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Abstract—We analyze nonbinary spatially-coupled low-density
parity-check (SC-LDPC) codes built on the general linear group
for transmission over the binary erasure channel. We prove
threshold saturation of the belief propagation decoding to the
potential threshold, by generalizing the proof technique based
on potential functions recently introduced by Yedla et al.. The
existence of the potential function is also discussed for a vector
sparse system in the general case, and some existence conditions
are developed. We finally give density evolution and simulation
results for several nonbinary SC-LDPC code ensembles.

I. INTRODUCTION

Spatial coupling of low-density parity-check (LDPC) codes
has revealed as a powerful technique to construct codes that
universally achieve capacity for many channels under belief
propagation (BP) decoding. The main principle behind this
outstanding behavior is the convergence of the BP threshold to
the maximum a posteriori (MAP) threshold of the underlying
block code ensemble, a phenomenon known as threshold
saturation [1]. The concept of spatial coupling is not exclusive
of LDPC codes, and also applies to other scenarios, such
as relaying, compressed sensing, and statistical physics. In
the realm of coding, spatial coupling has also been recently
applied to turbo codes [2].

Nonbinary LDPC codes defined over GF(2m) have received
an increasing interest in the recent years, since for short-to-
moderate block lengths they have been shown to outperform
their binary counterparts. Nonbinary spatially-coupled LDPC
(SC-LDPC) codes have been considered more recently in,
e.g., [3, 4]. In [3] a method to compute an upper bound on
the MAP threshold for nonbinary LDPC codes on the binary
erasure channel (BEC) was proposed, and it was shown that
the MAP threshold of regular ensembles improves with m and
approaches the Shannon limit. It was also empirically shown
in [3] that threshold saturation occurs for nonbinary SC-LDPC
codes.

In this paper, we prove1 threshold saturation of the BP
threshold of nonbinary SC-LDPC codes on the BEC to the
so called potential threshold, which is conjectured to coincide
with the MAP threshold. Our proof is based on the proof
technique proposed in [6, 7] to prove threshold saturation for
(binary) SC-LDPC codes. This technique is based on the
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1The proofs of the main results in this paper can be found in the extended
version of the paper [5].

observation that the density evolution (DE) equations of LDPC
codes form an admissible system for which it is possible to
properly define a potential function, and that a fixed point of
the DE corresponds to a stationary point of the corresponding
potential function. Our proof is a non-trivial generalization of
the proof in [7] to accomodate nonbinary SC-LDPC codes.
In particular, we discuss the necessary conditions for the
existence of the potential function for a vector sparse system
in the general case, and show that the potential function in
the form of [7] does not exist for nonbinary codes. We also
give DE results and simulation results for several nonbinary
SC-LDPC code ensembles.

A. Notation and Some Definitions

We use upper case letters F to denote scalar functions,
bold lowercase letters x to denote vectors, and bold uppercase
letters X for matrices. We assume all vectors to be row
vectors, and we denote by vec(X) the row vector obtained
by transposing the vector of stacked columns of matrix X .

Let x = (x1, . . . , xm) be a non-negative vector of length
m. The Jacobian of a scalar function F (x) is defined as F ′ =
∂F (x)
∂x =

(
∂F
∂x1

, . . . , ∂F
∂xm

)
. Also, we define the Jacobian of a

vector function f as F d(x) = f ′(x) =
(

∂f(x;ε)k
∂xn

)
, where

k = 1, . . . ,m and n = 1, . . . ,m, and the Hessian of a vector
function f as F dd(x) = f ′′(x) =

(
∂vec(F d(x))k

∂xn

)
.

II. DENSITY EVOLUTION FOR (dv, dc,m) AND
(dv, dc,m,L, w) LDPC CODE ENSEMBLES OVER GF(2m)

We consider transmission over a BEC with erasure prob-
ability ε, denoted by BEC(ε), using nonbinary LDPC codes
defined over the general linear group. The code symbols are
elements of the binary vector space GF(2m), of dimension
m, and we transmit on the BEC the m-tuples representing
their binary image. We denote a regular nonbinary LDPC
code ensemble over GF(2m) as (dv, dc,m), where dv and dc

denote the variable node degree and the check node degree,
respectively. In this paper, we will also consider the regular
(dv, dc,m,L, w) SC-LDPC code ensembles described in [1],
where L denotes the spatial dimension, and w > 0 is the
smoothing parameter. This ensemble is obtained by placing L
sets of variable nodes of degree dv at positions t ∈ {1, . . . , L}.
A variable node at position t has dv connections to check
nodes at positions from the range [t, t + w − 1]. For each
connection, the position of the check node is uniformly



and independently chosen from that range. A (terminated)
(dv, dc,m,L, w) SC-LDPC code ensemble is defined by the
parity-check matrix

H =



H0(1)
...

. . .
Hw−1(1)

H0(L)
. . .

...
Hw−1(L)


.

Each submatrix Hi(t) is a sparse (Mdv/dc)×M nonbinary
matrix, where M is the number of variable nodes in each
position and Mdv/dc the number of check nodes in each
position. It is important to note that the check node degrees
corresponding to the first and last couple of positions is
lower than dc, i.e., the graph shows some irregularities. These
irregularities lead to a locally better decoding (at the expense
of a rate loss, which vanishes with L) and are the responsible
for the outstanding performance of SC-LDPC codes.

In general, the messages exchanged in the BP decoding
of nonbinary LDPC codes are real vectors of length 2m, the
ith element of which representing the a posteriori probability
that the symbol is i. For the DE on the BEC, however, it
is sufficient to keep track of the dimension of the messages
exchanged. Therefore, the DE simplifies to the exchange of
messages of length m+ 1, where the ith entry of the message
is the probability that the message has dimension i.

A. (dv, dc,m) Regular LDPC Code Ensemble over GF(2m)
Consider a (dv, dc,m) ensemble over GF(2m), used for

transmission over the BEC(ε). Let x`
◦ = (x`◦0, . . . , x

`
◦m)

and y`
◦ = (y`◦0, . . . , y

`
◦m) be probability vectors of length

m+ 1, where x`◦i (resp. y`◦i) is the probability that a message
from (resp. to) variable nodes at iteration ` has dimension i,
0 ≤ i ≤ m. The DE updates for the variable nodes and the
check nodes at iteration ` are described by

x`
◦ = f◦(y

`
◦; ε), y`

◦ = g◦(x
`−1
◦ ).

where f◦ = (f◦0, . . . , f◦m) and g◦ = (g◦0, . . . , g◦m) are
functions from [0, 1]m+1 to [0, 1]m+1, defined as

f◦(y◦; ε) = p◦(ε) �
(
�dv−1y◦

)
, (1)

g◦(x◦) = �dc−1x◦. (2)

For two probability vectors a◦ and b◦ of length m + 1, the
operations � and � in (1)-(2) are defined as

[a◦ � b◦]k =

m∑
i=k

k+m−1∑
j=k

V m
i,j,ka◦ib◦j , k = 0, . . . ,m, (3)

[a◦ � b◦]k =

k∑
i=0

k∑
j=k−i

Cm
i,j,ka◦ib◦j , k = 0, . . . ,m, (4)

where V m
i,j,k is the probability of choosing a subspace of

dimension j whose intersection with a subspace of dimension
i has dimension k, and Cm

i,j,k is the probability of choosing
a subspace of dimension j whose sum with a subspace of
dimension i has dimension k (see [5] for details). Moreover,

we define �dv−1a◦ = a◦ � a◦ � · · ·� a◦ with dv − 1 terms
a◦ (i.e., �1a◦ = a◦), and �dv−1a = a◦�a◦� · · ·�a◦ with
dv − 1 terms a◦ (i.e., �1a◦ = a◦).

In (1) p◦ is a row vector of length m+ 1, the ith element
of which being the probability that the channel message has
dimension i,

p◦i(ε) =

(
m

i

)
εi(1− ε)m−i, i = 0, · · · ,m . (5)

Also, x0
◦ = p◦.

The fixed-point DE equation for x◦ = x∞◦ is

x◦ = f◦(g◦(x◦); ε). (6)

Note that decoding is successful when the DE equation con-
verges to x∞◦ = (1, 0, . . . , 0).

The proof technique in [7] requires monotone vector func-
tions for the variable node and the check node updates. It can
be shown that f◦ and g◦ are not monotone, hence cannot be
used directly. In the following, we rewrite the DE equation in
(6) in a more suitable form to prove threshold saturation.

Definition 1: Given a probability vector x◦, define the
CCDF vector x = (x1, . . . , xm), where xi =

∑m
k=i x◦k. We

also define xm+1 = 0. Then, it follows that x◦i = xi − xi+1.
Note also that x0 = 1. For simplicity of further notation, let
x−1 = (1, x1, . . . , xm−1) denote a right shift of x with a
prepended 1.

Considering the CCDF vectors x, y and p, we can define
new vector functions f(y; ε) and g(x), with

fi =

m∑
k=i

f◦k(y◦; ε) =

m∑
k=i

[
(p−1 − p) � (�dv−1(y−1 − y))

]
k

gi =

m∑
k=i

g◦k(x◦) =

m∑
k=i

[
�dc−1(x−1 − x)

]
k
.

Then, the DE equation (6) can be written in an equivalent
form as

x = f(g(x); ε). (7)

Theorem 1: The functions f(x; ε) and g(x) are increasing
in x.

Corollary 1: The density evolution for regular nonbinary
LDPC codes given by (7) converges to a fixed point.

Successful decoding corresponds to convergence of the DE
equation (7) to the fixed point x∞ = 0 = (0, 0, . . . , 0).

For later use, we denote by X the set of all possible values
of x. Likewise, we denote by Y/E the set of all possible values
of y/ε. For nonbinary codes and for some ε,

E : 0 ≤ ε ≤ 1,

X : 0 ≤ xi ≤ pε,i, Y : 0 ≤ yi ≤ 1, 1 ≤ i ≤ m.

Vector functions f and g have several properties which will
be useful for the proof of threshold saturation in Section III.

Lemma 1: Consider f(y; ε) and g(x) defined above. For
x ∈ X and y ∈ Y ,

1) f(y; ε) and g(x) are nonnegative vectors;
2) f(y; ε) is differentiable in y and g(x) is twice differ-

entiable in x;



3) f(0; ε) = f(y; 0) = g(0) = 0;
4) Gd(x) > 0, and it is invertible for x ∈ X\{0};
5) f(y; ε) is strictly increasing with ε.

B. (dv, dc,m,L, w) SC-LDPC Code Ensemble over GF(2m)

Assume a (dv, dc,m,L, w) ensemble over GF(2m) and
transmission over the BEC(ε). In the form of (7), the fixed-
point DE equations for the (dv, dc,m,L, w) ensemble can be
written as

xi =
1

w

w−1∑
k=0

f(yi−k; εi−k), yi =
1

w

w−1∑
j=0

g(xi+j−k),

where 1 ≤ i < L+ w, and

εi =

{
ε, 1 ≤ i ≤ L
0, 1 ≤ i− L < w

.

Collect all CCDF vectors xi and yi into the (L + w −
1) × m matrices X = (xT

1 , . . . ,x
T
L+w−1)T and Y =

(yT
1 , . . . ,y

T
L+w−1)T, respectively. Also, let A be the L× (L+

w− 1) matrix

A =
1

w


1 1 · · · 1 0 0 · · · 0
0 1 · · · 1 1 0 · · · 0
...

...
. . .

...
...

...
. . .

...

︸ ︷︷ ︸
w

0 0 0 0 ︸ ︷︷ ︸
L− 1

0 1 · · · 1


The fixed-point DE equation for the (dv, dc,m,L, w) en-

semble can be written in matrix form, similarly as in [7],

X = ATF (AG(X); ε),

where F (Y ; ε) is an L × m matrix, F (Y ; ε) =
(f(y1; ε)T, . . . ,f(yL; ε)T)T, G(X) is an (L + w − 1) × m
matrix, and G(X) = (g(x1)T, . . . , g(xL + w− 1)T)T.

III. POTENTIAL FUNCTION AND A PROOF OF THRESHOLD
SATURATION

The DE equation (7) for the (dv, dc,m) regular ensemble
describes a vector admissible system for which we can prop-
erly define a potential function, similarly to [7].

Definition 2: The potential function U(x; ε) of the system
defined by functions f and g above, is given by

U(x; ε) = g(x)DxT −G(x)− F (g(x); ε), (8)

where F : X×E 7→ R and G : Y×E 7→ R are scalar functions
that satisfy F (0) = 0, G(0) = 0, F ′(y; ε) = f(y; ε)D, and
G′(x) = g(x)D, for a symmetric m × m matrix D with
positive elements dij and a non-zero determinant.

The definition of U(x; ε) above is slightly more general
than the one in [7], since D is assumed to be symmetric with
non-zero determinant, instead of being diagonal as in [7]. The
properties of D, and the calculation of F (y; ε) and G(x) are
addressed in Section IV.

Definition 3: For x ∈ X and ε ∈ E , x is a fixed point of the
DE if x = f(g(x); ε); x is a stationary point of the potential
function if U ′(x; ε) = 0.

Let the fixed point set be defined as

F = {(x; ε)|x = f(g(x); ε)}.

Lemma 2: For the vector system defined by f and g, the
following assertions hold.

1) x ∈ X is a fixed point if and only if it is a stationary
point of the potential U(x; ε);

2) U(x; ε) is strictly decreasing in ε, for x ∈ X\0 and
ε ∈ E ;

3) U ′(x; ε) is strictly decreasing in ε.
4) For some ε1 > 0 and ε2 > 0 such that ε1 6= ε2, if

(x1, ε1) ∈ F and (x2, ε2) ∈ F , then x1 6= x2.
Thanks to the decreasing property of U ′(x; ε), we can

now define the BP and the potential thresholds, denoted
respectively by εBP and ε∗.

Definition 4: The BP threshold is

εBP = sup
ε

(ε ∈ E|U ′(x; ε) > 0, ∀x ∈ X ) .

Definition 5: The potential threshold is

ε∗ = sup
ε

(
ε ∈ (εBP, 1] | ∆E(ε) ≥ 0

)
,

where ∆E(ε) = infx∈X\U0(x) U(x; ε), and U0(ε) = {x ∈
X |x∞ = 0}.

In other words, εBP is the lowest value of ε for which
U(x; ε) does not have a critical point, whereas ε∗ is the lowest
value of ε for which U(x; ε) = 0 for all x such that x∞ 6= 0.

It has been shown for several systems [6], that the MAP
threshold and the potential threshold are identical. We conjec-
ture that the potential threshold of nonbinary LDPC codes is
also identical to the MAP threshold.

Definition 6: The potential function U(X; ε) for the
spatially-coupled case is defined similarly as in [7]

U(X; ε) = Tr(G(X)DXT)−G(X)−F (AG(X); ε), (9)

where G′(X) =
∑L

i=1G
′(xi) =

∑L
i=1 g(xi)D, and

F ′(X) =
∑L

i=1 F
′(xi) =

∑L
i=1 f(xi)D.

The main result of our paper is stated below. It proves
successful decoding for ε < ε∗, i.e., the BP decoder saturates
to the potential threshold for large enough values of w.

Theorem 2: Consider the spatially-coupled (dv, dc,m,L, w)
LDPC code ensemble, and let K be the upper bound on the
norm ||U ′′(X; ε)||∞ for its corresponding potential function
U(x; ε). Then, for ε < ε∗ and w > mK

2∆E(ε) , the only fixed
point of the system is x∞ = 0.

IV. PROPERTIES OF D, AND CALCULATION OF F (y; ε)
AND G(x)

The existence of F (y; ε) and G(x) is not guaranteed by
the definition of U(x; ε). Here, we derive a condition on the
existence of F (y; ε) and G(x) and investigate how it depends
on the form of the matrix D. Without loss of generality, we
consider the case of the (dv, dc,m) ensemble as an example
of a coupled vector system.

Theorem 3: Consider the (dv, dc,m) ensemble and let
U(x; ε) be given by Definition 2. Then, F (y; ε) and G(x)



TABLE I
DE THRESHOLDS FOR NONBINARY SC-LDPC CODES

Ensemble Rate ε1BP ε3BP ε5BP ε8BP εMAP δSh

(3, 6) 1/2 0.4880 0.4978 0.4995 0.4998 0.4999 0.0002
(3, 9) 2/3 0.3196 0.3307 0.3328 0.3331 0.3332 0.0002
(3, 12) 3/4 0.2372 0.2476 0.2495 0.2497 0.2499 0.0003
(3, 15) 4/5 0.1886 0.1978 0.1995 0.1996 0.1999 0.0004

exist (hence U(x; ε) exists) if there exist sets of values {djs},
{ϕ(i1,...,im)} and {µ(k1,...km)} that satisfy{

isϕ(i1,...,is,...,im) =
∑m

j=1 djsφ
(j)
(i1,...is−1,...,im)(ε)

ktµ(k1,...,kt,...,km) =
∑m

j=1 djtγ
(j)
(k1,...,kt−1,...km)

, (10)

for all possible m-uples (i1, . . . , im) and (k1, . . . , km) and all
is and kt varying from 1 to m, where

φ
(j)
(i1,...,im)(ε) = coeff(fj(x; ε), xi11 · · ·ximm ), (11)

γ
(j)
(k1,,...km) = coeff(gj(x), xi11 · · ·ximm ). (12)

Theorem 3 can be extended to the (dv, dc,m,L, w) coupled
ensemble in a straightforward manner.

We now give a necessary condition on the existence of
U(x; ε) with diagonal D. We use the following definition.

Definition 7: For a vector function f(x) =
(f1(x), . . . , fm(x)), define the coefficient sets Sf1 , . . . ,Sfm as

Sfj = {(i1, . . . , im) : coeff(fj(x), xi11 · · ·ximm ) 6= 0}, (13)

for all j, 1 ≤ j ≤ m.
Theorem 4: Assume a diagonal matrix D. Then, the system

of equations (10) exists if, for all i from 1 to m

(i1, . . . , im) ∈ Sfi ⇔ (i1, . . . , ii + 1, . . . , ij − 1, . . . , im) ∈ Sfj
(i1, . . . , im) ∈ Sgi ⇔ (i1, . . . , ii + 1, . . . , ij − 1, . . . , im) ∈ Sgj
for some values of j.

Proposition 1: For the (dv, dc,m) nonbinary LDPC code
ensemble, if D is a diagonal matrix, the solution of (10) does
not exist.

The consequence of Proposition 1 is that the potential
function as defined in [7] does not exist for nonbinary LDPC
codes. However, we can prove the following proposition.

Proposition 2: A positive symmetric matrix D is sufficient
for the existence of a solution of (10).

Thus, for nonbinary LDPC codes we can define the potential
functions as in Definition 2 and 6, which are then used to prove
threshold saturation.

V. NUMERICAL RESULTS

For the numerical results, we consider the (dv, dc,m,L)
coupled ensemble defined in [1], properly extended to the
nonbinary case. In Table I we give the BP thresholds for
several ensembles and m = 1, 3, 5 and 8, denoted by ε1BP,
ε3BP, ε5BP, and ε8BP, respectively, for L → ∞. It is observed
that the threshold improves with m. In particular, a significant
improvement is observed from m = 1 (binary) to m = 3. It
is interesting to note that εBP approaches the Shannon limit as
m increases (the last column of the table gives the gap to the

10
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0

 0.2  0.25  0.3  0.35  0.4  0.45  0.5

B
E

R

ε

m=1
m=3

(3,9)(3,12) (3,6)

Fig. 1. BER performance of nonbinary SC-LDPC codes for m = 1 and 3.

Shannon limit for the coupled ensembles with m = 8, δSh).
We also observed for all values of m that the BP threshold
tends to the MAP threshold εMAP with increasing values of L,
suggesting threshold saturation to the MAP threshold. As an
example, we report in the table the MAP threshold for m = 8.

In Fig. 1 we give bit error rate (BER) results for several
nonbinary SC-LDPC codes with m = 3, L = 65 and codeword
length N = 100K bits. The code rate is R =

(
1− dv

dc

)
− 1

L ,
where 1

L is the rate loss due to finite L. As a comparison,
we also plot the performance for m = 1 (binary code). In
agreement with the DE results, the nonbinary SC-LDPC codes
outperform their binary counterparts.

VI. CONCLUSIONS

We proved threshold saturation for nonbinary SC-LDPC
codes, when transmission takes place over the BEC, extending
the proof in [7] to accommodate nonbinary SC-LDPC codes.
We showed that nonbinary SC-LDPC codes achieve better
BP threshold than their binary counterparts. Interestingly, the
BP threshold approaches the Shannon limit with increasing
values of m, suggesting that capacity can be achieved with
nonbinary SC-LDPC codes. Finite length performance results
confirm that nonbinary SC-LDPC codes may perform better
than binary codes for a given (binary) block length.
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