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Microfluidics based technique for electrophysiological studies of cells  

AIKEREMU AHEMAITI 

Department of Chemical and Biological Engineering 
Chalmers University of Technology  
 

Abstract  

This thesis work investigates the application of microfluidics to perform electrophysiological studies 

on cells, including investigations of the effect of cholesterol on the dynamic ion permeability of 

TRPV1 ion channels, and the application of a microfluidic device, the multifunctional pipette, in 

electrophysiological studies on brain slices. In the first part of this thesis, Chinese hamster ovary 

(CHO) cells overexpressing the TRPV1 ion channel were used in a dynamic ion permeability study, 

where the activation properties of the TRPV1 ion channel were investigated using the patch clamp 

technique after depletion of membrane cholesterol. The dynaflow system, an open-volume 

multichannel microfluidic system, and the multifunctional pipette, a freestanding microfluidic device 

utilizing hydrodynamically confined flow for spatially confined solution exchange, were used to 

deliver chemical stimuli exclusively to the patched cell. The result showed that the depletion of 

membrane cholesterol impaired the dynamic permeability of large cations in TRPV1 in low calcium 

solutions.  The second project focused on the application of the multifunctional pipette in 

neuropharmacological studies of the brain slices. We developed an experimental setup, performed 

feasibility studies, characterized the device performance and compared it with common superfusion 

techniques, using extra- and intracellular electrophysiological recordings of pyramidal cells in 

hippocampal and prefrontal cortex brain slices from rats. The multifunctional pipette was used in 

these experiments for highly localized delivery of the competitive AMPA receptor antagonist CNQX 

(6-cyano-7-nitroquinoxaline-2,3-dione) to selected locations on the slices. By applying 

multifunctional pipette, we achieved a multifold gain in solution exchange time and more efficient 

drug delivery compared to whole slice perfusion. The amount of drugs required in the microfluidics-

supported experiments was by several orders of magnitude smaller. The multifunctional pipette 

enabled selective perfusion of a single dendritic layer in the CA1 region of hippocampus with 

CNQX, without affecting other layers in this region.  
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1. Introduction 
 

The cell is the smallest functional unit of all known living organisms. In complex multicellular 

organisms, such as the human, the action of a single organ, or the whole system, depends on 

cooperation and interaction of different cells. It involves cell-to-cell communication, which is critical 

for normal functioning of the body [1-3]. This is especially obvious in the brain, where the neurons, 

the principle functioning units of the brain, are extremely specialized to perform cell communication 

[4]. Thus, studying the cellular interactions and communications in the neural network of the brain is 

essential for understanding the principles of brain functions, and for discovering the mechanisms and 

origins of brain disorders.    

Brain slice In vitro is a valuable experimental model system for studying neural communication in 

an environment where the original cellular network is preserved. Compared to in vivo studies on the 

brain using live anesthetized animals, experiments on brain slices eliminate the influence of 

anesthetics on cellular functions. Additionally, the external environment, including ion 

concentrations, oxygen levels and the supply of nutrition can easily be controlled and accurately 

adjusted, which can hardly be achieved to the same extent in live animals. Brain slices are more 

easily accessible by probes and various imaging techniques, which enables precise physiological and 

pharmacological studies of the functions and properties of the neuronal networks present in these 

slices. 

The cellular arrangement of a brain slice is not homogenous. It consists of various distinct 

substructures. For example, the hippocampal slice contains the hippocampus and dentate gyrus, the 

latter being part of the Hippocampal Formation. The hippocampus can be divided into three different 

regions, CA1, CA2, and CA3, where each region has several different layers (e.g. the CA1 has five 

different layers), each of them with different connections to other brain regions [5, 6]. This implies 

that neural activity in different parts of a slice may convey different functions. Thus, precise 

experimental control of the chemical environment at a certain location in the brain slice is important 

for understanding the function of a certain neural network, which is of value in pharmacological 

studies. Thus, focal perfusion, i.e., changing the solution environment locally, is necessary for 

achieving the localized application of active compounds on brain slices. Conventional bath perfusion, 

a common method to exchange the solution around the entire slice, cannot fulfill this requirement, 

since the whole slice, and not only the region of interest, is affected. Micro-perfusion is necessary 

for restricting the region of drug application. One of most commonly used micro-perfusion devices 

is the glass micropipette, which can deliver biologically active substances to brain slices through a 
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micro-sized opening at the needle tip.  However, flow control is quite limited, the operational 

volume is typically too small, and fabrication quality is not sufficiently controllable [7].  

Microfluidics has emerged as a technology for handling the flow of liquid in devices with small 

dimensions (micrometer scale channels) and volume (microliters to femtoliters), which above all 

allows for precise control and manipulation of fluids[8]. With the advantages of physical dimensions 

comparable to cells, reduced sample consumption and waste production, and well controlled flow 

dynamics, microfluidic devices have become attractive tools in biological research [9].    

With the development of the microfluidic techniques in general, an increasing number of 

microfluidic devices have been introduced to the field of brain slice studies, allowing spatiotemporal 

control over solution delivery to the extracellular environment of the brain tissue, for example focal 

perfusion within conventional slice chambers for improved control over the solution environment in 

a selected slice region [10]. Since the micro channels in the chamber are stationary, slices have to be 

accurately positioned with respect to the channels, especially when several channels are desired. 

Additionally, the re-adjusting the slice against the channels is challenging. Any movement to the 

slice fixed in the chamber introduces accumulative mechanical damage, which can reduce the 

viability of the slice.  

A new promising approach is the use of open volume microfluidics, in particular hydrodynamically 

confined flow (HCF), technology for localized microperfusion. This allows for positioning the 

solution exchange device to a stationary sample, without the need of changing its location [11]. The 

channels can be adjusted to the selected region above the slice, eliminating many of the problems 

associated with microfluidic perfusion systems [7].  

HCF devices even eliminate the contamination of remote regions of the brain slice, and ensure that 

superfusion only occurs locally. By continuous re-uptake of the delivered solution into the device, a 

small, rapidly moving volume of fluid is spatially confined within another, significantly larger fluid 

volume (i.e., a virtual flow chamber) [11]. Localized drug delivery can be achieved by merely 

touching a selected area of the tissue slice with this confined fluid volume [12]. The principle is an 

extension of the “push-pull” arrangement of glass capillaries, where solution is delivered through 

one, and aspired by a second glass needle [13]. Consequently, micro fabricated devices abolish 

typical disadvantages associated with glass needles. Among others, they provide higher fabrication 

quality, allow for a broader choice of materials, and enable internal functionality, such as flow 

switching and gradient generation [14].  

In this thesis work, a novel microfluidic technology was introduced, i.e. the freestanding 

multifunctional pipette (MFP), for superfusion studies of brain slices. This device was characterized 
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with focus on its performance and utility in neuropharmacology. As a HCF based microfluidic 

device, which is widely compatible with various imaging techniques and probes, the MFP shows 

promise and potential for application in advanced pharmacological research. It has provided an 

outstanding performance in single-cell studies [15, 16] and brain slice studies [17], and can be 

expected to open up new possibilities in neuropharmacological studies. 
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4.1 

2. Ion-channels 
	  

2.1 The cell membrane potential and the Nernst equation 

	  

All living cells are enveloped by a membrane that acts as a barrier between the intracellular and the 

extracellular environment [18]. The main constituents of cell membranes are phospholipids, which 

contain both hydrophobic and hydrophilic (polarized) residues. The amphiphilic property of 

phospholipids determines the bilayer structure of the membrane, in which a hydrophobic 

environment consisting of fatty acid hydrocarbon chains is situated in between two layers of 

hydrophilic phosphate residues interfacing the aqueous phase [18, 19]. The cell membrane also 

contains proteins, which can be integrated with the lipid bilayer (e.g. ion channels) or may simply be 

associated with cell membrane. The phospholipid bilayer forms a particularly effective barrier to 

charged molecules [18, 19]. Thus, the cell membrane, together with the intracellular and 

extracellular fluids can be viewed as capacitor coupled in parallel to resistors (i.e. the ion channels). 

The ATP-driven potassium (K+)/sodium (Na+) pump in the cell membrane continuously transports 

K+ into the cell and Na+ out of the cell, which leads to concentration differences between the intra- 

and extra-cellular milieu, resulting in concentration gradients for these ions across the membrane (i.e. 

higher K+ and lower Na+ inside the cell, see Figure 1). 

Thermodynamically, diffusion is a spontaneous process because it decreases the order in a system 

(increases entropy). This implies that diffusion releases energy. Walther Hermann Nernst quantified 

this energy as  

 

 

∆𝐺 = −𝑅𝑇𝑙𝑛
𝐶!"#
𝐶!"

 

 

where ΔG is the Gibbs energy released by diffusion, R is the universal gas constant (8.314 Jmol-1K-1), 

T is the temperature in Kelvin and Cout and Cin are the extracellular and intracellular concentration of 

the ion considered, respectively. The cell membrane is permeable to K+ ions via the bidirectional K+ 

channel. Driven by the concentration gradient, the K+ ions migrate out of the cell, and the outflow of 

positively charged ions increases the negative charge of the cell. Increased negative charge attracts
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4.2 

4.3 

4.4 

the K+ ions back into the cell. The electrical energy of this can be quantified as 

 

 

∆𝐺 = −𝐸𝑧𝐹 

 

where E is the electrical potential across the membrane unit, z is the oxidation state of the ion under 

consideration and F is the Faraday constant (9.65 × 104 C mol-1). When the attraction energy is 

oppositely equal to the diffusion energy, there is no net movement of ions and the two energies are 

in equilibrium 

 

 

𝑅𝑇𝑙𝑛
𝐶!"#
𝐶!"

= 𝐸𝑧𝐹 

 

This relation can be rearranged to describe the equilibrium potential of the ion considered, leading to 

the important Nernst equation 

 

 

𝐸 =
𝑅𝑇
𝑧𝐹 𝑙𝑛

𝐶!"#
𝐶!"

 

 

where E is the equilibrium potential for the ion under consideration. Since K+ ions can freely pass 

through the cell membrane and membrane is less permeable to other ions, the membrane potential, 

which is the sum of the equilibrium potentials of all the ions, is mostly determined by the 

equilibrium potential of the K+ ion, which is at about -80 mV, and the cell membrane potential is 

typically -50 to -80 mV at resting state. 
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4.5 

 

The phospholipid bilayer is an effective barrier for charged chemical entities, thus the cell membrane 

is an insulator between two conductors (intra and extracellular aqueous salt solutions, which are very 

conductive to ions). However, this electrical insulation is not perfect: there are ion channels and 

transporters and there is also some leakage [20, 21], so the resistance of the cell membrane to the 

movement of ions across is finite. The current due to the flow of ions passing through the cell 

membrane is determined by the driving force and the membrane resistance. The driving force is the 

difference between the equilibrium potential and the membrane potential Em. The bigger the driving 

force, the greater the net flow of ions. Thus, the current is proportional to the driving force, and 

limited by the resistance of the membrane, i.e., inversely proportional to the resistance. This can be 

stated as 

 

𝐼!"#$ =
𝐸! − 𝐸!"
𝑅!"#$

 

When the ion channel is activated, Ileak is the current through the channels, Em-Erm is the deviation 

from the resting membrane potential, and Rleak is the resistance of the cell membrane against the ions 

passing through.  

Figure 1. Illustration of the basic membrane potential generation process. Concentration gradients 
for Na+ and K+ across the membrane are generated by the K-Na pump, which transports Na+ out of 
the cell and K+ into the cell. Due to the selective permeability of the plasma membrane, only K+ can 
freely pass through the membrane, and the efflux of the K+ driven by a concentration gradient results 
in charge separation across the membrane, causing that the intracellular site of the membrane is 
more negatively charged than the extracellular environment.  
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2.2 Properties of ion channels 

	  

Ion channels are pore-forming proteins in the plasma membrane, that open and close upon different 

stimuli (Figure 2). Ion channels are a crucial part of the cell membrane [22]. When the ion channels 

open, ions will flow in or out of the cell, depending in the concentration gradient across the cell 

membrane. This activity changes the ionic concentration difference, and also the electrical potential 

across the membrane. This membrane potential and the associated electrochemical gradients are 

substantially used by cells in their signaling and control systems [22].  

 

Ion channels are found in the membranes of all animal, plant and bacterial cells and play important 

roles in such diverse processes as nerve and muscle excitation, hormonal secretion, learning and 

memory, cell proliferation, sensory transduction, control of the salt and water balance and the 

regulation of blood pressure [23]. Ion channels also participate directly in cell apoptosis [24].  

Considering their immense physiological functions and importance, it is not surprising that a 

considerable number of human and animal diseases are related to dysfunctions of ion channels.  

Ion channels can be classified by their selective permeability to specific ions, such as K+ channels, 

Na+ Channels, Ca2+ Channels, Cl- Channels and non-selective cation channels, or by the different 

Figure 2. General illustration of an ion channel, which allows ions pass through the membrane 

(orange structures) while activated. The dark blue structures schematically depict the membrane 

proteins, which form the channel. 
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stimuli that activate the channels, e.g. voltage-gated ion channels, ligand-gated ion channels, or 

mechanical force-gated ion channels.  

Ligand binding to the channel protein results in a conformational change of the protein, and this 

leads to pore opening (Figure 3A) [25]. Voltage gated ion channels have a structural motif,  

 

consisting of charged amino acids, which constitutes a voltage sensor (Figure 3B). The voltage 

sensors undergoes conformational changes when charged amino acid side chains respond to changes 

in potential, and consequently cause the opening or closing of the ion channel pore [26, 27]. Many 

ion channels also respond to other stimuli, such as mechanical force or temperature. 

Mechanosensitive ion channels [28] are the primary molecular biosensors in such diverse 

Figure 3. Schematic representations of different types of ion channels and their activating stimuli. A 
is a ligand-gated ion channel, which is activated by the binding of ligands to a specific binding site 
on the channel protein. B is a voltage-gated ion channel which can be activated by changes in 
membrane potential. 
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physiological processes as touch, hearing, proprioception, or embryogenesis, as well as turgor 

control in plant cells and osmoregulation in bacteria [29]. Ion channels can be activated by a single 

stimulating factor, or by several different factors [30]. Temperature-sensing ion channels were the 

target channels in this thesis project. The transient receptor potential vanilloid 1 (TRPV1) ion 

channel studied in this thesis responds to different stimulating factors, including voltage, temperature, 

low pH, and a ligand. 

 

2.3 The transient receptor potential vanilloid 1 (TRPV1) ion channel 

	  

2.3.1 The Transient Receptor Potential family 

 

Transient receptor potential (TRP) ion channels are the guards of our sensory systems, responding to 

touch, temperature, pain, osmolarity, pheromones, taste and other stimuli [31]. They are important 

parts of the sensory apparatus of many multicellular organisms [32].  

The TRP super family is divided into seven subfamilies, including TRPC, TRPV, TRPM, TRPN, 

TRPA, TRPP and TRPML [33], all of which have six putative transmembrane domains [32]. Some 

TRPCs may be store-operated channels, whereas others are activated by production of diacylglycerol 

or regulated through an exocytotic mechanism [32]. Many members of the TRPV subfamily function 

in sensory physiology and respond to heat, osmolarity changes, odorants, and mechanical stimuli 

[30]. The TRPM family functions as tumor suppressors and cold sensors [34]. The TRPN and TRPA 

include proteins with many ankyrin repeats. TRPN proteins function in mechanotransduction [32], 

whereas TRPA1 is activated by noxious cold and is also required for the auditory response [35]. 

TRPP and TRPML are distantly related to the other TRPs [32].  

Temperature activated TRP ion channels, which can be dubbed as thermo TRPs, have the distinctive 

feature that they can be activated alone by temperature [36].  Thermo TRPs detect almost the entire 

range of temperature sensed by most mammals [37, 38]. Ion channels TRPA1 and TRPM8 are cool 

sensors activated by cooling, while TRPV1, TRPV2, TRPV3, TRPV4 are heat sensors activated by 

heating [38]. The TRPV1 target is the target ion channel in this thesis.  

 

2.3.2 TRPV1
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The transient receptor potential vanilloid 1 (TRPV1) ion channel is a nociceptor ion channel, which 

is found in the peripheral nervous system (PNS), brain, spinal cord, skin, tongue and bladder [38], 

and it is predominantly expressed in small diameter dorsal root ganglia (DRG) and trigeminal 

ganglia (TG) neurons [39]. The TRPV1 ion channel can be activate by various stimulations, 

including heat (> 42 °C), protons, voltage and ligands [40-43]. It is a non-selective ion channel, 

which is permeable not only for monovalent cations, but also for Ca2+ and relatively large cations 

[40]. TRPV1 has been shown to possess a dynamic selectivity for ions during stimulation similar to 

what has been observed for P2X purinoceptor channels, and later also for the TRPA1 ion channel 

[44-46], i.e., a time- and agonist concentration-dependent increase of the relative permeability of the 

ion channel to large cations. The TRPV1 ion channel shares the putative configuration of the TRPs 

family that the ion channel is a tetrameric protein. Each protein monomer is composed of 6 

transmembrane domains with large N terminal and C terminal [47]. The transmembrane domains S5 

and S6 with the pore helix between them compose the ion conduction pore (Figure 4) [48]. The 

conformational changes in the pore loop region might be integrated in channel activation, and might 

also contribute to the dynamic ionic selectivity of the ion channel [44].  

The TRPV1 ion channel is involved in the transmission and modulation of pain (nociception), and in 

the integration of diverse painful stimuli [49]. Pharmaceutical blocking of TRPV1 presents a new 

strategy to release the pain by silencing the pain sensor instead of stopping the propagation of the 

pain, as most of the traditional pain-killers do [50]. In addition to its role in the PNS as a nociceptor, 

the function of the TRPV1 ion channel in the brain has also shown correlation with complex brain 

functions, as addiction, anxiety and learning [51]. Thus, studying the dynamic ionic selectivity 

characteristics of the TRPV1 ion channel may reveal valuable knowledge for understanding the 

mechanisms of its various functions.    
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Figure 4. Schematic drawing (side and top view) of the TRPV1 ion channel. It is a tetrameric 

protein, where each monomer has 6 transmembrane domains. Transmembrane domains 5 and 6 (red) 

with the pore helix between them compose the pore of the ion channel.  
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3. Neurotransmission 
	  

3.1 Neurons  

 

Neurons (nerve cells) are the fundamental units of the brain. In general, nerve cells are similar to all 

the other cells in the human body, but they are specialized in information transmission to and from 

other neurons or body organs [4]. As the neuron is the basic functional building block of the brain, 

understanding neurons is one of the essential prerequisites for understanding the brain.  

There are about 1011 nerve cells in the human brain [52]. Each neuron consists of a cell body (soma) 

and numerous membrane extensions aroused from soma. One of these neurites is called axon, also 

known as nerve fiber, which transmits nerve signals to other neurons, muscles or glands. The neuron 

uses the other membrane extensions, which are known as dendrites, to receive signals from other 

nerve cells [53].  

A typical neuron is depicted in Figure 5.  The cell body contains the same organelles as other cells. 

However, the cell membrane is specialized to transmit information. There is only one axon (cell 

projection) coming out of soma (cell body), and it may branch and send out additional fibers, which 

transmit information to different target cells at terminal junctions, the synapses. All the other 

membrane extensions are the dendrites, which give a neuron its characteristic shape [54].    

 

3.1.1 Axon  

 

The axon has two fundamental functions in the neuron. One is to trigger the synaptic transmission 

via an action potential initiated from the soma. The other one is to transport chemical substances 

between the cell body and the synaptic terminals. 

The connecting part of the axon to the cell body (soma) is called axon hillock, where the action 

potential is originated. Both inhibitory postsynaptic potentials (IPSPs) and excitatory postsynaptic 

potentials (EPSPs) are summed in the axon hillock. When the depolarization is sufficient enough to 

open voltage-gated sodium channels at the axon hillock, an action potential is generated and 

propagates along the axon down to the synaptic terminals [55].  
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The resting membrane potential of a neuron is usually -65 mV. At resting state, an influx of Na+ into 

the neuron through open non-gated sodium channels is balanced by an efflux of K+ through open 

non-gated potassium channels. The membrane potential remains constantly closer (but not equal) to 

the K+ equilibrium [56]. When the cell receives excitatory input, the neuron membrane is 

depolarized. The depolarization opens up some voltage-gated sodium channels, which are normally 

closed at the resting potential. Activated sodium channels allow sodium ions to enter the cell and 

further depolarize the membrane. When the membrane potential is beyond the threshold potential,  

Figure 5. Schematic representation of a neuron. It is composed of three parts: the soma (cell body), 

the axon and the dendrites (specialized cell projections). The soma of the neuron is quite similar to 

other cells, while axon and dendrites are special to neurons. The axon can branch into many smaller 

fibers and form synaptic connections with other cells. Some axons are also equipped with myelin 

sheaths, which electrically isolates the axon and accelerates the signal transferring through the axon. 

The dendrites are simply the extensions of the membrane, by which extensive amounts of synaptic 

connections can be made with the axons from other neurons. The dendrites give the neuron its 

typical shape.  
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sufficient amounts of voltage-gated sodium channels open and the relative permeability of the 

membrane becomes higher to Na+ ions than to K+ ions, which generates the action potential. Sodium 

ion influx depolarizes the membrane (rising phase of the action potential) until it approaches the Na+ 

equilibrium potential at around +40 mV, where sodium channels are inactivated and the influx of 

Na+ through these channels is stopped (peak phase) [54]. 

After the peak phase of the action potential, the membrane is repolarized by the activated voltage 

gated K+ channel, which increases the K+ ion efflux from the neuron (falling phase of the action 

potential). The voltage gated K+ channel is also activated by depolarization of the membrane, but the 

channels open with a delay (about 1ms). The K+ channels are hence called delayed rectifier K+ 

channels [54]. At the end of the falling phase, the membrane potential is more negative than the 

resting potential (after-hyperpolarization). This is because opening of the delayed rectifier K+ 

channels increases the permeability of the membrane to K+ ions in addition to the (already existing) 

resting permeability to K+ ions through open non-gated potassium channels. The hyperpolarized 

potential is closer to the equilibrium potential of K+, since there is little Na+ permeability during this 

period. The resting membrane potential is restored, as the voltage gated K+ channels are closed when 

after-hyperpolarization occurs [55, 56]. It should be noted that there are great Na+ influx and K+ 

efflux during the action potential. However, the Na+ - K+ pump is working all the time, even during 

the action potential, to maintain the ionic concentration gradients across the cell membrane [54].  

The action potential activates the voltage-gated Ca+ channel on the presynaptic membrane. The Ca+ 

influx mediates the release of the transmitters stored in the presynaptic terminal [57]. Certain 

chemical transmitters are manufactured in the cell body by the endoplasmic reticulum, and 

transported along the axon to the synaptic terminals via microtubules extending from the cell body 

all the way to the synapses. This is called anterograde (forward) transport, while retrograde 

(backward) transport refers to the transportation of substances from the synapses to the cell body 

[54].   

 

3.1.2 Dendrites 

 

Except for the axon, all the major protrusions extending from the soma are dendrites, which give a 

neuron its characteristic shape [53]. The primary function of the dendrites is to increase the signal 

receiving area of the nerve cell. The cytoplasmic composition in the dendrites is similar to that of the 
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soma. Therefore, dendrites can be thought of as extensions of the cell body. Both the dendrites and 

the cell body receive information through synaptic connections from other neurons [54]. In the 

cerebral cortex, the dendrites of many neurons are covered with thousands of small projections 

called dendritic spines [53]. Each of these spines, which are part of a synapse, further enhances the 

synaptic surface area of the neuron. Dendritic spine synapses are thought to be excitatory synapses 

[53].  

 

3.2 Synapses  

 

The axon transmits a signal to the target cell via synapse, where the plasma membrane of the axon 

terminal comes into close proximity to the target cell membrane. In most of the synapses, the 

presynaptic site is located on an axon [54], but in some cases, the presynaptic part is also located on 

the dendrites and the soma [58]. The same possible locations apply to the postsynaptic part. There 

are two fundamental types of synapses: the electrical synapse and the chemical synapse. 

 

3.2.1 Electrical synapses 

 

The electrical synapse, as the name indicates, uses electrical transmission between nerve cells (figure 

6A). The narrow space (3-3.5 nm) between pre and postsynaptic membranes in the electrical synapse 

is called gap junction, which is connected by numerous gap junction channels. The pore of the gap 

junction channels is wide enough (1.2-2 nm) to allow ions and even medium-size molecules to pass 

through, hence connecting the cytoplasms of the two cells. When presynaptic voltage gate channels 

are activated, the generated current flows from the presynaptic cell directly to the postsynaptic cell, 

therefore the signal transmission at electrical synapse is rapid (< 0.1 ms). In some electrical synapses, 

the current can only pass in one direction, which is called rectifying or unidirectional synapses, 

while nonrectifying or bidirectional synapses allow current to pass in both directions [59].   

In the adult mammalian CNS, signal transmission is conducted via electrical synapses where high 

synchronization in neuron activities is need for neighboring neurons [60]. For example, hormone-

secreting neurons in the hypothalamus are connected with electrical synapses and fire almost 

simultaneously when the activation signal arrives. Thus a burst of hormone is secreted into 

circulation. Electrical transmission is more common in non-neural cells, such as cardiac muscle cells, 



3. Neurotransmission  

	   17	  

 

 

epithelial cells, liver cells and glia, but relatively rare in the mammalian nervous system [54].  

Figure 6. Schematic representation of different types of synapses. A is an electrical synapse, where 

the synaptic signal is transferred by the gap junction channels, which are formed by two 

hemichannels, one in the presynaptic membrane and the other in the postsynaptic membrane. When 

the presynaptic site is activated, the presynaptic current flows into the postsynaptic cell at very rapid 

speed (< 0.1 ms). B and C are chemical synapses, where the synaptic signal is transmitted by the 

neurotransmitters released from a presynaptic axon. In synapse B, binding of the neurotransmitters 

to the postsynaptic ionotropic receptors results in direct opening of the ion channels, which allows 

ions passing through the postsynaptic membrane, whereas in synapse C, the ion channels are 

activated by the complex G-protein coupled receptor-mediated intracellular system. 
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3.2.2 Chemical synapses 

 

Chemical synapses are predominant in the mammalian brain. Unlike in the electrical synapse, the 

cytoplasm of pre and postsynaptic cells is not connected via channels. Instead, cells are separated by 

a tiny space (20 - 50 nm) called synaptic cleft, which is filled with extracellular solution. The pre and 

post synaptic membranes are connected by a matrix of extracellular fibrous protein in the synaptic 

cleft [53].  

The chemical synapse use neurotransmitters to transfer signals from the presynaptic cell to the 

postsynaptic cell. Neurotransmitters can be categorized into three major classes: small molecule 

transmitters, neuroactive peptides and gaseous neurotransmitters [54]. Neurotransmitters are 

synthesized in the presynaptic cytoplasm or in the cell body, and transported via the axon to the 

synaptic terminals, where they are stored in vesicles. 

When an action potential arrives at the axon terminal, the presynaptic nerve terminal is depolarized, 

which activates voltage-gated Ca2+ channels. Ca2+ ions flow into the terminal through the open Ca2+ 

channels and cause vesicles to fuse with the presynaptic nerve membrane [61]. Neurotransmitters in 

the vesicles, then, are released into the synaptic cleft via exocytosis [56]. The released 

neurotransmitters diffuse through the synaptic cleft and interact with specific receptors in the 

postsynaptic membrane (figure 6B, C).  

 

3.2.3 Synaptic plasticity: LTP and LTD 

 

Synaptic plasticity, or altering of the synaptic strength, is believed to be a possible mechanism of 

learning and memory. Long-lasting increase of synaptic strength was first demonstrated in the 

dentate gyrus of the rabbit hippocampus by stimulating the entorhinal cortex with high frequency 

stimulation (HFS) for several seconds. After a short term of HFS, which is also known as 

tetanization, part of the recorded synaptic response increased to a much greater amplitude than 

normal. The phenomenon is called long-term potentiation (LTP) [62]. LTP refers to a long lasting 

increase, which is more than an hour (in-vitro) or even weeks (in-vivo). Evidences showed that 

changes in both presynaptic terminal (increase of neurotransmitter release) and postsynaptic 

structure (up regulation receptors) are the contributing factors for the LTP [63]. Its long duration 

after a short induction period (seconds), as well as the input specificity, cooperativity and 

associativity indicate that LTP is a possible molecular substratum of memory [64].  
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In contrast to LTP, a long-lasting decrease in synaptic strength, which is called long-term depression 

(LTD), was observed in both the hippocampus and the cerebellum. The LTD can be induced by a 

long period of low frequency stimulation (LFS), for instance, several hundred stimulation pulses at 

1Hz [65, 66].  

If LTP is the memorizing process, LTD is the forgetting process. The co-existence of LTD and LTP 

may have advantages of regulating memory storage in the brain. For example, LTD may help to 

delete some old memories, which could prevent synaptic saturation, and allow new memories to be 

stored. Conversely, it might be that LTD could conduct the memorizing process while LTP is 

responsible for forgetting [67]. It has also been suggested that LTD could increase the contrast 

between active and inactive areas, which is quite beneficial for the visual system [68].  

 

3.3 Receptors  

	  

The interaction between transmitters and receptors either directly or indirectly facilitate specific ion 

channels to open or close, and as a result, specific ions enter or leave the cell. The receptors, which 

directly facilitates the ion channels, are called ionotropic or ligand gated receptors, while the 

receptors, which indirectly facilitate the ion channels, are called metabotropic or G-protein coupled 

receptors [54].  

Ligand gated receptors are ion channels, which usually consist of multiple transmembrane protein 

subunits. Each subunit contributes to the pore formation of the ion channel. The neurotransmitters 

bind to the ligand gated receptors and directly facilitate the pore formation (Figure 6B). The 

activation of the receptors is rapid and for short duration [69]. The process of action potential 

induced Ca2+ influx, neurotransmitter release, transmitter diffusion across the synaptic cleft and 

binding to the receptors gives the impression that the neurotransmission process may take a rather 

long time to occur. But the time from arrival of the action potential at the presynaptic terminal to 

activation of the ion channels in postsynaptic membrane takes as little as 0.2 milliseconds [53]. Thus, 

the chemical synaptic transmission via ligand-gated receptors is known as fast synaptic transmission. 

The synaptic transmission can be either excitatory or inhibitory [54].  

 

3.3.1 Fast synaptic excitation 
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The synaptic excitation refers to the synaptic activities that depolarize the postsynaptic membrane, 

with which action potential (firing) can be generated in the effector cell. The basic mechanism of the 

synaptic excitation is due to the opening of the ligand gated ion channels in the postsynaptic 

membrane by binding of specific transmitters to the receptors on the channels. The ion channel 

opens for a very short time (usually only a few milliseconds) and causes only a small depolarization 

on the cell membrane. Thus single synaptic excitation is not big enough to evoke an action potential. 

Multiple synapses on one cell can be excited at the same time. The sum of these small 

depolarizations is called excitatory postsynaptic potential (EPSP). The EPSP is graded, which means 

that the amplitude of the EPSP is proportional to the number of synapses activated at the same time. 

In the other words, the more axonal input, the bigger the EPSP. When the depolarization of the cell 

membrane due to the EPSP reaches and exceeds the threshold of the action potential, the effector cell 

fires an action potential [53, 54]  

 

3.3.2 Fast synaptic inhibition    

 

The process from arrival of the action potential to release of the transmitters in the synaptic 

inhibition is similar to the excitatory synaptic transmission. The only difference is the ion 

permeability specificity of the receptors. In fast synaptic inhibition, the neurotransmitter binds and 

activates the receptors, which allow Cl- passing through the membrane. The influx of Cl- ions due to 

the concentration gradient hyperpolarizes the membrane towards the equilibrium potential of Cl-, at 

which the cell becomes less excitable[54]. The hyperpolarization is called inhibitory postsynaptic 

potential (IPSP). Interestingly, in some invertebrate neurons the IPSP depolarizes the membrane 

potential, due to that the equilibrium potential of Cl- is higher than resting potential. This may also 

occur in vertebrates during development or in certain cell populations. However, a depolarized IPSP 

can still exhibit an inhibitory synaptic effect, which decreases the EPSP response of the cell. The 

effect of the IPSP, whether it hyperpolarizes or depolarizes the membrane, is more powerful than the 

simple addition of negative and positive voltages of IPSP and EPSP respectively [53]. There are two 

possible reasons for strong effects of the IPSP. One is that, during IPSP, the Cl- channels open and 

the membrane is completely permeable to Cl- ions, which competes against the Na+ channels under 

excitation and keep the membrane potential towards the equilibrium potential of Cl-. The other 

reason can be that the inhibitory synapses tend to locate near the axon on the cell body, where the 

action potential is generated. Hence, the IPSPs can exert a stronger effect than the EPSPs, which 

usually originate from more distant synapses [53]. The excitatory or inhibitory responses of the 
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postsynaptic neuron do not depend on the chemical nature of the neurotransmitter, but rather on the 

type of receptors on the postsynaptic site.  

 

3.3.3 Metabotropic/ G-protein coupled receptors 

	  	  

Unlike the ligand gated receptors, metabotropic receptors do not directly activate an ion channel, or 

do not have the ion channel as a part of the receptor. One or more metabolic steps are needed for the 

receptor to activate the associated ion channel. The metabolic steps for the activation involve 

intermediate molecules called G-proteins, which consist of three subunits (α,β,γ) and bind to the 

intracellular part of the metabotropic receptors (figure 6C) [54]. This is why metabotropic receptors 

are also called G-protein coupled receptors (GPCRs). The metabotropic receptors consist of only one 

transmembrane protein, rather than multiple protein complexes as in ionotropic receptors. Binding of 

transmitter to the metabotropic receptor dissociates the G-protein from the receptor. The dissociated 

subunits of the G-protein then react with effector molecules and generate secondary messengers. The 

secondary messengers stimulate certain enzymes, which then activate appropriate ion channels [54]. 

The activation and duration of the metabotropic receptor mediated postsynaptic response is longer 

than in the ligand-gated receptor. For comparison, the metabotropic receptor mediated synaptic 

transmission is called slow synaptic transmission.   

 

3.3.4 Recycling of synaptic vesicle membrane and neurotransmitters 

 

During exocytosis, the vesicle membrane fuses with the plasma membrane of the presynaptic 

terminal. Therefore, new membrane is added to the presynaptic membrane. The fused vesicle 

membrane, then, is retrieved back into the presynaptic terminal by a process called endocytotic 

budding. Most retrieved vesicle membrane is recycled and reloaded with neurotransmitters in the 

synaptic terminal to prepare for the next release. Some retrieved vesicle membrane is transported 

back into the cell body and either recycled or degraded [54].  

The released neurotransmitters are removed from the synaptic cleft by different pathways. Most 

transmitters are reuptaken by the presynaptic terminal via specific transporters and degraded or 

reused [70]. Some transmitters are reuptaken by glia cells, where they are transformed into a non-

active form and transported into the presynaptic terminal to be converted back into the active form 
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[71]. Certain enzymes in the synaptic cleft inactivate or degrade specific transmitters. The 

postsynaptic terminal can also take up and metabolize certain transmitters. The transmitters diffused 

into the circulation are eventually destroyed in the liver [54].     

	  

3.4 Glutamate receptors  

 

Glutamate (glutamic acid) is one of the non-essential proteinogenic amino acids. Despite the role as 

a building block for proteins, glutamate is also the main excitatory neurotransmitter of the brain, and 

also the precursor for the brain’s main inhibitory neurotransmitter, γ-aminobutyric acid (GABA) [4, 

72].  The role of glutamate in excitatory postsynaptic activation is conducted by glutamate receptors 

(GluRs), which play important roles in neural communication, learning and memory [73, 74]. GluRs 

are also linked to many psychiatric and neurodegenerative diseases [75-78].   

Based on the mechanism of activation mediating the postsynaptic excitation, glutamate receptors can 

be divided into two groups, which are ionotropic glutamate receptors (iGluRs) and metabotropic 

glutamate receptors (mGluRs) [4].  

	  

3.4.1 Ionotropic glutamate receptors (iGluRs) 

 

iGluRs are tetrameric, ligand-gated, cation-selective ion channels, which exhibit fast response to 

glutamate and mediate EPSPs [79]. Numerous studies have revealed the structure, pharmacology, 

function and regulation of iGluRs in great detail, and iGluRs have become the best-understood types 

of receptors [80]. iGluRs have not only been studied as important pharmacological targets for many 

human neurological disorders, but also used as an illustration model for pharmacological topics, 

such as agonist versus antagonist and receptor desensitization [81].    

The ionotropic glutamate receptor subunits are classified into four subfamilies according to their 

distinct response to certain small molecule agonists and sequence homology: AMPA (a-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid) receptors (GluA1-GluA4), NMDA (N-methyl-D-

aspartate) receptors (GluN1, GluN2A-GluN2D, GluN3A-GluN3B), kainate receptor (GluK1-GluK5) 

and Delta receptors (GluD1-GluD2) [82, 83]. Delta receptors have been referred as orphan glutamate 

receptors, because, unlike the other receptors, they do not bind to glutamate analogs [83]. GluD1 is 

highly expressed in hair cells of the auditory and vestibular systems in adult mice [84] and GluD2 is 
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predominantly expressed in Purkinje cells [85]. However, the mechanisms of their functions are not 

yet well understood. 

 

AMPA receptor 

 

AMPA receptors are present on virtually all neurons within the central nervous system, and 

responsible for most of the rapid excitatory neurotransmission [86, 87]. Note that AMPA-silent 

synapses are believed to exist and to play an important role during early development. AMPA 

receptors have four ligand binding sites, one for each subunit. The ion channel opens only when two 

or more sites are occupied. The AMPA receptor is permeable to Na+ and K+, but not to Ca2+, unless 

the receptor lacks a GluR2 subunit [88]. The latter has shown to play a critical role in 

neurodegenerative diseases due to the calcium permeation of the receptor [89].  

AMPA receptors also play important roles in synaptic plasticity. Up-regulation and down-regulation 

of AMPA receptors on the postsynaptic membrane have shown to correlate with LTP and LTD, 

respectively [90, 91]. Proper AMPA receptor function and regulation are critical to neuronal 

development and synaptic plasticity. Abnormal activations of AMPA receptors have shown critical 

correlations with many neurological diseases. AMPA receptors have also been used as an important 

neuropharmacological drug target for a number of brain-related disorders [92-95].  

 

NMDA receptor 

 

NMDA receptor is highly permeable to calcium ions, which indicates its important role in synaptic 

plasticity. The NMDA receptor ion channel is blocked by a magnesium ion at resting membrane 

potential. The membrane depolarization, which is induced by the AMPA receptor-mediated EPSP, 

unbinds the magnesium ion from the NMDA receptors. The activated, unblocked NMDA receptors 

allow Ca2+ to flow into the cell [96]. The entered Ca2+ undergo various intracellular pathways as 

second messenger, which regulates the AMPA receptor on the postsynaptic membrane. This 

property of the NMDA receptor covers many aspects of LTP and LTD [97]. Experiments suggest 

that activation of different subunits of the NMDA receptors play separate roles in inducing LTP and 

LTD [98, 99], which indicates that the activation pattern of NMDA receptors is crucial in 

determining LTP or LTD [100]. Two conditions, membrane depolarization and ligand binding, 
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should be met at the same time in order to open the NMDA receptor ion channel [101]. In addition to 

the main agonist (glutamate or aspartate), the NMDA receptor requires binding of the co-agonist 

glycine for efficient opening of the ion channel [102].  

The modulatory function of the NMDA receptor on LTP and LTD makes it a very important factor 

in learning and memory. A large number of neurological and psychological diseases have been 

related to irregularity of the NMDA receptor. The NMDA receptor has also shown importance in 

neural survival. Blocking of the NMDA receptor render many types of neurons vulnerable to trauma 

[103], while intensely or chronically activated NMDA receptor can cause excitotoxic cell death 

[104]. 

 

Kainate receptor 

 

Kainate receptors are distributed throughout the brain but, unlike AMPA and NMDA receptors, they 

act more as modulator of synaptic transmission and neuronal excitability rather than being the major 

postsynaptic target for glutamate [105]. Kainate receptors are present in both pre and postsynaptic 

membranes. Presynaptic kainate receptors modulate both excitatory (glutamate) [106]and inhibitory 

(GABA) [107] transmission, while postsynaptic kainate receptors regulate neuronal excitability 

[108]. The excitability enhancement of axons was also observed by the presence of kainate receptors 

[109]. Although the kainate receptors are categorized in the iGluRs family, some of their neuronal 

function is mediated through non-canonical metabotropic signaling pathways [110]. These 

modulatory functions make the kainate receptor attractive potential therapeutic target, and studies 

have shown a correlation of kainate receptors with many neurological disorders [111].  

 

3.4.2 Metabotropic glutamate receptors (mGluRs) 

 

mGluRs are GPCRs that widely spread in the central nervous system. In contrast to iGluRs, mGluRs 

exhibit slow response to glutamate via a second messenger system and modulate cellular excitability 

and synaptic transmission, playing an essential role in synaptic plasticity and memory formation [74]. 

mGluRs are expressed on both pre and postsynaptic membranes. The main function of presynaptic 

mGluRs is negative regulation of glutamate release. In the other words, activation of presynaptic 

mGluRs by glutamate inhibits the glutamate release [112]. On the other hand, function of the 
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mGluRs on the postsynaptic membrane depends on the activated mGluR subtype, accordingly, the 

activation of postsynaptic mGluRs either depolarizes or hyperpolarizes the membrane [113]. As a 

critical regulator for glutamatergic neurotransmission, mGluRs directly influence the induction and 

maintenance of both LTP and LTD [113]. Being intensely studied as an important therapeutic target, 

mGluRs have revealed critical correlations to many neurological and psychological diseases [112].   
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4. Cellular networks 
 

In the structurally and functionally complex multicellular organism, cells are differentiated into 

various types with particular functions. In mammals, major cell types are skin cells, blood cells, 

neurons, muscle cells, fibroblasts, stem cells, and others. Different cell types have different 

appearances and functions, yet they are genetically identical [3]. All cells are surrounded by a cell 

membrane, enclosing their intracellular structure and composition, establishing their identity, and 

separating their interior from the extracellular environment [1]. The cell membrane constitutes a 

functional subunit of the cell, where many biochemical reactions that mediate cell-to-cell 

communications, are carried out, which are conducted either electrically or chemically via different 

functional units of the cell membrane, such as ion channels [2]. In unicellular organisms, cell-to-cell 

communication is crucial for cell survival, e.g., spreading of antibiotic resistance genes among 

bacteria [114]. In multicellular organism, cell communication plays much more complicated 

functions, e.g. operation of the immune system is conducted by the signaling between different 

immune cells [115]; neuronal communication determines the function of the brain [54]; interactions 

between different organs and tissues are also based on cellular communication. Thus, studying the 

cells, especially the cellular networks, can provide valuable information for understanding the 

function of tissues and the pathological mechanism of diseases.  

The brain as the control center of the body contains the most complex cell-to-cell communication 

networks, which determine the function of the brain and is responsible for most of the neurological 

and psychological diseases. Neurons are the core cells for brain function, and are uniquely 

specialized in communicating with other neurons (sending and receiving signals) or sending signal 

and information to other organs of the body. The brain can be divided into different major functional 

units with specific neural network and function: cerebral cortex, cerebellum, brain stem, midbrain, 

limbic system, thalamus, hypothalamus, and basal ganglia. Each unit can be further divided into 

several subunits.  

As part of the limbic system, the hippocampus is the most intensely studied brain region and is 

thought to be involved in learning and memory. The well-mapped neuroanatomical structure and 

neural network of the hippocampus make it a good model for neurotransmission, a well-

characterized platform for application of new technology to brain research, and an attractive 

pharmaceutical target for many neuropsychological diseases. 
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The prefrontal cortex, the anterior part of the cerebral cortex, has extensive interconnections with 

much of the brain and forms complex neural networks. This region of the brain is considered as the 

“central executive” of the brain, which regulates working memory, decision-making, reasoning, 

problem solving as well as planning, and execution. One common symptom in various psychiatric 

disorders, including depression and schizophrenia, is executive deficits, which are attributed to either 

frontal lobe damage or dysfunction, or to breaking of the interconnection between prefrontal cortex 

and subcortical regions. Thus, studying the neural network of the prefrontal cortex has utmost 

importance in understanding the mechanism of many psychiatric disorders.  

 

4.1 Hippocampus 

 

Its striking appearance in the brain easily identified itself even to the early brain anatomists. The 

name “hippocampus” was first given by the Bolognese anatomist Giulio Cesare Aranzi (1587), who 

associated the three-dimensional appearance of the human hippocampus to the sea horse, while some 

others linked the structure of the hippocampus to ram’s horn, and De Garengeot (1742) named the 

hippocampus “cornu ammonis” or “Ammon’s horn” after the mythological Egyptian god Amun 

Kneph, whose symbol was a ram. The term Ammon’s horn is rarely used now, but interestingly, 

even though the name “hippocampus” has become the standard term, the abbreviations of cornu 

ammonis (CA1, CA2, and CA3) are referred to the subdivisions of the hippocampus [6].  

 

4.1.1 Hippocampus anatomy 

 

The hippocampus is part of the hippocampal formation, a functional system, which is comprised of 

several related brain regions. The other regions of Hippocampal formation are the dentate gyrus, 

subiculum, presubiculum, parasubiculum and entorhinal cortex [6]. The hippocampal formation is 

one of a few brain regions that can receive and manage highly processed, multimodal information 

from various neocortical regions [6]. The unique neuroanatomical structure of the hippocampal 

formation is the basis for its function, including its involvement in learning and memory, which has 

been under investigation by many neuroscientists [73, 116-118]. 

The hippocampal slice consists of hippocampus tissue, which can be divided into the three regions 

CA1-3, and dentate gyrus tissue. Figure 7 shows the transverse section of a rat hippocampal slice. It 
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can be seen that the pyramidal cells are densely packed into a single layer. The CA regions are also 

structured depthwise into several defined layers, for example, the CA1 region can be divided into 

five layers: axons (alveus), basal dendrites (stratum oriens), pyramidal cells (stratum pyramidale), 

proximal apical dendrites (stratum radiatum) and distal apical dendrites (stratum lacunosum-

moleculare) [5, 6]. 

 

The pyramidal cells in the CA1 region are probably the mostly studied type of neurons in the brain. 

The pyramidal cells in the CA1 region receive both excitatory and inhibitory synaptic inputs [119]. 

The major excitatory signal resource of the CA1 is CA3 region. Pyramidal cells in CA3 region 

project excitatory axons (the Schaffer collateral axons) to the pyramidal cells in CA1 region to form 

synapses at both stratum oriens and stratum radiatum. The entorhinal cortex (EC) also projects 

excitatory axons directly to the CA1 region, and the projections selectively innervate dendrites in the 

stratum lacunosum-moleculare [6, 119, 120]. Glutamate, the major excitatory neurotransmitter, 

participates predominantly in the excitatory synaptic interactions of the hippocampus. 	  

Figure 7. Schematic drawing of the transverse section of a rat hippocampal slice. Pyramidal cells in 

the hippocampus are packed into a distinguishable layer, statum pyramidale  (sp). Neurons in the 

CA3 region project axons to the region CA1, where the excitatory synapses are formed with both 

basal dendrites and proximal apical dendrites of the neurons in the CA1 region at layers stratum 

oriens (so) and stratum radiatum (sr), respectively. Neurons in the CA1 region also receive 

projections from the entorhinal cortex in the layer stratum lacunosum-moleculare (slm), the most 

superficial layer closest to the dentate gyrus (DG). Pyramidal cells in the CA1 region send their 

axons out of the hippocampus through the layer alveus (a).  
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The inhibitory synaptic interactions, on the other hand, are mainly conducted by interneurons using 

inhibitory neurotransmitter, γ-aminobutyric acid (GABA) [6]. Neuroanatomical data indicate that 

virtually all hippocampal interneurons are GABAergic [121]. The principal cells of the hippocampus 

make synaptic contacts also on GABAergic interneurons to regulates the release of the GABA [121]. 

The neuronal interaction in the hippocampus is far more complex than simple excitatory and 

inhibitory interactions mentioned above. In addition to the glutamate and GABA, there are several 

other neurotransmitter systems in the hippocampus, which modulate the neural activities. For 

example, cholinergic afferents are present in every layer of the hippocampus, whereas noradrenergic 

innervation is mainly appears in the hilus of the dentate gyrus and stratum lucidum of the CA3 

region [122]. The hippocampus also receives serotonergic and dopaminergic innervation modulating 

various neural activities [123][127].  

Thus, this complex anatomical and histological organization of the hippocampal formation 

constitutes the basis for higher functions of this brain region that has been widely studied for many 

decades.  

  

4.2 Prefrontal Cortex  

 

The prefrontal cortex (PFC) is the anterior part of the frontal lobes of the brain, which receives 

projections from the mediodorsal nucleus of the thalamus [53]. The human PFC can be divided into 

three primary regions, which are dorsolateral region, orbitofrontal region, which is also described as 

the ventromedial prefrontal cortex, and the frontal eye field [124]. Different cortical regions of the 

PFC associate with different brain regions processing external information (all sensory and motor 

systems) and internal information (memory, reward and affect systems), The PFC is involved in 

emotional behavior and cognitive processes that includes behavior, speech and reasoning, planning 

and executive function.   

 

4.2.1 The PFC: Anatomy and Signaling pathways 

	  

PFC is differentiated into 6 distinguishable horizontal layers and the neurons in various layers 

interconnect to form intrinsic micro-circuitries called columns [125]. Layer I almost entirely lacks 

neuronal cell bodies, and mainly consists of apical dendrites and axonal ramifications from the upper 	  
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cortical layers, and interneurons [125]. It receives intensive input from M-type (matrix) thalamus 

cells, which strongly excites inhibitory interneurons of layer I, as well as forming excitatory 

synapses with dendrites of pyramidal neurons from upper layers [126]. 

Layer II and III contain mainly small and medium size pyramidal neurons, as well as non-pyramidal 

neurons [125]. Layer II and III received motor and sensory input signals from other area of cortex, 

and mediates the communications across cortical regions [127]. Layer II and III are also the main 

excitatory input resource to the layer V [128]. 

Layer IV contains stellate and pyramidal neurons, and it is the main target for thalamocortical input 

from C-type (core) thalamus neurons [125, 129]. Layer IV projects axons to layer II and III and layer 

VI [130].  

Layer V contains large pyramidal neurons, which project excitatory axons to the thalamus. It forms 

intensive interconnection with layer II and III [125, 128]. 

Layer VI less intensively forms interconnections with other cortical layers. It contains variously 

sized and shaped pyramidal neurons as well as interneurons, which project both excitatory and 

inhibitory axons to the thalamus [125].  

Different layers of the PFC have distinct roles in signaling pathways, which can be categorized in 

two classes: the ascending and the descending pathway [130]. 

Ascending pathways are also called bottom-up (or feedforward) pathways, The idea refers to the 

signal inputs coming from subcortical brain structures up to the cortical layers and from lower 

cortical layers to the higher cortical layers. Layer IV is the primary target of the ascending pathways. 

The layer IV receives excitatory inputs from the thalamus C-type neurons [131], and layer IV relays 

the signals to layer III and II, which further project excitatory inputs to the layer V. As mentioned 

above, layer I receives intensive excitatory input from M-type neurons in the thalamus to the 

inhibitory interneurons [53, 125, 132], which regulates the excitability of the layers II and III by 

directly forming synapses in layer I with dendrites of pyramidal cells in layer II and III [130].   

In contrast to the notion of the ascending pathway, a descending pathway refers to the signaling from 

a higher cortical layer to a lower one and from a cortical area to a subcortical region of the brain. The 

descending pathway, also called top-down or feedback signaling pathway, is thought to play an 
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important role in cognitive control [125, 133]. Principle cortical target of the descending pathway is 

layer I, which receives axons mostly from upper layers, as well as some from deeper layers. Layer V 

and layer VI project axons to thalamus neurons. Layer V projection is mainly excitatory, and layer 

VI has both excitatory and inhibitory actions [125, 130].  

 

4.2.2 The rat PFC 

	  

The rat cerebral cortex is approximately 1000 times smaller than that of a human cortex, making a 

direct translation based on anatomy alone impossible [134]. The region in the rat cortex 

corresponding to the human dlPFC is the rat medial PFC [134, 135]. This notion is based on the fact 

that the rat mPFC, in similarity to the human dlPFC, builds extensive reciprocal projections from 

e.g. the mediodorsal thalamus, receives similar neurotransmitter input (e.g. noradrenaline from the 

LC, serotonin from the DRN, dopamine from the VTA) and expresses similar receptors as the 

human dlPFC. Thus, similar behaviors are mediated via these areas in humans and rats, respectively, 

such as attention, working memory and social interaction. 
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5. Superfusion systems  
 

Superfusion is the technique of running a stream of liquid over the surface of a biological sample. 

The major purpose of the superfusion system in studies of isolated cells is transporting the active 

compounds to the surface of the cell. In ligand-gated ion channel studies, quick changing of the 

solution around the cell is desirable for understanding the function of the ion channel, such as ligand 

binding profiles and channel kinetics. Among all the approaches for the solution exchange, the open 

volume multichannel perfusion chambers, including the Dynaflow ® microfluidic device used in this 

thesis, have become the most commonly used superfusion systems for high throughput 

electrophysiological studies of ion channel [136].  

Superfusion systems in physiological studies also have to provide constant supply of nutrition and 

oxygen, and aid in metabolic waste removal, for maintaining the physiological environment and the 

slice viability [7].  The most commonly used perfusion systems for brain tissue slices is the 

conventional perfusion chamber, where physiological solution enters the chamber from one side and 

leaves from another, so that the tissue sample placed in the chamber is continuously provided with 

fresh, oxygen and glucose enriched buffer solution. Biologically active compounds are typically 

delivered to the sample via the same flow. Various types of perfusion chambers have been developed 

and are commercially available for in-vitro studies. Some of them are useful for general purposes 

(e.g. QuickStage™ chamber, AutoMate Scientific), while others are designed for special purposes 

(e.g. field stimulation chambers, Warner Instruments). The major problem with the system is the 

non-localized perfusion, where the whole sample is submerged in the bath and perfused with the 

active compounds. All parts of the sample are equally exposed and thus become over time 

contaminate with the applied compounds, which reduces the reusability of the sample and, in the 

case of pharmaceutical studies on a tissue sample, makes it impossible to determine the focal effect 

of the active compound, which prevents revealing valuable information for understanding the 

biochemical role of the compound, and the mechanism of its action.     

In comparison with the conventional perfusion chamber, the glass pipette, which is a widely used 

simple yet efficient perfusion device, delivers a drug much faster, and more localized. Glass pipette-

based pressure controlled micro-perfusion systems are also commercially available. One commonly 

found system is the Picospritzer® (Parker Hannifin Corp). The glass pipette, to be used in the 

perfusion experiments, is pulled from a heated glass capillary. The tip diameter is, generally, in the 

micro- to nanometer size range. The glass pipette can be conveniently positioned to a certain region 

of the tissue or to a specific cell, and the solution filled into the pipette is injected directly 
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onto the target area. Different types of glass tubing systems have also been developed for quickly 

changing the solution around the cell with an improved switching profile (figure 8). For example, the 

Y-tube, which consists of two inlet tubes and one outflow tube, can rapidly change the solution 

around the cell by controlling the speed of flow in the inlet tubes [137]. Another noteworthy glass-

tubing system for superfusion is the double-barreled pipette, which is a glass capillary that has a 

glass septum dividing the tube into two compartments, which can be filled with different solutions.  

 

 

The concept was later adopted and extended in many other multi-barrel perfusion systems, including 

the Dynaflow® chip, one of the microfluidic devices used in this thesis work. When pressure is 

applied to the pipette, two solutions are transferred out of the pipette opening, and the interface of 

the two solutions is sharp, even in the open volume outside the pipette opening. The cell can be 

exposed to the two solutions simply by moving the pipette [138]. However in this, the flow 

originating from the glass pipette is difficult to control, and cannot be completely halted. Therefore, 

volume confinement cannot be fully achieved, and a build-up of the injected solution in the open 

volume occurs. Moreover, consistency in fabrication is challenging, and the tendency to break upon 

contact with a hard surface inside the chamber makes the glass pipettes often tedious to use. Progress 

in superfusion technology has been made through microfluidic devices, which have overcome 

several of the limitations and challenges with well-controlled flow dynamics and highly repetitive 

fabrication quality. Along with the increased popularity of microfluidics in analytical chemistry in 

the last decade, various microfluidic devices have also been integrated into experimental techniques 

for studies of biological material, particularly as highly efficient superfusion tools. In that context, 

microfluidics often improves and simplifies the standard techniques. Furthermore, the added benefit 

Figure 8. Two different types of glass superfusion devices. A) Y-tube. B) double-barreled pipette.  

	  



5. Superfusion systems 

	   35	  

5.1 

5.2 

of on-chip functionality, allowing, for example, for switching rapidly between different solutions 

(which is not possible with glass needles), has enabled new and more sophisticated experiments. 

 

5.1 Microfluidics  

	  

The main ambition of microfluidics is managing and studying the flow of small volumes of fluids 

(microliters to femtoliters) in physical dimensions on the micrometer scale. Some properties of flow 

in microfluidic systems are, due to the small dimensions, quite different from the macroscopic flows 

(for example of water from a tap) what we can daily observe.  

Flow can be characterized by the Reynolds number (Re), which is a dimensionless number 

associated with the Navier-Stokes equation, 

 

𝜌
𝜕𝑣
𝜕𝑡 +   𝑣 ∙ ∇𝑣 =   −∇𝑝 +   𝜂∇!𝑣 + 𝐹 

 

where ρ is the fluid density, v is the fluid velocity, p is the pressure, µ is the fluid viscosity, and the F 

is external forces such as gravity. The Navier-Stokes equation can be viewed as an extension of 

Newton’s second law for fluids. The left-hand side of the equation shows the mass per unit volume 

(ρ) times the acceleration of the fluid in both time and space and the right hand side consists of the  

forces per unit volume due to a pressure gradient (łp), viscosity (ηł2 v), and other external forces 

[139].  

The Reynolds number represents the ratio of the inertial to the viscous forces. The Reynolds number 

for a fluid stream (for example in a channel) can be written as 

 

 

𝑅𝑒 =   
𝜌𝑣𝐿
𝜂  

 

where ρ is the fluid density, v is characteristic fluid velocity, η is the viscosity and L is the 

characteristic size, which depends on the cross-sectional geometry of the channel through which
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fluid flows. The laminar flow, which is characterized by low Reynolds numbers (Re << 1), is a 

smooth and predictable flow, where viscous forces dominate, while turbulent flow, which is 

characterized by high Reynolds numbers (Re > 103), is chaotic and unpredictable, and the inertial 

forces dominate the fluid dynamics (figure 9). At low Reynolds numbers, the fluid dynamics is 

determined by the external driving forces (i.e. pressure) and fluid movement is well controlled.  In 

the low Reynolds number regime, a fluid is set to motion by applying an external force, and will stop 

when the external force is turned off. In contrast, turbulent flow (high Reynolds number regime) can 

be initiated by an external force, but cannot be stopped by simply eliminating the external force, as 

inertia contribute to the motion [139].    

 

Water or water-based solutions of similar viscosity as working fluid are in the low Reynolds number 

regime, when they pass through a channel with the size smaller than about 100µm, and at velocities 

on the order of µm/s. The fluid dynamics in microfluidic system is typically under low Reynolds 

number (Re) conditions, and laminar flow is an intrinsic characteristic of channel-based microfluidic 

systems [140].  

 

5.2 Applications of microfluidics in biology 

 

Since the inception of the microfluidic devices, intensive research has been conducted in the field of 

microfluidics. One major driving force for its continued development is the applicability of the 

Figure 9. Schematic representation of laminar (left) and turbulent (right) flow in a Y-shaped 

channel. 
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microfluidics in biological and biomedical research. Advantages of the well-controlled flow 

dynamics, small reagent volumes, high heat and mass transfer rate, fast response times, reduction or 

elimination of cross contamination and the ability to perform multiple processes simultaneously, 

make microfluidic devices suitable for biomedical analysis, chemical sensing, genetic analysis, 

metabolic monitoring, biomolecular separation, cell studies, high-throughput screening and drug 

delivery, among others. The integration of microfluidic techniques and devices in biological studies 

covers a wide variety of applications, which includes manipulating individual cells and the 

environment around them, and improving the viability of organotypic tissue slices (e.g. brain slices). 

Microfluidic devices have been used for monitoring growth, productivity, and heterogeneity on the 

single-cell scale [141], to analyze signaling compound transmission mediated cell-cell 

interaction[142],  and for optimizing proliferation and differentiation of neural stem cells (NSCs) in 

culture by exposing the cells with a stable and reproducible concentration gradient of growth factors 

under continuous flow [143]. Microfluidic channels have also been used to physically resemble 

blood capillaries in studies on Plasmodium falciparum-infected erythrocytes [144], for inducing 

focal stimulation in one portion of a brain slice via a well-characterized laminar flow [10], and for 

localized drug administration to the brain slices by utilizing hydrodynamically confined flow [11]. 

With the development of microfluidic techniques, more and more microfluidic devices have been 

introduced and applied in various areas of biological research, and have shown to provide significant 

benefits. However, challenges and drawbacks still exist. Microfluidic devices do not have 

standardized components. This may impede their integration into existing laboratory environments 

and the cooperation with other techniques, such as patch clamp electrophysiology. Moreover, if 

specimens are deposited in microfluidic flow chambers, their accessibility to external probes is often 

problematic. In addition, microfluidic devices with fixed channel positions require positioning of the 

sample against the channels, for example by means of hydrodynamic focusing [10]. The increased 

sample movement required to achieve the required sample position may introduce mechanical 

damage to the sample, which may decrease the quality of the sample and of the collected 

experimental data, especially in case of brain slice studies. 

 

5.3 Fabrication of microfluidic devices 

 

The microfluidic devices described in the following sections were used in this thesis, and are 

produced with soft-lithography techniques (figure 10), using polydimethylsiloxane (PDMS). PDMS 

is a silicon-based polymer, which is commonly used in prototyping and fabrication. It is inert, non-
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toxic, non-flammable and optically transparent, and particularly suited for the fabrication 

ofmicrofluidic devices [141]. PDMS devices containing microchannels can be prepared in a few 

steps from a liquid pre-polymer. The channel structures are embossed on a “master”, from where 

they are transferred into the PDMS by replica molding. Two liquid pre-polymer components (base 

and curing agent containing a catalyst) are mixed, and poured onto the master, which is positioned at 

the bottom of a mold. The master consists of a layer of the negative UV-curable photoresist SU-8 on 

Figure 10. Soft lithography. The base component (A) and the curing agent (B) are mixed in 10:1 

ratio. The well-stirred mixture is poured on a mask, where the microchannel structures are 

embossed, and cured in the oven. The cured elastomer is then peeled from the master and the 

connection holes are punched. Finally, the block is bonded to a glass slide after both bonding 

surfaces have been treated with oxygen plasma.  
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a Si-wafer, produced by means of photolithography. After curing in an oven, the PDMS elastomer 

can be peeledoff from the master/mold. The surface of the PDMS block generated in this procedure 

can be activated by oxygen plasma treatment. Following such treatment, it can be bonded with other 

activated PDMS surfaces or glass. Since the bond is permanent and irreversible, it prevents 

communication or mixing of solutions between the channels [145]. Interfacing with tubes or other 

supply lines completes the microfluidic device. Depending on the intended application, silicon, glass 

and various kinds of plastics have also been used for fabrication. 

 

5.4 Dynaflow® chip  

 

The Dynaflow ® chip (figure 11) used in this thesis consists of a PDMS mold containing the 

channels, which is plasma-bonded to a glass slide. The chip has 16 microchannels, each connected to 

an on-chip solution reservoir. These reservoirs can be filled with different solutions, or solutions 

containing different concentrations of the same compound. A lid connected to a pump is tightly 

attached to the reservoirs so that the solutions in the reservoirs can be driven by pressure through the 

connected microchannels, which lead into an open bath with the dimensions 35 × 20 × 4 mm (w × l 

× h). In the outlet region, the 50-µm-wide and 57-µm-high channels are closely spaced and separated 

by 22-µm-thick walls. Close to the channel outlets, the outflows from the channels form a patterned 

laminar flow inside the open volume, which maintains its sharp inter-solution boundaries for a 

distance of approximately hundred micrometers. The patterned flow volume can easily be accessed 

from the open bath. Scanning and positioning of micropipettes, electrodes, or patch clamped cells are 

possible in this chip. The cells can be exposed to a sequence of solutions precisely and with fast 

switching times in the range of tens of milliseconds. The cells are placed and patched in the open 

bath.   
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5.5 Multifunctional pipette  

 

The multifunctional pipette used in the thesis work (figure 12) is a different open-volume 

microfluidic device. It also allows for dispensing solutions into an open bath, and is capable of 

superfusing cells and tissue samples. However, the multifunctional pipette features a 

hydrodynamically confined flow (HFC), which is achieved by injecting a fluid stream out of the tip 

of the pipette into an open volume, and aspirating it back into the device through two adjacent 

channels (recirculation). This generates a confined volume, i.e., a virtual flow chamber, featuring a 

sharp boundary between the injected and open volume fluid. Within 20 µm from the interface, the 

concentration of a compound in the confined volume is reduced by 90%. The pipette with the virtual 

flow cell at its tip can be then positioned to a single cell, or any other object or surface element 

inside the open volume for stimulation or analysis, without affecting the surrounding liquid or 

objects in the vicinity. Similar to the Dynaflow device, the pipette features on-chip wells. It has 8 

Figure 11. The Dynaflow® chip. This microfluidic chip has 16 on-chip solution reservoirs. When 

the pressure is applied to the channel via a sealed cover, the solutions in all reservoirs are 

simultaneously pushed through individually connected microchannels, and exit into the open bath. 

In the outlet region, the microchannels are closely spaced. The patterned laminar flow from the 

channel can be maintain for approximately hundred micrometers inside the open volume, which 

can be accessed by patch pipette from the open bath. 
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solution reservoirs, four of which contain active solutions, the other four are needed to collect the 

device inflow (waste). Instead of having parallel channels, the pipette switches the solutions exiting 

a single channel, using on-chip circuitry. Each well is connected through a manifold to an individual 

channel in a computer-operated pressure controller, which sets the flow velocities for injection and 

aspiration in order to adjust the size and shape of the HCF volume. The manifold for addressing the 

individual reservoirs is integrated into the upper part of a pipette holder, which presses against the 

PDMS to seal each well individually.  

 

Four major parameters are used to control the flow of the multifunction pipette: standby pressure, 

working pressure, switching vacuum and recirculation vacuum. The standby pressure is a 

combination of comparatively low positive and negative pressures. It maintains a minimal HCF at 

Figure 12. The multifunctional pipette. The MFP has 8 wells, 4 of which are for working solution 

and the others are used for fast valveless solution switching and solution recirculation. When one of 

the solution wells is applied with a working pressure (Pon), the solution flows through the connected 

microchannel towards the tip of the pipette. At the tip region of the pipette, the solution flows into a 

valveless solution switching chamber, where the liquid in the chamber is continuously aspirated back 

to the switching wells by applying a vacuum (Vswitch ). The working solution passes through the 

switching chamber and exits from the channel opening at the tip of the pipette, where two 

microchannels are closely located on both side of the solution channel. The two adjacent 

microchannels aspirate the working solution back to the recirculating wells via a vacuum (Vrecir). 

Hydrodynamically confined flow (a virtual flow chamber) can be formed by this “push-pull” process 

on the tip of the pipette.  
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the tip of the pipette and prevents outside solution from entering it. The working pressure is the 

principle driving force for the working solutions in the pipette. The switching vacuum is used to 

enable switching of the solutions in the switching chamber, which is located in the tip, close to the 

channel exits. Recirculation vacuum, together with working pressure, are essential for controlling the 

HCF. They are required to ensure confinement of the solution upon entering the open volume. The 

two parameters are carefully balanced to adjust the inflow-to-outflow ration, i.e., the extent and 

volume of the virtual flow chamber. Except for the recirculation wells, all the microchannels 

originating from the other 6 wells are connected to the switching microchamber, which is 

continuously operating. When working pressure is applied to one working solution, the others are 

under standby pressure and routed into the switching waste wells. The selected working solution 

passes through the switching chamber and enters the open volume through the outlet channel. When 

switching to a new solution, the previously active working solution is displaced in the switching 

chamber by adjusting working pressure and standby pressure for the old and new solution. The 

outflow is thus instantly replaced by the new active working solution. The solution switching time 

required to exchange the recirculation volume is < 100 ms.  
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6. Electrophysiology techniques 
	  

6.1 Patch clamp 

	  

Electrophysiology is the study of the electrical properties (membrane potential and electric current) 

of biological cells and tissues, which ranges from studying single ion channel properties to whole 

organs like the brain, including measurements of the electrical activity of neurons. The patch clamp 

technique is a useful electrophysiological tool for studying single or multiple ion channels in cells 

[146]. The activation of ion channels changes the membrane potential by allowing ions passing 

through the membrane. Therefore, recording the changes of the membrane potential is an important 

indicator of the ion channel activity. However, the changing of the membrane potential also affect 

the ion channel function since: i) changing the membrane potential causes changes in the electric 

force to the ions flowing through the membrane; ii) many ion channels are voltage gated (voltage 

dependent activation); iii) some ion channels have the ion flow restricted to a certain membrane 

potential. Therefore, it is often desirable to control the membrane potential and record the membrane 

current directly. This is called voltage clamp. In voltage clamp, the measured potential is 

continuously compared with a preset holding potential. Any deviation of the recorded potential from 

the holding potential is instantly corrected by compensatory current injection controlled by an 

electrical feedback system. This current is then an accurate representation of the ionic current over 

the membrane under investigation. In contrast, the current clamp configuration requires that a 

constant current is applied instead, and changes in potential generated by the cell are recorded. Most 

patch clamp experiments are voltage clamp experiments. 

 

6.1.1 Patch clamp configuration 

 

The patch clamp technique requires a fluid-filled micropipette, which is brought into contact with the 

cell membrane. The pipette contains an electrode, which is connected to a high performance 

amplifier (Figure 13). By applying a slight aspiration pressure to the pipette, a tight seal is formed 

between the pipette and the cell, which has an electrical resistance of several gigaohms (gigaseal). 

When the gigaseal has been obtained, increased aspiration can rupture the cell membrane in the 

pipette tip, and the solution in the pipette becomes connected with the intracellular fluid, which
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 enables the recording pipette to measure ion channel activities from the intracellular side of the 

plasma membrane. The “patched cell” is thus ready for whole cell recording, since it records the 

Figure 13. Patch clamp procedure. When the patch pipette contacts with the target cell, slight 

aspiration is applied to make a seal between cell membrane and the pipette tip. When a tight seal is 

achieved (seal resistance greater than 1GΩ), removing the pipette tears the membrane around the 

pipette tip.  Residual membrane attached to the pipette tip reseals with the intracellular site of the 

membrane exposes to the environment (“inside out” configuration). Applying lower aspiration 

pressure (higher force on the membrane) instead of removing the pipette can rupture the cell 

membrane within the pipette tip and the whole cell patch clamp configuration is achieved. 

Removing the pipette at whole cell configuration results in an “outside out” configuration.  
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electrophysiological properties of the whole cell membrane. In addition to the whole cell recording, 

there are two configurations that can measure single channel activities. As shown in Figure 13, when 

the whole cell configuration is obtained, the pipette is gently pulled away from the cell. As a result, 

the membrane around the pipette breaks and reseals to form a new patch, which constitutes the 

outside out configuration. The inside out configuration, where a piece of membrane is extracted 

from the membrane without inversion, is technically more difficult to establish. Pulling of the pipette 

can break the membrane around the pipette, but subsequent resealing creates a vesicle, which is not 

desirable. However, in this case the outward facing membrane can be ruptured by air exposure, 

which can be achieved by briefly lifting the pipette tip out of the bath solution. Outside out and 

inside out patching configurations provide access to single channel activity by exposing the 

extracellular and intracellular site of the single channel, respectively, to different stimuli. 

 

6.1.2 Whole cell recording 

 

The whole cell configuration is obtained by breaking the cell membrane under the pipette so that the 

electrode in the pipette has direct electrical contact with the cytoplasm. The equivalent circuit for the 

cell configuration is showed in Figure 14. The series circuit consists of the pipette resistance Rpipette, 

the access resistance Raccess and the membrane resistance Rm. The sum of Raccess and Rpipette is 

sometimes referred to a series resistance (Rseries = Raccess + Rpipette). The membrane resistance is the 

largest current limiting resistor, so this configuration allows the observation of current through Rm. 

Because this current is the sum of currents through all activated ion channels in the membrane, it is 

named whole-cell current or macro-current.   

The membrane capacitance imparts a delay on potential change of the membrane (stored charge), so 

the membrane capacitance is a limiting factor in action potential propagation speed. Similarly in 

whole-cell recording, the membrane capacitance affects the voltage clamp time characteristics, and 

any change in holding potential will be delayed. There are some methods to quantify and minimize 

the delaying effects. The quality criteria for whole cell recording are up to the experimenter, but 

typical criteria could be the following:  

1. The seal resistance (Rleak) must be better than 1 GΩ (gigaseal). Seal resistance should be as 

high as possible to minimize short-circuiting caused by the leakage of the seal. 

2. The series resistance must be lower than 20MΩ and stay that way throughout the recording.  

Voltage clamp of the cell membrane is adversely affected by the series resistance. 
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3. Cell capacitance and resistance must be stable. Membrane and seal leaking will increases the 

response current.  

 

6.2 Extracellular recording 

 

A far less demanding technique, extracellular recording, involves placing a sharp microelectrode 

(similar to the glass pipette in patch-clamp experiments) in close proximity to the excitable cell and 

the reference electrode at some location in the extracellular fluid. This arrangement records potential 

changes at the membrane surface rather than across the membrane, in contrast with patch clamp 

technique. Unlike intracellular recordings, individual EPSPs cannot be recorded by extracellular 

recording, since the current activity dramatically decreases at the distance away from the membrane, 

where the recording pipette is placed, and the size of the measured action potential will also be 

reduced significantly. Extracellular techniques are therefore better suited to record the activity of an 

entire population of cells, where the sum of the simultaneous activated individual EPSPs can easily 

be detected and measured by extracellular recording, which is a commonly used electrophysiological 

technique in the neurological studies.   

Figure	  14.	  Equivalent circuit for the whole-cell recording configuration.	  
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The general electrical circuitry is illustrated in figure 15, where the microelectrode is placed in a 

neural tissue. A reference electrode is also present in the solution where the tissue is placed in. The 

local current generated by the activation of ion channels causes a large change in electrical potential 

between the extracellular medium and the interior. The induced current between the interior of the 

recording electrode and the extracellular medium, due to the potential change, changes the potential 

difference between recording electrode and reference electrode, which is then measured by the 

voltage meter. The measured signal from the voltage meter represents the sum of the synaptic 

activities close to the recording electrode. Since the recording electrode is placed in the extracellular 

space, the membrane activity of any adjacent neuron has the potential to be recorded. The tip size of 

the recording pipette determines the precision of the recording. When the tip size is about 1µm, the 

recoding pipette can detect activity of single neuron, which is called single-unit recording. A larger 

recording pipette is able to record simultaneous activities of several neurons, which is often referred 

to as multi-unit recording, which can involve up to thousands of cells. Even though the potential 

change due to single synaptic activation is too small to be detected, the local field potential, which is 

the synaptic activities within a volume of tissue, can easily be measured extracellularly and used for 

studying synaptic activity.  

The extracellular recording technique is comparatively easy to apply, and causes much less damage 

to the cells. Due to the averaging over many individual signals, the extracellular recording technique 

can only be used to indicate the generation the action potential and activation of the synapses, but 

not for obtaining precise and detailed dynamics and kinetics. Moreover, the presence of a cell 

population which can be simultaneously activated is of importance, thus the extracellular recording 

is not suitable for single cell analysis. 
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Figure 15. The extracellular recording. The synaptic activity due to the stimulated axon is measured 

with a recording pipette placed in the vicinity of the cell membrane. The recorded signal consists of 

three parts: (a) is the artifact due to the stimulation current; (b) is the presynaptic activation due to 

the stimulation current generated action potential; (c) is the excitatory postsynaptic potential. 
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7. Rat brain slice preparation 
 

In vitro brain slices has become a powerful experimental model system for neurological studies due 

to its preserved original neural network. Using brain slices is especially valuable in studying specific 

mechanism of drugs, since the slice environment can easily be controlled and manipulated, i.e., the 

content and the temperature of the extracellular solution. The preparation of rat brain slices is the 

first and also the most critical step for conducting a successful experiment. Since the brain obviously 

undergoes severe damage during the cutting of slices, the excellence of the preparation process 

directly determines the viability of the slices and so the experimental quality. Therefore, the slice 

preparation process must be well performed.  

Figure 16 is a general illustration of the rat brain slice preparation process used in this thesis work. 

The rat is first anesthetized with inhalation anesthetics (i.e., isoflurane) and decapitated. The brain is 

then quickly but carefully removed from the scull and placed in a cold, pre-oxygenated physiological 

buffer solution (pH 7.4) with low calcium (0.5 mM) and high magnesium content (6 mM). The 

combination of low calcium and high magnesium content together with decreased enzyme activity as 

a result of the low temperature, protect the tissue from further damage. After a short cooling time 

(30s to 1min), the brain is taken out of the buffer solution and placed in the slicing device, for 

example a tissue chopper or a vibrating microtome. In general, the basic structural outline of the 

brain slices is visible to the naked eyes. Therefore, the desired section of the brain can be observed 

referring to the rat brain atlas, while slicing, without the aid of microscope. The thickness of the 

slices is an important factor for the experiment. The thicker slices remain better cellular network, 

which has better correlation with the original structure in the brain. But the optical transparency of 

the thick slices (> 500 µm) is not optimal for many experiments (i.e., electrophysiological studies). 

Additionally, the anaerobic glycolysis and the accumulation of lactate, due to the insufficient 

oxygen supply to the central layers of the slices, have potential injury to the slices and decrease the 

viability [147, 148]. Numbers of dual-superfusion chambers have been developed for improving the 

viability of thick brain slices, where the slices are effectively superfused with solution on both the 

top and bottom surfaces [10, 149, 150]. Since the chambers are closed, they are not compatible with 

electrophysiological techniques. Thin slices (< 200 µm), on the other hand, have better optical 

transparency, improved nutritional supply and waste removal, but the reduced cell content makes 

them less relevant to their original in vivo structure and function. Electrophysiological measurement 

of the slices also becomes difficult due to the reduced measurable cell population. The thickness of 

the slices used in this thesis work was 400 µm, which had good optical transparency, sufficient 
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oxygen supply. The thickness of about 10-15 cell layers (400 µm) also made it suitable for 

electrophysiological studies.  

Figure 16. The brain slice preparation process. The rat is anaesthetized with inhalation anesthetics. 

The rat brain is immediately isolated form the skull and place into a cold and oxygen saturated 

buffer solution. The cooled brain is cut into slices and place in continuously oxygenated buffer 

solution for recovery.   
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The sliced tissue samples are placed in a holding chamber with continuously oxygenated 

physiological buffer solution at room temperature for recovery. The magnesium concentration is 

remained, while the calcium concentration is increased to 2mM, which is similar to the physiological 

calcium concentration in the brain [151]. After at least 90 min of recovery, the slices were 

transferred into a recording chamber where they were fixed by a net in a continuously superfusing 

physiological buffer solution saturated with oxygen. Since the buffer in the recording chamber is 

usually controlled at higher temperature than the recovery chamber to represent the physiological 

conditions, an adaptation period (15-30min) is needed for the slices before the experiments. Note 

that 1.8g/L (10 mM) glucose is added in all the physiological buffer solutions used above. The key 

role of glucose in the body is energy provision, and the brain depends on a sufficient glucose supply 

to operate normally [152].  

In general, the basic steps of different brain slice preparation techniques are similar, including 

anesthetizing the animal, isolating the brain and preparing the slices. The major difference is in the 

composition of the cutting solutions. For example, replacing the NaCl in the cutting solution with an 

equimolar concentration of sucrose has showed great value of minimizing the excitotoxic damage 

during slice preparation [153]. Some laboratories have also tried choline-chloride [154] and different 

glutamate receptor antagonists [155, 156], with excellent results. 

The viability of the slices during the experiment is mostly dependent on the maintenance of the 

physiological environment and the experimental stimulations. The lifespan of an acute brain slice is 

approximately 6–12 hours [157], while chemical stimulations can accelerate the cell death due to cell 

toxicity. Thus, the application of bioactive compounds via whole slice perfusion stresses the whole 

slice significantly, while localized superfusion via microfluidic devices stimulates only a small 

region and keeps all other parts of the slice unaffected, which introduces less stress on the viability 

of the slice, and increases reusability of the sample. Compared with the whole slice perfusion 

chamber, more consecutive experiments can be performed on a single slice, which reduces the 

number of laboratory animals to be sacrificed for a study. 
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8. Microscopy   
 

Microscopy is a fundamental optical technique for magnifying and studying small objects, which are 

not visible by the naked eye. Microscopy can be used as either a visualizing tool for assisting the 

operation, e.g. patch clamp, or a direct measurement technique (fluorescent microscopy). In this 

thesis work, laser scanning confocal microscopy was used for determining the cholesterol content of 

the cell membrane with the fluorescent dye Filipin, which selectively binds to membrane-intrinsic 

cholesterol [158] and for measuring the TRPV1 ion channel permeability with the DNA stain YO-

PRO, the uptake of which was controlled by the TPRV1 ion channel activity of the investigated cells.  

	  

8.1 Fluorescence 

 

Fluorescence is the emission of light by certain molecules (fluorophores or fluorescent dyes) that has 

absorbed light. A simplified Jablonski diagram of the multi-stage fluorescence process is shown in 

figure 17. Stage 1 is the excitation event, where the fluorophore absorbs a photon of defined energy, 

supplied by an external light source source such as a laser, and creates an excited electronic singlet 

state (S1'). Stage 2 is the excited state that typically lasts for 1–10 nanoseconds. During that ime the 

electron in the excited state (S1') relaxes to the lowest vibrational level (S1), from which fluorescence 

emission originates. The emission event is the third stage of the process, where the fluorophore 

returns to its ground state S0 by emitting a photon. Due to energy dissipation during the excited-state 

lifetime, the energy of the emitted photon is lower, and therefore of longer wavelength, than the 

excitation photon (Stokes shift). Fluorescence emission is not the only available means for the 

excited molecules to return to the ground state (S0). There are several other processes, which are 

omitted in the figure for clarity. The fluorescence quantum yield, which is the ratio of the number of 

fluorescence photons emitted (Stage 3) to the number of photons absorbed (Stage 1), is a measure of 

the relative extent to which these competing processes occur [159].  

Fluorescence has been widely used in biological studies, and a large number fluorophores has been 

developed, and are commercially available for specific purposes. For instance, fluorophores can be 

used as a reporter for gene expression [160], a specific ion detector [161], or a membrane probe [162] 
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8.2 Laser scanning confocal microscopy 

 

Laser scanning confocal microscopy (LSCM) is an imaging technique widely used in biological 

research, e.g., cell biology, genetic, microbiology and protein analysis. LSCM is a technique for 

obtaining high-resolution optical images with depth selectivity by limiting the field of view with 

apertures (pinholes). The sample is laterally scanned by using a point laser source and a point 

detector. The intensity values are acquired point-by-point and reconstructed with a computer to form 

an image. Figure 18 illustrates the basic principle of LSCM, where a laser beam passes through a 

light source aperture and is then focused by the objective lens onto a selected plane in the specimen 

to excite the fluorophores therein.  

Figure 17. Simplified Jablonski diagram for the Fluorescence process. The electronic states S, 

depicted by horizontal lines, are energy levels, between which crossover is possible by and uptake 

(excitation) and release (emission) of photonic energy. Processes typically competing with the 

emission process are not shown.  
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Fluorescent light originating from the illuminated spot together with any scattered and reflected laser 

light is then re-collected by the objective lens. A dicroic mirror separates incident light from 

emission, which passes through and reaches the detector through an exit pinhole, where only the 

light from the focused plane can pass through, while the light originating from out-of-plane emission 

from the sample is blocked by the aperture wall. The photodetection device is usually a 

photomultiplier tube (PMT) or an avalanche photodiode, which convert the detected photons into an 

intensity value of a pixel that is recorded by a computer. Three-dimensional image of the sample can 

Figure 18. Fluorescence confocal microscopy. Only light form the focal plane can pass through 

the detector pinhole aperture and reaches the detector, while lights from other parts of the sample 

are scattered on the aperture wall. The red arrows represent light emitted from the focal plane, 

which reach the detector. Out-of-plane emission (dash lines) is rejected by the detector pinhole.  
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be obtained by LSCM, if the focal plane is systematically shifted along the axis of the objective lens, 

and the series of 2D recordings are finally combined. 
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9. Summary of results 
 

The three papers that comprise this thesis have a common theme: the multifunctional pipette, a new 

microfluidic device, was employed to administer various active chemical compounds to biological 

tissue. This includes cell lines with artificially expressed human nociceptive ion channels (Paper 1) 

as well as acutely prepared rat brain slices, either from the prefrontal cortex (Paper 2) or the 

hippocampus (Papers 2 and 3). Intracellular recording was performed by the whole cell patch clamp 

method (Paper 1) or by means of conventional sharp microelectrodes (Paper 2). Extracellular field 

potentials were used to monitor glutamatergic synaptic transmission in brain slices and its blockade 

by a specific antagonist (Papers 2 and 3). In addition to the electrophysiological recording, high 

resolution imaging was employed via fluorescence confocal microscopy to study uptake of a specific 

marker in single cells (Paper 1). 

 

Paper I 

 

The TRPV1 is a nociceptive ion channel, which is widely expressed in both peripheral and central 

nervous system. Its importance in inflammatory pain sensing (heat hyperalgesia) and involvement in 

mediation of LTD indicates that pharmacological modulation of its function may offer valuable 

therapeutic treatment not only of pain but also for psychological conditions such as anxiety. The aim 

of this study was to investigate the effect of cholesterol depletion of plasma membrane on ion-

permeability of the TRPV1 ion channel. The ion-permeability properties of TRPV1 were 

investigated with whole-cell patch-clamp and YO-PRO uptake rate studies using laser scanning 

confocal microscopy on a Chinese hamster ovary (CHO) cell line expressing this ion channel. The 

TRPV1 exhibits dynamic ion selectivity, which is time and concentration dependent permeability of 

the ion channel to large cations. The dynamic permeability was used as the indicator for the pore 

dilation of TRPV1. The depletion of the cholesterol in the plasma membrane was found to impair the 

dynamic permeability to large cations N-methyl-D-glucamine (NMDG) and fluorescent dye YO-

PRO during sustained activation with capsaicin and protons (pH 5.5) under hypocalcemic conditions. 

We found that the depletion level of cholesterol required for decreasing the permeability of TRPV1 

to large cations is depended on the type of the agonist, as depletion of cholesterol by 35% was 

sufficient to significantly decrease the permeability under activation with 1µM capsaicin, whereas, 

when protons (pH5.5) was used as agonist, 54% depletion of cholesterol was needed for inhibiting 
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the dynamic permeability of TRPV1. These results propose a novel mechanism of cellular 

cholesterol-depletion depended modulation of TRPV1 permeability, which may provide a novel 

pharmacological target for alleviating neuropathic pain and improving cognitive behavior.  

 

Paper II 

 

In vitro brain slices constitute a powerful experimental model system for exploring neuronal 

function at the network, cellular, synaptic, and single channel levels, and studying pharmacological 

effects on neurons and neuronal networks related to symptoms in diseases of the brain in an 

environment which preserves the cellular network, such as the organization in cell layers. Among the 

various fluidic control technologies, microfluidic devices are becoming powerful tools for 

pharmacological studies using brain slices, since these devices overcome traditional limitations of 

conventional submerged slice chambers, and provide better spatiotemporal control over drug 

delivery to specific regions in the slices. The main focus of this paper is to introduce a 

multifunctional pipette (MFP), which we have recently developed, to brain slice studies. The MFP, 

which is a novel free-standing hydrodynamically confined flow (HFC) based microfluidic device, 

allows diverse superfusion experiments, such as testing the effects of different concentrations of 

drugs or drug candidates on neurons in different cell layers with high positional accuracy, affecting 

only a small number of cells. We have demonstrated the use of the method with electrophysiological 

recordings of pyramidal cells in prefrontal cortex brain slices from rats and determined the spatial 

and temporal characteristics of the superfusion, which included a three-fold gain in solution 

exchange time, a well-defined superfusion region on the slice specimen, and greatly reduced reagent 

consumption. 

 

Paper III 

 

The advantages in using the MFP for brain slice studies have been successful demonstrated in paper 

II. In paper III, we have characterized the ability of the MFP for highly localized perfusion of drugs, 

using hippocampal slices from rats. The hippocampus, with its important role in memory and 

learning and special anatomical structure (i.e., distinctly separated layers), has not only been 

intensely used as a model for pharmacological studies, but has also become a useful platform for 
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developing new technologies in neuroscience research. The MFP demonstrated the ability to 

selectively perfuse one dendritic layer in the CA1 region of hippocampus with a competitive AMPA 

receptor antagonist, CNQX, while not affecting the other layers in this region. The spatial profile 

measurement showed the benefits of the hydrodynamic confinement in sharpening the spatial 

selectivity in brain slice experiments. The concentration-response curve revealed the efficient drug 

delivery capability of the new microfluidic device, which is comparable with that of whole slice 

perfusion. However, the required drug amounts per experiment were, in comparison to conventional 

bath superfusion, smaller by several orders of magnitude. 
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10. Concluding remarks 
	  

This thesis work investigates the application of microfluidic devices on the electrophysiological 

studies of cell communication, which is conducted by the activation of ion channels. The work has 

been mainly focused on studying the effect of cholesterol on dynamic ion permeability of the 

TRPV1 ion channel and the application of the multifunctional pipette on the brain slice studies.  

Cholesterol content in the plasma membrane has showed important roles in the functioning of the 

TRPV1 ion channel, which is a nociceptor ion channel and involved in the transmission and 

modulation of pain, as well as the integration of diverse painful stimuli [49]. In this work, the effect 

of the membrane cholesterol on pore dilation of the TRPV1 ion channel has been studied for 

contributing valuable data on better understanding of its role in pain, which may provide therapeutic 

values. We have discovered that depletion of the membrane cholesterol reduced the dynamic ion 

permeability of the ion channel activated by different agonists, which implies that cholesterol can be 

a potential pharmaceutical target for pain.  

In the brain slice studies, highly localized delivery of active solutions has become one of the major 

goals of designing microfluidic devices for the field. Localized drug administration on brain slices 

may reveal finer details of the mechanism of drug action, since the neural networks have different 

connections and functions in different regions of the slice. For example, one pyramidal neuron cell 

in the CA1 region of the hippocampus receives axonic projections at different parts of the dendrites 

from totally distinct brain regions [163]. In this context, the multifunctional pipette has been 

introduced as superfusion device in brain slice studies. The multifunctional pipette is a freestanding, 

microfluidic device, which utilized hydrodynamically confined flow to achieve well-controlled and 

highly localized solution exchange. We developed an experimental setup, performed feasibility 

studies, characterized device performance and compared it with common superfusion techniques. 

With the advantages of a high-resolution spatiotemporal profile, efficient drug delivery capability 

and reduced reagent consumption, the multifunctional pipette has showed great potential and value 

in advanced pharmacological studies on brain slices. The strictly controlled localized drug 

administration ability of the multifunctional pipette improves the usability of the slice by allowing 

more data to be collected from a single tissue. As a result, the tissue culture expenses can be reduced 

significantly, which reduces the number of laboratory animals to be sacrificed for a study. Our 

research has opened pathways to more advanced experiments in future studies, where we will use the 
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multifunctional pipette in various pharmacological studies not only on brain slices, but on any 

tissues where localized delivery of the drugs is desirable. 

As a newly introduced concept, improving of the device and optimizing of the method is necessary. 

For example, the fabrication material PDMS is less compatible with organic solvents, and the 

absorption to certain drugs happens. The PDMS can be replace by some other materials with 

different physical and chemical properties such as silicon, glass and various types of plastics, which 

may introduces more complicated fabrication process, but the pipette will benefit with better solvent 

compatibility, reduced drug absorption. Other improvements can also be achieved by changing the 

fabrication material, including reduced channel size, which introduces smaller footprint and further 

improve the spatial resolution of the multifunctional pipette. Additionally, the quality of the slices 

can be improved by using more advanced slicing techniques. For example, comparing with slice 

chopper and vibrating microtome used in this work, the laser microtome has reduced interaction 

zone of the cut and introduces much less damage to the tissue during the slicing process, resulting in 

smoother cutting surface and better slice viability.     

Open volume microfluidics, and particularly the HCF variant of it, is a promising technological 

development, which has the potential to greatly benefit neuropharmacological studies on brain slices.  

In particular freestanding devices, which can be easily moved to target selective regions on a 

specimen, allow for new creative approaches, which are not possible in conventional perfusion 

chambers. The multifunctional pipette has the ability to provide the neurosciences with extended 

experimental opportunities, which are greatly needed to address the increasing occurrence of 

neurodegenerative diseases in our aging society. 
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