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Abstract—This paper describes a factorized geometrical aut-
ofocus (FGA) algorithm, specifically suitable for ultrawideband
synthetic aperture radar. The strategy is integrated in a fast factor-
ized back-projection chain and relies on varying track parameters
step by step to obtain a sharp image; focus measures are provided
by an object function (intensity correlation). The FGA algorithm
has been successfully applied on synthetic and real (Coherent All
RAdio BAnd System II) data sets, i.e., with false track parameters
introduced prior to processing, to set up constrained problems
involving one geometrical quantity. Resolution (3 dB in azimuth
and slant range) and peak-to-sidelobe ratio measurements in FGA
images are comparable with reference results (within a few per-
cent and tenths of a decibel), demonstrating the capacity to com-
pensate for residual space variant range cell migration. The FGA
algorithm is finally also benchmarked (visually) against the phase
gradient algorithm to emphasize the advantage of a geometrical
autofocus approach.

Index Terms—Autofocus, back-projection, phase gradient algo-
rithm (PGA), synthetic aperture radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) processing is usually
performed in the frequency domain. Methods such as

Fourier–Hankel inversion [1], [11], [15] and the range migra-
tion algorithm [3], [6], [23], [24] assume a linear aperture track;
known deviations are then locally compensated. The validity,
however, impairs, as deviations intensify. This often degrades
the image.

Time-domain methods can deal with a nonlinear aperture
track, presuming once again that deviations are known [27]. A
brute force algorithm, i.e., global back-projection (GBP) [11],
[13], [27], is straightforward to implement but normally too
slow to be applied on a regular basis. Fast factorized back-
projection (FFBP) [13], [27], on the other hand, has a run
time in parity with the aforementioned methods; hence, the
algorithm is a justified processing alternative.

Track parameters are usually measured by means of a Global
Positioning System (GPS) and an inertial measurement unit
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(IMU) [6], [20]. The IMU has a high frequency response but
drifts over time; the GPS is used to counter this. As the IMU
constitutes a major cost and is subject to export restrictions, a
desire to relax requirements (or excluding it) often originates.
Naturally though, measurement accuracy is an essential neces-
sity for successful image formation. This of course contradicts
the stated desire. A GPS may in addition be jammed or shad-
owed, leading to dependence on the IMU, again affecting the
measurement accuracy.

In SAR processing, track deviations must be known within
fractions (∼1/16) of a wavelength [6], [20]. For high radar
bands (e.g., X-band), this demand is typically too strict. Even
for a low band such as very high frequency (VHF), the issues
considered above may degrade the image. There is, however,
a conceivable solution, making it feasible to focus an im-
age without the otherwise necessary accuracy, viz., autofocus
[16], [17].

In the context of SAR processing, autofocus is the use of
information in a defocused image (or in the data) to estimate
and correct phase errors [6]. Since the early 1970s, numerous
parametric and nonparametric techniques have been developed.
In spotlight mode, the former category includes recognized
correlation routines, i.e., map drift (MD) [6], [20], multiple
aperture MD [6], [20], and the phase difference algorithm [6].
Lately, a coherent MD approach has appeared in the literature
as well [25]. The latter category includes the widely used phase
gradient algorithm (PGA) [6], [9], [10], [19], [20], [31], which
often is deemed as a superior high-order strategy. In recent
years, metric-based schemes (spanning the space of parametric
and nonparametric techniques) have also been gaining more and
more attention, e.g., phase adjustment by contrast enhancement
[21] and the minimum entropy algorithm [33].

Standard autofocus techniques are one dimensional, presum-
ing that phase errors reside in individual range bins [6], [16],
[17]. Essentially, this implies that, after SAR processing, there
can be no residual range cell migration (RCM). Phase errors are,
in addition, assumed invariant across the image [6], [16], [17].

In stripmap mode, standard autofocus techniques usually
alleviate azimuth variant effects or phase errors (but not range
variant effects), e.g., the phase curvature algorithm [30] and
the stripmap PGA [26]. However, as the aperture track is not
updated, the compensation is incomplete.

The preceding restrictions are not by necessity well founded
[specifically not for airborne ultrawideband (UWB) SAR sys-
tems], especially not if measurement errors begin to esca-
late (due to relaxed requirements on the IMU/GPS and/or a
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jammed/shadowed GPS). Due to this, a number of innovative
strategies have been suggested.

The 2-D PGA [14], [32] can mitigate residual space invariant
RCM. Another approach is to first apply a 1-D PGA formu-
lation on a coarse range resolution image, estimating and re-
moving RCM prior to fine range compression. The algorithm is
then applied again to correct remaining (1-D) phase errors. This
strategy (and a similar semi-integrated strategy) is described in
[8]. Reference [34] outlines (spotlight/stripmap) schemes based
on the same idea [8] and a (stripmap) PGA implementation with
a weighted maximum-likelihood (ML) kernel (as opposed to
the linear unbiased minimum variance kernel in [6], [9], and
[10] and the ML kernel in [19] and [20]); block processing
relieves range variant effects. PGA-MD [35], in turn, relies
on sub-aperture division, 2-D MD, and the (stripmap) PGA to
correct residual RCM (in spotlight/stripmap mode); once again,
block processing relieves range variant phase errors.

By breaking up a defocused image (or data) into space
invariant areas (blocks) and processing these separately, space
variant effects may be eased [6]. Naturally though, estimation
accuracy deteriorates as the areas decrease in size. Addition-
ally, border issues arise as a penalty for patching. An alter-
native and less abrupt (spotlight) approach, i.e., pixel-unique
phase adjustment, is described in [22], but residual RCM is
neglected.

It should also be stressed that multilateration techniques
based on prominent point phase tracking [4] and local 2-D
MD [5] do update the aperture track, providing an ability to
correct residual space variant RCM. This has, however, not
been demonstrated in practice.

The objective of this paper is to address aforementioned
limiting premises. This can be done by formulating and testing
an autofocus algorithm that compensates for the defocusing
cause (measurement errors), i.e., by regulating track parameters
in the time domain [16], [17]. The course of action omits re-
ported restrictions and makes it possible to correct an inaccurate
geometry from a focusing perspective.

The factorized geometrical autofocus (FGA) algorithm,
which is developed within the framework of FFBP, is fully
integrated in the conventional processing chain (FFBP). This
implies that, just like FFBP, the FGA algorithm can be used to
process spotlight or stripmap data. Basically, different geometry
hypotheses (different images) are assessed; the aim is to find the
sharpest image according to a chosen object function (intensity
correlation in this case).

The novel strategy has been successfully applied in spotlight
mode on synthetic and real data sets (real data acquired by
Coherent All RAdio BAnd System II (CARABAS II) [18]), i.e.,
with false track parameters introduced prior to processing, to set
up constrained problems involving one geometrical quantity.

In this paper, resulting images will be presented, analyzed,
and compared to reference images and to images formed with-
out autofocus, in consequence suffering from residual space
variant RCM. Additionally, PGA-processed images [20] will
be shown, to be able to benchmark the performance of the new
algorithm.

However, before actually satisfying the stated objective, a
review is required, dealing with time-domain SAR processing,

the PGA, and, of course, with the FGA concept. The realization
and evaluation procedure will be recapped in detail as well.

II. METHOD

A. GBP

GBP is a time-domain method, projecting pulse compressed
radar echoes to a generally defined image display plane (IDP).
Each slow time position (along the track) contributes with
a data value to each and every pixel. Complex values are
coherently added, causing interference, in turn resolving reflec-
tive structures.

The slant range between the position and the pixel coordinate
in question determines which data value to accumulate; range
interpolation retrieves the proper value from available samples.
For demodulated data, each value must also be multiplied by a
phase factor.

GBP is a versatile algorithm, i.e., dealing with nonlinear
aperture tracks, topography, etc. However, the number of op-
erations (proportional to N3 for N sample positions and an
N ×N image) normally restricts its use to moderately sized
images [27].

B. FFBP

FFBP is a time-efficient alternative to GBP, utilizing a co-
herent combination scheme to merge pulse compressed radar
echoes step by step. Basically, the track is partitioned into
sub-apertures, increasing in length (finer angular resolution)
and decreasing in number for each factorization step [27].
Every sub-aperture comes with a corresponding sub-image. The
antenna beam is divided into sub-lobes, producing images with
pixel coordinates in range and sub-lobe angle (indicating that
the briefly mentioned scheme involves interpolation in both
range and angle [13], [27]). Ideally, i.e., if the number of slow
time positions is expressible as a factorization of integers, the
final factorization step gives the polar aperture image. Note that,
in stripmap mode, the sub-apertures may overlap to smooth
transitions between individual aperture images. These are then
placed side by side, registered, or resampled to a suitable
representation (e.g., Cartesian).

For a base two realization, the number of operations is
proportional to 2N2 log2 N (for N sample positions and an
N ×N image), i.e., under the premise that N is equal to a
power of two [27]. Image quality requirements may, however,
motivate a less effective algorithm execution (e.g., by reducing
the number of factorization steps and/or using a more exact
interpolator), i.e., to make up for the fact that interpolation
errors are accumulated for each factorization step (see [13] and
[27] for further information).

C. PGA

The PGA [20] is a notable nonparametric autofocus tech-
nique, capable of correcting phase errors of arbitrary order.
The algorithm involves a number of sequential steps, typically
iterated to attain convergence. First, strong targets in individual
range bins are identified in a defocused image. These are
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Fig. 1. (Top) Four sample positions (tied together). (Middle) After the first
factorization step, two sub-apertures (and two new positions) remain. (Bottom)
The second and final factorization step gives the full aperture (and one new
position). In reality, naturally, the initial number of sample positions is orders
of magnitude greater.

aligned through a circular shift and windowed to discard ex-
traneous data. Next, an expression for the phase error derivative
(averaged over the bins) is found in the (azimuth) frequency
domain. Integrating this expression gives an estimate of the
error. Range bins are multiplied by the complex conjugate of
the estimate; ideally, this eliminates the phase errors. Finally,
bins are transformed back to the (azimuth) time domain (the
image domain).

The summarized spotlight principle (see [20] for further
information) has been proven to be robust for a diversity of
different scenes, and although many alternative schemes have
been suggested (a routine increasing the rate of convergence is,
for example, described in [7]), the conventional PGA formula-
tion is still the standard; its vast use within the SAR community
has even made it a norm for emerging autofocus strategies.

D. FGA

1) General Resume: To set the tone, presume that pulse
compressed echoes are demodulated and factorized with base
two (radar echoes merged in pairs) until two sub-apertures
remain (see Fig. 1). The IDP and the focus target plane (FTP)
coincide with the horizontal plane or the xy-plane. Despite
measurement errors, the sub-images are focused; this is due to
limited angular resolution. The full aperture (Q13) is synthe-
sized as a segment (aligned with the nominal flight direction),
extending from the start point (p1) of the first sub-aperture
(Q12) to the endpoint (p3) of the other (Q23). p1, p3, and
the cutoff point (p2) between prior segments form a triangle
(see Fig. 2) or a line as a special case. If the geometry is too
inaccurate (due to measurement errors), the aperture image will
be defocused.

By varying parameters defining the triangle, different geom-
etry hypotheses can be assessed. The variation is carried out
consecutively by means of a merging (M) transform and a range
history preserving (RHP) transform. In principle, pixel coordi-
nates of the aperture image (i.e., a pixel grid with coordinates
in range and sub-lobe angle) are expressed in sub-image co-
ordinates corresponding to the current geometry. The aperture
image is then found by interpolating the sub-images onto the

Fig. 2. Triangle in the plane Π (gray). φ, υ, ζ, and ξ are essential parameters
in this autofocus formulation. Note that Q13 and a horizontal vector orthogonal
to Q13 (not shown) define the plane Γ (blue). In this particular case, Q13 and
Γ coincide with the xy-plane (blue).

polar pixel grids and adding these coherently. Fundamentally,
the final factorization step is repeated time after time. Each
hypothesis produces an image, which then is marked with a
focus measure provided by an object function. The image with
the best measure is assumed to be autofocused.

Before proceeding, it should be emphasized that, although a
one-step approach is presumed, the FGA algorithm can be acti-
vated at any time during the factorization [17]. However, as the
accuracy demand on track parameters increases quadratically
with sub-aperture length, it is more likely that the algorithm is
required later on in the processing chain.

Note also that this spotlight scheme can deal with stripmap
data in the same way as FFBP does, i.e., by allowing sub-
apertures to overlap. For example, instead of forming two
images (triangles) from four sub-apertures, three images (tri-
angles) may be formed. The two central sub-apertures are then
used to produce the additional image.

Confining the variation to a number of quantities (the fewer
the better) is a crucial task. In total, the triangle has nine de-
grees of freedom (assuming that sub-aperture segments remain
connected in the cutoff point, i.e., an x, y, and z coordinate for
p1, p2, and p3, respectively). Translating (two degrees) and
rotating (one degree) the triangle horizontally will, however,
only translate and rotate the aperture image. This implies that,
from a focusing perspective, three degrees of freedom can be
dropped. Thus, the geometry may be described by means of
an altitude, three angles, and two length variables, all in all six
independent quantities [17].

It should be mentioned that, in an early formulation of this
algorithm [16], the height of focus is presumed to suffice,
making it possible to fix the position and orientation of one sub-
aperture (Q12) and, by that, omitting two additional degrees of
freedom.
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Fig. 3. Geometry for the M transform (i.e., the triangle in Fig. 2 projected
to the xy-plane). Point P is an arbitrary point in the IDP/FTP. In practice, P
and the vertex of the cutoff point can be located on either side of the aperture,
explaining the ± sign in (1)–(4).

2) Algorithm: Assume once again that the FGA algorithm is
activated at the final factorization step. An arbitrary geometry
hypothesis (contrary to the initial geometry hypothesis, given
by measured track parameters) is first expressed in the follow-
ing quantities (see Fig. 2 for further information):

• H13: altitude at the center of Q13;
• φ: angle between Γ and Π;
• β13: angle between the xy-plane and Q13;
• υ: angle between Q12 and Q23;
• L13: length of Q13;
• ΔL: length difference between Q12 and Q23.

Supporting parameters are computed, and the pixel coordi-
nates (ρ13 and θ13) of the aperture image (I13) are established.
The M transform then converts these to corresponding sub-
image coordinates. This conforms to translating and rotating
sub-aperture segments horizontally, as opposed to translating
and rotating an intact triangle.

Fig. 3 and (1)–(4) clarify the concept of the M transform.
Note that all parameters in (1)–(4) are defined in the xy-plane,
i.e., L12xy and L23xy are horizontal length variables (associated
with the sub-apertures), whereas υxy , ζxy , and ξxy are projected
angles (υ, ζ, and ξ), i.e.,

ρM12 =
(
ρ213+(L23xy/2)

2−ρ13 · L23xy

· cos(π−θ13 ± ξxy))
1/2 (1)

θM12 = cos−1

(
ρ213 − ρ2M12 − (L23xy/2)

2

−ρM12 · L23xy

)
± υxy (2)

ρM23=
(
ρ213+(L12xy/2)

2−ρ13 · L12xy

· cos(θ13 ± ζxy))
1/2 (3)

θM23 =π − cos−1

(
ρ213−ρ2M23−(L12xy/2)

2

−ρM23 · L12xy

)
±υxy. (4)

M-transformed pixel coordinates are distorted by the RHP
transform. This conforms to tilt, altitude, and length alterations.
Contrary to the M transform, the RHP transform works with in-
dividual sub-aperture segments (note that subscripts in (5)–(11)
below are dropped for clarity, i.e., either 12 or 23, depending on
the sub-aperture under consideration).

Consider Q0, which is defined between times −T/2 < t <
T/2 (the subscript zero signifies that Q0 is specified by means
of measured track parameters). The slant range to the point P
along Q0 as a function of time is given by

‖Q0(t)P ‖ =
(
(ρM · sin θM )2 + (ρM · cos θM − V0xyt)

2

+ (H0 + V0zt)
2
)1/2

(5)

where ρM is the range, whereas θM is the sub-lobe angle
(in the xy-plane). H0 is the altitude at the center of the sub-
aperture, i.e., defined at time zero just as ρM and θM . V0xy is
the horizontal speed, whereas V0z is the vertical velocity.

Now, consider Q, which is defined between the same times
as before, but with altered horizontal speed, i.e., Vxy , vertical
velocity, i.e., Vz , and altitude, i.e., H . The slant range to the
point P along Q as a function of time is given by

‖Q(t)P ‖ =
(
(ρM · sin θM )2 + (ρM · cos θM − Vxyt)

2

+(H + Vzt)
2
)1/2

. (6)

Note that, although V components are constants in (5) and
(6), this is not a limiting requirement but a way to clarify the
coming derivation. In practice, V components in (9)–(11) below
are replaced by length, i.e., L, components.

The RHP transform substitutes ρM and θM in (5) with
primed parameters, i.e., ρ′M and θ′M . The goal is to find equality
or at least approximate equality between the range histories
of ‖Q(t)P ‖ and ‖Q′

0(t)P ‖. This is realized by first squaring
and expanding (6) and the primed (5). Resulting polynomial
coefficients (t) are then set to agree, i.e.,

ρ′2M +H2
0 = ρ2M +H2. (7)

After rearranging (7)

ρ′M =
√

(ρ2M +H2 −H2
0 ). (8)

The zero-order equality in (7) is satisfied by (8), i.e.,

(ρ′M · V0xy · cos θ′M −H0 · V0z) t

= (ρM · Vxy · cos θM −H · Vz) t. (9)

After rearranging (9)

θ′M = cos−1

(
ρM · Vxy · cos θM −H · Vz +H0 · V0z

ρ′M · V0xy

)
.

(10)

The first-order equality in (9) is satisfied by (10), i.e.,(
V 2
0xy + V 2

0z

)
t2 =

(
V 2
xy + V 2

z

)
t2. (11)
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The second-order equality in (11) is only satisfied if the
original sub-aperture length (given by the initial geometry
hypothesis) is preserved while varying the geometry. However,
if the sub-images are focused as assumed, second-order equal-
ity is not really required, as it is possible to compensate for
measurement errors with the aid of (8) and (10) alone.

The sub-images are interpolated onto polar pixel grids with
M- and RHP-transformed coordinates (corresponding to the
new geometry, i.e., the arbitrary geometry hypothesis). Adding
the grids coherently as in (12) then gives the aperture image.
Note that phase factors (demodulated data) are omitted in (12)
for clarity.

I13(ρ13, θ13) = I12 (ρ
′
M12, θ

′
M12) + I23 (ρ

′
M23, θ

′
M23) . (12)

To decide if the focus level is satisfactory, the grid similarity
is computed through intensity correlation [6], an object func-
tion also employed in the aforementioned MD routine. If the
normalized correlation sum in (13) is adequately close to unity,
the aperture image is autofocused; otherwise, another geometry
hypothesis must be assessed.

C =

∑∑
(g12 −m12) · (g23 −m23)√

(
∑ ∑

(g12 −m12)2) · (
∑ ∑

(g23 −m23)2)
. (13)

In (13), g12=|I12(ρ′M12, θ
′
M12)|2 and g23=|I23(ρ′M23, θ

′
M23)|2

are magnitude squared grids; corresponding average values are
denoted by m12 and m23. Note also that the summation in (13)
is carried out over all pixels.

An exhaustive 6-D geometry search is not a feasible
approach in practice, especially not if several autofocus steps
(factorization steps with adjustable geometry parameters) are
required, i.e., if the algorithm is activated early on in the
processing chain [17]. However, for a near-linear aperture track,
the sensitivity is low for H13, φ, and β13 (external triangle
quantities), potentially limiting the FGA algorithm to a varia-
tion of υ, ΔL, and L13 (internal triangle quantities). Naturally,
this facilitates the autofocus problem. If the size of the scene
is restricted as well, it may even be viable to vary a single
parameter, such as υ. In general though, the preceding premises
cannot be taken for granted, as the number of geometrical
quantities needed to retrieve a focused image is influenced by
wavelength, bandwidth, resolution, IMU/GPS measurement ac-
curacy, scene size, etc. Hence, the strategy must be able to cor-
rect (by means of an alternative search routine) six parameters if
necessary.

This paper will, however, in contrast, characterize a couple of
challenging problems confined to one quantity. Thus, the ability
to mitigate residual space variant RCM will be validated in a
rather academic fashion. In essence, this paper resumes a first
move, demonstrating the capacity of the new algorithm, prior
to performing a full trial (left for future work).

E. Data Sets

The FGA algorithm has been applied on two synthetic and
two real data sets.

Synthetic data, i.e., for two different scenes (point targets
with and without noise), are generated in stripmap mode along

linear aperture tracks by a simulated CARABAS-II-like system.
The track length is, however, erroneous (the true track was
corrupted before processing to model measurement errors),
motivating the use of autofocus (a variation of L13; see next
section for more details).

Real data, i.e., for two different scenes (Vidsel and
Linköping), are acquired in stripmap mode along nonlinear
aperture tracks by the CARABAS II system [18]. The track
scale is, however, erroneous (the measured track was corrupted
before processing to model measurement errors), motivating the
use of autofocus (a scale factor, i.e., sf , variation or, essentially,
a simultaneous alteration of L13, ΔL, and H13; see next section
for more details).

It should also be stressed that radar echoes from a limited
number of sample positions have been factorized and focused
(partial tracks processed for both synthetic and real data sets).
This, in turn, indicates that the integration angle (and the
resolution) varies across the scenes as in spotlight mode.

In the context of data generation/acquisition, common SAR
premises, e.g., the start–stop and Born approximations, as well
as a constant wave velocity, are also adopted (see [27] for
further information).

The first synthetic data set consists of 21 point targets. This
represents an ideal scenario.

The second synthetic data set consists of 441 point targets
and noise. This scenario provides an opportunity to verify that
the new algorithm is robust (in the presence of noise), before
testing it on real data. In this case, the signal-to-noise ratio
(SNR) was adjusted to approximately 20 dB (complex white
Gaussian noise, target at scene center used as a reference, i.e.,
target peak power divided by average noise power in the final
aperture image). The additional targets, in turn, were added to
increase the total signal energy and, thus, the reliability of the
correlation.

The first real data set (Vidsel) originates from a rural scene
with a sparse forest region and a lake. A few buildings, a
trihedral reflector, and a power line structure are the primary
targets.

The second real data set (Linköping) originates from an
elaborate urban scene, which is swamped with buildings and
other man-made objects.

Data-related information (i.e., system and geometry quanti-
ties) is resumed in Table I.

F. Realization and Evaluation

The first realization task is to form sub-images by employ-
ing back-projection on adjacent segments (sub-apertures) of a
track. Equation (14) is a general back-projection expression,
i.e.,

I(ρ, θ) =
M+x−1∑
n=x

f(n,R) ·R · exp
(
±j4πR

λc

)
(14)

where I is the sub-image for a segment extending across
M slow time positions, i.e., n, starting at position x. Radar
echoes, i.e., f(n,R), are presumed to be pulse compressed
and demodulated. The slant range between the position and the
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TABLE I
RESUMED SYSTEM AND GEOMETRY QUANTITIES. FOR SYNTHETIC DATA,

THE SIZE OF THE SCENE IS RATHER RESTRICTED TO SAVE RUN TIME

AND MEMORY. FOR CARABAS II DATA, THE FULL INTEGRATION

ANGLE (∼ 70◦) IS NEVER PROCESSED; THUS, IN THAT SENSE, REAL

SCENES ARE RESTRICTED IN SIZE AS WELL. NOTE ALSO THAT IMAGES

SHOWN FOR CARABAS II DATA ARE CUTS OF IMAGES FORMED FOR

THE SCENE SIZE IN THE TABLE BELOW. THE SAMPLE SPACING

(AZIMUTH AND SLANT RANGE) IS, IN TURN, REPORTED FOR

IMAGE DATA, NOT RAW RADAR DATA. THE SQUINT ANGLE

(0◦) FINALLY IMPLIES BROADSIDE IMAGING

pixel coordinate (i.e., ρ and θ) in question is denoted by R; the
range multiplication is included to establish 1/R dependence
(see [27] for further information), whereas the exponential is
a phase factor (demodulated data) with center wavelength, i.e.,
λc (i.e., the wavelength at the center frequency of the system).

Complex f(n,R) values are found through nearest neigh-
bor interpolation of discrete (in range as well) radar echoes
f(n,Rd), upsampled eight times in slant range (giving a sample
spacing about 16 times finer than Nyquist for synthetic data,
i.e., due to an initial oversampling factor; for real data, a sample
spacing about 32 times finer than Nyquist is attained, i.e., due
to an initial upsampling factor) through zero padding in the
(range) frequency domain.

For synthetic data sets, 16 sub-images are produced (four
factorization steps feasible). For real data sets, eight sub-images
are produced (three factorization steps feasible). Sub-apertures
are factorized (with 2-D cubic spline interpolation) until a
(final) reference aperture image is attained. A polar to Cartesian
conversion is then carried out (with 2-D cubic spline interpola-
tion), giving an azimuth and slant range representation, contrary
to a polar representation in the xy-plane. After applying a ramp
filter in the 2-D frequency domain (to even out the spectrum; see
[27] for further information), resolution (3 dB in azimuth and
slant range) and peak-to-sidelobe ratio (PSLR) are measured for
a few targets in the (reference) image. In the case of synthetic
data, values are compared with theory [28], [29] and con-
firmed to agree well. Erroneous tracks, causing residual space
variant RCM, are then specified according to the following
principle.

Denote the slant range between the center of a linear aperture
track at constant altitude and a broadside (at the center) point
target by Rb. The length of the aperture is, in turn, denoted by l.
Presume a symmetrical error and denote the erroneous aperture
length by le. Target range is measured along both apertures; if
the absolute range difference, i.e., |ΔR|, exceeds the width of

TABLE II
RESUMED ERROR QUANTITIES FOR THE TRACKS (δR ≈ 2.1 m; δR

VARIES ACROSS THE SCENE [28], [29]). NOTE THAT THE MAGNITUDE OF

THE SPACE-VARIANT EFFECTS IS THE SAME FOR SYNTHETIC AND REAL

DATA SETS. THE RESIDUAL RCM (CALCULATED AT NEAR RANGE)
IS MORE DISTINCT FOR CARABAS II DATA

half a (range) resolution cell, i.e., δR, RCM is introduced, with
the criterion

|ΔR| =
∣∣∣∣∣
(√(

R2
b +

l2e
4

)
−

√(
R2

b +
l2

4

))∣∣∣∣∣ > δR
2
. (15)

If the absolute difference in ΔR for targets with differing Rb

(Rbn and Rbf , for example, representing near and far ranges,
respectively) exceeds the width of half a resolution cell, space
variant effects are introduced as well, with the criterion

|ΔRn −ΔRf | =
∣∣∣∣∣
(√(

R2
bn +

l2e
4

)
−

√(
R2

bn +
l2

4

)

−
√(

R2
bf +

l2e
4

)
+

√(
R2

bf +
l2

4

))∣∣∣∣∣ > δR
2
. (16)

Equations (15) and (16) fit the synthetic data model, assum-
ing a linear aperture track and an erroneous aperture length.
For real data, only along-track terms are accounted for. This
is a valid approximation for minor cross-track and altitude
alterations (experimentally confirmed for CARABAS II data).
Equation (17) converts the length error to a suitable faulty scale
factor sf , i.e.,

sf =
le
l
. (17)

False track parameters satisfying the criteria in (15) and (16)
are now introduced before the back-projection. Criteria-related
information (i.e., error quantities for the tracks) is resumed in
Table II. Resulting sub-images are still focused. The following
principle assures this.

Denote the slant range between the center of a linear sub-
aperture track at constant altitude and a broadside (at the center)
point target by Rb. The length of the sub-aperture is denoted by
ls, whereas the along-track position is symbolized by xs (xs =
0 at the sub-aperture center; positions are assumed equidistant).
Presume a symmetrical error and denote the erroneous sub-
aperture length by lse; the erroneous along-track position is
symbolized by xse (xse = sf · xs); note that the expression
within the parenthesis assumes that the ratio between lse and ls
is the same as that for the full aperture [see (17)]. Target range
is measured (as a function of xs) along both sub-apertures, and
the range difference, i.e., ΔRs(xs), is derived

ΔRs(xs) =

√(
s2f · x2

s +R2
b

)
−

√
(x2

s +R2
b). (18)
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Fig. 4. (Top) Example where the previous geometry variation has given two
different L13 values, i.e., differing L12 and L23 values prior to the present
variation. (Bottom) After varying the geometry, a new L13 value is adopted
under the premise that ΔL is equal to zero.

Equation (18) is Taylor expanded around xs = 0; second-
order coefficients are retained. Thus

ΔRsq(xs) =
(s2f − 1)

Rb
· x

2
s

2
. (19)

Peak-to-center magnitudes of the quadratic expression in
(19) should be held below λc/16 [6], [20] to keep sub-images
focused, with the criterion

|ΔRsq(ls/2)| =

∣∣∣(s2f − 1)
∣∣∣

Rb
· l

2
s

8
<

λc

16
. (20)

For real data, once again, only along-track terms are ac-
counted for. This approximation has also been experimentally
confirmed.

For synthetic data, magnitudes in (20) are verified to be well
below λc/16 (∼6 times lower). For real data, the magnitudes
are very close to λc/16; at near range, the focus criterion is
actually exceeded by about λc/300. This is a deliberate choice,
to really challenge the novel strategy.

Sub-apertures are factorized with the FGA algorithm.
For synthetic data, L13 is varied step by step (i.e., four aut-

ofocus steps, FGA starting with 16 sub-images/sub-apertures),
whereas ΔL is set to zero regardless of prior hypotheses (see
Fig. 4). By following this approximate approach, the autofocus
problem is constrained to one geometrical parameter.

For real data, sf is varied step by step (i.e., three autofo-
cus steps, FGA starting with eight sub-images/sub-apertures).
Before proceeding to the next autofocus step, an average scale
factor is calculated and employed when forming (definite) new
sub-images (see Fig. 5). This approximate approach preserves
all angles, and the autofocus problem is once again constrained
to one geometrical parameter.

Note that the FGA algorithm ideally should converge to the
correct L13/sf value on the first step. However, due to noise,
numerical issues, etc., this is not expected in practice.

After the (final) autofocused aperture image has been at-
tained, converted to Cartesian form, and ramp filtered, resolu-
tion (3 dB in azimuth and slant range) and PSLR are measured
for the same targets as in the reference image. Apart from
focused (reference) and autofocused (FGA) images, defocused
(faulty sub-apertures factorized without autofocus) and PGA-

Fig. 5. Example where scales for two pair of sub-apertures have been indi-
vidually varied. The best focus measures have been found for different factors.
However, before actually forming (definite) new sub-images (proceeding to the
next autofocus step), the factors are averaged, and the mean is used to scale the
pairs as a unit.

processed images [20] are also obtained. The complete collec-
tion enables a comprehensive evaluation.

It should be mentioned that, for synthetic data with noise,
the preceding recap must be modified a bit, to regard that the
noise is removed before performing target measurements and
presenting images. Fundamentally, the FGA algorithm (and the
PGA) is first applied on data with noise. The corresponding
autofocus solution is then used to process data without noise
(i.e., the noise is excluded when generating data), giving the
FGA (and the PGA) image. The reference and the defocused
image can be formed right off, i.e., after excluding the noise.

III. RESULTS

Results for both synthetic and real data sets will now be
presented, figure by figure.

The first synthetic data set (see Figs. 6–9) covers a 1 km2

area (without noise). The erroneous aperture length (2050 m
instead of 2000 m) causes residual space variant RCM; this
can be theoretically confirmed by means of (15), (16), and
the information in Table I. The defocused image is corrected
(true aperture length found within ±5 cm) after two out of
four autofocus steps. Measurements on all 21 targets in the
FGA image reveal that resolution (azimuth and slant range)
and PSLR are very close to corresponding reference values,
i.e., within ±1.0% and ±0.05 dB. Note that, before measuring,
target chips are extracted and upsampled 50 times by way of
zero padding in the 2-D frequency domain.

The second synthetic data set (see Figs. 10–13) covers the
same 1 km2 area (with noise) as before. The erroneous aperture
length (2050 m instead of 2000 m) is, in this case, corrected
(true aperture length found within ±5 cm) after four out of
four autofocus steps. Measurements on 21 targets (out of 441,
same point targets and upsampling factor as before) in the
FGA image reveal that resolution (azimuth and slant range)
and PSLR are very close to corresponding reference values, i.e.,
within ±1.0% and ±0.10 dB.

The first real data set, i.e., Vidsel (see Figs. 14–18), covers
an ∼3.5 km2 area (maximal area shown; see Table I). The er-
roneous scale factor (1.0050 instead of 1.0000) causes residual
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Fig. 6. (Left) Reference and (right) defocused images for the first synthetic data set. The defocused image displays residual space variant RCM (i.e., curved
target trajectories are not shaped the same).

Fig. 7. (Left) PGA-processed and (right) FGA images. The PGA result is far from satisfying; residual space variant RCM is still seen. The FGA image is visually
very similar (essentially identical) to the reference image in Fig. 6.

Fig. 8. Close-up view of five central targets in Fig. 6. (Left) In the reference image, targets are compressed with crossed sidelobes, a typical UWB attribute.
(Right) In the defocused image, vertically aligned trajectories link up.

Fig. 9. Close-up view of five central targets in Fig. 7. It is evident that the performance of the PGA is reduced in this case, as opposed to the geometrical (FGA)
approach.
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Fig. 10. (Left) Reference and (right) defocused images for the second synthetic data set. The reference image has an ordered structure (targets placed 50 m
apart), whereas the defocused image is very chaotic as trajectories interfere.

Fig. 11. (Left) PGA-processed and (right) FGA images. The PGA result is once again far from satisfying. The FGA image is visually very similar (essentially
identical) to the reference image in Fig. 10.

Fig. 12. Close-up view of nine central targets in Fig. 10. (Left) In the reference image, targets are compressed with crossed sidelobes, a typical UWB attribute.
(Right) In the defocused image, vertically aligned trajectories overlap.

Fig. 13. Close-up view of nine central targets in Fig. 11. It is once again evident that the performance of the PGA is reduced, as opposed to the geometrical
(FGA) approach.
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Fig. 14. (Left) Reference and (right) defocused images for the first real data set (CARABAS II—Vidsel). The defocused image displays residual space invariant
RCM.

Fig. 15. (Left) PGA-processed and (right) FGA images. The PGA result is not satisfying; residual space invariant RCM is still seen. The FGA image is visually
very similar to the reference image in Fig. 14.

Fig. 16. Close-up view of Fig. 14. The SNR degradation in the defocused image is obvious; the residual RCM is very observable as well.

Fig. 17. Close-up view of Fig. 15. The FGA result is promising; the PGA result, on the other hand, is not acceptable.
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Fig. 18. (Left, top to bottom) Image chips for the trihedral; 3-dB areas are marked red. (Right, top to bottom) Three-dimensional mesh plots. Note in particular
that the mainlobe in the PGA image is blurred, with a weak (below the 3-dB level) RCM trace, i.e., although the PGA refines the defocused result, the compression
is incomplete.
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Fig. 19. (Left) Reference and (right) defocused images for the second real data set (CARABAS II—Linköping). The defocused image displays residual space
variant RCM.

Fig. 20. (Left) PGA-processed and (right) FGA images. The PGA result is not satisfying; residual space variant RCM is still seen. The FGA image is visually
very similar to the reference image in Fig. 19.

Fig. 21. Close-up view of Fig. 19. The SNR degradation in the defocused image is obvious; the residual RCM is very observable as well.

Fig. 22. Close-up view of Fig. 20. The FGA result is promising; the PGA result, on the other hand, is not acceptable.
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space invariant RCM; this can also be theoretically confirmed
by means of (15) and the information in Table I. As targets
are confined to a small area, i.e., substantially smaller than
3.5 km2, space variant effects according to the criterion in
(16) are not seen. The scale factor is estimated to ∼1.0049
after one autofocus step; remaining steps do not correct the
scale additionally. Measurements (after upsampling 25 times)
on two pointlike targets (including the trihedral reflector) in
the FGA image reveal that mainlobes have been broadened
by ∼2% in azimuth (3.36–3.44 m for the reflector) and ∼1%
in slant range (2.38–2.40 m for the reflector). A PSLR loss
of approximately 0.2 dB (6.8–6.6 dB for the reflector) is also
observed. Despite the minor degradation (measured), the FGA
image is very similar to the reference image. Even when the
trihedral is shown alone (see Fig. 18), in form of image cuts
and 3-D plots, it is hard to discern a difference.

The second real data set, i.e., Linköping (see Figs. 19–22),
covers an ∼4.5 km2 area (maximal area shown; see Table I).
The erroneous scale factor (1.0050 instead of 1.0000) causes
residual space variant RCM; this can also be theoretically
confirmed by means of (15), (16), and the information in
Table I. The scale factor is estimated to ∼1.0050 after three
autofocus steps. Measurements (after upsampling 25 times) on
two pointlike targets [located ∼1.5 km apart in slant range,
satisfying the criterion in (16)] in the FGA image reveal that
the resolution is preserved (no mainlobe broadening). A PSLR
loss of approximately 0.2 dB is observed for the far range
target.

PGA-processed images [20] (for both synthetic and real data
sets) are not pleasing; this is visually evident; hence, resolution
and PSLR have not been measured.

IV. DISCUSSION

A. Results and FGA

Results for synthetic and real data sets have now been pre-
sented (see Figs. 6–22). It is obvious that focused (reference)
and autofocused (FGA) images are very similar. Target mea-
surements also confirm that the FGA algorithm can compensate
for residual space variant RCM. A visual inspection verifies that
the PGA cannot. This is no surprise since the PGA is a stand-
alone technique (i.e., a separate stage after SAR processing)
neglecting the geometrical aspect. By adding an additional
autofocus stage or stages within the processing chain [8], [34],
[35], it is possible to mitigate residual space invariant RCM.
The hybrid approach takes the geometry into consideration, but
not completely. The FGA algorithm, on the other hand, is not
integrated separately. In fact, as soon as the strategy is activated,
it is the processing chain, offering a complete geometrical
solution (in this paper though, the problems are confined to one
geometrical quantity for simplicity).

Apart from the FGA algorithm (and the early formulation
[16]) and the 1-D technique described in [2], back-projection
adapted autofocus has been disregarded. This paper, however,
promotes the advantages, and although the problems dealt with
are constrained, the capacity of the novel strategy is demon-
strated, encouraging future work.

B. Future Work

At the moment, the run time is the main obstacle. The ex-
haustive search routine must be replaced by a faster alternative,
as it makes the FGA algorithm too slow to be of practical use for
real-time applications. Gradient-descent-based schemes should
be surveyed prior to performing a full trial (i.e., correcting six
parameters).

The object function is also an important subject. Although
intensity correlation has worked well thus far, there are numer-
ous other functions to consider, e.g., contrast [21], [22], squared
intensity [12], entropy [33], etc. [note that these functions are
applied on the sum in (12) and not on the addends].

V. CONCLUSION

We have described and analyzed a new geometrical autofo-
cus approach for SAR. The strategy, termed the FGA algorithm,
is an FFBP realization with a number of adjustable geometry
parameters for each factorization step. By altering the aperture
track in the time domain, it is possible to correct an inaccurate
geometry (potentially introduced due to relaxed requirements
on the IMU/GPS and/or a jammed/shadowed GPS). This indi-
cates that the FGA algorithm has the capacity to compensate
for residual space variant RCM.

The performance of the algorithm is demonstrated for ge-
ometrically constrained autofocus problems, embracing both
synthetic and real (CARABAS II) data sets. Resolution (3 dB
in azimuth and slant range) and PSLR measurements on targets
(point targets for synthetic data and pointlike targets for real
data) in FGA and reference images give similar results within a
few percent and tenths of a decibel. The advantage of a geomet-
rical autofocus approach is clarified further when comparing
FGA and PGA-processed images [20].
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