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1 Introduction

Transonic tones in convergent-divergent nozzles have received an increased attention in recent years.
These tones, which result from a resonance phenomenon associated with a shock inside of the divergent
part of the nozzle, are interesting as a flow phenomenon in itself and from a engineering viewpoint since
resonance is always a concern in the design of high speed flow devices. Zaman et al.[1] investigated
transonic tones in a convergent-divergent axisymmetric nozzles experimentally. The resonance fre-
quencies where obtained through spectral analysis of microphone data. The results showed an increase
in frequency with increasing nozzle pressure ratio with a staging behavior where high frequency odd
harmonic stage resonates at lower pressure ratios and a lower frequency fundamental stage resonates
at higher pressure ratios. It was further concluded that the resonance mechanism involved either a
standing 1/4 wave or a 3/4 wave between the shock and the nozzle exit depending on at which stage
the resonance took place. For the pressure fluctuations, this would result in a wave node near the noz-
zle exit and a antinode just downstream of the shock. The results further showed that the resonance
frequency, within a stage, inversely scales with the distance from the foot of the separation shock to
the nozzle exit. Ching and Zaman [2] carried out a numerical investigation of the phenomenon and
showed that the resonance frequencies could be predicted with reasonable accuracy from an axisym-
metric simulation.
Large Eddy Simulations by Olson and Lele [4] of a separated flow inside a planar-nozzle confirmed that
the frequency of transonic resonance is dependent on the distance from the shock to the nozzle exit.
They also suggest that there exists a feedback loop between the separated shear layer and the shock. In
this feedback loop, information travels downstream from the boundary layer shock interaction region
and is convected through the shear layer while a pressure wave travels upstream through the subsonic
region downstream of the shock.
In the present study the Dynamic Mode Decomposition (DMD) algorithm, proposed by Schmid [3],
was applied to the same nozzle investigated in Ref.[2] and Ref.[1] in order to find out if the algorithm,
when applied to a perturbed URANS flow simulation, is capable of predicting transonic resonance
frequency. The DMD uses a set of observation data from a nonlinear flow simulation, and performs a
modal decomposition under the assumption that the flow dynamics represented in the data are linear,
see Schmid [3]. The observation data, in this case, consisted of snapshots from a 2D axisymmetric
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URANS simulation of the perturbed nozzle flow. The DMD algorithm employs the singular value
decomposition (SVD) to form an orthogonal projection base to build a system matrix of reduced size,
which can be subjected to direct eigendecomposition. Some of the eigenmodes of the reduced system
will then be good approximations of the eigenmodes of the full system.
Results for two different nozzle pressure ratios are presented. In both cases, modes with frequencies
close to what was observed in the experiments by Zaman et al.[1] were detected. These modes were
either growing or had a relatively small damping compared with other modes detected in the DMD.
Furthermore, higher harmonic modes were found as well. Analyses of the temporal behavior of these
modes show a standing pressure wave between the shock and the nozzle exit.

2 Method and Case

2.1 Geometry and Computational Mesh

0.5Dt
2.5Dt

1.7Dt

6.7Dt 72Dt

53Dt

r

x

lip
P0

T0

Upstream boundary

Entrainment boundary

Domain outlet

Centerline

Figure 1: Schematic representation of nozzle geometry and computational domain.

Figures 1 and 2 show the geometry of the nozzle and the computational mesh respectively. The
throat diameter of the nozzle is Dt = 0.00762 m. Other dimensions in terms of throat diameter are:
inlet diameter Din = 5.0Dt, outlet diameter Dout = 1.33Dt. The area ratio between the exit and the
throat is 1.77. The distance from the throat to the exit is L = 2.5Dt. The thickness of the nozzle lip
is 0.44Dt.

Figure 2: The computational mesh showing the geometry of the nozzle.

The computational mesh used is two-dimensional, block-structured and non-orthogonal. The mesh
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consists of 9 blocks and roughly 66,000 cells. The bulk of the cells are located within the nozzle and
in the immediate surroundings downstream of the nozzle exit as seen in Figure 2. The computational
domain extends approximately 72Dt and 53Dt from the throat in the axial and radial directions
respectively as indicated in Figure 1.

2.2 Boundary Conditions and Mean Flow

Boundary conditions for the RANS/URANS simulations were as follows; On the centerline axis, sin-
gularity conditions were applied. At the domain exit a static pressure Pa was prescribed. Absorbing
boundary conditions based on the method of characteristics were applied on the nozzle inlet boundary
and the entrainment and upstream boundaries of the domain.
At the inlet, density, axial velocity and, pressure were prescribed calculated from a given inlet to-
tal pressure, P0, total temperature, T0 and inlet to throat are ratio, using isentropic flow equations.
A total temperature of 298K was constant over the whole domain and the ambient pressure was
Pa = 99284.505 Pa in both cases. The simulations were carried out using the code volsol++, jointly
developed at GKN Aerospace Sweden AB and Chalmers University of Technology.

2.3 Cases

Two cases of different nozzle pressure ratios were investigated in the present study. Figure 3 a) and b)
show the Mach number distribution for Case I and Case II, respectively. These flow solutions, acquired
from a steady state RANS simulation, were used as reference states in the DMD algorithm, which is
explained in section 2.4.
Case I, which had a pressure ratio of P0/Pa = 1.42, featured a restricted shock separation (RSS) in
which the separated flow reattached to the wall, forming a close circulation bubble downstream of the
shock. Case II had a higher pressure ratio of P0/Pa = 2.39 and a free shock separation (FSS) where
the separated flow did not reattach to the wall and the recirculation zone extended all the way to the
exit of the nozzle, forming an “open” separation bubble. This formed a “lambda foot” shock and a
shock cell pattern, or a shock train, downstream of the separation. For further reading on nozzle flow
separation the reader is referred to Ref. [5].
As mentioned above, Zaman et al. [1] reported a staging behavior of the tone frequency as the nozzle
inlet pressure was increased. This was registered as a sudden change of the transonic tone from a high
frequency to a lower frequency. This jump corresponded roughly to a jump from a third harmonic
frequency to a fundamental frequency (first harmonic). In Ref. [1] it is suggested that this shift occurs
when the flow transitions from a restricted flow separation with a relatively small separation bubble,
as in Case I, to a “lambda foot” shock pattern with a separation bubble of size comparable with the
distance from the separation to the nozzle exit, as in Case II, see Figure 3 b). It was further concluded
in Ref. [1] that there seemed to be, on a time-average scale, a closed separation bubble in both cases.
They do not show, however, any evidence explicitly showing that it is in fact so for the lower frequency
resonance stage. There is therefore no strong reason to doubt that the FSS separation observed in the
RANS solution presented here is a false prediction of the flow field.

2.3.1 On Separation Location

The contour of the divergent part of the nozzle has a conical form with a relatively low divergence
angle. As a consequence, a small change in the inlet pressure results in a relatively large shift in the
separation location. This characteristic makes it difficult to predict the separation correctly in the
RANS simulation. Both a realizable k - ε and the Menter-SST turbulence models failed to predict
the location very accurately. The realizable k - ε model was chosen since it uses wall functions and
therefore does not need to have the boundary layer resolved as the Menter-SST model does.
Another intriguing phenomenon observed in Ref. [1] is worth mentioning: The separation location for
a number of different operating points was recorded and an interesting behavior was noticed; For low
nozzle pressure ratios the point of separation moves downstream with increased pressure ratio. At a
certain point the separation location moves back upstream and then proceeds to move downstream
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Figure 3: Mach number distribution in the reference flow states.

with increasing pressure ratio but at an increased rate (this can be seen in Figure 16 in [1]). This is
probably linked to the abovementioned transition from RSS flow to a FSS flow. A similar and more
common shift in separation location is observed in nozzles where the flow switches first from FSS to
RSS as the inlet pressure increases, causing the separation location to jump downstream [5]. Given
this information, it becomes relevant to compare our mode frequencies with experimentally observed
frequencies both with respect to nozzle pressure ratio and separation location.

2.4 Dynamic Mode Decomposition

The DMD algorithm used in the current study is the SVD variant proposed by Schmid[3]. A given set
of flow field snapshots, {q0, ..., qm} sampled at a fixed rate, are organized into a data matrix

Qm−1
0 = {q0, q1, ..., qm−1}, (1)

for discrete time steps k = 0 to k = m− 1 and,

Qm
1 = {q1, q2, ..., qm}, (2)

for discrete time steps k = 1 to k = m. Each snapshot, say of size n, can contain all or some of the
flow properties in all or some of the computational grid cells. It is easy to show that if we assume that
the linear operator B applies to this data such that Bqk = qk+1 then

BQm−1
0 = Qm

1 . (3)

The data matrix Qm−1
0 is factorized using the Singular Value Decomposition (SVD) according to
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Qm−1
0 = UΣWT , (4)

where U is a n x m orthogonal matrix whose columns are referred to as the left singular vectors of
Qm−1

0 . WT is a m x n orthogonal matrix whose rows are referred to as the right singular vectors of
Qm−1

0 . Σ is a m x m diagonal matrix containing the singular values of Qm−1
0 . The singular values, σi

are ordered in such a way that the largest singular value is placed on the first diagonal element and
smallest on the last diagonal element, that is σ0 > σ1 > ... > σN−1. The projection of B on to the
subspace spanned by the left singular vectors can now be written as follows:

UTBU = UTQm
1 WΣ−1 = Sm. (5)

Sm is now a reduced matrix of size m x m and can be subjected to direct eigendecomposition to solve
Smyi = µiyi where µi and yi are the i

th eigenvalue and eigenvector of Sm respectively. We then define
the ith DMD mode of B, ϕi, as

ϕi = Uyi. (6)

In practice, some of the eigenvalues of Sm converge to the eigenvalues of B.

The DMD modes are scaled so that they fulfill

qk =
m∑
i=0

µk
i ϕi , k = 0, ...,m. (7)

The norm of the modes can thus give an indication of how much each mode contributes to each snapshot.
The eigenvalues, µ, are decomposed in to a real and an imaginary part according to µ = ξ + iω. The
real part, ξ, represent the damping or growth of the eigenmode and the imaginary part, ω = 2πf ,
represents the temporal fluctuation with frequency f . The relationship between µ, the damping factor
ξ, and frequency f is

Arg(µ) = 2πf∆t+ 2πb , (8)

ξ =
ln(Abs(µ))

∆t
, (9)

where b is an unknown integer. To determine the value of the integer b, additional work is required
such as measuring the wavelength of acoustic waves which could be visible in the flow field of the
corresponding mode.

Note that the temporal evolution of a mode ϕk can be computed according to

ℜ(ϕke
ωteξt) = [ℜ(ϕk) cos(ωt)−ℑ(ϕk) sin(ωt)] e

ξt. (10)

2.4.1 Exciting the Flow Field and Sampling

The URANS simulations for both of the investigated cases did not experience transonic resonance but
rather, reached a fairly steady flow condition. In order to capture the dynamics of the flow field it
was necessary to disturb the flow field and collect snapshots at a fixed rate as the disturbance died
out. This was done by restarting the URANS solver with an updated inlet pressure from a converged
solution obtained for a lower nozzle pressure ratio. The snapshots were then collected as the flow field
converged toward a new steady state. In Cases I and II the solver was restarted from P0/Pa = 1.28
and P0/Pa = 2.04 respectively. The results of the DMD can be sensitive to how the flow is disturbed
and the objective was to excite as many modes as possible. The flow was sampled at 66,667 Hz
giving a Nyquist frequency of 33,333 Hz. The DMD results for Cases I and II are based on 865 and
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700 snapshots respectively. Therefore, the expected frequency resolution of the results was between
approximately 100 Hz, corresponding to the slowest fully resolved cycle, to 30,0000 Hz. There is
however no theoretical limitations to how low frequency DMD can capture [6]. The RANS mean flow
solutions that were introduced in Section 2.3 were subtracted from the snapshots in each case. It
should be noted that the mean flow solution was not the ensemble average of the snapshots as that
would result in the DMD algorithm to reduce to a temporal discrete Fourier transform of the data, as
Chen et al.[6] has shown.
One of the advantages of the DMD method is that it is possible to use some or all of the flow variables
as an input for the algorithm. In the following analysis the primary results were obtained using pressure
fluctuation p′ as the input variable except for in Figure 9 where the axial momentum fluctuation, (ρu)′,
was used. A fluctuation, here, means the deviation of the snapshot data from the RANS reference
solution.
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Figure 4: Case I: A logarithmic mapping of the DMD eigenvalues which separates the modes
onto the unstable, right, and stable, left, complex half planes. Shown for different singular value
cut off ic = 300, 400 and 500.

3 Results

3.1 Case I

The columns of the projection base U , from the SVD, contain the orthogonal coherent structures of
the flow data and each ith column, also referred to as the left singular vector ui, corresponds to a
singular value σi such that BTBui = σ2

i ui. The highest singular value corresponds to the vector which
accounts for the greatest variance in the data set. It is therefore logical to omit some of the singular
vectors that account for the lowest variance. Figure 4 a) shows, for Case I, a logarithmic mapping
of the DMD eigenvalues according to ϕ = log(µ)/∆t which separates them onto the unstable, right,
and stable, left, complex half planes. The figure shows the DMD eigenvalues using different singular
vector cut off ic, that is, using the first 300, 400 and, 500 singular vectors out of a total of 865 in Case
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Table 1: Frequency and damping for the selected DMD modes of Case I.

Mode Frequency f damping factor ξ
1A 2355 Hz -926.48 s−1

1B 6188 Hz -0.65 s−1

1C 12377 Hz 4.89 s−1

1D 18567 Hz 13.36 s−1

1E 24754 Hz 1.35 s−1

1F 30945 Hz -8.54 s−1

I. The figure depicts a great scatter of the eigenvalues between different cut off values. There exists,
however, a number of eigenvalues that remain relatively unaffected by the cut off, which indicates
that they are well resolved and reliable. These modes have been marked in the figure and selected for
further analysis. Table 1 lists their respective frequencies, f , and temporal damping factor, ξ. Their
frequencies have been verified by measuring the wavelengths of acoustic waves visible in the ambient
flow of the modes. Looking at the table it becomes clear that Modes 1C to 1F, are the second to fifth
harmonics of Mode 1B. Furthermore, Modes 1B to 1F have critically low decay/growth rates (|ξ| is
low). Mode 1A however, is significantly damped with a frequency corresponding roughly to one third
of the frequency of Mode 1B. This is because modes 1B to 1F are odd harmonics of Mode 1A as we
will see in the following analysis.
Figures 5 and 6 show the development of the pressure fluctuation, p′, along the nozzle wall and
centerline, respectively, over one oscillation cycle for Modes 1A and 1B. The wave profiles are computed
according to Equation 10, excluding effects of damping, that is, ξ is set to zero. The values of p′ are
plotted 20 times, with a fixed time interval, over one oscillation cycle with the starting profile shown
in red. Figure 5 a) and b), show the wall pressure fluctuations of Modes 1A and 1B respectively. They
show that these modes have a similar fluctuating behavior as predicted in Ref.[1] with a standing 1/4
wave in Mode 1B and a standing 3/4 wave in Mode 1B. That is if we consider the wave form between
the antinode just downstream of the shock, at x/L ≈ 0.1, and the nozzle exit at x/L=1.0.
We further observe that the 1/4 wave has a clear node at the nozzle exit whereas the 3/4 wave has a
relatively fixed node at x/L ≈ 0.4. Moving further downstream along the 3/4 wave we see a suppression
of the fluctuations near the exit rather than a fixed node. Looking at the pressure fluctuations along
the nozzle centerline of Modes 1A and 1B in Figures 6 a) and b) respectively, we see that the centerline
wave near the shock differs from the wall wave. The amplitude is relatively greater close to the shock,
corresponding to a stronger shock at the center followed by a steep drop to negative values. These
characteristics are, in principal, shared by the two modes but they differ greatly downstream of that
area. Notice in particular the waves being transported downstream of the exit in Mode 1B, indicated
by the crossing of the lines. This is in contrast to almost complete amplitude suppression in Mode 1A
in the same region.
Figure 7 shows that Mode 1C has similar behavior as mode 1B but with half the wave length, corre-
sponding to the doubled frequency. Notice the fixed wave node at x/L ≈ 0.7 in Figure 7 a). Animation
of the wave movement reveals that downstream of that node, the wave travels downstream and up-
stream of it the wave travels upstream.
Figure 8 shows the pressure fluctuation field, p′, of Modes 1A to 1F. A clear pressure wave coming out
of the nozzle is observed in all cases and generally they all have similar flow structures with different
wave lengths depending on their frequency. This is in accordance with observations made in Figures 5
and 7.
A weak influence from the shear layer is visible in the pressure field resulting in, primarily for the
higher harmonics, a slight phase shift and difference in amplitude between the jet core and shear layer.
Figures 9 a) and b) show the axial momentum fluctuation field (ρu)′ of modes 1A and 1B respectively.
The figure shows that the influence from the velocity difference between the jet core, shear layer and,
the ambient is much greater in this case as can be seen by the high phase shift between those areas.
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(a) Mode 1A, f = 2355 Hz, wall.
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(b) Mode 1B, f = 6188 Hz, wall.

Figure 5: Case I: Development of the pressure fluctuation, p′, along the nozzle wall over one
oscillation cycle. The p′ values are plotted 20 times at a fixed rate over one cycle with the
starting values indicated by the thicker red profile. The nozzle throat and exit are located at
x/L = 0.0 and x/L = 1.0 respectively.
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(a) Mode 1A, f = 2355 Hz, centerline.
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(b) Mode 1B, f = 6188 Hz, centerline.

Figure 6: Case I: Development of the pressure fluctuation, p′, along the centerline over one
oscillation cycle. The p′ values are plotted 20 times at a fixed rate over one cycle with the
starting values indicated by the thicker red profile. The nozzle throat and exit are located at
x/L = 0.0 and x/L = 1.0 respectively.

If we examine the region close to the wall, downstream of the separation, we see in Mode 1A a very
thin closed region of positive fluctuation (yellow color) that extends all the way to the nozzle exit. The
corresponding area in Mode 1B extends only to about half that distance. This indicates the presence
of the standing 1/4 wave in Mode 1A and 3/4 wave in Mode 1B in the (ρu)′ field as well.
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(a) Mode 1C, f = 12377 Hz, wall.
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(b) Mode 1C, f = 12377 Hz, centerline.

Figure 7: Case I: Development of the pressure fluctuation, p′, along the nozzle wall and centerline
respectively. The p′ values are plotted 20 times at a fixed rate over one oscillation cycle with
the starting values indicated by the thicker red profile. The nozzle throat and exit are located
at x/L = 0.0 and x/L = 1.0 respectively.

(a) Mode 1A, f = 2355 Hz (b) Mode 1B, f = 6188 Hz

(c) Mode 1C, f = 12377 Hz (d) Mode 1D, f = 18567 Hz

(e) Mode 1E, f = 24754 Hz (f) Mode 1F, f = 30945 Hz

Figure 8: Pressure perturbation field, p′, of selected DMD modes for Case I. Red to yellow color
indicates positive pressure perturbation, yellow being highest. Dark blue to light blue indicate
negative pressure perturbation, light blue being lowest.
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(a) Mode 1A, f = 2355 Hz (b) Mode 1B, f = 6188 Hz

Figure 9: (ρu)′ perturbation field of selected DMD modes for Case I. Red to yellow color in-
dicates positive perturbation, yellow being highest. Dark blue to light blue indicate negative
perturbation, light blue being lowest.

In the experiment by Zaman et. al [1], the measured resonance frequency for nozzle pressure ratios
close to that of Case I was between 6.0 and 7.0 kHz. It was concluded that the resonance for this range
of pressure ratios involved a standing 3/4 wave between the shock and the nozzle exit. The current
DMD analysis shows that Mode 1A, which has a standing 1/4 wave, is significantly more damped than
Modes 1B to 1F. This would indicate that the flow is more prone to resonance at frequencies closer to
that of Modes 1B to 1F. It is interesting to consider the norm of the modes. The modes have been
normalized to fulfill Equation 7 and by computing the norm ||µm

i ϕi|| of the ith eigenmode we can see its
contribution to the (m+1)th snapshot of the data set. Figure 10 compares the contribution of Modes
1A to 1F to the first snapshot (m = 0) and the 101st snapshot (m = 100) respectively. We immediately
see that Mode 1A has the greatest contribution to the first snapshot and the norms of Modes 1B to
1F decay exponentially with increasing mode frequency. The norms are plotted on a logarithmic scale
and the line in the figure demonstrates how close the norms follow an exact logarithmic decay. At
a later stage, m = 100, we see that the damping of Mode 1A has reduced its influence significantly
while, because of their critically low damping or growth rates, the norms of Modes 1B to 1F remain
relatively constant. This suggest that a resonance at a frequency close to the frequency of Mode 1A
would be more difficult to sustain compared with a frequency close to that of Mode 1B, which has the
greatest norm at the 101st snapshot.
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Figure 10: Case I: The norm ||µmϕ||, of Modes 1A to 1F
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Table 2: Frequency and damping for the selected DMD modes of Case II.

Mode Frequency f damping factor ξ
2A 4854 Hz 3.88 s−1

2B 9708 Hz -1.84 s−1

2C 14563 Hz -22.39 s−1

2D 19419 Hz] -16.31 s−1

3.2 Case II

Figure 11 shows the logarithmic mapping of the DMD eigenvalues for Case II. As for Case I there
exists a great scatter between different cut off values. Four well resolved modes which lie on, or close
to, the imaginary axis have been identified and marked in the figure. Their respective frequencies and
damping factors are listed in Table 2. All of the four modes have relatively low damping/growth rates
and frequencies of Modes 2B to 2D are exact harmonics of 2A’s frequency.
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Figure 11: Case II: A logarithmic mapping of the DMD eigenvalues which separates the modes
onto the unstable, right, and stable, left, complex half planes. Shown for different singular value
cut off ic = 300, 400 and 500.

The norms of Modes 2A to 2D are shown in Figure 12. They are plotted on a logarithmic scale and
the line in the figure shows that the norms of Modes 2A to 2C follow an exact exponential decay.
Interestingly, Mode 2D deviates from this exponential decay and is in fact more excited than Mode
2C. Notice as well the more rapid decay here compared to what was found for Case I.
Figures 13 and 14 show the development of the pressure fluctuation, p′, along the nozzle wall and
centerline, respectively, over one oscillation cycle for Modes 2A and 2B. These figures were realized
using the same method as in Figures 5 and 6. Looking at Figure 13 a), we see that Mode 2A has
a similar shape of the wall pressure fluctuation as Mode 1A. Figure 13 b) shows the wall pressure
fluctuations of Mode 2B with a node at x/L ≈ 0.64 followed by a standing, flat, antinode extending
all the way to the nozzle exit.
Figure 14 a) and b) show the pressure fluctuations along the nozzle centerline of Modes 2A and 2B
respectively. The vertical line in Figure 14 a) indicates a point where an upstream traveling wave
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Figure 12: Case II: The norm ||µmϕ||, of Modes 2A to 2D.
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(a) Mode 2A, 4854 Hz, wall.
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(b) Mode 2B, 9708 Hz, wall.

Figure 13: Case II: Development of the pressure fluctuation, p′, along the nozzle wall over one
oscillation cycle. The p′ values are plotted 20 times at a fixed rate over one cycle with the
starting values indicated by the thicker red profile. The nozzle throat and exit are located at
x/L = 0.0 and x/L = 1.0 respectively.

starts to form. Notice how the wave increase in amplitude as it travels thought the shock train.
An animation of the fluctuations suggests that this upstream traveling wave is superimposed on a
downstream traveling wave of lower amplitude. Part of this wave can be seen downstream of the
vertical line in the figure. The crossing of the wave profiles, downstream of the vertical line, shows how
the wave travels downstream with relatively constant amplitude. Notice as well its greater wavelength
compared to the upstream traveling wave.
Somewhat similar pattern can be seen in Figure 14 b), which shows the centerline pressure fluctuations
of Mode 2B. However, animation of the fluctuations did not show a sign of superposition of two or
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more waves. Rather, there seemed to be a turning point, marked with a vertical line in the figure,
at which there is a standing antinode. Upstream of this point the wave travels upstream through the
shock train and downstream of the point the wave travels downstream.
It is not exactly clear how the pressure wave travels upstream through the supersonic regions between
the shocks. One possible explanation is that what is seen along the centerline is a component of an
oblique wave moving upstream at an angle and therefore the wave component seen along the centerline
moves upstream through the shocks.
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(a) Mode 2A, 4854 Hz, centerline.
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(b) Mode 2B, 9708 Hz, centerline.

Figure 14: Case II: Development of the pressure fluctuation, p′, along the centerline over one
oscillation cycle. The p′ values are plotted 20 times at a fixed rate over one cycle with the
starting values indicated by the thicker red profile. The nozzle throat and exit are located at
x/L = 0.0 and x/L = 1.0 respectively.

Figure 15 shows the pressure perturbation field, p′, of Modes 2A to 2D. They have similar shape as the
modes of Case I with a clear pressure wave coming from the shock region. The shock train is clearly
visible in this case with the weaker downstream shocks having more influence on the pressure wave of
the lower harmonic modes compared with the higher ones.

3.3 Comparison with Measurements

Figures 16 a) and b) compares the measured transonic tone frequencies with the primary DMD mode
frequencies with respect to jet Mach number, Mj , and separation location, xsep, respectively. The
separation location is defined as the x−coordinate of the separation normalized with the length between
the throat and the nozzle exit, xsep = x/L. The experimental data are taken from Ref.[1] and are
obtained for the same nozzle geometry and operating conditions as in the present study. The jet Mach
number is computed according to

Mj =

((
P0

Pa

) γ−1
γ
(

2

γ − 1

))0.5

, (11)

where P0/Pa is the nozzle pressure ratio and γ is the specific heat ratio.

The “primary” DMD frequencies of Cases I and II are the frequencies of Modes 1B and 2A respec-
tively. Two additional DMD analyses were performed for nozzle pressure ratios slightly lower and
slightly higher than in Cases I and II respectively. The results were similar to that of Cases I and II
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(a) Mode 2A, f = 4854 Hz (b) Mode 2B, f = 9708 Hz

(c) Mode 2C, f = 14563 Hz (d) Mode 2D, f = 19419 Hz

Figure 15: Pressure perturbation field, p′, of selected DMD modes for Case II. Red to yellow
color indicates positive pressure perturbation, yellow being highest. Dark blue to light blue
indicate negative pressure perturbation, light blue being lowest.
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Figure 16: Experimental frequencies and DMD mode frequencies with respect to jet Mach
number Mj. Experimental data are from Ref.[1].

in that they showed undamped harmonic modes with the lowest harmonic modes having the great-
est norms, those being the “primary” DMD frequencies in these cases. From Figure 16 a) it is clear
that the DMD frequencies for the lower jet Mach numbers are very close to those observed in the
experiment. At higher jet Mach numbers the difference is greater but within the range of observed
frequencies. In general, Figure 16 a) reveals that the DMD analysis captures the staging behavior
observed in the experiment. However, when comparing the experimental data to the DMD data with
respect to separation location xsep, in Figure 16 b), the results for the lower pressure ratios do not
agree. This is understandable since the RANS solution fails to predict the separation location found
in the experiment, this is shown in Figure 17. A standard k − ε model, or any turbulence closure of
that kind for that matter, will most unlikely be able to predict the separation location very exactly.
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Furthermore, as mentioned in the introductory part, the small angle of the diverging part of the nozzle
makes small differences in flow conditions lead to large differences in separation location, which further
hampers the prediction of the separation location.
Both experimental and numerical data show that the resonance frequency increases with decreasing
distance between the shock and the nozzle exit, within a resonance stage. Figure 16 b) shows that
the resonance frequency is not completely dominated by this distance but that the separation type,
and shock pattern, which is defined by the nozzle pressure ratio and nozzle contour, determine the
frequency as well.
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Figure 17: Separation location, xsep = x/L, versus jet Mach number, Mj. Experimental data are
from Ref.[1].

4 Summary and Conclusion

The DMD algorithm, proposed by Schmid [3], has been applied to a set of flow field snapshots from
an axisymmetic URANS simulation of a separated flow inside an axisymmetric convergent-divergent
nozzle. The investigated nozzle has been known to experience so called transonic resonance under off
design conditions [1]. This happens when the supersonic flow separates inside the nozzle, resulting in a
shock residing in the divergent part of the nozzle. The aim of the study was to investigate if the DMD
analysis method described in this paper is capable of predicting the transonic resonance frequencies.
A URANS simulation of the nozzle flow did not experience transonic resonance and converged to stable
solution. In order to capture the URANS flow dynamics with the DMD algorithm it was necessary to
disturb the flow field.
The results show that the DMD algorithm does provide undamped, harmonic modes with frequencies
close to those observed in the experiment by Zaman et al.[1]. Furthermore, the DMD modes have
standing pressure waves inside the divergent part similar to what was suggested in Ref. [1]. The
results further indicate a feedback loop where a pressure wave travels upstream through the jet core
similar to the observations made by Olson and Lele [4].
Therefore it is concluded that the method applied in this study can predict the resonance frequencies
within a reasonable range and consequently, it can shed some light on the mechanism behind the phe-
nomena.
These results are encouraging considering how computationally cheap they were to produce compared
to a full three dimensional simulations. The results also reveal that the primary mechanism responsible
for the resonance is embedded in the two dimensional axisymmetric RANS equations. However, the
axial symmetry of the resonance fluctuations had already been realized from the experimental data in
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Ref. [1] and the axisymmetric numerical simulations in Ref. [2]. Despite that, it cannot be ignored
that in a real flow, azimuthal modes could be present and interact with the axisymmetric modes. These
effects are obviously not present in the current method and could be contributing to any discrepancies
between the DMD results and the experiments.
Other effects, which the RANS simulations are neglecting, are worth mentioning:

Elasticity: The nozzle in this study is rigid and therefore fails to capture possible movement or
deformation of the real nozzle.

Nozzle wall heat transfer: The surface of the nozzle is treated as adiabatic. However, that is
unlikely to have great effect on the results here, as the flow is cold.

Wall roughness and boundary layer details: Wall roughness is not considered and the char-
acteristics of the boundary layer are modeled using a turbulence model with wall functions. This can
greatly affect the results in two ways. First, it influences the location of the separation. We saw in
Figure 17 that the separation location is not well predicted for the lower jet Mach numbers and this
is attributed to the low divergence angle of the nozzle and the failure to capture the dynamics of the
incoming boundary layer. Secondly, this could be linked to why the URANS solver does not experience
the transonic resonance. Tripping the boundary layer upstream of the nozzle throat in Ref. [1] had
such an effect on the resonance tone that in some cases it was completely suppressed. It is therefore
clear that the characteristics of the incoming boundary layer and the nozzle wall surface greatly affect
the intensity of the resonance; although they seemed not to affect the frequency in Ref. [1].

Improving these limitations of the RANS simulations are not the aim of the present study. However,
in cases of high pressure ratios, such as Case II, the shock pattern is more complex compared to the
lower pressure ratio cases, such as in Case I. These complex patterns can be hard to predict accurately
in a RANS simulation because of their sensitivity to numerical schemes and mesh density. A mesh
sensitivity study has yet to be performed.
Now that the major limitations of the RANS solution have been discussed we finish with a short
comment on the DMD modes. The fact that the DMD results provide harmonic modes shows that
the resonance dynamics are nonlinear and the ability of the DMD method to capture this shows one
of the advantages of not explicitly linearizing the flow dynamics. The DMD algorithm approximates
the eigenmodes of a linear approximation of the flow dynamics in the snapshots. This means that the
DMD modes are only valid for small perturbations. Let us consider an accurately predicted growing
DMD mode. If it is excited in the nonlinear flow it will eventually develop into a limit cycle where
nonlinear effects prevent it to grow further and that can possibly alter the mode frequency.
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