiation efficiency, diversity gain, and channel capacity, and it is independent of the position 

and orientation of the terminal in the environment. Furthermore, the pure-LOS environment 

appears to be random in three-dimensional space when considering all possible positions and 

orientations of the wireless terminal. Fig. 10.1 illustrates the randomness of the orientation of the 

mobile wireless terminals. Our hypothesis states that:  

“If a wireless device is tested with good performance in both pure-LOS and RIMP environments, 

it will also perform well in real-life environments and situations, in a statistical sense [31].” 

 

Figure 10.1. Illustration of random orientations of mobile wireless devices e.g. iPad 
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While some work has already been done, in the scope of this thesis, to characterize the 

performance of wireless devices and antennas in multipath environments, there are still many 

interesting investigations left to be done in future. For example, using USRPs in multi-user 

MIMO, massive MIMO, and random-LOS applications are few of the most interesting projects. 

Such studies are of great value and interest to progress towards more advance problems in 

wireless research.  
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