
Thesis for the degree of Licentiate of Engineering

Practical methods for Gaussian
mixture filtering and smoothing

Abu Sajana Rahmathullah

Department of Signals and Systems
Chalmers University of Technology

Gothenburg, Sweden



Abu Sajana Rahmathullah
Practical methods for Gaussian mixture filtering and smoothing

Technical Report No. R012/2014
ISSN 1403-266X
Department of Signals and Systems
Chalmers University of Technology
SE-412 96 Gothenburg, Sweden
Telephone: + 46 (0)31-772 1000

c©Abu Sajana Rahmathullah, 2014.

This thesis has been prepared using LYX.

Printed by Chalmers Reproservice
Gothenburg, Sweden, May 2014.



To my family





Abstract
In many applications, there is an interest in systematically and sequentially esti-
mating quantities of interest in a dynamical system, using indirect and inaccurate
sensor observations. There are three important sub-problems of sequential estima-
tion: prediction, filtering and smoothing. The objective in the prediction problem is
to estimate the future states of the system, using the observations until the current
point in time. In the filtering problem, we seek to estimate the current state of
the system, using the same information and in the smoothing problem, the aim is
to estimate a past state. The smoothing estimate has the advantage that it offers
the best performance on average compared to filtering and prediction estimates.
Often, the uncertainties regarding the system and the observations are modeled us-
ing Gaussian mixtures (GMs). The smoothing solutions to GMs are usually based
on pruning approximations, which suffer from the degeneracy problem, resulting in
inconsistent estimates. Solutions based on merging have not been explored well in
the literature. We address the problem of GM smoothing using both pruning and
merging approximations.
We consider the two main smoothing strategies of forward-backward smooth-

ing (FBS) and two-filter smoothing (TFS), and develop novel algorithms for GM
smoothing which are specifically tailored for the two principles. The FBS strategy
involves forward filtering followed by backward smoothing. The existing literature
provides pruning-based solutions to the forward filtering and the backward smooth-
ing steps involved. In this thesis, we present a novel solution to the backward
smoothing step of FBS, when the forward filtering uses merging methods. The TFS
method works by running two filtering steps: forward filtering and backward filter-
ing. It is not possible to apply the pruning or merging strategies to the backward
filtering, as it is not a density function. To the best of our knowledge, there does not
exist practical approximation techniques to reduce the complexity of the backward
filtering. Therefore, in this thesis we propose two novel techniques to approximate
the output of the backward filtering, which we call intragroup approximation and
smoothed posterior pruning. We also show that the smoothed posterior pruning
technique is applicable to forward filtering as well.
The FBS and TFS solutions based on the proposed ideas are implemented for

a single target tracking scenario and are shown to have similar performance with
respect to root mean squared error, normalized estimation error squared, computa-
tional complexity and track loss. Compared to the FBS based on N−scan pruning,
both these algorithms provide estimates with high consistency and low complexity.
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Introduction





1. Introduction
In many applications, the interest is to systematically and sequentially estimate
quantities of interest from a dynamic system using indirect and inaccurate sensor
observations. For instance, in radar tracking, the aim is in determining position
and velocity of a moving or stationary aircraft or ship. In communication systems,
the concern is to determine the messages transmitted through a noisy channel. In
driver assistance systems, the interest is in monitoring several features about the
driver, the vehicle and the surroundings. There are also several other applications
such as forecasting weather or financial trends, predicting house prices, hand writing
recognition, speaker identification, and positioning in navigation systems.
The sequential estimation problem can be categorized into three different problem

formulations: prediction, filtering and smoothing. The prediction problem is to
forecast the values of the parameters of interest, given information up to an earlier
time, whereas the filtering problem is about estimating the parameter at the current
time, given information up to and including that time. The smoothing problem is
to estimate the past state of the parameter using all the observations made. An
example from [1] can be used to explain these different problem formulations, in
layman terms. Assume that we have received a garbled telegram and that the task
is to read it word-by-word and make sense of what the telegram means. The filtering
formulation would be to read each word and understand the meaning so far. The
prediction formulation would be to guess the coming words, based on what have
been read thus far. In the smoothing formulation, the reader is allowed to look
ahead one or more words. Clearly, as the idiom quoted in the book goes “it is easy
to be wise after the event”, the smoothing formulation will give the best result on
an average, given that a delay can be tolerated.
In the above-mentioned applications, the aim is not only to estimate the pa-

rameters of interest, but also to describe the uncertainties in the estimates. The
uncertainties is used to describe the reliability or trustworthiness of the produced
estimates. Mathematically, an estimate and its associated uncertainty is quanti-
fied using a probability density function (for continuous states) or probability mass
function (for discrete states). One of the most commonly used density functions is
the Gaussian density function, which is commonly referred to as the ‘bell-shaped’
curve. The famous Kalman filter is developed as a solution to the filtering problem
when the uncertainties are modeled using Gaussian density functions. There also
exist solutions for the smoothing problem with Gaussian densities.
Even though the Gaussian density models and the Kalman filter solutions work

well for a wide range of applications, this may not be enough for more complex
systems. There are many applications where the evolution of the parameter or
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1. Introduction

the observation noise cannot be accurately modeled using Gaussian densities. For
instance, the house prices varies differently in different localities, and in each locality,
the prices are high around a center and decrease gradually, as one moves away from
the center. Further, while tracking an aircraft, it can be in one of the possible
modes — taxiing, taking off, cruising or landing — and its movement cannot be
modeled using a single Gaussian model. In the clutter problem, observations are
often received from objects that are not of interest, in which case uncertainty about
the observations are clustered in several small regions. For instance, this happens in
ship surveillance, when false measurements are received from reflections of the sea,
or in air traffic surveillance, where extraneous observations from clouds and birds
are received. In these kinds of scenarios, instead of a single Gaussian density, the
system or the observations can be modeled using what is called a Gaussian-mixture
density.
Simply put, Gaussian mixtures assign one Gaussian for each cluster/region, around

which the uncertainty/data is centered, along with a weight that captures the in-
tensity. The advantage of using a Gaussian mixture is that it is made of Gaussian
components, which allows one to extend the Kalman filter solutions to these prob-
lems as well. However, in most problems, the number of Gaussian components in
the mixture grows with time, which can add to the complexity burden. So, one
challenge is to reduce the number of components in the Gaussian mixture. The
traditional approach has been to remove a few components that are insignificant.
This may work well for problems where there are good measurements, or where the
system is highly likely to be in one mode. However, the estimation can stray off
when removed components could have become significant with more observations
collected. So, another strategy, called merging, is often used. Then the components
in the mixture are merged, i.e., clusters of data that are close by can be approxi-
mated using one Gaussian density, instead of many. This method is well-studied and
established for prediction and filtering solutions, but not for smoothing problems.
The objective of this thesis is to use these merging strategies, for Gaussian mixtures,
in smoothing problems.
The research towards writing this thesis has been sponsored by the Swedish Gov-

ernmental Agency for Innovation Systems (VINNOVA), under the program “Na-
tional Aviation Engineering Research Programme” part 6 (NFFP6). The project
within the program is entitled “Target tracking in complex scenarios including jam-
ming conditions for airborne sensor systems”, and is a joint collaboration between
Chalmers University of Technology, Electronic Defence Systems (Saab AB) and Saab
Bofors Dynamics.

Outline of the thesis
The thesis is divided into two parts. Part I presents the theoretical background
of the Gaussian mixture smoothing problem. The Chapters 2 and 3 provide the
mathematical formulations of the filtering and smoothing problems, respectively.
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Introduction

The existing solutions for the simple Gaussian model is also presented. It is further
discussed how more complex systems are handled. Then, Chapter 4 discusses in
detail the Gaussian mixture smoothing problem and the difficulties involved. Finally
in Chapter 5 of Part I, a summary of the contributions is presented along with a
discussion of few ideas for possible future research. In Part II, the main contributions
of the thesis are presented as Papers A, B, C and D.
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2. Filtering
In the applications of the Gaussian mixture (GM) discussed in Chapter 1, the chal-
lenges are to sequentially estimate the unobserved variable and to quantify the un-
certainty associated with the estimate, as we obtain the observed data. The Bayesian
estimation principle is commonly used for these problems. The idea is that based on
our prior knowledge of the process, we predict the variable with some uncertainty.
The prediction is updated to get the ‘posterior’ as new data or likelihood becomes
available. The term ‘posterior’ takes different meaning based on the available mea-
surements, which leads to the different problem statements of prediction, filtering
and smoothing.
In this chapter, we present the mathematical representations of the variables, the

measurements and the relations between them. The conceptual solution, using the
Bayesian principle, for the filtering and the prediction problems is presented in this
chapter together with the closed form solution, in case of linear models and Gaussian
noise. When the exact solution is intractable, which happens in case of non-linear
models, approximations are inevitable. We also discuss the different approximation
strategies that are commonly employed.

2.1. Representation
In the state-space representation, the unobserved variable is termed the ‘state’. The
state variable at time k is denote as xk ∈ Rn and the observed data as zk ∈ Rm.
The time variability of the state is described by a motion model while the relation
between the state and the measurements are given by a sensor model. Both these
models capture the noise statistics. To enable sequential estimation, it is often
convenient to assume a Markov model for the motion model. That is, the state xk
at time k, given all the states until time k − 1, depends only on the state xk−1 at
time k − 1. The motion model can then be written as

xk = gk(xk−1, vk) (2.1)

where vk is the process noise. The Markov relation is expressed using the conditional
density of the state xk as

fk(xk|xk−1, xk−2,...x1) = fk(xk|xk−1). (2.2)

It is assumed that we have some knowledge of the state at time 0, defined by the
prior density p(x0).

19



2. Filtering

The measurement zk is according to the sensor model

zk = hk(xk, wk) (2.3)

where wk is the measurement noise random variable. The sensor model is used to
obtain the likelihood function p(zk|xk). In the remainder of the thesis, the subscript
k in the notation of the functions gk(·), hk(·), fk(·|·) and pk(·|·) will be dropped
without loss of generality and for ease of writing, and represented as g(·), h(·), f(·|·)
and p(·|·).

2.2. Problem statement
The objective is to recursively compute the posterior density of the state vector xk
using the Bayesian principle (cf. [1]). In the prediction problem, the goal is to obtain
the density p(xk|z1:l) for l < k, given the measurements obtained from time 1 to time
l, denoted z1:l. In the filtering problem, the goal is to obtain the posterior density
p(xk|z1:k) of the state xk. In smoothing problem, we are interested in computing the
posterior density p(xk|z1:K), where K > k. The details of the smoothing problem
will be discussed in Chapter 3.

2.3. Conceptual solution
The prediction and filtering densities can be obtained recursively in two steps,
namely, prediction and update, using the prior p(x0), the process model f(xk|xk−1)
and the likelihood p(zk|xk). The one-step prediction (where l = k − 1) gives the
prediction density at time k by evaluation of the integral,

p(xk|z1:k−1) =
ˆ
p(xk−1|z1:k−1)f(xk|xk−1)dxk−1 (2.4)

and an update on this prediction gives the filtering density which is given by

p(xk|z1:k) ∝ p(xk|z1:k−1)p(zk|xk). (2.5)

The constant of proportionality in the above equation is 1
p(zk|z1:k−1) where

p(zk|z1:k−1) =
ˆ
p(xk|z1:k−1)p(zk|xk)dxk. (2.6)

It should be mentioned here that the equations in (2.4), (2.5) and (2.6) provide the
theoretical solutions but, in practice, these equations are generally not tractable.
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2.4 Kalman filter for Gaussian densities

2.4. Kalman filter for Gaussian densities
Assume that the prior, p(x0), is a Gaussian density, and that the motion and the
sensor models are linear functions of the state vector xk, with additive Gaussian
noise, i.e.,

xk = Fkxk−1 + vk (2.7)

and

zk = Hkxk + wk (2.8)

where Fk ∈ Rn,n, Hk, ∈ Rm,n, vk ∼ N (0, Qk) and wk ∼ N (0, Rk). Then, it can be
shown that the posterior densities are Gaussian and have closed form expressions.
Again, for convenience of writing, the subscript k will be dropped from the matrix
notations.
Let the prediction density, p(xk|Z1:k−1), and filtering density, p(xk|Z1:k), be de-

noted as N
(
xk;µk|k−1, Pk|k−1

)
and N

(
xk;µk|k, Pk|k

)
, respectively. The notation

N (x;µ, P ) denotes a Gaussian density in the variable x with mean µ and covari-
ance P . The goal of prediction and filtering is then to find the first two moments of
the corresponding Gaussian densities. The ubiquitous Kalman filter equations (cf.
[20]) provide closed form expressions for the first two moments of the prediction and
filtering densities in (2.4) and (2.5). The prediction equations are given by

µk|k−1 = Fµk−1|k−1 (2.9)
Pk|k−1 = FPk−1|k−1F

T +Q (2.10)

and the update equations by

Sk = HPk|k−1H
T +R (2.11)

Kk = Pk|k−1H
TS−1

k (2.12)
z̃k = zk −Hµk|k−1 (2.13)

µk|k = µk|k−1 +Kkz̃k (2.14)
Pk|k = (In −KkH)Pk|k−1. (2.15)

where In is an n-by-n identity matrix. z̃k called the innovation and Sk, called the
innovation covariance, describe the measurement distributions. Kk is the Kalman
gain, which is the cross covariance matrix between the state xk and the measurement
zk.

2.5. Non-linear models
When the motion model ,g(·), and/or the measurement model, h(·), are non-linear
or when the noise is not additive Gaussian, the posterior density is, in general, not

21



2. Filtering

a Gaussian density. One example for this is when one gets the range and bearing
measurements from a radar and want to track the position and the velocity of
the target. The optimal solution then becomes intractable and loses the recursive
property. There are several sub-optimal approaches to estimate the posterior density
in this case, some of which are discussed in this section.

2.5.1. Gaussian filters
One approach to handle non-linear models is to approximate the posterior density as
a Gaussian density. The methods that use this approach are called Gaussian filters,
named appropriately. There are several methods to make the Gaussian approxima-
tion of the posterior and to compute its first two moments. One method is based on
linearizations of the functions, g(·) and h(·), after which the Kalman filter equations
in (2.9) to (2.15) can be used to obtain the mean and covariance of the Gaussian
approximation of the posterior density. The famous extended Kalman filter [1] and
the many variants of it are based on this approach. Though these algorithms work
for a good number of models, their performance deteriorates when the functions are
highly non-linear.
Another type of methods used to obtain a Gaussian approximation of the posterior

is based on sigma-points. In these methods, a handful of points, termed sigma-
points, are chosen deterministically based on the first two moments of the prior
density. The sigma points are then propagated through the non-linear models to
obtain the means and covariances used to compute the moments of the Gaussian
approximation of the posterior density.

2.5.2. Particle filters
Particle filters, or sequential Monte Carlo filters (cf. [12]), on the other hand, are
based on representing the densities with a set of particles along with their corre-
sponding weights. The particles define the positions of the Dirac delta functions
such that the weighted sum of the Dirac delta functions of the particles provides a
good approximation of the true density. These methods use the concept of impor-
tance sampling, where the particles are generated from a proposal density, which is
simpler to generate the samples from, instead of the true density. The particles are
propagated through the process model and the weights are updated using the likeli-
hood to obtain the posterior density. The choice of the proposal density is crucial to
the particle filters. The proposal density should have the same support as the true
density and should be as similar to the true density as possible. The advantage of
particle filters is that the performance of the filter is unaffected by the severity of the
non-linearity in g(·) and h(·), and that the methods are asymptotically optimal also
when the functions are nonlinear. The particle filters are easy to implement. How-
ever, they can be computationally demanding as the dimension of the state vector
increases. Another problem with particle filters is that they degenerate, which mean
that the weights of most particles go to zero. This can be overcome by re-sampling
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2.5 Non-linear models

frequently, where multiple copies of the ‘good’ particles with significant weights are
retained and the ‘poor’ particles are removed.

2.5.3. Gaussian mixture filters
Like in data association problem, which will be discussed in Chapter 4, the transition
density and the likelihood can be multi-modal functions. One way of approximat-
ing multi-modal densities is to use a Gaussian mixture which is weighted sum of
Gaussian densities. In the case of data association problems, the true posterior is
itself a Gaussian mixture. The filtering of Gaussian mixture densities is handled
by using the Kalman filter equations for each Gaussian component in the mixture.
Based on other assumptions in the model, the weights are also updated. When the
number of components in the GM model is large, approximations such as removing
insignificant components and merging of similar components are often used. The
details of this will be discussed in Chapter 4.
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3. Smoothing
In the solutions to the filtering and prediction problems, there are no delays between
the receipt of the last measurement and the state to be estimated. There are several
applications where a delay, during which further data can be collected, is permissible.
Smoothing can be used in these applications, where the delay and complexity can
be compromised to get a more accurate estimate. The smoothing problem arises in
different applications, such as estimating the initial state of a process or for offline
processing of data. Smoothing can take three different problem formulations —
fixed-point, fixed-lag and fixed-interval smoothing (cf. [1]). In this thesis, we focus
on two of the Bayesian solutions to these smoothing problems, namely, two-filter
smoothing and forward-backward smoothing.
In this chapter, we present the mathematical formulation of the three different

smoothing problems together with the two conceptual solutions. Closed-form ex-
pressions for the posterior density under linear-Gaussian model assumptions are
also presented. The different sub-optimal approaches for non-linear models are also
discussed in this chapter.

3.1. Problem formulation
In smoothing, the goal is to compute p(xk|z1:K), i.e., the density of the state xk,
given the measurements from time 1 to time K, where K > k. Based on the value
of K, the smoothing problem can be formulated in three ways as mentioned above.
For the fixed-interval smoothing, as the name suggests, the interval is fixed, i.e., K
is fixed, for all k. For fixed-lag smoothing, the interval varies as a function of k with
a defined lag, say δ, i.e., K = k + δ for each k. In case of fixed-point smoothing, k
is fixed and K increases with time, so the interval widens with time.

3.2. Conceptual solution
Similar to the filtering problem, sequential estimation of the smoothing posterior
density can be obtained using the Bayesian principle. Though the approaches dis-
cussed here have been designed towards fixed-interval smoothing, they are in their
contextual form, applicable to the other two smoothing problems as well.
The first approach is forward-backward smoothing (FBS) (cf. [9]). As the name

suggests, the first step is forward filtering from time 1 to K, to obtain the filtering
density p(xk|z1:k) at each k. This is followed by backward smoothing from time K
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3. Smoothing

to time 1. The backward smoothing step at time k uses the smoothing density at
time k + 1 together with the filtering densities at time k as

p(xk|z1:K) = p(xk|z1:k)
ˆ
p(xk+1|z1:K)
p(xk+1|z1:k)

f(xk+1|xk)dxk+1. (3.1)

The integral in the above equation is proportional to p(zk+1:K |xk), termed as the
backward likelihood (BL) in this thesis. Therefore, it is possible to interpret the
division in the backward smoother as computing the backward likelihood implicitly.
The second approach to smoothing is the two-filter smoothing (TFS) method. To

obtain the smoothing density at time k by this method, forward filtering is performed
from time 1 to k to get the filtering density p(xk|z1:k) and backward filtering is run
from time K to time k to get the backward likelihood p(zk+1:K |xk). The product of
the two filter outputs gives the smoothing density,

p(xk|z1:K) ∝ p(xk|z1:k)p(zk+1:K |xk). (3.2)

The backward filtering, similar to the forward filter, is performed recursively using
two steps: update and retrodiction. The update step computes the likelihood

p(zk+1:K |xk+1) = p(zk+1|xk+1)p(zk+2:K |xk+1) (3.3)

and the retrodiction step computes the BL as

p(zk+1:K |xk) =
ˆ
p(zk+1:K |xk+1)f(xk+1|xk)dxk+1. (3.4)

3.3. Gaussian example
When the motion model and the sensor model are linear with additive Gaussian
noise, it can be shown that the smoothing posterior density is Gaussian. The closed
form expressions for the mean and covariance of the smoothing posterior obtained
using the TFS and FBS solutions, depend on the filtering densities.
For the FBS method, the Rauch-Tung-Striebel (RTS) smoother gives the closed-

form expressions for the mean and covariance of the smoothing density. Using
notations similar to the ones for the prediction and filtering densities, the smoothing
density at time k is denoted as N

(
xk;µk|K , Pk|K

)
. The RTS equations are

µk|K = µk|k + Ck
(
µk+1|K − µk+1|k

)
(3.5)

Pk|K = Pk|k + Ck
(
Pk+1|K − Pk+1|k

)
CT
k , (3.6)

where

Ck = Pk|kF
TP−1

k+1|k (3.7)

is similar to the Kalman gain in (2.12) of the Kalman filter equations.
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3.4 Non-linear models

For the TFS method, the work in [16] provides the closed-form solution for the mo-
ments of the smoothing density. Let the likelihoods be denoted as p(Zk+1:K |xk+1) =
N (Uk+1xk+1;ψk+1, Gk+1) and p(Zk+1:K |xk) = N (Jkxk; ηk, Bk). Starting with the
terminal conditions at time K be JK = [], ηK = [] and BK = [] at k = K, the
update step in (3.3) of the backward filter is then given by

Uk+1 =
[
Jk+1
H

]
(3.8)

ψk+1 =
[
ηk+1
zk+1

]
(3.9)

Gk+1 =
[
Bk+1 0

0 R

]
(3.10)

while the retrodiction step in (3.4) is given by
Jk = Uk+1F (3.11)
ηk = ψk+1 (3.12)
Bk = Uk+1QU

T
k+1 +Gk+1. (3.13)

Using the outputs of the forward filter and the backward filter at time k, the smooth-
ing density in (3.2) is given by

µk|K = µk|k +Wk

(
ηk − Jkµk|k

)
(3.14)

Pk|K = (In −WkJk)Pk|k, (3.15)
where the gain term,

Wk = Pk|kJ
T
k

(
JkPk|kJ

T
k +Bk

)−1
. (3.16)

3.4. Non-linear models
Similar to the filtering problem, getting closed-form expressions for the true smooth-
ing posterior, when it is non-Gaussian, is generally impossible. There are additional
challenges in the smoothing problem. First, the equation in the FBS method in-
volves division of densities, which is difficult to compute for arbitrary densities.
Second, the accuracy of the approximations in the forward filtering highly affects
the backward smoothing and the smoothing density. The TFS method, on the other
hand, does not involve density divisions and the two filters can ideally be run in-
dependently of each other. However, the likelihood p(zk+1:K |xk) is not, in general,
a normalizable density function, which limits the possibilities to apply conventional
approximation techniques for densities during the backward filtering. Due to these
additional complications, applying the techniques used for non-linear filtering to
non-linear smoothing do not always produce fruitful results. In this section, we
discuss the challenges in extending techniques such as sequential Monte Carlo sam-
pling, linearization, sigma-point methods and Gaussian mixtures to the smoothing
problem.
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3. Smoothing

3.4.1. Sequential Monte Carlo methods
Similar to the filtering method, sequential Monte Carlo smoothing is based on ap-
proximating the smoothing posterior density using a set of particles. In case of FBS
based on these methods, a vanilla version works well when k ≈ K. However, when
k � K (cf. [22]), because of successive resampling steps, the marginal density be-
comes approximated by a single particle which leads to deteriorated performance.
This is the degeneracy problem which is inherent in the particle filters (cf. [12]).
One simple approach is to use the forgetting properties of the Markov model. That
is, to approximate the fixed-interval smoothing density p(xk|z1:K) using the fixed-
lag smoothing density p(xk|z1:k+δ) (cf. [14] and [17]). Unfortunately, automatic
selection of δ is difficult.
In case of TFS, it is not straightforward to approximate the output of the back-

ward filter using particles, as it it not a normalizable density. The artificial prior
method [9] uses the auxiliary probability density p̃(xk|zk+1:K) instead of the likeli-
hood p(zk+1:K |xk). The auxiliary density is obtained using what is called artificial
prior densities. The choice of the artificial prior plays a major role in the performance
of the TFS algorithm for particle methods.

3.4.2. Gaussian smoothers
The analogue of Gaussian filtering methods, such as the extended Kalman filter and
the unscented Kalman filter, exists for TFS of non-linear models. The extended
Kalman smoother, similar to its filtering counterpart, has poor performance when
the non-linearity is severe. The unscented Kalman smoother needs the inverse of the
dynamic model functions, which may not be feasible in all scenarios. The unscented
RTS smoother [37] is the FBS version of a Gaussian smoother and is shown to have
similar performance as the unscented Kalman smoother, but without the need of
inverting the model functions.

3.4.3. Gaussian mixture smoothers
Filtering of multi-modal densities, modeled as Gaussian mixtures, was discussed
briefly in the previous chapter. To limit the complexity, Gaussian mixture filtering
involve pruning and/or merging approximations. When the forward filtering is based
on pruning, it it trivial to perform the backward smoothing of the FBS, using the
filtering densities. Starting from the last time instant, RTS is performed backward
on the individual retained components. This method suffers from degeneracy similar
to particle smoothing. Because of pruning, the number of components retained will
be 1 for k � K. One way to tackle the degeneracy is to perform FBS based on
merging, something that has not been explored much in the literature. So, is the
TFS of Gaussian mixture densities. Then the difficulty is in using the Gaussian
mixture reduction techniques in the backward filter, since its output is not a density
function.

28



3.4 Non-linear models

In this thesis, we argue that the Gaussian mixture smoothing is a problem that
deserves more attention and that the standard solutions has considerable shortcom-
ings. The main contribution of this thesis is an in-depth study of how to design FBS
and TFS algorithms for Gaussian mixture smoothing, based on both merging and
pruning.
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4. Gaussian mixture filtering and
smoothing

In many applications, the motion model captures that the state can be in one of many
hidden classes. In these cases, the state transition density is a multi-modal density,
where each mode corresponds to a hidden class. The motion model uncertainties can
then be modeled using a Gaussian mixture (GM). There are also many applications,
in which we receive a lot of measurements on the state variable, where the reliability
of the measurements can vary. The likelihood in these applications are conveniently
modeled as mixtures. Gaussian mixtures, as was mentioned before, are weighted sum
of Gaussian densities. These usually make a good approximation for the multi-modal
densities. It will be shown in this chapter that when the likelihood and/or the state
transition density are Gaussian mixtures, the true posterior densities after filtering
and smoothing are also Gaussian mixtures. The number of terms in the GM usually
grows exponentially with time, and we therefore need to constrain the number of
terms. In these situations, reduction algorithms can be used to approximate the
posteriors. In this chapter, we provide a brief overview of the most commonly used
mixture reduction methods and discuss the challenges in applying these to smoothing
problems. Towards the end of this chapter, we also present the data association
problem in tracking applications. The application of Gaussian mixture reduction
(GMR) methods for the filtering problem in data association is also discussed.

4.1. Optimal solution

It was presented in last chapter that the forward-backward smoothing (FBS) method
is based on forward filtering and backward smoothing while the two-filter smoothing
(TFS) method involves forward filtering and backward filtering. These steps involve
the prediction, update and retrodiction steps stated in (2.4), (2.5), (3.3) and (3.4).
One can notice that all these equations involve products of functions, which in this
case are Gaussian mixtures. When the state transition densities and the likelihoods
are both GMs, one can use the fact that a product of GMs yields a GM and show
that the posterior densities are all Gaussian mixtures. The number of components
in the resulting GM is the product of the number of components in the individual
mixtures, which explains why the number of components grow exponentially with
time.
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4. Gaussian mixture filtering and smoothing

4.1.1. Forward filtering
One can show that, starting with a GM prior, the prediction and the update steps
of forward filtering result in a Gaussian mixture posterior density. Evaluating these
steps with GMs is equivalent to using Kalman filters, one for every triplet of Gaussian
components in the prior p(xk−1|z1:k−1), the transition density f(xk|xk−1) and the
likelihood p(zk|xk), yielding a Gaussian term in the posterior p(xk|z1;k). The term in
the constant of proportionality p(zk|z1:k−1) in (2.6), is not calculated explicitly in the
update step of Kalman filter, which involves product of Gaussian densities. However,
in the case with GMs, this constant of proportionality is used in the updated weight
calculation. The updated weight for the resulting Gaussian component is given by
the product of the individual weights of the components in the prediction density
and the likelihood along with the constant of proportionality.

4.1.2. Backward smoothing of FBS
The backward smoothing of FBS involves a divisions of the smoothing and the
prediction GM densities as in (3.1). Starting from time K, using the principle of
mathematical induction, it can be shown that the division results in a GM. Instead
of performing this division, one can use the observation that there is an association
between the components in the filtering posterior GM at time k and time k + 1.
Extending this association to the smoothing densities, Rauch-Tung-Striebel (RTS)
recursions can be used for every triple of associated components in the smoothing
density at time k + 1, the prediction at time k + 1 and in the filtering density at
time k, to compute the smoothing density at time k. The weights of the smoothing
density at time k are the same as the weights of the smoothing density at time k+1.

4.1.3. Backward filter of TFS
In the backward filter of TFS, we need to compute the backward likelihood as in
(3.3) and (3.4). The ideas in forward filtering cannot be applied directly to the
backward filter because often the likelihoods can be of the form

w0 +
∑
i

wiN (Hixk;µi, Pi) (4.1)

where different Hi can capture different features of the state xk. Strictly speaking,
these are not Gaussian mixture densities; they are neither Gaussian nor densities
in xk. We refer to them as reduced dimension Gaussian mixtures in this thesis. To
compute the product of likelihoods, one can use the following general product rule:

wiN (Hix;µi, Pi)× wjN (Hjx;µj, Pj) = wijN (Hijx;µij, Pij) (4.2)

where wij = wiwj, Hij =
[
Hi

Hj

]
, µij =

[
µi
µj

]
and Pij =

[
Pi 0
0 Pj

]
. Using this in

(3.3) and (3.4), one can show that the output of the backward filter has a structure
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similar to the inputs as in (4.1). The smoothing density is given by the product of
the outputs of the two filters, that can be computed similarly to the update step
in the forward filter of GMs, including the weight update using the proportionality
constant as discussed in Section 4.1.1.

4.2. Gaussian mixture reduction
The number of components in the resulting GM, after update, prediction and retro-
diction iterations, grows exponentially with time. Therefore, approximations are
necessary to reduce the number of components. There are several GM reduction
algorithms that are well studied in the literature, that can be used for filtering and
smoothing. The GMR algorithms are based on pruning insignificant components
from the GM and/or merging similar components.

4.2.1. Pruning
The number of components in the posterior GM can be prevented from growing expo-
nentially by pruning some of the components after each iteration. There are several
pruning strategies that can be adopted. Three methods that are commonly used
are threshold-based pruning, M -best pruning and N -scan pruning. In threshold-
based pruning, only the components that have a weight greater than a predefined
threshold are retained and used for prediction in the next iteration. The number of
components in the resulting GM can vary based on the threshold. The idea behind
the M -best pruning algorithm is that only the nodes with the M highest weights
(or association probabilities) are retained.
To explain the N-scan pruning [8], which is designed for reduction during filtering,

let us say we are interested in perform pruning at time k. We pick the component
that has the maximum weight. Starting from this component, we trace backwards
N steps to find its parent component, at time k −N . Only the offspring at time k,
of this parent node at time k − N , are retained. To be mentioned here is that the
multiple hypothesis tracking (MHT) filtering is often based on N -scan pruning.

4.2.2. Merging
One can also use merging of similar components to reduce the number of components
in a GM . There are several merging algorithms such as the Salmond’s [36], Runnalls’
[35] and Williams’ [42] algorithms. These algorithms work based on the following
three steps:

1. Find the most suitable pair of components to merge according to a ‘merging
cost’ criterion.

2. Merge the similar pair and replace the pair with the merged Gaussian compo-
nent.
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4. Gaussian mixture filtering and smoothing

3. Check if a stopping criterion is met. Otherwise, set the reduced mixture to
the new mixture and go to step 1.

The merging cost in step 1 looks for similarity of the components and it can be
different across algorithms. A few of the commonly used merging costs are the
Kullback-Leibler divergence [26] and the integral-squared error. The merging of the
components in step 2 is usually based on moment matching. That is, the moments
of the GM before and after merging are the same. The stopping criterion can also
vary across algorithms. It can be based on if the components in the reduced mixture
is at a manageable number. In certain algorithms, it is checked based on that the
components in the reduced GM are not similar.

4.2.3. Choice of GMR
Two main criteria in choosing the appropriate GMR algorithm would be the compu-
tational complexity involved and the accuracy. Most of the pruning algorithms are
usually simpler to implement, compared to merging. There is information about the
uncertainty of the estimate in the covariance matrices of the pruned components.
So, as a result of pruning, we might have underestimated uncertainties. Whereas in
merging, the uncertainty is preserved because of moment-matching. However, the
merging algorithms are more computationally intensive than pruning. As a tradeoff
between complexity and accuracy of the uncertainty, it may be more feasible to
use a combination of pruning and merging. Pruning ensures that the components
with negligible weights are removed, without being aggressive. Merging reduces the
number of components further, but keeping the moments the same.

4.2.4. GMR for FBS and TFS
Applying GMR, both pruning and merging, for the forward filtering is straightfor-
ward. In case of backward smoothing of GMs, RTS uses the association between
components in the filtering, prediction and smoothing densities across time. When
the forward filtering is based on pruning, the backward smoothing can be performed
similar to the optimal solution, on the retained components. This pruning-based
FBS can suffer from degeneracy discussed in Section 3.4.3. One way to overcome
degeneracy is to use merging approximations during the forward filtering. Then, for
the backward smoothing, the associations across components is no longer simple, to
use RTS directly and compute the weights of the smoothing density. In paper C of
this thesis, the problem of FBS based on merging is investigated.
The two filters of the TFS can be run independently of each other. This allows

the GMR algorithms to be used on both the filters. However, as was pointed out
before, the output of the backward filter, is not a proper GM density. So, the GMR
algorithms discussed here cannot be applied directly. In Paper B of this thesis, we
propose a method called smoothed posterior pruning, through which pruning can
be employed in the backward filter.
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4.3 Data association problem

4.3. Data association problem
In this section, we describe how the GM filtering and smoothing are handled in the
data association problem in target tracking in the presence of clutter. In this prob-
lem, one obtains a set of measurements, the origins of which are not known. The
likelihood, in this scenario, can often be modeled as a reduced dimension Gaussian
mixture as in (4.1). Therefore, under linear-Gaussian assumptions for the motion
model, the optimal solution for filtering and smoothing involves GMs. The number
of components in the optimal GMs is a function of the product of the number of
measurements across time, and so increases exponentially with time. Thus, approx-
imations are inevitable to reduce the complexity.
In the data association problem, at each time instant, hypotheses are defined

which associates the target to the individual measurements or to no-detection hy-
pothesis. Track hypotheses has a sequence of these target-measurement or no-
detection hypothesis associated to it across time. Filtering on each track hypothesis
results in a component in the filtering GM at each time instant. The optimal so-
lution to filtering in the data association problem retains several track hypotheses
for the target, along with a probability or weight for each hypothesis. The sequence
of data associations across time is usually illustrated using a graphical structure,
the hypothesis tree. Along each branch in the tree, we get a sequence of Gaussian
densities across time, along with the probabilities for the corresponding hypothesis
sequence. Many suboptimal algorithms that uses the GMR techniques for filtering
have been designed for this data association problem, as will be discussed in the
remainder of this section. However, smoothing based on merging, which is the focus
of this thesis, has not been explored well.
Suboptimal data association approaches, such as the nearest neighbor algorithm

[8] and the probabilistic data association algorithm [5, 3], retain only one track hy-
potheses for the target after each iteration. In the nearest neighbor algorithm, all
but the component in the likelihood that is nearest to the prediction, are removed.
Thus, the uncertainty in the data association is lost mostly. In the probabilistic data
association (PDA) algorithm, the GM is reduced (or merged) to a single Gaussian
density after each iteration using moment matching. Thus, the disadvantage being
that the associated uncertainty can be quite large. Paper A in this thesis addresses
the problem of improving the filtered estimates using smoothing in the PDA set-
ting. The MHT algorithms [33, 7, 10] often employ N-scan pruning as a means to
reduce the number of branches in the tree (or components in the GM) at each time.
Therefore, the number of tracks retained for the target can be more than one. The
uncertainty about the data association for the tracks can be underestimated if the
pruning is aggressive.
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5. Contributions and future work
The main objective of the thesis is to design algorithms for filtering and smoothing of
Gaussian mixtures, based on merging and pruning. The contributions of each paper
comprising the thesis are discussed briefly in this chapter. Furthermore, possible
ideas for future research which arose during the writing of this thesis are presented.

5.1. Contributions
In the following section, the contributions of the four papers in the thesis, and the
relations between them, are presented.

Paper A
Paper A presents the smoothed probabilistic data association filter (SmPDAF)
which aims at improving the Gaussian approximation of the filtering density p(xk|Z1:k),
compared to the probabilistic data association (PDA) filter [3]. The idea behind Sm-
PDAF is to improve the approximations of the filtering densities p(xl|Z1:l) at past
time instants l using the corresponding smoothing densities p(xl|Z1:k), where l < k.
The likelihood p(Zl+1:k|xk), involved in computing the smoothing density by the
two-filter smoothing method, is approximated as a Gaussian density using the ex-
pectation propagation method. The smoothing density computed this way is then
used to prune components in the filtering density at time l. This filtering density
is thereafter propagated to the future time instants l + 1 until time k, each time
employing the pruning strategy during filtering approximations.
Simulations show that the root mean squared error (RMSE) for the SmPDAF

is better than for the PDA filter when the probability of detection is 1. However,
when PD < 1, the track loss performance of the SmPDAF algorithm deteriorates.
This reduction in performance is due to the fact that the likelihood p(Zl+1:k|xk)
is multi-modal when PD < 1, and thus a Gaussian density for the likelihood can
be a poor approximation. Instead, a Gaussian mixture (GM) approximation of
the multi-modal likelihood would enable performance improvements. Thus, the
propagated densities should be GMs instead of Gaussian densities. To this end,
an understanding of the smoothing of GM densities is necessary, which lead us to
Papers B and C. Naturally, a GM approximation for the filtering densities p(xk|Z1:k)
is justified if a GM approximation for the likelihood is used. Papers B and C present
algorithms for GM filtering and smoothing based on two-filter smoothing (TFS) and
forward-backward smoothing (FBS), respectively.
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Paper B
The objective of this paper is to obtain an algorithm for two-filter smoothing of GM
densities based on merging approximations. The TFS involves two filters, namely
the forward filter and the backward filter, where the former has been studied exten-
sively in the literature. The latter, i.e., the backward filter, has a structure similar
to a GM, but is not a normalizable density. Therefore, the traditional Gaussian mix-
ture reduction (GMR) algorithms cannot be applied directly in the backward filter.
The existing literature, though providing an analysis of the backward filter, does not
present a strategy for the involved GMR. This paper presents two strategies, which
allows the Gaussian mixture reduction (GMR) to be applied to the backward filter.
The first one is an intragroup approximation method that depends on the structure
of the backward filter, and presents a way to apply GMR within certain groups of
components. The second method is a smoothed posterior pruning method, that is
similar to the pruning strategy for the (forward) filtering discussed in Paper A. In
paper B, the posterior pruning is formulated and proved to be a valid operation for
both the forward and the backward filters. When compared to FBS based on an
N-scan pruning algorithm, the two-filter smoothing densities obtained using the pro-
posed ideas are shown to have better track-loss, RMSE and normalized estimation
error squared (NEES) for lower complexity.

Paper C
In this paper, the problem of forward-backward smoothing of GM densities based
on merging is addressed. The existing literature provides practical algorithms for
the FBS of GMs that are based on pruning. The drawback of a pruning strategy
is that as a result of excessive pruning, the forward filtering may lead to degener-
acy. The backward smoothing on this degenerate forward filter can lead to highly
underestimated data association uncertainties. To overcome this, we propose using
merging of the GM during forward filtering as well as during backward smoothing.
As mentioned before, the forward filter based on merging is well studied in the lit-
erature. A strategy to perform the backward smoothing on filtering densities with
merged components is analyzed and explained in this paper. When compared to
FBS based on an N-scan pruning algorithm, the presented method is shown to have
better track-loss, RMSE and NEES for lower complexity.

Paper D
In this paper, we compare the FBS and TFS algorithms that are based on pruning
and merging approximations. It is shown that both the algorithms perform very
similarly in the scenarios where the target is considered to move slowly. Further,
we compare and discuss the two smoothing algorithms based on the possibilities of
extending the algorithms to more complex scenarios.
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5.2. Future work

Besides the results for GM smoothing based on merging, we also obtained a plethora
of ideas to investigate in the future. In this section, we present and discuss the
ideas, which range from the extensions of GM smoothing to more complex scenarios
than single-target linear Gaussian process models, to computationally cheaper GM
merging methods and message passing in generic graphs.

Smoothed filtering of Gaussian mixtures

It is possible to extend the idea of SmPDAF to to use GM approximations for the
densities in the PDA case, instead of the Gaussian density approximations. That
is, GM approximation of the filtering density p(xk|Z1:k) can be improved by better
approximations of the filtering densities p(xl|Z1:l), for l < k. The approximations
for p(xl|Z1:l) can be improved in two steps. One is that the number of Gaussian
components in p(xl|Z1:l) can be reduced by smoothed posterior pruning. Two, for
this reduced GM, a simpler and better Gaussian mixture approximation of p(xl|Z1:l)
can be obtained by employing Gaussian mixture merging. For smoothed posterior
pruning of p(xl|Z1:l), one needs to compute the backward likelihood p(Zl+1:k|xl),
which in turn requires the filtering density p(xl|Z1:l) for approximations. Thus, the
SmPDAF approximation of p(xl|Z1:l) will depend on the initial approximation of
p(xl|Z1:l). Therefore, the performance gain highly depends on the approximations
initially made for p(xl|Z1:l). The trade-off between the performance gain and the
complexity of the SmPDAF for Gaussian mixture densities is an interesting problem
to study.

Relation between artificial prior method and smoothed posterior
pruning

In a broad sense, there are similarities between the artificial prior method used
in the TFS of particle filtering [9], and the smoothed posterior pruning idea. In
both cases, the backward filter is not a density, which limits the use of traditional
methods. In case of a particle filter, one needs a density to be able to sample
the particles, so artificial priors are used to transform the backward filter into a
density from which particles can be drawn. In the backward filter of TFS, one
needs a GM density to use traditional GMR algorithms, where the forward filter is
used to obtain the smoothing density so that GMR can be performed. It would be
interesting to investigate further the connection between the artificial prior method
and the smoothed posterior pruning method.
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Merging algorithms
The TFS and FBS algorithms presented in the thesis are based on merging. There
are several methods, such as Runnalls’ [35], Salmond’s [36] and variants of these
[11, 42], which one can choose for GM merging implementation. However, the
computational complexity of these methods is a serious limitation when it comes
to practical implementations where merging is necessary at each time instant. In
both the reduction algorithms, the merging cost must be computed for every pair
of components, which involves expensive matrix multiplications. The cost function
for merging two components denoted wiN (x;µi, Pi) and wjN (x;µj, Pj), are shown
in the following equations for the two methods:

cRunnall(i, j) = 1
2 ((wi + wj) log |Pi,j| − wi logPi − wj logPj) (5.1)

cSalmond (i, j) = wiwj
wi + wj

(µi − µj)T P−1 (µi − µj) . (5.2)

Here Pi,j and P are the covariances of the sum of the two components and the entire
GM, respectively. Next, the pair that has the lowest cost is merged and replaced
in the GM, and the procedure is repeated until a stopping condition is fulfilled.
Therefore, the complexity of these algorithms is quadratic, if not exponential, in
the number of components, which is still expensive considering prediction, update
and retrodiction steps. For the results presented in the thesis, significant amount
of effort went into devising practical merging algorithms, which resulted in two
strategies. One is a combination of Runnalls’ and Salmond’s algorithms, which is
used in the forward filter. The other method is a modified version of Salmond’s
algorithm. There are also other ideas that we have for possible investigation, which
are based on making lesser number of cost computations than computing the cost
for every pair (i, j). Some of these ideas are presented in the following discussions.
In Salmond’s algorithm, the cost function has the difference between the mean

terms, |µi − µj|. The term is also included in the Pi,j matrix in the Runnalls’ cost
function. If |µi − µj| is small, then c(i, j) has a small value. Therefore, sorting
the components according to |µi − µj| can help us in easily finding a good pair
that has small cost. This sorting and searching has to be performed after each
pair that is merged and replaced in the GM. The so-called ‘kd-tree’ data structure
used in computer science is a good tool in performing such a multidimensional
sorting and searching efficiently, in N logN steps, instead of N2 steps. Further
investigation of the optimality of this method is interesting and can make the GM
merging computationally cheaper.
Another way of reducing the number of merging cost computations is by getting

bounds on the cost function. Suppose there is an upper bound on the least possible
cost. And suppose that for some group of pairs of components, we can compute
a lower bound on the costs. If the group’s lower bound is greater than the upper
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bound on the lowest cost, the cost computation for the component pairs in the group
can be avoided. The challenge is thus in obtaining the upper bound on the least
cost, and selecting the group that can be eliminated. A closer analysis of the cost
function is necessary to obtain these bounds and a good choice of groups.
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Abstract

This paper presents the Smoothed Probabilistic Data Association Fil-
ter (SmPDAF) that attempts to improve the Gaussian approximations used
in the Probabilistic Data Association Filter (PDAF). This is achieved by
using information from future measurements. Newer approximations of
the densities are obtained by using a combination of expectation propaga-
tion, which provides the backward likelihood information from the future
measurements, and pruning, which uses these backward likelihoods to
reduce the number of components in the Gaussian mixture. Performance
comparison between SmPDAF and PDAF shows us that the root mean
squared error performance of SmPDAF is significantly better than PDAF
under comparable track loss performance.

Index Terms

PDA, filtering, smoothing, factor graph, Gaussian mixtures, message
passing, expectation propagation, target tracking, pruning.

I. INTRODUCTION

In target tracking, the sensors pick up signals not only from the target
but also from unwanted sources. When tracking with radar, echoes are re-
flected from ground, sea, etc. which can be sources of clutter signals. Even
while tracking a single target, there can be a large number of measurements
observed. It can also be that, at times, the target is not observed.

Even under simple assumptions on the process and measurement model
— linear with additive Gaussian noise — the problem is computationally
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intractable. It is easy to show that the true posterior filtered density has
the Gaussian Mixture (GM) form with an exponentially increasing number
of components over time, thus making approximations inevitable. There
are many suboptimal algorithms that have been proposed and been in use.
The two major approaches to the problem are one that uses a random-set
framework and another that uses a data association framework. Probabilistic
Hypothesis Density (PHD) [10] filters belong to the former category, whereas
the Multiple Hypothesis Tracking (MHT) filters [4, 13] and the PDAFs [3]
belong to the latter. This paper focuses on the data association setting; it
should be pointed out that the solution presented in this paper is extendable
to scenarios with GMs in general.

In the data association setting, multiple hypotheses are formed, one for
each data-to-target association. Under each hypothesis, and under linear-
Gaussian assumptions, the filtered posterior is a Gaussian density, thus re-
sulting in a GM for the overall filtered posterior density. This mixture, when
propagated through time, has exponentially increasing number of compo-
nents. Thus, the number of components in the GM has to be reduced. There
are several GM reduction algorithms [14, 15, 16] that can be employed to
reduce the number of components in the GM. These algorithms vary in
terms of complexity, the divergence measure that is minimized, the number
of components retained, etc. [7].

MHT uses pruning and/or merging techniques to keep the number of
terms under control. The GM reduction at a certain time instant is based on
the information from future measurements. But the complexity involved is
typically exponential. Based on the parameters of choice, MHT can be quite
close to the optimal solution, but the closer it is to the optimal solution, the
higher the computational complexity. In PDAF, the GM posterior is reduced
to one single Gaussian which has the least Kullback-Leibler (KL) divergence
[9] from the mixture. Thus, the PDAF has linear complexity in the number
of measurements received.

In this paper, we present the SmPDAF algorithm that uses a combination
of PDAF, Expectation Propagation (EP) [11] and pruning to reduce the GM
to a single Gaussian density. The approximation is different from the PDAF
in the way that before reducing the GM to a single Gaussian, SmPDAF tries
to improve the approximation of the prediction density. Likelihood from
the future measurements are used to improve the approximations made for
the GMs in the past time instants. This improves the prediction, thereby
improving the current posterior. This involves iterating between filtering
and smoothing [12]. EP is used in obtaining the likelihood from the future
measurements, and these likelihoods are used to prune components in the
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GM of the filtered density. The complexity of the algorithm is linear in
the number of measurements and in the depth (or the lag) involved in the
smoothing.

The proposed algorithm is compared with PDAF. The two performance
measures that are used for comparison are the root mean squared error
(RMSE) and the track loss (TL). It will be later shown in the results that
although TL is almost the same for both PDAF and SmPDAF, the latter does
show a significant improvement in the RMSE performance. The performance
has been compared for varying measurement noise levels and probabilities
of detection. Results are shown for a single target scenario. A comparison of
complexities of PDAF and SmPDAF is also discussed in the results section.

The layout of the paper is as follows: Section II describes the model as-
sumptions, the clutter measurement distribution, etc. The problem statement
and a brief description of the idea behind the SmPDAF algorithm are also
presented in this section. Section III gives a comprehensive background on
filtering, PDAF, smoothing and EP. The SmPDAF algorithm is described in
detail in Section IV. It details on how EP helps us to obtain the likelihoods
from the future measurements. Also explained is how pruning exploits these
backward likelihoods to improve the approximation of the GM densities. An
algorithmic description of SmPDAF is also provided. Section V presents the
results and a discussion on the interpretation of the performance for varying
measures. Appendices A and B throw more light into the details of Gaussian
divisions involved in EP and the backward predictions, respectively.

II. PROBLEM FORMULATION AND IDEA

A. Model assumption

The state at time k is given by the process model,

xk = Fxk−1 + vk

and the target measurement at time k is described by the measurement model,

ztk = Hxk + wk

where xk ∈ RM , ztk ∈ RN , F ∈ RM×M , H ∈ RN×M , vk ∼ N (0, Q) and
wk ∼ N (0, R).

In this paper, we only consider single-target scenarios. On top of the
target-generated measurement, there are also spurious measurements due to
clutter. The collection of measurements at time k is represented by the set
Zk and the collection of measurement sets from time 1 to k is given by
Z1:k. The clutter measurements are assumed to be uniformly distributed over
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an observed region of volume V , and independent of the target state. The
number of clutter measurements is also a random variable that follows a
Poisson distribution with parameter λV , where λ is the clutter density. Also,
it is assumed that the initial prior, p(x1), is known and Gaussian. PD will
be the probability of detection.

B. Problem statement and Idea

Under the above-mentioned assumptions, it is easy to show that the filtered
posterior density p(xk|Z1:k) is a GM with exponentially increasing number
of components. The goal of this paper is to find a better approximation for
the filtered density, p(xk|Z1:k).

The filtered posterior density is given by

p(xk|Z1:k) ∝ p(xk|Z1:k−1)p(Zk|xk) (1)

where p(xk|Z1:k−1) is the prediction density and p(Zk|xk) is the likelihood
from measurements observed at k. Any improvements on the approximation
of p(xk|Z1:k−1) will help in improving the approximation of p(xk|Z1:k).
This is achieved by improving the approximations of the filtered densities
p(xl|Z1:l) at the past time instants l < k, using the backward likelihood
messages p(Zl+1:k|xl) from the future measurements. These likelihoods are
obtained using EP and are passed backward in time for a fixed number of
time steps. The backward likelihoods available at each of these time instants
l, are used for pruning some of the components in the GM corresponding to
the filtered density p(xl|Z1:l).

III. BACKGROUND

The focus of the paper is on improving the approximation for filtering.
To achieve, this we use smoothing along with EP. A brief background on
filtering, smoothing, PDAF and EP is provided in this section. For a more
thorough explanation on these topics, readers are referred to [3], [12] and
[11].

A. Filtering and PDAF

Filtering, in short, is combining the inference about the current state
variable obtained from the past measurements along with the inference made
from the current measurements to obtain the filtered posterior density of the
state variable. This is performed in a recursive manner so that only the filtered
density of the state at past time instant can be used along with the current
measurement to obtain the filtered density of the current state variable; not
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Fig. 1: State space model for filtering and smoothing.

all the past measurements have to be retained. But these operations are not
always easy; the densities are complicated and it becomes computationally
intractable to use recursion. Approximations are necessary. The PDAF is a
filtering algorithm that uses Gaussian approximation at each time instant. The
section provides some details on how this is performed. Also presented in
this section is a means of involving future measurements to current inference:
that is, a smoothed estimate.

Let the state transition density be f(xk|xk−1) and the measurement like-
lihood be p(Zk|xk). This state space model is illustrated in Fig. 1.

Filtering comprises two steps: prediction and update. Prediction is given
by

p (xk|Z1:k−1) =

ˆ
p (xk−1|Z1:k−1) f (xk|xk−1) dxk−1 (2)

In this equation, the filtered density at time k− 1 is propagated through the
process model to obtain the prediction of the current state variable xk from
the past measurements Z1:k−1. The prediction step is followed by the update
step — the information from the current likelihood is updated along with
the prediction to obtain the filtered density.

p (xk|Z1:k) ∝ p (xk|Z1:k−1) p (Zk|xk) . (3)

The two components in equation (3) can be interpreted as:
• p (xk|Z1:k−1) is the information that the measurements from the past,
Z1:k−1, provide us about the current state xk.

• p (Zk|xk) is the information that the current measurement Zk has about
the current state xk.

The update step puts together these pieces of information to give us the
filtered posterior p(xk|Z1:k).

Under the model assumptions made in section II-A, the likelihood p (Zk|xk)
is a GM.

p (Zk|xk) = w0 +

mk∑
i=1

wiN (Hxk; zk,i, R) (4)
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where
{
zik
}
i=1,..mk

is the set of all measurements at time instant k, wi ∝ 1
mk

,
for i = 1, ..mk is the probability of the hypothesis that the measurement zik
correspond to the target, and w0 ∝ 1− PDPG is the probability of the null
hypothesis i.e., that the target did not yield any measurement. PG is the
probability of gating.

With a likelihood as in equation (4) and a Gaussian initial prior, the filtered
density will be a Gaussian mixture. As this is propagated through time,
all the filtered densities will be GMs and the number of terms in the GM
grows exponentially with time. Thus, approximation of the GM is necessary.
The PDAF approximates the filtered posterior, p (xk|Z1:k), with a single
Gaussian. Assuming that the prediction p (xk|Z1:k−1) is a Gaussian density
N
(
xk; x̂k|k−1, Pk|k−1

)
(which is typically due to the approximations made

at the previous time instants), the filtered posterior will be:

p (xk|Z1:k) ∝ p (xk|Z1:k−1) p (Zk|xk) (5)

= w0N
(
xk; x̂k|k−1, Pk|k−1

)
+

mk∑
i=1

w′iN
(
xk; x̂k|k,i, Pk|k,i

)
which is again a GM with the same number of components as p (Zk|xk)
but with updated means x̂k|k,i, covariances Pk|k,i and weights w′i. The new
weights w0 and w′i are such that the weights shift towards the most likely
component in the GM. The PDAF makes the following approximation of the
GM:

p̃ (xk|Z1:k) = MM (p (xk|Z1:k)) (6)

where MM (ψ(x)) stands for moment matching that would return a Gaussian
with the same first two moments as ψ(x). This method minimizes the KL
divergence, KL (p (xk|Z1:k) ||p̃ (xk|Z1:k)).

B. Smoothing

Referring back to equation (3), if along with the information, if the in-
formation from the future measurements is also incorporated, that gives us
the smoothed density. Let us consider smoothing for time instant l such that
l < k. The filtered density at l will be

p (xl|Z1:l) ∝ p (xl|Z1:l−1) p (Zl|xl) .

The smoothed density at l will be

p (xl|Z1:k) ∝ p (xl|Z1:l−1) p (Zl|xl) p(Zl+1:k|xl). (7)
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p(Zl+1:k|xl) is the likelihood of the current state xl from the future mea-
surements Zl+1:k. This likelihood is obtained in two steps, which are similar
to the prediction and update step, but in a different order:
• Likelihood update:

p(Zl+1:k|xl+1) = p(Zl+1|xl+1)p(Zl+2:k|xl+1)

• Backward prediction:

p (Zl+1:k|xl) =

ˆ
p (Zl+1:k|xl+1) f (xl+1|xl) dxl+1 (8)

C. EP

In the algorithm presented in this paper, to compute the backward likeli-
hood p(Zl+1:k|xl+1), EP [11] is used. In section IV-A, it will be explained
how and why EP is employed to obtain an approximation of the backward
likelihood. In this section, the general working of EP will be explained.
EP is an approximation technique that can be used to obtain a Gaussian
approximation of factors of a function. If the function is a product of several
non-Gaussian factors, then a Gaussian approximation of each of the factors is
obtained using the information from the other factors. This can be performed
in an iterative fashion among all the factors in the function. This can also
be used to get a Gaussian approximation of the function.

Let f(x) be a function that is made up of several factors fi(x). These fac-
tors are non-Gaussian and we would like to obtain a Gaussian approximation
of it.

f(x) =
N
Π
i=1
fi(x).

Let us assume that we have an initial approximation of the factors, f̃i(x).
We are interested in obtaining the approximation for the jth factor fj(x).
The new approximation provided by EP will be

f̃newj (x) =

MM

fj(x)
N∏

i = 1
i 6= j

f̃i(x)


N∏

i = 1
i 6= j

f̃i(x)

.
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The jth factor is replaced with this new approximation and the procedure can
be iterated for the remaining factors. The advantage is that the approximation
of fj(x) is made in the region where the product of all the factors has its
mass. In the next section, there will be more explanation on the relevance
of this region of interest.

IV. SMPDAF

The main goal of this paper is to obtain an accurate approximation of
the filtered density. SmPDAF tries to make the approximation accurate in
the region of interest. In this section we argue that the region of interest is
where the smoothed density has its mass, which hence depends on all the
available information. An important consequence is that future measurements
influence where the density approximations should be accurate, i.e., Zl+1:k

influence where our approximation of p(xl|Z1:l) should be accurate, in order
to yield an accurate approximation of p(xk|Z1:k) (which is our objective).
To be noted is that if we have an exact, and Gaussian, expression for the
filtered density p(xl|Z1:l), in the first place, the information from the future
is not going to change anything in the filtered density. The idea is to use
the older approximations of the filtered density and the information from the
future to obtain a more accurate approximation of the filtered density.

Under the model assumptions given in Section II-A, it was shown very
briefly in Section III-A that the true filtered density p(xk|Z1:k) is a GM.
A PDAF makes a Gaussian approximation (by moment matching) of the
filtered density at each stage. This filtered density depends on the prediction
density p(xk|Z1:k−1), which in turn depends on (the approximation of) the
filtered densities, p(xl|Z1:l) at the past time instants l < k. Each of this
filtered density is originally obtained through a PDAF. Thus before MM,
each of these is a GM but with far lesser number of components than the
true filtered density.

The idea is to improve on the GM in PDAF before MM. By improve,
we mean that we want the GM to become more unimodal, with the mode
corresponding to the true hypothesis gaining more weight. EP and pruning
are used to perform this. This involves computing the backward likelihoods
p(Zl+1:k|xl) (l < k) from the future measurements, which again for com-
putational simplicity and tractability, has to be approximated as a Gaussian
density. EP is one way to obtain these backward likelihoods. It uses the
prediction p(xl|Z1:l−1) and the current likelihood p(Zl|xl) to approximate
the backward likelihood at the previous time step. Based on this backward
likelihood, we use pruning in order to remove components in the GM before
MM.
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Both EP and pruning use all the available information — prediction,
current likelihood and the backward likelihood — to improve on the ap-
proximation of the backward likelihood and thereby, the approximation of
the filtered density, p(xl|Z1:l). This will later be propagated forward to
improve the filtered density p(xk|Z1:k). Thus, it becomes quite natural to
make the approximation of these densities accurate in the region which uses
the information from all measurements Z1:k. Since the smoothed density is
obtained using all the information, the region of interest is then the region
where the smoothed density has most of its mass. EP and pruning provide
accurate approximations of the backward likelihood and the filtered density
in this region of interest. In the following sections, there will be more detailed
discussions on the working of EP and pruning.

A. EP

It was argued in the above section that it is crucial to obtain an accurate
Gaussian approximation of the backward likelihood p(Zl+1:l|xl). This can
be obtained in two steps:

1) Starting with the Gaussian likelihood p(Zl+2:k|xl+1) and the GM like-
lihood p(Zl+1|xl+1) at time l + 1, EP is used to obtain a Gaussian
approximation of p(Zl+1:l|xl+1) = p(Zl+1|xl+1)p(Zl+2:k|xl+1),

2) The Gaussian approximation from 1) is passed backwards through the
process model to obtain the necessary likelihood p(Zl+1:l|xl). (This
step is referred as backward prediction in this paper).

It is emphasized that starting from time l+ 1, these above two steps can be
repeated for each l. The details of the backward prediction are provided in
Appendix B. To be noted is that given the Gaussian density input, there are
no additional approximations made in this backward prediction step.

For notational simplicity and without loss of generality, in this section we
will discuss the possibilities to obtain the likelihood p(Zl:k|xl), instead of
p(Zl+1:k|xl+1), where

p(Zl:k|xl) = p(Zl|xl)p(Zl+1:k|xl). (9)

The current likelihood has the form,

p(Zl|xl) = w0 +

mk∑
i=1

wiN (Hxl; zl,i, R) .

If p(Zl+1:k|xl) is a proper Gaussian density, the product will yield a GM
which can be moment matched and approximated to a Gaussian density.
On the other hand, if p(Zl+1:k|xl) is of the form N (Ux; µ, P ) where the
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matrix U is not a square matrix, then the product in equation (9) will result
in a function of the form,

p(Zl:k|xl) = w0N (Uxl; µ, P ) +

ml∑
i=1

w′iN
(
U ′xl; µ

′
i, P

′) .
This function is not a density in xl and cannot be normalized. It is therefore
difficult to find an approximation that is Gaussian-like and has the same
moments. EP comes to the rescue. EP suggests that the prediction density
can be used in obtaining the approximation. It serves two purposes: 1) the
approximation is made accurate in the region where the smoothed density
has most of its mass, and 2) it overcomes the problem of normalization and
computing the moments. EP does the following:

p(Zl:k|xl) ≈
MM (p(xl|Z1:l−1)p(Zl|xl)p(Zl+1:k|xl))

p(xl|Z1:l−1)
. (10)

The likelihood p(Zl:k|xl) is first multiplied by the prediction p(xl|Z1:l−1),
to get the smoothed density p(xl|Z1:k). This will result in a GM which can
be normalized. A Gaussian approximation of this density is made by moment
matching. And the resulting Gaussian density is divided by the prediction to
get an approximation of the desired likelihood p(Zl:k|xl). This approximation
for p(Zl:k|xl) is obtained so that the Kullback-Leibler divergence between
the moment matched smoothed density, p(xl|Z1:l−1)p(Zl:k|xl) and the GM
smoothed density p(xl|Z1:l−1)p(Zl|xl)p(Zl+1:k|xl) is minimized, i.e.,

p(Zl:k|xl) ≈ argmin
p(Zl:k|xl)

KL {p(xl|Z1:l−1)p(Zl|xl)p(Zl+1:k|xl)

||p(xl|Z1:l−1)p(Zl:k|xl)} .

Thus the approximation is made such that the smoothed density is more
accurate and thus yields an accurate approximation for the backward likeli-
hood. This likelihood can be propagated back through the process model to
obtain p(Zl:k|xl−1); the details of this are in n Appendix B.

It can be observed in equation (10) that EP involves division of Gaussian
densities. This operation is carried out similar to the Gaussian multiplication
operation. There will be addition of covariance matrices in Gaussian mul-
tiplication to obtain the resultant (product) covariance. In case of Gaussian
division, there is subtraction of covariance matrices. The problem is that this
may result in a matrix with non-positive eigenvalues. The numerator in the
Gaussian division is obtained after moment matching. Thus the covariance
of the numerator will be much wider because of the spread of means term
involved in moment matching a GM. If the covariance of the numerator is
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wider in certain dimensions compared to the covariance of the denominator,
the subtraction of covariance matrices will result in a matrix with negative
eigenvalues. The approach taken in overcoming this is to use only the dimen-
sions along which the eigenvalues are positive and to ignore the remaining
dimensions. The details of how this is performed is explained in Appendix
A.

B. Pruning

EP provides us with a good approximation to the backward likelihood
p(Zl+1:k|xl). The question now is how this backward likelihood can be used
to obtain an approximation of the filtered density p(xl|Z1:l).

One natural way of utilizing the backward likelihood would be to use EP
as

p(xl|Z1:l) ≈
MM (p(xl|Z1:l−1)p(Zl|xl)p(Zl+1:k|xl))

p(Zl+1:k|xl)
.

The problem with this method is that it involves Gaussian division and can
result in a density with infinite covariance along certain state dimensions,
which is not desirable.

Another way would be to use the smoothed density as an approximation,

p(xl|Z1:l) ≈ MM (p(xl|Z1:l−1)p(Zl|xl)p(Zl+1:k|xl)) .

The disadvantage with this would be that as we iterate between the approx-
imations of the backward likelihood p(Zl+1:k|xl) and the filtered density
p(xl|Z1:l), the information in p(Zl+1:k|xl) will be overused (this is sometime
referred to as data “incest”) and can result in an underestimated covariance.

The method that is suggested in this paper is to perform pruning on
the filtered GM p(xl|Z1:l) based on the smoothed density which uses the
backward likelihood p(Zl+1:k|xl). The filtered density and the smoothed
density are GMs (but we assume that the prediction and the backward
likelihood are Gaussian functions). Let them be denoted as:

p(xl|Z1:l) =

ml∑
i=0

wiN
(
xl; µ

i
l, P

i
l

)
p(xl|Z1:k) =

m′
l∑

i=0

w′iN
(
xl; η

i
l , B

i
l

)
The different components in the GM correspond to the hypothesis that the

measurement zil at time l is due to the target, and i = 0 refers to a missed
detection. If the weights of some of the components in the GM p(xl|Z1:k)
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are negligible compared to the weights of the filtered density GM, then it
would imply that the backward likelihood indicates that the impact of those
components become insignificant in the future time instants. If the impact
of those components is negligible, these components may as well be pruned
in the filtered GM density at time l. This helps in reducing the number of
components in the GM. The lesser the number of components in the GM,
the easier (or more accurate) can be the approximation of the GM to single
Gaussian density. Thus, a better and an easier approximation for the filtered
density p(xl|Z1:l) would be to prune those components and moment-match
the remaining components. Thus the idea is to prune the components in
the filtered density GM that have negligible weights (or insignificant) in
the smoothed density. The remaining components in the filtered density are
moment-matched to obtain a Gaussian density approximation.

The pruning operation will be denoted as ‘Prune1:k’ in the algorithmic
description 1.

C. Algorithmic Description

An algorithmic description of SmPDAF is provided as Algorithm 1. It is
assumed that the lag parameter L and the iteration parameter, J are defined.
For each time instant, k, the procedure is explained in Algorithm 1. The
filtered density at time k − 1 is assumed to be available.

V. RESULTS

Performance comparisons between SmPDAF and PDAF are presented in
this section. Simulation comparisons of the root mean squared error and the
track loss between the PDAF and SmPDAF are presented. The asymptotic
complexity of the SmPDAF algorithm is discussed later.

A. Root Mean Squared Error and Track Loss

The model considered for simulations is the constant velocity model with a
two dimensional state vector containing position and velocity. The trajectory
was generated with zero process noise. The initial speed was 50m/s. For the
simulations, the acceleration noise had a standard deviation of around 4m/s2.
The lag parameter L, for the SmPDAF was set as 5 time steps and for each
time instant, the SmPDAF was performed once, i.e., the iteration parameter
J was set as 1. The performance measures considered are RMSE and TL.
The results are averaged over 1000 Monte Carlo iterations.

The RMSE performance is shown in Fig. 2 and Fig. 3. The RMSE in the
position obtained with PDAF is 10% higher than that of SmPDAF for higher
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Algorithm 1 Algorithmic description of SmPDAF
1) Propagate the prior through the process model to get the prediction

p(xk|Z1:k−1) as in equation (2), compute the filtered density at k as
in equation (5) and (6) and set b = k.

2) At b, compute the backward likelihood as in equation (10) with l = b
and propagate it backward through the process model as in equation
(8) with l = b− 1. Set b = b− 1.

3) Repeat step 2) until b = k − L and set f = b.
4) At f , compute the new prediction as in equation (2) and perform

pruning on filtered density as

p(xf |Z1:f ) = Prune1:k(p(xf |Z1:f−1) p(Zf |xf )),

perform moment matching as

p(xf |Z1:f ) = MM(p(xf |Z1:f ))

and set f = f + 1.
5) Repeat step 4) until f = k.
6) Repeat steps 2) to 5) the specified iteration ‘J’ number of times.

PD (See Fig. 2); for lower PD, PDAF has 5% more RMSE in position than
SmPDAF. With respect to the RMSE in velocity, PDAF has around 2% more
RMSE than SmPDAF.

The TL decision was made by thresholding the Mahalanobis distance
between the estimated state and the true state. The TL of SmPDAF is slightly
better than the TL of the PDAF for higher PD (See Fig. 4). For lower PD,
SmPDAF has higher track loss than PDAF. A closer analysis showed that the
tracks were lost when the approximation of the backward likelihood made by
EP was not accurate. This mainly happened when the target measurements
were missed and were not part of the backward likelihood.

B. Complexity

The complexity of SmPDAF is analyzed as a function of the number of
terms in the GM filtered density. It will be argued that smoothing back until
a certain lag and filtering forward have same complexity (asymptotically).

At each time instant, SmPDAF performs PDAF and smoothing back until
a certain time step, followed by forward filtering employing pruning. Thus,
the complexity of SmPDAF can be grouped into three parts: PDAF (Step 1
in Algorithm 1), smoothing back until a certain lag (Step 2), forward filtering
with pruning (Step 4).
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Fig. 2: Comparison of the RMSE in position between SmPDAF and PDAF

PDAF involves MM of the filtered GM density at each time instant.
Thus PDAF has linear complexity in the number of components in the GM,
which depends on the number of clutter measurements at each time instant.
On an average, PDAF has a complexity linear in the expected number of
measurements at a time instant, let’s say ‘C’.

The smoothing step is very similar to the PDAF step. In smoothing, there
is the GM backward likelihood instead of a GM filtered density; instead of
direct MM, EP is performed. EP has an additional step of Gaussian division,
which is independent of the number of components in GM. Thus, following a
similar argument as before, smoothing for a time step has linear complexity in
the expected number of measurements, C. This smoothing back is performed
until certain lag, say ‘L’. Thus, this results in a complexity of L×C for the
smoothing step.

The filtering forward with pruning step is again very similar to PDAF,
with additional pruning happening before MM. Thus, filtering forward with
pruning for ‘L’ times steps has a complexity of L×C. The smoothing and the
filtering forward with pruning steps are repeated ‘J’ number of times (Step
6)). Putting all these together, SmPDAF has a complexity of (2×L×J+1)C
for each time step, which is asymptotically linear in L× C × J .

VI. CONCLUSIONS

In this paper, the Smoothed Probabilistic Data Association Filter algorithm
was presented. The core idea of the algorithm is to exploit the information
from the future to improve on the Gaussian approximation of the filtered
density at the current time instant. The work done in this paper presented
a way to use the idea of a combination of the probabilistic data association
filter (PDAF), expectation propagation (EP) and pruning. To compute the
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Fig. 3: Comparison of the RMSE in velocity between SmPDAF and PDAF

Fig. 4: TL comparison between SmPDAF and PDAF

backward likelihood from future measurements, EP was employed. Pruning
was a way suggested to use this backward likelihood to improve the ap-
proximation of the filtered density. Both EP and pruning work in such a
way that the approximations are made accurate in the region of interest. The
RMSE performance of the SmPDAF algorithm was found to be significantly
better than that of PDAF in a simulated single-target scenario with clutter
and non-unity probability of detection.

APPENDIX A
GAUSSIAN DIVISIONS

When computing the backward likelihoods from the future measurements,
EP is used as in equation (10). This involves division of Gaussian densities
that leads to subtracting the inverses of the two covariance matrices, which
may result in covariance matrices with negative eigenvalues. One way to
overcome this is to exploit the dimensions along which the eigenvalues are
positive, and propagate the corresponding density.
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Let us assume that the densities involved in the Gaussian division are
N (x;µa, Pa) and N (x;µb, Pb) and the interest is in computing the function
g(x) such that it has a Gaussian form with positive definite covariance matrix.

g(x) ∝ N (x;µa, Pa)

N (x;µb, Pb)

∝ exp

{
−1

2

[
xT
(
P−1a − P−1b

)
x

−2xT
(
P−1a µa − P−1b µb

)]}
.

Let the eigendecomposition of P−1a − P−1b be UTΛU . Λ is such that

Λ =

[
Λp 0
0 Λnp

]
where Λp and Λnp are diagonal matrices with positive eigenvalues and non-
positive eigenvalues along their diagonals, respectively. The eigenvectors in
the U matrix are sorted accordingly,

U =

[
Up

Unp

]
and UpU

T
p = I . The approximation made will be that P−1a − P−1b is re-

placed with UT
p ΛpUp, thereby using only the dimensions along which the

eigenvalues are positive. Thus,

g(x) ∝ N (Upx;µp, Pp)

where µp = Λ−1p Up

(
P−1a µa − P−1b µb

)
and Pp = Λ−1p .

APPENDIX B
BACKWARD PREDICTION

The backward likelihood functions used in SmPDAF have to be propagated
back through the process model as in equation (8),

p (Zk+1:N |xk) =

ˆ
p (Zk+1:N |xk+1) f (xk+1|xk) dxk+1.

This operation is very similar to the prediction step in filtering. The likelihood
p (Zk+1:N |xk+1) is a function obtained by using EP that involves Gaussian
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division as in Appendix A. Thus, it will have the form N (Upxk+1; µp, Pp).
The state transition density is given by N (xk+1; Fxk, Q).

p (Zk+1:N |xk) =

ˆ
N (Upxk+1; µp, Pp)×

N (xk+1; Fxk, Q) dxk+1

=

ˆ
N (xk+1; •, •)×

N
(
UpFxk; µp, UpQU

T
p + Pp

)
dxk+1.

The first term is a Gaussian density in xk+1 and integrates to unity. The
second term in the above integral is independent of xk+1 and hence can be
moved out of the integral. Thus,

p (Zk+1:N |xk) = N
(
UpFxk; µp, UpQU

T
p + Pp

)
.
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Abstract

In this paper, we address the problem of smoothing on Gaussian
mixture (GM) posterior densities using the two-filter smoothing (TFS)
strategy. The structure of the likelihoods in the backward filter of the TFS
is analyzed in detail. These likelihoods look similar to GMs, but are not
proper density functions in the state-space since they may have constant
value in a subspace of the state space. We present how the traditional
GM reduction techniques can be extended to this kind of GMs. We also
propose a posterior-based pruning strategy, where the filtering density can
be used to make further approximations of the likelihood in the backward
filter. Compared to the forward–backward smoothing (FBS) method based
on N−scan pruning approximations, the proposed algorithm is shown to
perform better in terms of track loss, normalized estimation error squared
(NEES), computational complexity and root mean squared error (RMSE).

Index Terms

filtering, smoothing, Gaussian mixtures, two-filter smoothing, back-
ward likelihood, data association

I. INTRODUCTION

In many sequential estimation problems, such as data association problem
[1] and glint problem [2] in radar tracking and synchronization problem in
communication systems, the uncertainties involved in the system are multi-
modal and can be modeled using Gaussian mixtures (GMs). In these ap-
plications, the optimal solutions to the estimation problems of prediction,
filtering and smoothing of GMs have closed form expressions, which can be
obtained using the optimal solutions for the Gaussian densities [8, 14].

Often the optimal solutions have a complexity that increases exponentially
with time. For instance, in the data association problem in target tracking, to
obtain the optimal solution, each observed measurement is either associated
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to a target or declared as clutter at each time resulting in sequences of data
association hypotheses referred to as track hypotheses. Using these data asso-
ciation hypotheses during prediction, filtering and smoothing results in GM
posterior densities in which the number of components grows exponentially
with time.

The two main smoothing methods [6] are forward-backward smoothing
(FBS) and two-filter smoothing (TFS). When the posterior densities are
Gaussian, closed form solutions are available in [11] for FBS and in [7] for
TFS. In this paper, we focus on the TFS method for GMs. The TFS algorithm
works by running two independent filtering algorithms: the forward filtering
(FF) and the backward filtering (BF). The smoothing density is obtained by
multiplying the outputs of the FF and the BF. Ideally, the two filters are
run independently of each other. The FF is the conventional GM filtering
one (eg. a Multiple hypothesis tracking algorithm [12]). The BF, as the
name suggests, is run in the opposite direction from the last time step to
the start and can be obtained using a recursive procedure, similar to the
FF. The likelihood returned by the BF, referred as reduced dimension GM
(RDGM) in this paper, has a GM type of structure, but is not normalizable.
The problem is that the traditional GM reduction (GMR) techniques, such
as pruning and merging, cannot be used directly on the RDGM of the BF, as
these techniques work on normalizable densities. Therefore, design of GMR
techniques for the RDGM structure is necessary for a practical algorithm.

The TFS on GMs is discussed in [8], which provides the structure of the
RDGM, but practical approximation techniques are not discussed in detail.
In the particle filter setting of the TFS problem, the work in [4] proposes
using an artificial prior in the BF, similar to the prior which we use in the FF,
to make the output of the BF a proper density. The conventional techniques
can then be used on the BF’s output to sample particles. But extending this
artificial prior concept to GM TFS has the problem that it involves division
of densities, which can lead to indefinite covariances.

In this paper, we study the TFS of GM, with focus on the backward
filter. Based on the analysis of the structure of the RDGM of the BF, we
propose strategies where GMR techniques are used within certain groups of
components of the RDGM. We also present the smoothed posterior pruning
(SPP) method where we show that the filtering density from the FF can be
used to approximate the RDGM. Simulations for a single target scenario
show that the TFS based on proposed strategies outperforms the pruning-
based FBS method. Additionally, the estimates from the TFS are consistent,
with lower track loss and cheaper computational complexity.

72



II. PROBLEM STATEMENT AND IDEA

We consider a single target moving in a cluttered background. The state
vector xk of dimension Nx at time k is according to the process model,

xk = Fxk−1 + vk, (1)

where vk is Gaussian with zero mean and covariance Q and is denoted as
∼ N (0, Q). The target is detected with probability PD. Measurement set
Zk includes the clutter measurements and the target measurements ztk, when
detected. The target measurement is given by

ztk = Hxk + wk (2)

where wk ∼ N (0, R). The clutter measurements are assumed to be uni-
formly distributed in the observation region of volume V . The number of
clutter measurements is Poisson distributed with parameter βV , where β is
the clutter density. The number of measurements in Zk is denoted by mk.
We assume that we have access to the measurements Z1:K from time 1 to
K where K ≥ k.

The objective is to compute the smoothing density p(xk|Z1:K) using
the TFS method, which involves running two filters — the FF gives the
filtering density p(xk|Z1:k) and the BF gives the backward likelihood (BL)
p(Zk+1:K |xk). The FF is the same as the one in FBS, which is well studied
in the literature. The BL, which is the output of the BF, looks similar to a
GM density function but is not normalizable. Because of this structure of
the likelihood, the traditional GMR techniques cannot be applied directly.
The goal of this paper is to devise strategies for GMR of the BL to reduce
the complexity of the BF.

A. Idea

The BL of the BF has a mixture structure in which the components
are densities in different subspaces of the state space. This structure is
referred to as reduced dimension GM (RDGM) in this paper. By close
investigation, one can observe that the components in the RDGM can be
partitioned into groups such that the components within each group are
density functions in the same subspace. Consequently, this grouping allows
us to use traditional GMR techniques within each group. The details of how
the intragroup approximations are performed are covered in Section IV. We
also discuss the limitations of these intragroup methods.

Besides the intragroup approximations, the availability of the filtering
density from the FF can be used to reduce the number of components further
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in the RDGM of the BF. That is, based on the components in the smoothing
density, further GMR can be performed on the RDGM, as will be shown in
Section V.

III. BACKGROUND

In this section, we present a background to the TFS method for GM
densities. The conceptual solutions to the FF and the BF in the TFS are
provided. The solution to the FF and BF of GM is described using a graphical
illustration.

A. Two-filter smoothing

The goal of smoothing is to compute the smoothing posterior p(xk|Z1:K).
The TFS method computes the smoothing density, at each k, according to

p(xk|Z1:K) ∝ p(xk|Z1:k)p(Zk+1:K |xk). (3)

The filtering density p(xk|Z1:k) and the BL p(Zk+1:K |xk) are obtained as
outputs of the FF and the BF, respectively. It should be pointed out, that
the counterpart of TFS in the factor graph world is the belief propagation
algorithm [10], where the filtering steps are termed as message passing.

1) Forward Filtering : The FF involves two steps, namely the prediction
and the update step, which are performed recursively from time k = 1 to
k = K. The prediction step computes the prediction density,

p(xk|Z1:k−1) =

ˆ
p(xk−1|Z1:k−1)f(xk|xk−1)dxk−1 (4)

followed by the update step to compute the filtering density,

p(xk|Z1:k) ∝ p(xk|Z1:k−1)p(Zk|xk). (5)

For the assumptions made in Section II, it can be shown that the filtering
density is a GM and has the form

p(xk|Z1:k) =
Mf

k∑
i = 1

wfk,iN
(
xk; µ

f
k,i, P

f
k,i

)
(6)

where N
(
xk; µ

f
k,i, P

f
k,i

)
represents a Gaussian density in variable xk with

mean µfk,i and covariance P fk,i and wfk,i is the corresponding weight. The
weight wfk,i in (6) is the probability Pr{Hfk,i|Z1:k} of the hypothesis Hfk,i
which corresponds to a sequence of measurements or the missed-detection
associations from time 1 to k. Kalman filtering under Hfk,i gives the mean
µfk,i and the covariance P fk,i.
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The number of components in the filtering GM is the product of the
number of measurements observed over time. So, the number of components
grow exponentially with time. Therefore, the number GMs have to be reduced
using GMR techniques, such as pruning and merging. GMR techniques such
as pruning and merging are used for practical implementations of FF. A
few pruning methods to mention are gating [3], N−scan pruning, M-best
pruning and threshold-based pruning. For merging algorithms, one can refer
to [9], [13], [16] and [5]. The merging algorithms presented in these papers
preserve the moments, i.e., the mean and covariance of the GM before and
after merging are the same.

2) Backward Filtering: The BF in TFS also involves recursive steps,
similar to the FF, from time k = K − 1 to k = 1. The first step is the
update step given by

p(Zk+1:K |xk+1) = p(Zk+1|xk+1)p(Zk+2:K |xk+1), (7)

followed by the retrodiction step to obtain the BL,

p(Zk+1:K |xk) ∝
ˆ
p(Zk+1:K |xk+1) f(xk+1|xk) dxk+1. (8)

For the assumptions made in Section II, similar to the FF, the BF can
also be interpreted as running filtering operations under data association
hypotheses. In the BF, each hypothesis, denoted Hbk,j , corresponds to a
sequence of measurement or missed-detection associations made from time
K until time k + 1, where k < K.

Assuming that there are only pruning approximations made during FF and
BF, the TFS can be illustrated using graphical structures as shown in Fig. 1.
Two hypothesis trees (to be precise, the BF needs a graph illustration, as there
is not one root), one for each filter, are shown in where the nodes represent
the components in the GM of p(xk|Z1:k). The details of the structure of the
output of the BF and how the proposed algorithms can be used to make
approximations in the BF are presented in the Sections IV and V.

IV. INTRAGROUP APPROXIMATIONS OF THE BACKWARD LIKELIHOOD

In this section, we analyze the details of the BL in the BF that has the
RDGM structure. We discuss why the conventional pruning and merging
strategies are not always suitable for the BL. Based on the analysis of the
RDGM structure of the BL, we show that the components in the RDGM
can be grouped and that the traditional GMR techniques can be used within
the groups. It will also be shown that the number of groups is polynomial
in the lag K − k, and that this can be a limitation of the intragroup GMR
strategies, especially when the lag K − k is large.
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Fig. 1: Illustration of TFS: The nodes correspond to the GM components in the filter
outputs. The ‘blue nodes’ represent the pruned nodes and they are not propagated further.
At each time instant, the smoothing density is obtained as the product of the GMs,
corresponding to all the nodes in the two filters.

A. Structure of the backward likelihood

Under the assumptions made in Section II, starting with the likelihood of
the form

p(ZK |xK) = βK,0 +

mK∑
m=1

βK,mN (HxK ; zK,m, R) (9)

at time K and evaluating the update and retrodiction recursions in (8) and
(7), the BL can be written in the form,

p(Zk+1:K |xk) = wbk,0 +

Mb
k∑

j=1

wbk,jN
(
Hb
k,jxk;µ

b
k,j , P

b
k,j

)
(10)

for any k < K. The parameters in (9) and (10) can be obtained using the
extended observation model described in Section 3 of [8] or from Section
II-C of [15]. Note that the term wbk,0 is zero if the probability of detection
is one. The expression in (10), which is the RDGM, is similar to a GM,
with weights wbk,j , means µbk,j and covariances P bk,j . However, the terms

N
(
Hb
k,jxk; µ

b
k,j , P

b
k,j

)
are not generally densities in xk and are not guar-

anteed to be normalizable since the integral
´
N
(
Hb
k,jxk; µ

b
k,j , P

b
k,j

)
dxk

may be infinite.
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B. Normalizability of the BL and intragroup approximations

Similar to the GM filtering density in the FF, the number of terms M b
k in

the RDGM in (10) of the BF grows exponentially with time. Thus, GMR
approximations are necessary to reduce the complexity. The catch is that the
conventional GMR techniques mentioned in Section III-A1 are developed
for GM density functions and cannot be applied directly to RDGMs. For
instance, the conventional pruning strategies are applied to GMs that are
normalized, in which the weights of the components define the relative sizes
of the Gaussian components. So, the weights of the components can be
compared and the ones with insignificant weights can be removed. However,
in the RDGM in (10), it is possible that a component with the smallest weight
wbk,j is in fact among the largest components. So, the components in the
RDGM cannot be compared based only on the weights unless the components
N
(
Hb
k,jxk; µ

b
k,j , P

b
k,j

)
are normalized. Similarly, the conventional merging

strategies applied to GMs involve moment matching, and to compute the
moments, the components should be normalizable densities. In the triv-
ial case, when the components in the RDGM are normalizable, i.e., when
rank(Hb

k,j) = Nx, it is possible to rewrite the components in the RDGM∑
j
wbk,jN

(
Hb
k,jxk; µ

b
k,j , P

b
k,j

)
into the GM form

∑
j
w′bk,jN

(
xk; µ

′b
k,j , P

′b
k,j

)
to which the GMR techniques can be applied.

The RDGM is in general not normalized, like in the data association prob-
lem, and the normalizability depends on the structure of the matrices Hb

k,j .
AS will be shown in Section IV-B1, in the RDGM, groups of components
have identical Hb

k,j matrices. Thus, if the matrices Hb
k,j are also of full row

rank in a group, then it is possible to compare the components within the
group, and so, one can apply the GMR technique to that group.

Let Ig be the index set that contains the indices j of the components in
a group g that have the same matrices, i.e., Hb

k,j = Hg for j ∈ Ig and let
rank(Hg) = mg. Using this notation, the RDGM in (10) can be written as

p(Zk+1:K |xk) =
NG∑
g=1

∑
j∈Ig

wbk,jN
(
Hgxk; µ

b
k,j , P

b
k,j

)
(11)

where NG is the number of groups. The functions N
(
Hgxk; µ

b
k,j , P

b
k,j

)
are scaled Gaussian functions in the row space of the matrix Hg, and have
constant values in the null space of Hg. The idea is that the GMR can be
applied to approximate group

∑
j∈Ig

wbk,jN
(
Hgxk;µ

b
k,j , P

b
k,j

)
of components

in this row space and that no approximation needs to be performed in the null
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space, as the values of the components are constant in the null space. An in-
terpretation of this can be obtained using a change of basis matrix, say Ag =[
Hg

H⊥g

]
in RNx , where the matrix H⊥g is such that the columns and rows

of Ag span RNx . Let us define a variable yg = Agxk with respect to the new
basis in RNx . Using this variable yg, the function wbk,jN

(
Hgxk; µ

b
k,j , P

b
k,j

)
is written as wbk,jN

(
yg [1 : mg] ; µ

b
k,j , P

b
k,j

)
, where yg [1 : mg] denotes the

first mg elements in the vector yg. Clearly, functionsN
(
yg [1 : mg] ;µ

b
k,j , P

b
k,j

)
are Gaussian in the variable yg[1 : mg]. These functions are not integrable
in yg[mg + 1 : Nx], but are constant (or uniform) in that variable. This
observation allows us to treat the group

∑
j∈Ig

wbk,jN
(
yg [1 : mg] ; µ

b
k,j , P

b
k,j

)
as a GM in the variable yg[1 : mg]. So, pruning and merging can be applied
to approximate this mixture as a function of yg[1 : mg] = Hgxk. Overall,
within each group g, the GMR can be applied as

NG∑
g=1

∑
j∈Ig

wbk,jN
(
yg[1 : mg]; µ

b
k,j , P

b
k,j

)

≈
NG∑
g=1

∑
j∈I′g

w̃bk,jN
(
yg[1 : mg]; µ̃

b
k,j , P̃

b
k,j

)

=

NG∑
g=1

∑
j∈I′g

w̃bk,jN
(
Hgxk; µ̃

b
k,j , P̃

b
k,j

)
(12)

where I ′g refers to the index set corresponding to components in group g after
GMR. From (12), it can be noticed that after the intragroup approximations,
the number of components in the RDGM is at least the number of groups,
NG.

1) Grouping: As discussed earlier in this section, the grouping of the
components in the the BL in (10) is key in being able to apply the GMR
techniques to approximate the RDGM. In this section, with the data as-
sociation in target tracking as an example, we discuss why the grouping is
possible. For this example, we also analyze how the number of groups grows
with time to point out the limitation of the intragroup GMR methods.

By investigating (9) and (10) for the DA problem, one can see that many
of the components in (10) have the same Hb

k,j matrices. It turns out that if
two DA hypotheses, Hbk,i and Hbk,j , are such that they have measurement
associations and missed-detection associations at the same time instants, then
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Hb
k,i = Hb

k,j . This observation allows us to partition the components in the
RDGM into groups of components that have the same Hb

k,j matrices.
Consider the constant velocity model, in which the state contains the

position and velocity components, and assume that only the position compo-
nents are observed. One then needs measurements from at least two different
time instants to estimate the velocity components. This implies that under
the corresponding DA hypotheses Hbk,j in the BF, which have at least two
measurement associations across time, the state can be estimated with finite
covariance. So, the corresponding components N

(
Hb
k,jxk; µ

b
k,j , P

b
k,j

)
in

the BL will be normalizable and therefore, the ranks of the corresponding
matrices Hb

k,j is Nx = dim(xk). These normalizable components will form
one group. Additionally, there will also be components with Hb

k,j such that
rank(Hb

k,j) < Nx which correspond to the hypotheses sequences Hbk,j that
have less than two measurements associations across time.

We will now analyze how the number of groups grows with time. Let us
assume that the matrices H and F in the motion model (1) and measurement
model (2) are such that measurements from at least M different time instants
(not necessarily consecutive) are needed to estimate all dimensions of the
state xk, i.e., to ensure that the corresponding component in the BL is
normalizable. Using this parameter M and the time lag K − k, the number
of groups can be analysed. As discussed for the constant velocity model,
the components corresponding to the hypothesis sequences that have at least
M measurement associations across time will be normalizable and form a
group. Components that have hypothesis sequences with exactly l (l < M )
measurement associations at the same time instants belong to the same group.

There are
(
K − k
l

)
ways of assigning l measurement associations in

K − k time steps for each l = 0, 1 . . .M − 1. Thus, in total, the number of
groups is given by

NG(k,K) = 1 +

M−1∑
l=0

(
K − k
l

)
(13)

which grows in the order of O
(
(K − k)M−1

)
as a function of the lag K−k.

One can see that using the intragroup approximations, the number of
components in the RDGM cannot be reduced to less than the number of
groups, which grows as O

(
(K − k)M−1

)
with the lag K−k. Hence, these

intragroup approximations are not sufficient to reduce the complexity due to
the RDGM structure of the BL. It is therefore essential to present a sound
manner to compare components across groups in order to enable us to reduce
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the complexity further. In the next section, we present the smoothed posterior-
based pruning with which the components in the BL can be compared and
pruned.

V. SMOOTHED POSTERIOR-BASED PRUNING

In this section, we show that it is valid to compare components across
groups in the BL based on the smoothing probabilities of the corresponding
hypotheses in the BF. Surprisingly enough, using these probabilities, large
components or even groups of components can be pruned from the BL and
propagated, without affecting the smoothing densities at any time instant.
The smoothing probabilities of the hypotheses in the output of the BF can
be calculated using the FF densities. We also show how this idea can be
generalized for pruning components from the FF as well.

A. Posterior-based pruning

The main objective is to compute the smoothing posterior density given in
(3). The two terms in the right-hand side of (3) are the filtering density and
the backward likelihood, whichs are the outputs of the FF and BF, respec-
tively. The filtering density is reduced using traditional GMR techniques. The
BL can be reduced using the intragroup approximations discussed before,
but that may not be enough due to its limitations discussed in the previous
section. We propose (and later prove) that the filtering density of the FF in
(3) can be used to prune components in the BL of the BF, in regions where
the smoothing posterior density is small, and therefore is not affected by this
pruning. Fig. 2 shows an illustration of this strategy, referred to as smoothed
posterior pruning (SPP), for one time instant. The GMs are in 2D and the
curves shown in the figure are the contour plots of the GMs involved. More
importantly, we can propagate the pruned version of the BL backwards in
time without affecting the smoothing density at any other time instant.

The SPP idea can also be used the other way around. That is, it is possible
to approximate the FF based on the BL. The BL of the BF, when available,
can be used to prune components in the filtering density of the FF in the
regions where the smoothing density is small. The bottom line is that the
SPP idea presented in this section can be generalized to both the FF and
the BF, depending on what functions are available to compute the posterior.
In this section, we discuss the SPP idea for the FF, but the same arguments
hold for SPP of BF as well.

For the pruning step in the SPP, any of the pruning strategies mentioned
in Section III-A1 can be used, once we know the weights of the components
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Fig. 2: Illustration of SPP: The green and the red curves, which represent the posterior
density before and after the approximation of the likelihood, are very close to each other.
This shows that the shape of the corresponding (smoothing) posterior is unaffected by
the posterior pruning of the likelihood. Also, parts of the blue curve and black curve,
which represent the likelihood before and after pruning, are very close to each other.

to be compared. Note that the weights relate to the probability of the data
association hypothesis sequence Hfk,i (cf. Section III-A1). In SPP, as stated
before, we want to perform the pruning based on the smoothing posterior.
So, we do not use the filtering probability Pr{Hfk,i|Z1:k} of the hypothesis.
Instead, we use the smoothing probability Pr{Hfk,i|Z1:K} of the hypothesis.
As we will show in the following proposition, if the smoothing posterior
probability Pr{Hfk,i|Z1:K} is zero, then the ith Gaussian component can be
pruned from the filtering density, without affecting the smoothing posterior
distributions. The intuitive reason is that the smoothing probabilities of the
offsprings of the pruned component, if it was propagated, would also be zero,
which means that they would not influence the smoothing densities at later
times either. In the following proposition, we also provide the mathematical
justification for the same.

Proposition 1. Suppose that the objective is to compute the smoothing
density p(xl|Z1:K) for l = 1, . . . ,K. If Pr

{
Hfk,i|Z1:K

}
= 0, then the ith

component can be pruned from p(xk|Z1:k) and propagated to time k + 1
during FF without affecting the smoothing density p(xl|Z1:K) for l ≥ k.

Analogously, if Pr{Hbk,j |Z1:K} = 0, then the jth component can be pruned
from p(Zk+1:K |xk) and propagated to time k−1 during BF without affecting
the smoothing density p(xl|Z1:K) for l ≤ k.

Proof: In the following, we sketch the proof for the first part of the
proposition, i.e., for SPP on the FF. It is possible to derive an analogous
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proof for SPP on the BF.
Let us first consider how the suggested pruning of components in the FF

affect the smoothing density p(xk
∣∣Z1:K) at time k. At time k, the relation

between the smoothing density p(xk|Z1:K) and the smoothing probability
Pr
{
Hfk,i|Z1:K

}
is given by

p(xk|Z1:K) =
∑
i

p(xk|Z1:K ,Hfk,i) Pr{H
f
k,i|Z1:K} (14)

∝
∑
i

Pr{Hfk,i|Z1:k}p(xk|Hfk,i, Z1:k)

×p(Zk+1:K |xk) (15)

where the product Pr{Hfk,i|Z1:k}p(xk | Hfk,i, Z1:k) is the ith component

in the filtering density GM p(xk|Z1:k). Clearly, the ith component in the
summation of (14), is due to the product of the ith component of the filtering
density p(xk|Z1:k) and the BL p(Zk+1:K | xk) as in (15). We note that the
Pr
{
Hfk,i|Z1:K

}
= 0, for some value of i, implies that the ith component

can be removed from the filtering density without affecting the smoothing
density p(xk|Z1:K) at k.

We are now left to prove that the suggested pruning technique does not
affect the smoothing density p(xl|Z1:K) for l = k + 1, . . .K. To this end,
we use the fact that

Pr
{
Hfk,i|Z1:K

}
=

∑
j∈Sk→l,i

Pr
{
Hfl,j |Z1:K

}
(16)

where the summation is over the set Sk→l,i that contains the indices of the
components j at time l which are offsprings of the component i at time k.
So, Pr

{
Hfk,i|Z1:K

}
= 0 ⇐⇒ Pr

{
Hfl,j |Z1:K

}
= 0 ∀j ∈ Sk→l,i. Arguing

as we did for pruning the ith component from p(xk|Z1:k) at time k, we
can show that the components j ∈ Sk→l,i with Pr

{
Hfl,j |Z1:K

}
= 0 can be

pruned from p(xl|Z1:l), without affecting the smoothing density p(xl|Z1:K).

The smoothing probability of a hypothesis Hfk,i in the FF can be evaluated
from the weights of the components in the smoothing density using (15):

Pr
{
Hfk,i|Z1:K

}
=

ˆ
Pr{Hfk,i|Z1:k}p(xk|Hfk,i, Z1:k)

p(Zk+1:K |xk)dxk
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=

ˆ
wfk,iN

(
xk;µ

f
k,i, P

f
k,i

)
×
∑
j

wbk,jN
(
Hb
k,jxk;µ

b
k,j , P

b
k,j

)
dxk

=
∑
j

wfk,iw
b
k,j

ˆ
N
(
xk;µ

f
k,i, P

f
k,i

)
×N

(
Hb
k,jxk;µ

b
k,j , P

b
k,j

)
dxk

=
∑
j

wfk,iw
b
k,j

×N
(
Hb
k,jµ

f
k,i;µ

b
k,j , H

b
k,jP

f
k,iH

bT

k,j + P bk,j

)
. (17)

The product of the three terms in the summation of (17) is indeed the
weights of the components in the smoothing density p(xk|Z1:K), obtained
as the product of the ith component in the filtering density and the BL.
Similarly, the smoothing probability for the hypothesis Hbk,j during BF can
be calculated from the smoothing posterior density as

Pr
{
Hbk,j |Z1:K

}
=
∑
i
wfk,iw

b
k,j ×

N
(
Hb
k,jµ

f
k,i;µ

b
k,j , H

b
k,jP

f
k,iH

bT

k,j + P bk,j

)
. (18)

Note that the summation is over the index i of the filtering density. Analo-
gously, the product in the summation gives the weights of the components
in the smoothing density obtained due to product of the jth component in
the BL and the filtering density.

VI. ALGORITHM

In this section, we present the algorithmic description of the TFS algorithm
performed in this paper. The computations can be divided into two parts
— the FF and the BF. The FF algorithms are well studied in the literature.
Therefore, only the algorithmic details of the BF are explained in this section
(cf. Algorithm 1). The intragroup approximations described in Section IV
and the SPP described in Section V are included in the BF algorithm. The
smoothing density will be obtained as part of the SPP performed in the BF as
in step 5 of Algorithm 1. We assume that at each k, the output of the FF will
be the parameters of the filtering Gaussian mixture: weights wfk,i, means µfk,i
and covariances P fk,i. Let Mf

k , M b
k and M s

k be the number of components
in the output of the FF, BF and the smoothing density respectively.

83



Paper B. Two-filter Gaussian mixture smoothing with posterior pruning

Algorithm 1 Backward filter of the TFS
Input: Likelihoods: βk,i, H , zk,i and R for i = 0, . . .mk and k = 1, . . .K.
Initialize k ← K − 1, wbK,j ← 1, Hb

K,j ← [], µbK,j ← [] and P bK,j ← [] for
j = 0.
Repeat

1) Update: for every i, j, compute ηk+1,l = βk+1,iw
b
k+1,j ,

Uk+1,l =

[
H

Hb
k+1,j

]
, ψk+1,l =

[
zk+1,i

µbk+1,j

]
and Gk+1,l =[

R 0
0 P bk+1,j

]
.

a) If rank(Uk+1,l) = Nx, then set ηk+1,l =
ηk+1,l

det(Uk+1,l)
, ψk+1,l =

U−1k+1,lψk+1,l, Gk+1,l = U−1k+1,lGk+1,lU
−T
k+1,l, and Uk+1,l = INx

end
2) Grouping: If components l1 and l2 are such that Uk+1,l1 = Uk+1,l2 ,

then the components belong to the same group.
3) Intragroup approximation: Within each group, the traditional prun-

ing and merging are performed.
4) Retrodiction: Set wbk,l = ηk+1,l, µbk,l = ψk+1,l, Hb

k,l = Uk+1,lF and
P bk,l = Uk+1,lQU

T
k+1,l +Gk+1,l.

5) Smoothing density: For every i and j, compute wsk,l, µ
s
k,l and P sk,l

same way as in the Update step 1 with k = k − 1, βk+1,i = wfk,i,
H = INx

, zk+1,i = µfk,i and R = P fk,i. Note that the rank calculated
will always be Nx for this case.

6) SPP: Calculate wbsk,j =
∑
l

wsk,l according to (18), for every j. Remove

component j from the BL based on the weights, wbsk,j and renormalize.
7) k ← k − 1

until k = 1

VII. IMPLEMENTATION AND SIMULATION RESULTS

A. Simulation scenario

As mentioned before, we consider the problem of tracking a single target
moving in a cluttered environment. The model used for simulation is the
constant-velocity model where the state vector contains the positions and
velocities along x and y dimensions. The target is assumed to be a slowly
moving target with acceleration noise standard deviation of 0.07m/s2. The
trajectory is generated for K = 40 time steps with a sampling time of 1 s.
The clutter data is generated in the whole volume of the track.
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The values for the measurement noise R, the probability of detection PD
and the clutter intensity β, are varied for the simulations. The measurement
noise R is set to 50× I and 150× I . PD is either 0.7 or 1. The values used
for β are 0.0001 and 0.0002. Thus, there are 8 sets of parameters for which
the simulation results are compared.

The TFS algorithm is compared with FBS based on an N−scan pruning
algorithm where the FF is performed using N−scan pruning and Rauch-
Tung-Striebel algorithm is used on each branch in the filtering hypothesis
tree.

B. Implementation details

In both the FF and BF of TFS, to reduce the complexity, extra gating
is performed in addition to the conventionally used ellipsoidal gating. This
extra gate is rectangular, with dimensions based on the measurement noise
covariance and the center at the prediction density mean. The gating proba-
bility PG and the pruning threshold P fP for the FF are set as (1− 10−5) and
10−4 respectively.

The merging algorithm in FF is a cheaper variant of Salmond’s algorithm
[13]. The original Salmond’s algorithm looks for the minimum merging cost
across every pair of components in the GM. Therefore, it has a quadratic
complexity in the number of components. So, to reduce the complexity in-
volved, instead of looking for the minimum cost, we use a heuristic algorithm
in this paper. Starting with the components that have the least weights, we
compute the cost of merging pairs of components, and if the cost is lower
than a threshold (0.001× state dimension), then the components are merged
and replaced in the GM. The procedure is continued with the new reduced
GM until there are no pairs that have costs lower than the threshold.

In the BF of the TFS, both the intragroup approximations and the SPP are
used to reduce the components in the BL. The intragroup pruning is based on
the maximum weight in the group. The components that have weights lesser
than 1/100th of the maximum weight in the group are pruned. The intragroup
merging is based on the variant of the Salmond’s algorithm discussed above.
To employ the SPP method followed by these intragroup approximations,
first the smoothing density has to be computed. This involves taking the
product of the filtering density GM and the RDGM BL which is an expensive
operation. So, to reduce the number of operations involved in computing this
smoothing density, we reduce the filtering density GM to a single Gaussian,
and compute the smoothing density using this reduced filtering density and
the BL. Then, using this interim smoothing density, SPP is employed to
prune components from the BL.
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Fig. 3: Track Loss performance: Every odd point on x-axis (1, 3, 5, 7) is for low clutter
intensity β = 0.0001 and every even point (2,4,6,8) is for high β = 0.0002. The order
of the eight scenarios is the same also for the others plots in Fig. 4, Fig. 5 and Fig. 6.

In case of N−scan pruning in the FBS algorithm, the parameter N for
the various settings is chosen to be the largest possible N such that the
complexity (run-time) for a single run is within the threshold of 2 s. The
rectangular gating and ellipsoidal gating are also used here.

The performance measures used for comparison are root mean squared
error (RMSE), normalized estimation error squared (NEES), complexity and
track loss. A track is considered lost if the true state is more than three
standard deviations (obtained from the estimated covariance) away from the
estimated state for five consecutive time steps. The computational complexity
is calculated as the average time taken during MATLAB simulations to run
each algorithm on the entire trajectory of 40 time steps. The graphs are
obtained by averaging over 1000 Monte Carlo iterations.

C. Results

The results of the simulation are presented in Fig. 3 to 6. It can be seen that
the TFS performs significantly better than the FBS with N−scan for most
of the scenarios. From the Fig. 3 for track loss performance, one can notice
that the performance gain is higher for TFS compared to FBS when PD is
low and the measurement noise R and the clutter intensity β are high (point
6 on the x-axis in Fig. 3). The reason for this is that in these scenarios,
the number of components in the filtering GMs before approximations is
quite large. To limit the number of components, the pruning during FBS can
be quite aggressive resulting in the undesirable ‘degeneracy’ problem in the
FBS. The impact of this degeneracy problem can also be observed in the
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Fig. 4: NEES performance: Compared to the FBS, the values of the NEES for the TFS
are very close to the optimal value of 4 in all the scenarios.

Fig. 5: Computational complexity: The TFS algorithm with intra group approximations
and SPP is computationally cheaper compared to the FBS with N−scan.

Fig. 6: RMSE performance: The results are very similar for the TFS and the FBS.
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NEES performance plot in Fig. 4 (point 6 on the x-axis). In the degeneracy
case, the uncertainties are underestimated, i.e., the estimated covariances are
smaller compared to the optimal, resulting in a larger value for the NEES
compared to the expected value of 4. In addition to the better track loss and
NEES performance, TFS based on intragroup approximations and SPP offers
a computationally cheaper solution compared to the FBS based on N−scan
pruning as can be observed in Fig. 5. However, the RMSE performance of
the TFS and FBS are very similar in most scenarios as seen in Fig. 6.

VIII. CONCLUSION

In this paper, we present how two-filter smoothing can be performed when
the posterior densities are Gaussian mixtures (GMs). GM reduction (GMR)
techniques such as pruning and merging are used in the forward filter of the
two-filter smoothing method. The structure of the backward likelihood at the
output of the backward filter is a reduced dimension GM (RDGM). GMR
techniques are also applied within groups of components in the RDGM.
Since this strategy has limitations in the reduction, we have proposed the
smoothed posterior pruning, where components in the backward likelihood
are pruned based on the smoothing posterior weights of those components.
The proposed algorithm is shown to have better track loss, root mean squared
error, normalized estimation error squared as well as lower computationally
complexity compared to a forward-backward smoothing algorithm based on
N−scan pruning.
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Abstract

Conventional forward-backward smoothing (FBS) for Gaussian mix-
ture (GM) problems are based on pruning methods which yield a degen-
erate hypothesis tree and often lead to underestimated uncertainties. To
overcome these shortcomings, we propose an algorithm that is based on
merging components in the GM during filtering and smoothing. Compared
to FBS based on the N−scan pruning, the proposed algorithm offers
better performance in terms of track loss, root mean squared error (RMSE)
and normalized estimation error squared (NEES) without increasing the
computational complexity.

Index Terms

filtering, smoothing, Gaussian mixtures, forward-backward smooth-
ing, data association

I. INTRODUCTION

Gaussian mixture (GM) densities appear naturally in a range of different
problems. One such problem is target tracking in the presence of clutter,
which is a challenging problem in many situations. Under linear and Gaus-
sian assumptions for the motion and sensor models, there exists a closed
form optimal solution for this problem. The optimal solution for filtering
and smoothing involves GMs, with an exponentially increasing number of
components as a function of the product of the number of measurements
across time. Thus, approximations are inevitable to reduce the complexity.

The optimal solution to GM filtering retains several track hypotheses for
the target, along with a probability or weight for each hypothesis. In target
tracking, each track hypothesis has a sequence of data association (DA)
hypotheses associated to it, and corresponds to a component in the GM. The
sequence of DAs across time is usually illustrated using a graphical structure,



Paper C. Merging-based forward-backward smoothing on...

the hypothesis tree. Along each branch in the hypothesis tree, there is a
sequence of Gaussian densities across time, along with the probability for the
corresponding hypothesis sequence. Within the family of multiple hypothesis
tracking (MHT) algorithms [1, 10], a large quantity employ pruning as a
means to reduce the number of branches in the tree (or components in the
GM) at each time. As a result, the uncertainty about the DA hypotheses is
significantly underestimated if the pruning is aggressive. If the track with
the correct DAs was pruned during the pruning step, it can also lead to
incorrect DAs (being retained after pruning) during the subsequent time
instants, eventually leading to track loss.

In fixed-interval smoothing, the goal is to estimate a sequence of state
variables given the data observed at all times, i.e., given a batch of data. There
are two main approaches to smoothing: forward-backward smoothing (FBS)
[9] and two-filter smoothing [6]. In theory, these two methods are optimal and
thus identical, but in practice they often differ due to approximations made in
order to obtain practical implementations. In GM smoothing, we are normally
forced to use approximations during both the filtering and smoothing steps.
Therefore, the performance depends on the approximations made during both
the filtering and smoothing steps.

In the conventional FBS implementations [4, 6, 8], the forward filtering
(FF) method is performed using a traditional pruning-based filtering algo-
rithm, such as an MHT. For the backward smoothing (BS) step, Rauch-
Tung-Striebel (RTS) smoothing is used along each branch in the hypothesis
tree to obtain the smoothing posterior. Along with the Gaussian densities,
the weights of all branches are also computed. The obtained solution is
optimal, if there is no pruning (or merging) employed during FF. If the
FF algorithm is based on pruning, we usually perform BS on a degenerated
hypothesis tree. That is, the tree usually indicates that there is a large number
of DA hypotheses at the most recent times, but only one hypothesis at earlier
times. Degeneracy is not necessarily an issue for the filtering performance
as that mainly depends on the description of the most recent DA hypotheses.
However, during BS we also make extensive use of the history of DA
hypotheses, which is often poorly described by a degenerate hypothesis tree.
There is always a risk that a correct hypothesis is pruned at least at some
time instances. BS on this degenerate tree is not going to help in improving
the accuracy of the DA. At times when the degenerate tree contains incorrect
DAs, the mean of the smoothing posterior may be far from the correct value.
Even worse, since the smoother is unaware of the DA uncertainties, it will
still report a small posterior covariance matrix indicating that there are little
uncertainties in the state.
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The degeneracy of the hypothesis tree in GM forward filtering is closely
related to the well known degeneracy of the number of surviving particles in
a particle filter. There has been a lot of work done in the existing literature
regarding degeneracy in particle filter smoothing ([3, 5, 7]). Most of these
discuss the degeneracy issue extensively. However, the ideas proposed in the
particle smoothing literature have not yet led to any improvements in the
treatment of the degeneracy in the GM smoothing context.

In this paper, we propose merging during FF as a way to avoid the
occurrence of degenerate trees. We consider the problem of tracking a single
target in a clutter background, in which case the posterior densities are
GMs. We present a strategy for FF and BS on GMs that involves merging
and pruning approximations which we refer to as FBS-GMM (stands for
forward-backward smoothing with Gaussian mixture merging). Once merg-
ing is introduced, we get a hypothesis graph instead of a hypothesis tree.
Using the graphical structure, we discuss in detail how BS can be performed
on the GMs that are obtained as a result of merging (and pruning) during
FF.

The FBS-GMM is compared to an FBS algorithm that uses N−scan
pruning during FF. The performance measures compared are root mean
squared error (RMSE), track loss, computational complexity and normalized
estimation error squared (NEES). When it comes to track loss, NEES and
complexity, the merging based algorithm performs significantly better than
the pruning based one for comparable RMSE.

II. PROBLEM FORMULATION AND IDEA

We consider a single target moving in a clutter background. The state
vector xk is varying according to the process model,

xk = Fxk−1 + vk, (1)

where vk ∼ N (0, Q). The target is detected with probability PD. The target
measurement, when detected, is given by

ztk = Hxk + wk (2)

where wk ∼ N (0, R). The measurement set Zk is the union of the target
measurement (when detected) and a set of clutter detections. The clutter
measurements are assumed to be uniformly distributed in the observation
region of volume V . The number of clutter measurements is Poisson dis-
tributed with parameter βV , where β is the clutter density. The number of
measurements obtained at time k is denoted mk.
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Fig. 1: Example of a degenerate tree after FF with N−scan pruning with N = 2. To the
left, the figure shows the tree with the nodes that are pruned. In the figure to the right,
the pruned branches are removed. One can see that eventually only one branch is retained
from time 1 to 4.

The objective is to find the smoothing density p(xk|Z1:K) for k = 1, ...,K
using FBS, and to compare different implementation strategies. If pruning is
the only method used for mixture reduction during FF, it is straightforward
to use RTS iterations to perform BS. However, if the FF approximations
involve merging as well, then we need to show how the RTS iterations can
be used for the merged components.

A. Idea

The shortcoming of performing BS after pruning-based FF is that the
DA uncertainties are typically completely ignored for the early parts (often
the majority) of the time sequence, due to pruning in the FF. This can be
easily illustrated using a graphical structure, called an hypothesis tree. The
hypothesis tree captures different DA sequences across time. The nodes in the
graph correspond to the components of the filtering GM density. Naturally,
a pruned node will not have any offsprings. Let us consider the example in
Fig. 1. To the left, the figure shows the tree during FF using N−scan pruning
(with N = 2). To the right in the figure is the resulting degenerate tree after
FF is completed. This example can be extended to generalize that, for k �
K, the tree after pruning-based FF will be degenerate. By performing BS
on the degenerate tree, the DA uncertainties can be underestimated greatly.

To overcome this weakness, one can perform merging of the nodes in
the hypothesis tree instead of pruning. One can also illustrate the merging
procedure during FF using a hypothesis graph, herein called the f-graph
(not a tree in this case). Consider the same example shown in Fig. 2, with
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Fig. 2: Same example as in Fig. 1. Here, instead of pruning, merging of components is
performed. One can see that the DA uncertainties are still retained in the merged nodes.

merging instead of pruning. To the left, one can see the graph with merging
performed at several places and to the right, the result after FF that uses
merging. It is clear that there is no degeneracy after merging-based FF. The
idea in this paper is to develop a BS algorithm on the graph obtained after
FF with merging. The smoothing density is also a GM, where GM reduction
(GMR) can be employed. We use graphical structures to illustrate the FF
and BS and define hypotheses corresponding to each node in the graphs to
calculate the weights of different branches.

III. BACKGROUND

In this section, we discuss the optimal FBS of GMs and how FBS can
be performed with approximations based on pruning strategies. Towards the
end of the section, FF using merging approximations is also discussed. The
graphical structures in all of these scenarios are explained. In the next section,
it will be shown how a similar graph structure can be created to illustrate
the BS in a merging-based filter.

A. Forward-Backward Smoothing

In smoothing, we are interested in finding the smoothing posterior, p(xk|Z1:K).
This density can be written as,

p(xk|Z1:K) ∝ p(xk|Z1:k)p(Zk+1:K |xk). (3)

In (3), the smoothing posterior is obtained by updating the filtering posterior
p(xk|Z1:k) with the likelihood p(Zk+1:K |xk). This update step is analogous

97



Paper C. Merging-based forward-backward smoothing on...

to the update step in the Kalman filter. The filtering density p(xk|Z1:k) is
obtained using a forward filter. In the FBS formulation, the likelihood is
obtained from the filtering density recursively as

p(Zk+1:K |xk) ∝
ˆ
p(Zk+1:K |xk+1) f(xk+1|xk) dxk+1, (4)

where
p(Zk+1:K |xk+1) ∝

p(xk+1|Z1:K)

p(xk+1|Z1:k)
. (5)

A problem with (5) is that it involves division of densities. In the simple
case, when the two densities p(xk+1|Z1:k) and p(xk+1|Z1:K) are Gaussian,
the division is straightforward. Then, the RTS smoother [9] gives a closed-
form expression for the likelihood in (5) and the smoothing posterior in (3).
But, for GM densities, this division does not have a closed-form solution, in
general.

B. Optimal Gaussian mixture FBS

In a target-tracking problem with clutter and/or PD < 1, it can be shown
that the true filtering and smoothing posterior densities at any time k are
GMs [8]. The filtering density GM is

p(xk|Z1:k) =

Mf
k∑

n=0

p(xk|Z1:k,Hf
k,n)Pr

{
Hf

k,n|Z1:k

}
, (6)

where Mf
k is the number of components in the GM (for the optimal case,

Mf
k =

k∏
i=1

(mi + 1)). The hypothesis Hn
k represents a unique sequence of

measurements or missed-detection hypotheses assignments from time 1 to
time k, under which the density p(xk|Z1:k,Hf

k,n) is obtained. The missed-
detection assignment can also be viewed as a measurement assignment and
will be treated so in the rest of this paper.

The FF procedure in the optimal case is illustrated in the hypothesis tree
in Fig. 3. Each node n at time k in the tree represents a Gaussian density
p(xk|Z1;k,Hf

k,n) and a probability Pr
{
Hf

k,n|Z1:k

}
.

As was pointed out in Section III-A, BS involves division of densities.
Since the densities involved here are GMs, we want to avoid the division
of densities as it is difficult to handle in most situations. To overcome this
difficulty, the smoothing density p(xk|Z1:K) is represented as

p(xk|Z1:K) =

Mf
K∑

a=0

p(xk|Z1:K ,Hf
K,a)Pr

{
Hf

K,a|Z1:K

}
, (7)
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Fig. 3: Optimal Gaussian mixture filtering and smoothing are illustrated in a hypothesis
tree. At each time, each node represents a component in the filtering GM at the
corresponding time. The solid arrowed lines represent the data associations across time.
The dashed arrowed lines represent the paths taken while performing backward smoothing
from each leaf node back to the nodes at time K − 1. During BS, these paths continue
until the root node.

where each component p(xk|Z1:K ,Hf
K,a) is obtained by performing RTS

using the filtering densities along every branch of the hypothesis tree (cf.
Fig. 3).

C. Forward filter based on pruning and merging approximations

In this section, we discuss the different existing suboptimal strategies that
are used in performing FF when the posterior densities are GMs. These
methods are based on merging and pruning the branches in the hypothesis
tree.

1) Pruning-based filter: In pruning, the nodes that have low values for
Pr
{
Hf

K,a|Z1:K

}
are removed. The way the low values are identified can

vary across different pruning strategies. One advantage of pruning is that it
is simple to implement, even in multiple targets scenarios. A few commonly
used pruning strategies are threshold-based pruning, M -best pruning and
N -scan pruning [1].

The disadvantage of any pruning scheme is that in complex scenarios, it
can happen that we have too many components with significant weights, but
we are forced to prune some of them to limit the number of components for
complexity reasons. For instance, if many components corresponding to the
validated measurements have approximately the same weights, then it may
not be desirable to prune some of the components. However, the algorithm
might prune the components that correspond to the correct hypothesis, lead-
ing to track loss. One other drawback of pruning is that the covariance of the
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Fig. 4: A part of an f-graph is shown to illustrate merging during forward filtering
(FF) (solid lines) and backward smoothing (BS) through merged nodes (dashed lines).
The solid lines represent the branches in the FF. The small filled circles represent the
components before merging. The dashed lines illustrate that each incident component on
the merged node i while smoothing can split into many components. The hypothesis and
the parameters in the box are discussed in Section IV-A1.

estimated state can be underestimated because the covariances of the pruned
components are lost. This can lead to an inconsistent estimator, with a bad
NEES performance. Also, as was shown in Fig. 1, pruning during FF often
returns degenerate trees.

BS on trees obtained after pruning-based FF is performed in a similar way
as in the optimal case discussed in Section III-B. However, the number of
branches in this tree is lesser, because of which the number of RTS smoothers
run is also less. The readers are referred to [10] and [1] for more details of
FBS on GM with pruning-based approximations.

2) Merging-based filter: To overcome the degeneracy problem in pruning-
based FF, one can use a merging (or a combination of merging and pruning)
algorithm to reduce the number of components in the filtering density, in-
stead of only pruning the components. In merging, the components which
are similar are approximated as identical and replaced with one Gaussian
component that has the same first two moments. Merging can be represented
in the hypothesis tree with several components being incident on the same
node as shown in Fig. 4. Therefore, the structure of the hypothesis tree
changes from a tree to a generic graph, which we refer as the f-graph.

There are several merging strategies discussed in [12], [11] and [2], which
are used for GMR. Two main criteria for choosing the appropriate GMR algo-
rithm are the computational complexity involved and the accuracy. Merging
strategies will be discussed briefly in Section VI-B.

As a tradeoff between complexity and track loss performance, it is more
feasible to use pruning along with merging, since pruning can be performed
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quickly. Pruning ensures that the components with negligible weights are
removed, without being aggressive. Merging reduces the number of compo-
nents further. This combination of pruning and merging ensures that the
computations are under control without compromising too much on the
performance.

IV. BACKWARD SMOOTHING THROUGH MERGED NODES

In the previous section, it was discussed how optimal GM filtering and
smoothing can be performed. It was also discussed how approximations such
as merging and pruning are employed during FF. We also observed that FBS
is simple to apply when the FF algorithm uses pruning but not merging. In
this section, we discuss in detail how BS can be performed after an FF step
that involves pruning and merging approximations.

The idea behind BS on a hypothesis graph with merged nodes can be un-
derstood by first analyzing how BS works on a hypothesis tree obtained after
pruning-based forward filter. As mentioned in Section III-B, in the pruning-
based FF, each component in the filtering density p(xk|Z1:k) corresponds
to a hypothesis Hf

k,n, which is a unique DA sequence from time 1 to time
k. BS is then performed to obtain the smoothing density as described in
(7). Each component in (7) is obtained by using an RTS smoother, which
combines a component p(xk+1|Z1:K ,Hf

K,a) in the smoothing density at
time k + 1 and a component p(xk|Z1:k,Hf

k,n) in the filtering density at
k, such that p(xk|Z1:k,Hf

k,n) = p(xk|Z1:k,Hf
K,a), and returns a component

p(xk|Z1:K ,Hf
K,a) in the smoothing density at k. In other words, the RTS

algorithm combines the smoothing density component with hypothesis Hf
K,a

and the filtering density component with hypothesis Hf
k,n if the DA sub-

sequence in Hf
K,a from time 1 to time k is identical to the DA sequence

in Hf
k,n. It should be noted that due to pruning during FF, the number of

filtering hypotheses Hf
K,a at time K is manageable. Therefore, the number of

components in the smoothing density p(xk|Z1:K) in (7) is also manageable
and approximations are not normally needed during BS.

The key difference between the FBS that makes use of merging and
the pruning-based FBS is in what the hypotheses Hf

k,n for k = 1, . . . ,K,
represent. In the former, as a result of merging during the FF, the hypotheses
Hf

K,a are sets of DA sequences, whereas in the latter, Hf
K,a corresponds to

one DA sequence. As each DA sequence in the set Hf
K,a corresponds to

a Gaussian component, the term p(xk|Z1:K ,Hf
K,a) in (7) represents a GM

in the merging-based setting. It is therefore not obvious how to use the
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RTS algorithm for the merged hypotheses Hf
K,a. The idea in this paper is

that the DA sequences in each hypothesis Hf
K,a can be partitioned to form

hypotheses Hs
k,l such that p(xk|Z1:K ,Hs

k,l) is a Gaussian density. During
BS, each of these hypotheses Hs

k,l can be related to a hypothesis Hf
k,n from

the FF, during the BS, enabling us to employ RTS recursions on these new
hypotheses Hs

k,l. Clearly, this strategy results in an increase in the number
of hypotheses, leading to an increase in the number of components in the
smoothing density. Therefore, there is typically a need for GMR during the
BS. To represent these hypotheses Hs

k,l and the GMR of the components in
the smoothing density, we use a hypothesis graph called the s-graph.

Using the new hypotheses Hs
k,l, the smoothing density is

p(xk|Z1:K) =

Ms
k∑

l=0

p(xk|Z1:K ,Hs
k,l) Pr

{
Hs

k,l|Z1:K

}
, (8)

where p(xk|Z1:K ,Hs
k,l) is a Gaussian density function N

(
xk;µ

s
k,l, P

s
k,l

)
,

with weight ws
k,l = Pr

{
Hs

k,l|Z1:K

}
. Starting with Hs

K,a = Hf
K,a at k = K,

the hypotheses Hs
k,l (partitioned from Hf

K,a) can be obtained recursively by
defining the hypotheses Hs

k+1,p at time k + 1 and Hf
k,n, as will be shown

in Section IV-B. In the following sections, we introduce the two graphs,
the relations between them and how these relations are used to obtain the
weights of the components during BS.

A. Notation

In this subsection, we list the parameters corresponding to each node in
the f-graph and s-graph. There is a one-to-one mapping between nodes in
the graphs and components in the corresponding GM densities (after GMR).
The symbols

⋃
and

⋂
used in the hypothesis expressions represent union

and intersection of the sets of DA sequences in the involved hypotheses,
respectively.

1) f-graph: For each node n = 1, . . . ,Mf
k in the f-graph (after pruning

and merging of the filtering GM) at time k, the following parameters are
defined (cf. Fig. 4):
• Hf

k,n, the hypothesis that corresponds to node n (after merging). If
H

′f
k,(i,j) represent the set of disjoint hypotheses formed by associating

hypothesis Hf
k−1,i of node i at time k− 1 to measurement zk,j at time

k, and if they correspond to the Gaussian components that have been
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merged to form the component at node n, then

Hf
k,n =

⋃
i,j

H
′f
k,(i,j). (9)

Note that hypothesesH
′f
k,(i,j) do not represent any node in the f-graph.

However, they can be associated to the branches incident on node n
before merging (cf. Fig. 4). The prime in the notation of H

′f
k,(i,j) is to

indicate that it is the hypothesis before merging. Similar notation will
be used in the s-graph as well.

• µfk,n and P f
k,n are the mean and the covariance of the Gaussian density

p(xk|Z1;k,Hf
k,n) (after merging).

• Ifk,n is a vector that contains indices i of the hypotheses Hf
k−1,i at node

i at time k− 1. An interpretation of this is that for each i in Ifk,n, there
is a branch between node i at time k − 1 and node n at time k.

• wf
k,n is a vector that contains the probabilities Pr

{
H

′f
k,(i,j)|Z1:k

}
of the

DA hypotheses H
′f
k,(i,j) before merging. Using (9), it can be shown that

Pr
{
Hf

k,n|Z1:k

}
=
∑
i,j

Pr
{
H

′f
k,(i,j)|Z1:k

}
. (10)

It should be noted that the parameters Ifk,n, ∀n, k, capture all the information
regarding the nodes and their connections in the f-graph. Therefore, for
implementation purposes, it suffices to store the parameter Ifk,n along with
GM parameters µfk,n, P f

k,n and wf
k,n, instead of storing the exponential

number of DA sequences, corresponding to Hf
k,n.

2) s-graph: At time k, the s-graph parameters corresponding to the lth

component of the smoothing density in (8) are:
• Hs

k,l, µ
s
k,l and P s

k,l are the hypothesis, mean and covariance of the lth

Gaussian component (after merging).
• ws

k,l is the probability Pr
{
Hs

k,l|Z1:K

}
.

• Isk,l is a scalar that contains the index of the node (or component) in the
f-graph at time k that is associated to the node l in the s-graph. This
parameter defines the relation between the two graphs.

At time K, these parameters are readily obtained from the f-graph pa-
rameters: Hs

K,l = Hf
K,l, µ

s
K,l = µfK,l, P

s
K,l = P f

K,l, w
s
K,l =

∑
r
wf
K,l(r)

and IsK,l = l. Starting from time K, the parameters in the list can be
recursively obtained at each time k as discussed in Section IV-B. In the
discussion in Section IV-B, the hypotheses Hs

k,l are used to explain the
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Fig. 5: Illustration of BS on a merged graph: A node p in the s-graph is shown
along with the corresponding node n in the f-graph. The relations between the different
parameters are as indicated. The filled black circles in the f-graph and s-graph represent
the components before merging.

weight calculations. But, for implementation purposes, it suffices to update
and store the parameters µsk,l, P

s
k,l, w

s
k,l and Isk,l.

B. Smoothing on merged nodes

The goal is to recursively find the smoothing density from time K to
time 1. We assume that the smoothing density is available at time k+ 1, or
equivalently that the nodes and the branches in the s-graph are updated until
k + 1. The components of the smoothing density p(xk|Z1:K) at time k are
obtained by applying the RTS iterations to every possible pair, say (p, n), of
the pth component of p(xk+1|Z1:K) and the nth component of p(xk|Z1:k).
Whether a pair (p, n) depends on if the hypothesis Hf

k,n is in the history
of the hypothesis Hs

k+1,p or not. This information can be inferred from the
relation between the f-graph and the s-graph.

The possibility of forming a pair (p, n) from node p in the s-graph at
time k + 1 and node n in the f-graph at time k can be analysed using the
parameters listed in Section IV-A (cf. Fig. 5). It always holds that node p in
the s-graph, at time k+1, corresponds to one specific node m in the f-graph
at time k + 1, where m = Isk+1,p. A pair (p, n) can be formed whenever
node m at time k + 1 and node n at time k are connected in the f-graph.
That is, if the vector Ifk+1,m contains the parent node index n, then the pair
(p, n) can be formed. See Fig. 5 for an illustration. In fact, for every element
n in the vector Ifk+1,m, the pair (p, n) is possible.

If the pair (p, n) is ‘possible’, we form a node in the s-graph at time k,
corresponding to that pair which is connected to node p at time k+1. The new
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node in the s-graph corresponds to a component in (8), for which we now
wish to compute the mean, covariance and weight using an RTS iteration and
the hypothesi relations. The hypotheses involved in obtaining the component
are Hs

k+1,p, Hf
k+1,m and Hf

k,n, where m = Isk+1,p as discussed before and
node n is, say, the rth element in the vector Ifk+1,m, denoted n = Ifk+1,m(r)
(cf. Fig. 5). Using these hypotheses, the hypothesis corresponding to the
resulting component is denoted H′sk,(p,n) and is written as

H′sk,(p,n) = H
s
k+1,p

⋂
Hf

k,n. (11)

It can be shown that (See Appendix A for details.)

Pr
{
H′sk,(p,n)|Z1:K

}
∝ Pr

{
Hs

k+1,p|Z1:K

}
×Pr

{
Hf

k+1,m

⋂
Hf

k,n|Z1:k+1

}
= ws

k+1,pw
f
k+1,m(r). (12)

After applying the RTS iterations to every possible pair (p, n), it can
happen that we have many components in the smoothing density at k. Starting
with the node p at time k + 1, we form a pair for every element n in
the vector Ifk+1,n, resulting in a component for each pair. Therefore, the
number of components in the smoothing density at time k can possibly
increase, depending on how many components have been merged to form
the node m at time k. Thus, to reduce the complexity, we use pruning
and merging strategies during the BS step. For simplicity, merging is only
allowed among the components which have the same Hf

k,n, i.e, only the
components that correspond to the same node n in the f-graph will be merged.
After merging and pruning of the hypothesis H′s

k,(p,n) for different (p, n), the
retained hypothesis are relabeled as Hs

k,l, and the corresponding components
form the nodes l in the s-graph at time k.

V. ALGORITHM DESCRIPTION

The algorithmic descriptions of the FF and the BS of the proposed FBS-
GMM algorithm are presented in this section. We assume that we know
the prior p(x0) at time 0 and also that we have the parameters for gating,
pruning and merging. Given a set of measurements Z1:K , we first perform
FF (cf. Algorithm 1) from time k = 1 to k = K. We form the f-graph and at
each node n, at each time k, store the parameters µfk,n, P f

k,n, wf
k,n and Ifk,n

described in the list in Section IV-A1. After the FF until time K, we start
smoothing backwards (cf. Algorithm 2). We form the s-graph. For each time
k, we get a GM, with components corresponds to a node l in the s-graph.
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For each of the Gaussian components, we store the parameters µsk,l, P
s
k,l,

ws
k,l and Isk,l in the list in Section IV-A2.

Algorithm 1 Forward filtering
Input: Prior: µ0|0, P0|0.

Likelihoods: H , zk,j , R and

βk,j =

{
β(1− PDPG) j = 0

PD j 6= 0
, for j = 0, . . .mk, k = 1, . . .K.

Iterate for k = 1, . . . ,K

1) Prediction: For each node i at time k − 1, perform prediction to
compute µk|k−1,i and Pk|k−1,i from µk−1|k−1,i and Pk−1|k−1,i.

2) Gating: Initialize G = {}. For each pair of node i at
k − 1 and measurement zk,j ∈ Zk, check if wLL,(i,j) =
N
(
zk,j ; Hµk|k−1,i, HPk|k−1,iH

T +R
)

> PG and add G =
G
⋃
{(i, j)} for the pairs that pass the threshold.

3) Pruning: Initialize P = {}. For each pair (i, j) ∈ G, calculate
the posterior weight wk,(i,j) = wf

k−1,iβk,jwLL(i, j) and re normalize.
Check if wk,(i,j) > P f

P and add all pairs (i, j) that pass the threshold
to P , i.e., set P = P

⋃
{(i, j)}.

4) Update: For each (i, j) ∈ P , update the predicted density with the
measurement innovation to get µk,(i,j), Pk,(i,j) and wk,(i,j).

5) Merging: The GM from step 4 is passed to a merging module. This
module returns a reduced GM with components µfk,n and P f

k,n, each
corresponding to a node n in the f-graph. Along with performing
merging of components, the merging module also returns the vectors
Ifk,n and wf

k,n that contains the indexes i and the weights wk,(i,j),
respectively, of the components that are merged to form node n.

VI. IMPLEMENTATION AND SIMULATION RESULTS

A. Simulation scenario

As mentioned in the problem formulation, we consider the problem of
tracking a single target moving in a cluttered environment. The model used
for simulation is a constant-velocity model with positions and velocities
along x and y dimensions in the state vector. The target is assumed to
be a slowly accelerating target with acceleration noise standard deviation
of 0.07m/s2. The trajectory was generated for K = 40 time steps with a
sampling time of 1s. The whole volume of the track was used for generating
clutter data.
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Algorithm 2 Backward smoothing of FBS-GMM

Input: Filtering GM parameters: µfk,n, P f
k,n, wf

k,n, Ifk,n, for n = 1, . . . ,Mf
k .

Initialize: Set M s
K, = Mf

K , µsK,l = µfK,l, P
s
K,l = P f

K,l, I
s
K,l = l and ws

K,l =∑
r
wf
K,l(r) (summation is over the entire vector wf

K,l).

Iterate for k = K − 1, . . . , 1

1) RTS: For each node p at time k + 1 in the s-graph, form pairs,
(p, n), as described in Section IV-B. Calculate the smoothing density
mean µk|K,(p,n) and covariance Pk|K,(p,n) using RTS on µfk,n, P f

k,n and
µsk+1,p, P s

k+1,p (Note, the parameters µsk+1,p and P s
k+1,p are the same

for different n’s).
2) Weight calculation: For each pair (p, n), the weight wk|K,(p,n)

is calculated as in (17). After this, we have a bunch of triplets{
µk|K,(p,n), Pk|K,(p,n), wk|K,(p,n)

}
that form a GM.

3) Pruning: Pruning can be performed on the GM based on wk|K,(p,n) >
P s
P after which the GM is re-normalized.

4) Grouping: The components in the pruned GM are sorted into groups
Gn such that all the components in the group have a common parent
n at time k − 1. The grouping is performed across all p’s.

5) Merging: Merging can be performed within each group Gn. The output
of this merging module is

{
µsk,l, P

s
k,l, w

s
k,l

}
along with the parameter

Isk,l = n.

The values for the measurement noise R, the probability of detection PD

and the clutter intensity β, were varied for the simulations. The measurement
noise R was set to 50 × I or 150 × I . PD was either 0.7 or 1. The values
used for β were 0.0001 and 0.0002. Thus, there are 8 sets of parameters for
which the simulation results are compared.

The proposed FBS-GMM algorithm was compared with FBS based on an
N−scan pruning algorithm. The FF was performed using N−scan pruning
and RTS smoother was used on each branch in the filtering hypothesis tree.

B. Implementation details

The parameter N of the N−scan algorithm for the various settings was
chosen to be the largest possible N such that the complexity (run-time) for
a single run was within the threshold of 2 s. To reduce the complexity, extra
gating was performed before the ellipsoidal gating mentioned in step 2 of
Algorithm 1. This extra gate is rectangular, with dimensions based on the
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measurement noise covariance and the center at the prediction density mean.
Besides the model parameters, the gating probability PG and the pruning
threshold P f

P mentioned in step 2 and 3 of Algorithm 1 are (1− 10−5) and
10−4 respectively. The threshold P s

P in step 3 of Algorithm 2 is 10−3.
The merging algorithm used in step 5 during FF in Algorithm 1 is a variant

of Salmond’s algorithm [12] aimed at reducing the complexity compared
to the original algorithm. The original Salmond’s algorithm looks for the
minimum merging cost across every pair of components in the GM. Thus, it
has a quadratic complexity in the number of components. But to reduce the
complexity of the merging algorithm, in this paper, instead of looking for the
minimum cost, we use a heuristic algorithm. Starting with the components
that have the least weights, we compute the cost of merging pairs of com-
ponents and if the cost is lower than a threshold (0.001× state dimension),
then the components are merged and replaced in the GM. The procedure
is continued with this new GM until there are no pairs of components that
have a merging cost lower than the threshold.

The merging algorithm used in step 5 during BS (Algorithm 2) is a
combination of the alternative Salmond’s algorithm and Runnalls’ algorithm
[11]. The additional Runnalls’ algorithm is necessary to ensure that the
number of components in the GM during BS is within a threshold (50
components).

The performance measures used for comparison are the RMSE, NEES,
complexity and track loss. A track was considered lost if the true state was
more than three standard deviations (obtained from the estimated covariance)
away from the estimated state for five consecutive time steps. The track loss
was calculated only on the BS results. The complexity results presented is
the average time taken during MATLAB simulations on an Intel i5 at 2.5GHz
to run each algorithm on the entire trajectory of 40 time steps. The graphs
were obtained by averaging over 1000 Monte Carlo iterations.

C. Results

The results of the simulations are presented in Fig. 6 to 9. It can be seen
that the FBS-GMM performs significantly better than the FBS with N−scan
pruning for most of the scenarios. From the Fig. 6 for track loss performance,
one can notice that the performance gain is higher for FBS-GMM compared
to FBS with N−scan pruning when PD is low and the measurement noise
R and the clutter intensity β are high (point 6 on the x-axis in Fig. 6). The
reason for this is that in these scenarios, the number of components in the
filtering GMs before approximations is quite large. To limit the number of
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Fig. 6: Track Loss. Every odd point on x-axis (1,3,5,7) is for low clutter intensity β =
0.0001 and every even point (2,4,6,8) is for high β = 0.0002. The order of the eight
scenarios is the same for the others plots in Fig. 7, Fig. 8 and Fig. 9.

Fig. 7: NEES performance: Compared to the N−scan based FBS, the values of the NEES
for the FBS-GMM are very close to the optimal value of 4 in all the scenarios.

components, the pruning during FBS with N−scan pruning can be quite ag-
gressive resulting in the degeneracy problem. The impact of this degeneracy
problem can also be observed in the NEES performance plot in Fig. 7 (point
6 on the x-axis). In the degeneracy case, the uncertainties are underestimated,
i.e., the estimated covariances are smaller compared to the optimal, resulting
in a larger value for the NEES compared to the expected value of 4. In
addition to the better track loss and NEES performances, FBS-GMM offers
a computationally cheaper solution compared to the FBS based on N−scan
pruning as can be observed in Fig. 8. However, the RMSE performance of
the two algorithms are very similar in most scenarios, as seen in Fig. 9.
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Fig. 8: Computational complexity: The FBS-GMM algorithm is computationally cheaper
compared to the FBS with N−scan.

Fig. 9: RMSE performance: The results are very similar for the both the FBS algorithms.

VII. CONCLUSION

In this paper, we presented an algorithm for forward-backward smoothing
on single-target Gaussian mixtures (GMs) based on a merging algorithm.
The weight calculation of the components in the GM during filtering and
smoothing were explained by defining hypotheses. Evaluations of root-mean
squared error and track loss were performed on a simulated scenario. The
results showed improved performance of the proposed algorithm compared
to forward-backward smoothing on an N−scan pruned hypothesis tree, for
low complexity and high credibility (normalized estimation error squared).
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APPENDIX A
WEIGHT CALCULATION

The weight calculation in (12) can be obtained using the hypotheses
definitions. Consider the hypothesis expression in (11), and the illustration
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in Fig. 5. We are interested in calculating the probability of the hypothesis

Pr
{
H′s

k,(p,n)|Z1:K

}
= Pr

{
Hs

k+1,p

⋂
Hf

k,n|Z1:K

}
∝ Pr

{
Hs

k+1,p|Z1:K

}
Pr
{
Hf

k,n|H
s
k+1,p, Z1:k+1

}
×p(Zk+2:K |Hs

k+1,p,H
f
k,n, Z1:k+1). (13)

In the above equation, the factor Pr
{
Hs

k+1,p|Z1:K

}
is the weight ws

k+1,p,
which is available from the last iteration of BS at time k + 1. With respect
to the third factor, the following set of equations show that it is actually
independent of n:

p(Zk+2:K |Hs
k+1,p,H

f
k,n, Z1:k+1)

= p(Zk+2:K |Hs
k+1,p,H

f
k+1,m,H

f
k,n, Z1:k+1) (14)

=

ˆ
p(xk+1|Hs

k+1,p,H
f
k+1,m,H

f
k,n, Z1:k+1)

×p(Zk+2:K |Hs
k+1,p,H

f
k+1,m,H

f
k,n, Z1:k+1, xk+1) dxk+1

=

ˆ
p(xk+1|Hf

k+1,m, Z1:k+1)p(Zk+2:K |Hs
k+1,p, xk+1) dxk+1. (15)

In (14), adding the hypothesis Hf
k+1,m to the conditional statement does

not make a difference as the hypothesis Hs
k+1,p corresponding to the entire

sequence of measurements masks it; but it does make the latter equations
simpler to handle. The second factor in (13) is given by

Pr
{
Hf

k,n|H
s
k+1,p, Z1:k+1

}
= Pr

{
Hf

k,n|H
f
k+1,m, Z1:k+1

}
∝

Pr
{
Hf

k,n,H
f
k+1,m|Z1:k+1

}
Pr
{
Hf

k+1,m|Z1:k+1

} . (16)

The numerator term in (16) is the same as the probability wf
k+1,m(r) of the

rth branch before merging to form node m. Consolidating (15) and (16) into
(13), we get that

Pr
{
H′s

k,(p,n)|Z1:K

}
∝ ws

k+1,p × w
f
k+1,m(r). (17)
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Abstract

In this paper, we consider the problem of Gaussian mixture smooth-
ing using forward-backward smoothing (FBS) and two-filter smoothing
strategies (TFS). We present techniques to apply pruning and merging
approximations to the smoothing methods, while maintaining accurate
representations of the smoothing densities. The key contributions include
methods to enable merging in a FBS algorithm and a theory related to TFS
that allows us to use the smoothed posterior to prune components in the
two filters. The results using the proposed approximation techniques show
that both FBS and TFS perform similarly for all the scenarios considered.
Compared to FBS based on the N−scan pruning algorithm, both proposed
algorithms perform significantly better.

I. INTRODUCTION

In many applications, there is interest in sequentially estimating different
parameters to determine the state of the underlying dynamical system, using
indirect and inaccurate observations made from sensors. In certain applica-
tions, the observed system can be in one of many possible modes, such that
the uncertainties cannot be modeled as uni-modal. It is also possible that
several observations are made at a single time instant, each with unknown
origin. In these scenarios, the motion and/or the sensor model are multi-
modal and are appropriately modeled using mixtures densities, the famous of
which is Gaussian mixtures (GMs). For the GM models, the optimal solutions
to the posterior densities as a result of prediction, filtering and smoothing
are GMs and the closed-form expressions for the optimal GMs are easily
obtained by extending the solutions for Gaussian densities [8, 10, 11, 16, 21].
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The problem with mixture densities is that the number of components in
the resulting GM posterior densities grows exponentially with time. There-
fore, for practical implementations, there is a need to reduce the num-
ber of components in the GM. For the prediction and filtering of GMs,
there exist suboptimal solutions based on Gaussian mixture reduction (GMR)
techniques, such as pruning and merging. For example, in target tracking
application, the multiple hypothesis tracking (MHT) [5, 15, 17] solution is
typically based on pruning, whereas the probabilistic data association (PDA)
[2] solution is based on merging approximations.

In smoothing problem, the goal is to estimate the past values of the state
using all the observations made. In general, the smoothing solution is more
accurate than the filtering and prediction solutions, as it uses more observa-
tions than the other two. There are two main strategies to perform smoothing,
namely, the forward-backward smoothing (FBS) [1, 4] and the two-filter
smoothing (TFS) [11]. In theory, both these methods provide identical so-
lutions, but in practice, they can differ due to the approximations involved.
Since the smoothing result depends on the filtering, it is not straightforward
to apply GMR to the smoothing problem. For both FBS and TFS, it is hence
not clear how approximations should be made, and research within the area
is scarce. The aim of this paper is to fill in these blanks, by addressing
approximations within Gaussian mixture smoothing.

The FBS method involves forward filtering (FF) and backward smoothing
(BS). The FF is similar to traditional filtering, and in the existing implemen-
tations of FBS, it is based on pruning approximations [12]. The BS operates
on the output of the FF to recursively return smoothing densities. Pruning-
based forward-backward smoothing works well for many scenarios, but in
complex scenarios such as high clutter density with unreliable measurements,
one may face with degeneracy problem in the FF. The consequence of this
degeneracy is that during BS, the smoothing density is statistically similar
to a uni-modal Gaussian, resulting in highly underestimated uncertainty and
potential track loss. In essence, the pruning-based FBS, when applied to
complicated scenarios, suffers from inferior performance.

The TFS involves forward filtering and backward filtering (BF) steps. The
FF is similar to traditional filtering, and is based on pruning and merging
approximations in existing algorithms [11, 22]. The BF, in principle, is
similar to the FF but is difficult to handle since it is not a density fucntion
[11]. Therefore, direct application of the pruning or merging approximations
to the BF is not valid. To our knowledge, there does not exist any practical
approximation techniques for the backward filter in a Gaussian mixture two-
filter smoother.

116



In this paper, our focus is on obtaining practical methods to mixture reduc-
tion in Gaussian mixture smoothing problems. More precisely, we present a
novel FBS algorithm for GMs, which makes use of merging approximations
both during FF and BS, thus avoiding the problem of degeneracy. To be
specific, we propose a strategy to apply the BS recursions on filtering densi-
ties that are obtained using merging approximations in the FF. For Gaussian
mixture two-filter smoothing, we propose two approximation techniques for
the backward filter. The first one, called intragroup approximation, shows
that it is possible to apply GMR techniques within groups of components
in the BF. The second technique, called smoothed posterior pruning, proves
that it is valid to use the FF posterior to prune components in the BF without
affecting the smoothing density. Additionally, we show that this smoothed
posterior pruning technique is also applicable to the forward filter, i.e., the
components in the forward filter can be pruned using the backward filter
output.

The proposed ideas for the FBS and TFS methods have been evaluated on
the data association problem in single target tracking, under linear-Gaussian
state-space model assumptions. The results show that the proposed methods
provide consistent estimates with low track loss, compared to the FBS using
the N-scan pruning method. Additionally, the proposed algorithms are com-
putationally cheaper. The root mean squared error (RMSE) performance,
however, is very similar across all evaluated algorithms, but it should be
noted that the instances when the N−scan pruning-based FBS algorithm
loses tracks are not considered in the calculations of the RMSE.

The outline of the paper is as follows: In Section II, we present the
assumptions made for the state-space model and the problem formulation
for the FBS and TFS methods. In Section III, we present the background
theory for the two smoothing problems at hand. Section IV and Section V
present the contributions of the paper towards the FBS and TFS problems,
respectively. The algorithmic descriptions of the proposed ideas given are in
Section VI. The implementation details and the results of the simulations are
provided in Section VII. In Section VIII, we discuss how the two algorithms
can be extended to complex scenarios.

II. PROBLEM FORMULATION

We consider a single target moving in a cluttered background. The state
vector xk at time k is of dimension Nx and is varying according to the
process model,

xk = Fxk−1 + vk, (1)
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where vk ∼ N (0, Q). The target is detected with probability PD, and the
target measurement, when detected, is given by

ztk = Hxk + wk, (2)

where wk ∼ N (0, R). The measurement set Zk is the union of the target
measurement (when detected) and a set of clutter detections. The clutter
measurements are assumed to be uniformly distributed in the observation
region of volume V . The number of clutter measurements is Poisson dis-
tributed with parameter βV , where β is the clutter density. The number of
measurements obtained at time k is denoted mk.

The objective is to develop novel and practical algorithms to compute
the smoothing density p(xk|Z1:K) for k = 1, ...,K under data association
uncertainty, using the forward-backward smoothing and two-filter smoothing
methods. Our interest is also in comparing the performance of these two
methods. For the assumptions made, the optimal smoothing density, as will
be shown in Section III, is a GM with exponentially increasing number of
components. Therefore, for complexity reasons, GMR algorithms, such as
pruning and merging, are required in the filtering and smoothing algorithms.
The main focus of the paper is to develop techniques to reduce GMs to man-
ageable sizes while maintaining an accurate representation of the smoothing
density at all times.

III. BACKGROUND

In this section, we present a background to the two main smoothing strate-
gies: forward-backward smoothing and two-filter smoothing. It is shown that
the filtering and smoothing densities for the data association (DA) problem
are Gaussian mixtures. It is also shown how these posterior densities are
obtained by defining DA hypotheses and using the solutions for Gaussian
densities. The existing methods and approximation for the two smoothing
strategies are explained using graphical illustrations.

A. Two smoothing strategies

The smoothing density is given by

p(xk|Z1:K) ∝ p(xk|Z1:k)p(Zk+1:K |xk). (3)

The interpretation of (3) is that the filtering density p(xk|Z1:k) is updated
with the likelihood p(Zk+1:K |xk), referred to as the backward likelihood
(BL), from future measurements to obtain the smoothing posterior p(xk|Z1:K).

In theory, the filtering density p(xk|Z1:k) is given by forward filtering
from time 1 to k using prediction and update recursions, which is similar
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between the two main smoothing strategies, FBS and TFS. However, they
differ in the way in which the likelihood, p(Zk+1:K |xk), in (3) is calculated.
In the FBS method, the BL is obtained by backward smoothing, which uses
the filtering and smoothing densities recursively, in two steps:

p(Zk+1:K |xk+1) ∝
p(xk+1|Z1:K)

p(xk+1|Z1:k)
(4)

and

p(Zk+1:K |xk) ∝
ˆ
p(Zk+1:K |xk+1)f(xk+1|xk)dxk+1. (5)

Note that (4) involves division of densities, which does not have a closed-
form expression for arbitrary densities. In the TFS method, the BL is obtained
by running a so-called backward filtering step from time K to k. The BF
involves an update step, similar to the one in the FF, given by

p(Zk+1:K |xk+1) = p(Zk+1|xk+1)p(Zk+2:K |xk+1) (6)

and a retrodiction step as in (5). The output of the BF, i.e., the BL, is in
general not a density function in the state xk. This makes it difficult to apply
techniques from the FF to the BF.

For linear and Gaussian state space models (in the absence of clutter and
PD = 1), the filtering and smoothing densities are Gaussian. For the FF,
the classical Kalman filter [10] gives the equations for the optimal Gaussian
density. For the BS of FBS, the Rauch-Tung-Striebel smoothing method in
[16] directly gives a closed-form expression for the likelihood on the left-
hand side in (5). The BF solution of the TFS is presented in [8].

For the assumption made in Section II, it can be shown that the smoothing
densities are Gaussian mixtures of the form

p(xk|Z1:K) =
Ms

k∑
l=1

wsk,lN
(
xk; µ

s
k,l, P

s
k,l

)
, (7)

where the notation N (x;µ, P ) represents a Gaussian density in random
variable x with mean µ and covariance P . These GM solutions are obtained
using Gaussian solutions to the smoothing problems.

B. Data association problem

For the data association problem with the assumptions made in Section II,
the optimal filtering and smoothing Gaussian mixture posterior densities are
obtained by defining DA hypotheses and applying the Gaussian solutions for
each hypothesis. Each hypothesisHfk,n represents a sequence of measurement
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associations and/or the missed-detection events from time 1 to k (cf. Fig. 1).
Analogously to Hfk,n, hypothesis Hbk,j denotes a sequence of measurement
assignments from time K to k + 1, where k < K (cf. Fig. 2). Under each
hypothesis, the state-space model is linear and Gaussian. Therefore, it is
possible to apply the Gaussian solutions for each hypothesis to obtain the
components in the GMs. It should be noted that the number of possible

hypotheses is given by Mf
k =

k∏
i=1

(mi+1) and M b
k =

K∑
i=k+1

(mi+1), where

mi is the number of measurements at time i. Throughout the remainder of
the paper, we consider smoothing for the DA problem .

C. Forward filtering of FBS and TFS

Using the hypothesis definitions, the filtering density ([5, 15, 17, 21]) is
written as

p(xk|Z1:k) =
Mf

k∑
n=1

Pr
{
Hfk,n|Z1:k

}
p(xk|Z1:k,Hfk,n) (8)

=
Mf

k∑
n=1

wfk,nN
(
xk; µ

f
k,n, P

f
k,n

)
, (9)

where wfk,n is the hypothesis probability and µfk,n and P fk,n are the mean

and covariance of the nth component respectively.
In the optimal case, the number of components Mf

k increase exponentially
as k increases. Therefore, to reduce the computational burden, Gaussian mix-
ture reduction techniques such as pruning ([3], [5]) and merging ([14], [19],
[24], [6]) are used for practical implementations. In pruning, components
with insignificant weights are removed, and in merging, similar components
are approximated by a single Gaussian density. It should be noted that
retained hypotheses Hfk,n include sets of DA sequences after merging.

A hypothesis tree is a useful tool to illustrate how the hypotheses propagate
over time. In Fig. 1 and Fig. 2, hypothesis trees for FBS and TFS under
pruning approximations are shown. The nodes represent components in the
GM, and the branches show the relation between the components across
time.

D. Backward smoothing of FBS

The optimal BS for FBS involves GM division as in (4), which is difficult
to compute directly. This difficulty can be overcome by running Rauch-Tung-
Striebel iterations under the hypotheses HfK,a [12]. Using the hypotheses
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Fig. 1: Illustration of forward-backward smoothing: In this example K = 5. The nodes
correspond to the GM components in the FF. The black solid lines represent the relation
between the GM components across time, during FF. At each k, at most 3 components
are retained, as a result of pruning. The green dashed lines represent the paths taken
during BS. It can be seen that surviving hypotheses Hf

5,l for l = 1, 2, 3 at time 5, are
related to the same hypothesis Hf

2,1 at time 2, resulting in degeneracy.

Fig. 2: Illustration of two-filter smoothing: The nodes correspond to the GM components
in the filter outputs. The ‘blue nodes’ represent the pruned nodes, which are not
propagated further. At each time instant, the smoothing density is obtained as the product
of the GMs from the FF and BF respectively, corresponding to all the nodes in the two
filters.

HfK,a, the smoothing density can be obtained as

p(xk|Z1:K) =

Mf
K∑

a=0

Pr
{
HfK,a|Z1:K

}
p(xk|Z1:K ,HfK,a). (10)

In the optimal scenario, the history of each HfK,a at time K contains a unique
sequence of hypotheses Hfk,n for k = 1, . . .K−1. Conversely, for each Hfk,n
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at time k, there is a hypothesis HfK,a that has an identical DA sub-sequence
from time 1 to k. BS uses this relation between HfK,a and Hfk,n and Rauch-
Tung-Striebel (RTS) iteration is performed using the sequence of filtering
density components corresponding to the hypotheses Hfk,n from k = 1 . . .K,
to obtain each term in (10). To be precise, RTS iteration is recursively applied
to the smoothing density component at k+1 under hypothesis HfK,a and the
filtering density component under Hfk,n at k, to obtain the smoothing density
component at k. The BS is also illustrated in the hypothesis tree in Fig. 1.

When the FF is based on pruning, the RTS iterations of BS are applied on
the surviving hypotheses HfK,a. The number of hypothesis HfK,a is fewer and
manageable. As a consequence of pruning, it happens that in the history of
HfK,a ∀a, there exists only one hypothesis Hfk,n for k � K (see Fig. 1). This
phenomenon is called degeneracy and leads to underestimated covariances.

1) Backward filtering of TFS: The optimal BF of TFS [11] is performed
similar to the FF. Using DA hypotheses Hbk,j , the BL from the BF is written
as

p(Zk+1:K |xk) =
Mb

k∑
j=1

Pr
{
Hbk,j |Zk+1:K

}
×p(xk|Zk+1:K ,Hbk,j) (11)

=

Mb
k∑

j=1

wbk,jN
(
Hb
k,jxk; µ

b
k,j , P

b
k,j

)
. (12)

There is a one-to-one correspondence between the terms in (12) and (11).
The parameters in (11) can be obtained using the extended observation
model described in Section 3 of [11] or from Section IIC of [22]. Each jth

component is obtained by performing Gaussian recursions for the BF as in
[8], under the hypothesis Hbk,j . These Gaussian recursions in the BF involve
the update and retrodiction steps similar to the update and prediction steps
in the Kalman filter. Note that when the smoothing density at k is computed
using the outputs of the FF and the BF, hypotheses Hfk,n and Hbk,j together
form one DA hypothesis HfK,a from time 1 to K.

The BF of TFS is also illustrated using a graphical structure, as shown
in Fig. 2. The nodes and branches represent the components in the BL and
their relations across time, similar to the FF.

In the optimal scenario, the number of components M b
k increases ex-

ponentially with time. Thus, approximations are necessary to reduce the
computational complexity. The difficulty is that the components in the BL
are not Gaussian densities in xk. Therefore, the GM reduction techniques
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mentioned in Section III-C for the FF, are not directly applicable to the BF,
as those techniques are developed for GM with components that are densities
in xk.

One good aspect of the TFS is that it does not suffer from the degeneracy
problem even when the FF and the BF are based on pruning. This is because
the smoothing density in TFS is computed based on the the components
corresponding to the surviving hypotheses Hfk,n in the FF and Hbk,j in the
BF at time k, whereas in the FBS, only the hypotheses Hfk,i which are in
the history of HfK,a are used.

IV. FORWARD-BACKWARD SMOOTHING

In the previous section, it was discussed how optimal Gaussian mixture
smoothing using the forward-backward smoothing strategy can be performed.
It was also discussed how approximations such as merging and pruning are
employed during forward filtering. We also observed that FBS is simple to
apply when the FF algorithm uses pruning but not merging. In this section,
we discuss in detail how backward smoothing can be performed after an FF
step that involves pruning and merging approximations.

The idea behind BS on a hypothesis graph with merged nodes can be un-
derstood by first analyzing how BS works on a hypothesis tree obtained after
pruning-based forward FF. During BS, each component in the smoothing
density in (10) is obtained by using a Rauch-Tung-Striebel smoother, which
combines the smoothing density component with hypothesis HfK,a and the
filtering density component with hypothesis Hfk,n, if the DA sub-sequence
in HfK,a from time 1 to time k is identical to the DA sequence in Hfk,n. In
other words, it combines a component p(xk+1|Z1:K ,HfK,a) in the smoothing
density at time k + 1 and a component p(xk|Z1:k,Hfk,n) in the filtering
density at k, such that p(xk|Z1:k,Hfk,n) = p(xk|Z1:k,HfK,a), and returns a
component p(xk|Z1:K ,HfK,a) in the smoothing density at k. It should be
noted that due to pruning during FF, the number of filtering hypotheses
HfK,a at time K is manageable. Therefore, the number of components in the
smoothing density p(xk|Z1:K) in (10) is also manageable and approximations
are not normally needed during BS.

The key difference between the FBS that makes use of merging and the
pruning-based FBS is in what the hypotheses Hfk,n represent. In the former,
as a result of merging during the FF, the hypotheses HfK,a are sets of DA
sequences, whereas in the latter, HfK,a corresponds to one DA sequence. As
each DA sequence in the set HfK,a corresponds to a Gaussian component,
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the term p(xk|Z1:K ,HfK,a) in (10) represents a GM in the merging-based
setting. It is therefore not obvious how to use the RTS algorithm for the
merged hypotheses HfK,a. The idea in this paper is that the DA sequences
in each hypothesis HfK,a can be partitioned to form hypotheses Hsk,l such
that p(xk|Z1:K ,Hsk,l) is a Gaussian density. During the BS, each of these
hypotheses Hsk,l can be related to a hypothesis Hfk,n from the FF, enabling
us to employ RTS recursions on these new hypotheses Hsk,l. Clearly, this
strategy results in an increase in the number of hypotheses, leading to an
increase in the number of components in the smoothing density. Therefore,
there is typically a need for GM reduction during the BS. To represent these
hypotheses Hsk,l and the GMR of the components in the smoothing density,
we use a hypothesis graph called the s-graph.

Using the new hypotheses Hsk,l, the smoothing density is

p(xk|Z1:K) =

Ms
k∑

l=0

p(xk|Z1:K ,Hsk,l) Pr
{
Hsk,l|Z1:K

}
, (13)

where p(xk|Z1:K ,Hsk,l) is the Gaussian densityN
(
xk;µ

s
k,l, P

s
k,l

)
, with weight

wsk,l = Pr
{
Hsk,l|Z1:K

}
. Starting with HsK,n = HfK,n at k = K, the hypothe-

ses Hsk,l (partitioned from HfK,a) can be obtained recursively by defining the
hypotheses Hsk+1,p at time k + 1 and Hfk,n, as will be shown in Section
IV-B. In the following sections, we introduce the two graphs, the relations
between them and how these relations are used to obtain the weights of the
components during BS.

A. Notation

In this subsection, we list the parameters corresponding to each node in
the f-graph and s-graph. There is a one-to-one mapping between nodes in
the graphs and components in the corresponding GM densities (after GMR).
The symbols

⋃
and

⋂
used in the hypothesis expressions represent union

and intersection of the sets of DA sequences in the involved hypotheses,
respectively.

1) f-graph: For each node n = 1, . . . ,Mf
k in the f-graph (after pruning

and merging of the filtering GM) at time k, the following parameters are
defined:
• Hfk,n, the hypothesis that corresponds to node n (after merging). If
H

′f
k,(i,j) represent the set of disjoint hypotheses formed by associating

hypothesis Hfk−1,i of node i at time k−1 to measurement zk,j at time k,
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and they correspond to the Gaussian components that have been merged
to form the component at node n, then

Hfk,n =
⋃
i,j

H
′f
k,(i,j). (14)

Note that hypotheses H
′f
k,(i,j) do not represent any node in the f-graph.

However, they can be associated to the branches incident on node n
before merging. The prime in the notation of H

′f
k,(i,j) is to indicate that

it is the hypothesis before merging. Similar notation will be used in the
s-graph as well.

• µfk,n and P fk,n are the mean and the covariance of the Gaussian density
p(xk|Z1;k,Hfk,n) (after merging).

• Ifk,n is a vector that contains indexes i of the hypotheses Hfk−1,i at time
k − 1. An interpretation of this is that for each i in Ifk,n, there is a
branch between node i at time k − 1 and node n at time k.

• wfk,n is a vector that contains the probabilities Pr
{
H

′f
k,(i,j)|Z1:k

}
of the

DA hypotheses H
′f
k,(i,j) before merging. Using (14), it can be shown

that Pr
{
Hfk,n|Z1:k

}
=
∑
i,j

Pr
{
H

′f
k,(i,j)|Z1:k

}
.

It should be noted that the parameters Ifk,n, ∀n, k, capture all the information
regarding the nodes and their connections in the f-graph. Therefore, for
implementation purposes, it suffices to store the parameter Ifk,n along with
GM parameters µfk,n, P fk,n and wfk,n, instead of storing the exponential
number of DA sequences corresponding to Hfk,n.

2) s-graph: At time k, the s-graph parameters corresponding to the lth

component of the smoothing density in (13) are:
• Hsk,l, µsk,l and P sk,l are the hypothesis, mean and covariance of the lth

Gaussian component (after merging).
• wsk,l is the probability Pr

{
Hsk,l|Z1:K

}
.

• Isk,l is a scalar that contains the index of the node (or component) in the
f-graph at time k that is associated to the node l in the s-graph. This
parameter defines the relation between the two graphs.

At time K, these parameters are readily obtained from the f-graph pa-
rameters: HsK,l = HfK,l, µ

s
K,l = µfK,l, P

s
K,l = P fK,l, w

s
K,l =

∑
r
wfK,l(r)

and IsK,l = l. Starting from time K, the parameters in the list can be
recursively obtained at each time k as discussed in Section IV-B. In the
discussion in Section IV-B, the hypotheses Hsk,l are used to explain the
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Fig. 3: Illustration of backward smoothing on a merged graph: A node p in the s-graph
is shown along with the corresponding node n in the f-graph. The relations between
the different parameters are as indicated. The filled black circles in the f-graph and the
s-graph represent the components before merging.

weight calculations. But, for implementation purposes, it suffices to update
and store the parameters µsk,l, P

s
k,l, w

s
k,l and Isk,l.

B. Smoothing on merged nodes

The goal is to recursively find the smoothing density from time K to
time 1. We assume that the smoothing density is available at time k+ 1, or
equivalently that the nodes and the branches in the s-graph are updated until
k + 1. The components of the smoothing density p(xk|Z1:K) at time k are
obtained by applying the RTS iterations to every possible pair, say (p, n), of
the pth component of p(xk+1|Z1:K) and the nth component of p(xk|Z1:k).
Whether a pair (p, n) depends on if the hypothesis Hfk,n is in the history
of the hypothesis Hsk+1,p or not. This information can be inferred from the
relation between the f-graph and the s-graph.

The possibility of forming a pair (p, n) from node p in the s-graph at
time k + 1 and node n in the f-graph at time k can be analyzed using the
parameters listed in Section IV-A (cf. Fig. 3). It always holds that node p in
the s-graph, at time k+1, corresponds to one specific node m in the f-graph
at time k + 1, where m = Isk+1,p. A pair (p, n) can be formed whenever
node m at time k + 1 and node n at time k are connected in the f-graph.
That is, if the vector Ifk+1,m contains the parent node index n, then the pair
(p, n) can be formed. See Fig. 3 for an illustration. In fact, for every element
n in the vector Ifk+1,m, the pair (p, n) is possible.

If the pair (p, n) is ‘possible’, we form a node in the s-graph at time k,
corresponding to that pair which is connected to node p at time k+1. The new
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node in the s-graph corresponds to a component in (13), for which we now
wish to compute the mean, covariance and weight using an RTS iteration and
the hypothesis relations. The hypotheses involved in obtaining the component
are Hsk+1,p, H

f
k+1,m and Hfk,n, where m = Isk+1,p as discussed before and

node n is, say, the rth element in the vector Ifk+1,m denoted n = Ifk+1,m(r)
(cf. Fig. 3). Using these hypotheses, the hypothesis, corresponding to the
resulting component, denoted H′sk,(p,n), is written as

H′sk,(p,n) = H
s
k+1,p

⋂
Hfk,n. (15)

It can be shown that (See Appendix A for details)

Pr
{
H′sk,(p,n)|Z1:K

}
∝ Pr

{
Hsk+1,p|Z1:K

}
×Pr

{
Hfk+1,m

⋂
Hfk,n|Z1:k+1

}
= wsk+1,pw

f
k+1,m(r). (16)

After applying the RTS iterations to every possible pair (p, n), it can
happen that we have many components in the smoothing density at k. Starting
with the node p at time k + 1, we form a pair for every element n in
the vector Ifk+1,n, resulting in a component for each pair. Therefore, the
number of components in the smoothing density at time k can possibly
increase, depending on how many components have been merged to form
the node m at time k. Thus, to reduce the complexity, we use pruning
and merging strategies during the BS step. For simplicity, merging is only
allowed among the components which have the same Hfk,n, i.e, only the
components that correspond to the same node n in the f-graph will be merged.
After merging and pruning of the hypothesis H′s

k,(p,n), for different (p, n), the
retained hypothesis are relabeled as Hsk,l, and the corresponding components
form the nodes l in the s-graph at time k.

V. TWO-FILTER SMOOTHING

In this section, we propose approximation techniques for the backward
filtering of the two-filtering smoothing. First technique, called intragroup
approximation, is obtained by analyzing the details of the structure of the
backward likelihood. In the second technique, called smoothed posterior
pruning, we propose that the filtering densities can be used to make pruning
on the BL of the BF.
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A. Intragroup approximations

In this section, we analyze the structure of the backward likelihood and
discuss why the conventional pruning and merging strategies are not always
suitable for the BL. Based on this analysis, we show that the BL has a
reduced dimension Gaussian mixture structure. The components in the BL
can be grouped and the traditional Gaussian mixture reduction techniques
can be used within the groups. It will also be shown that the number of
groups is polynomial in the lag K − k, and that this can be a limitation of
the intragroup GMR strategies, especially when the lag K − k is large.

1) Normalizability of the BL: Consider the BL in (12), which we refer
to as the reduced dimension Gaussian mixture (RDGM) in this paper. It is
similar to a Gaussian mixture, with weights wbk,j , means µbk,j and covari-

ances P bk,j . However, the terms N
(
Hb
k,jxk; µ

b
k,j , P

b
k,j

)
are not generally

densities in xk and are not guaranteed to be normalizable since the integral´
N
(
Hb
k,jxk; µ

b
k,j , P

b
k,j

)
dxk may be infinite.

Similar to the GM filtering density in the forward filtering (FF), the
number of terms M b

k in the RDGM in (12) of the BF grows exponen-
tially with time. Thus, GMR approximations are necessary to reduce the
complexity. The catch is that the conventional GMR techniques mentioned
in Section III-C are developed for GM density functions and cannot be
applied directly to RDGMs. For instance, the conventional pruning strate-
gies are applied to GMs that are normalized, in which the weights of the
components define the relative sizes of the Gaussian components. So, the
weights of the components can be compared and the ones with insignificant
weights can be removed. However, in the RDGM in (12), it is possible
that a component with the smallest weight wbk,j is in fact among the largest
components. So, the components in the RDGM cannot be compared based
only on the weights unless the components N

(
Hb
k,jxk; µ

b
k,j , P

b
k,j

)
are

normalized. Similarly, the conventional merging strategies applied to GMs
involve moment matching, and to compute the moments, the components
should be normalizable densities. In the trivial case, when the components
in the RDGM are normalizable, i.e., when rank(Hb

k,j) = Nx, it is possible to

rewrite the components in the RDGM
∑
j
wbk,jN

(
Hb
k,jxk; µ

b
k,j , P

b
k,j

)
into

the GM form
∑
j
w′bk,jN

(
xk; µ

′b
k,j , P

′b
k,j

)
to which the GMR techniques can

be applied.
The RDGM is in general not normalized, like in the data association prob-

lem, and the normalizability depends on the structure of the matrices Hb
k,j .
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As will be shown in Section V-A2, in the RDGM, groups of components
have identical Hb

k,j matrices. Thus, if the matrices Hb
k,j are also of full row

rank in a group, then it is possible to compare the components within the
group, and so, one can apply the GMR technique to that group.

Let Ig be the index set that contains the indexes j of the components in
a group g that have the same matrices, i.e., Hb

k,j = Hg for j ∈ Ig and let
rank(Hg) = mg. Using this notation, the RDGM in (12) can be written as

p(Zk+1:K |xk) =
NG∑
g=1

∑
j∈Ig

wbk,jN
(
Hgxk; µ

b
k,j , P

b
k,j

)
where NG is the number of groups. The functions N

(
Hgxk; µ

b
k,j , P

b
k,j

)
are scaled Gaussian functions in the row space of the matrix Hg, and have
constant values in the null space of Hg. The idea is that GMR can be
applied to approximate the group

∑
j∈Ig

wbk,jN
(
Hgxk; µ

b
k,j , P

b
k,j

)
of com-

ponents in this row space and that no approximation needs to be performed
in the null space, as the values of the components are constant in the null
space. An interpretation of this can be obtained using a change of basis

matrix, say Ag =

[
Hg

H⊥g

]
in RNx , where the matrix H⊥g is such that the

columns and rows of Ag span RNx . Let us define a variable yg = Agxk
with respect to the new basis in RNx . Using this variable yg, the func-
tion wbk,jN

(
Hgxk;µ

b
k,j , P

b
k,j

)
is written as wbk,jN

(
yg [1 : mg] ; µ

b
k,j , P

b
k,j

)
,

where yg [1 : mg] denotes the first mg elements in the vector yg. Clearly, the
functions N

(
yg [1 : mg] ; µ

b
k,j , P

b
k,j

)
are Gaussian in the variable yg[1 :

mg]. These functions are not integrable in yg[mg +1 : Nx], but are constant
(or uniform) in that variable. This observation allows us to treat the group∑
j∈Ig

wbk,jN
(
yg [1 : mg] ; µ

b
k,j , P

b
k,j

)
as a GM in the variable yg[1 : mg].

So, pruning and merging can be applied to approximate this mixture as a
function of yg[1 : mg] = Hgxk. Overall, within each group g, the GMR can
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be applied as
NG∑
g=1

∑
j∈Ig

wbk,jN
(
yg[1 : mg]; µ

b
k,j , P

b
k,j

)

≈
NG∑
g=1

∑
j∈I′g

w̃bk,jN
(
yg[1 : mg]; µ̃

b
k,j , P̃

b
k,j

)

=

NG∑
g=1

∑
j∈I′g

w̃bk,jN
(
Hgxk; µ̃

b
k,j , P̃

b
k,j

)
(17)

where I ′g refers to the index set corresponding to components in group g after
GMR. From (17), it can be noticed that after the intragroup approximations,
the number of components in the RDGM is at least the number of groups,
NG.

2) Grouping: As discussed earlier in this section, the grouping of the
components in the the BL in (12) is key in being able to apply the GMR
techniques to approximate the RDGM. In this section, with the data as-
sociation in target tracking as an example, we discuss why the grouping is
possible. For this example, we also analyze how the number of groups grows
with time to point out the limitation of the intragroup GMR methods.

By investigating (12) for the DA problem, one can see that many of the
components in (12) have the same Hb

k,j matrices. It turns out that if two DA
hypotheses, Hbk,i and Hbk,j , are such that they have measurement associations
and missed-detection associations at the same time instants, then Hb

k,i =

Hb
k,j . This observation allows us to partition the components in the RDGM

into groups of components that have the same Hb
k,j matrices.

Consider the constant velocity model, in which the state contains the
position and velocity components, and assume that only the position compo-
nents are observed. One then needs measurements from at least two different
time instants to estimate the velocity components. This implies that under
the corresponding DA hypotheses Hbk,j in the BF, which have at least two
measurement associations across time, the state can be estimated with finite
covariance. So, the corresponding components N

(
Hb
k,jxk; µ

b
k,j , P

b
k,j

)
in

the BL, will be normalizable, and therefore, the ranks of the corresponding
matrices Hb

k,j is Nx = dim(xk). These normalizable components will form
one group. Additionally, there will also be components with Hb

k,j such that
rank(Hb

k,j) < Nx, which correspond to the hypothesis sequences Hbk,j that
have less than two measurement associations across time.
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We will now analyze how the number of groups grows with time. Let us
assume that the matrices H and F in the motion model (1) and measurement
model (2) are such that measurements from at least M different time instants
(not necessarily consecutive) are needed to estimate all dimensions of the
state xk, i.e., to ensure that the corresponding component in the BL is
normalizable. Using this parameter M and the time lag K − k, the number
of groups can be analyzed. As discussed for the constant velocity model
with positional measurements, the components corresponding to the hypoth-
esis sequences that have at least M measurement associations across time
will be normalizable and form a group. Components that have hypothesis
sequences with exactly l (l < M ) measurement associations at the same time

instants belong to the same group. There are
(
K − k
l

)
ways of assigning

l measurement associations in K−k time steps for each l = 0, 1 . . . ,M−1.
Thus, in total, the number of groups is given by

NG(k,K) = 1 +

M−1∑
l=0

(
K − k
l

)
(18)

which grows in the order of O
(
(K − k)M−1

)
as a function of the lag K−k.

One can see that using the intragroup approximations, the number of
components in the RDGM cannot be reduced to less than the number of
groups, which grows as O

(
(K − k)M−1

)
with the lag K−k. Hence, these

intragroup approximations are not sufficient to reduce the complexity due to
the RDGM structure of the BL. It is therefore essential to present a sound
manner to compare components across groups in order to enable us to reduce
the complexity further. In the next section, we present the smoothed posterior-
based pruning with which the components in the BL can be compared and
pruned.

B. Smoothed posterior pruning

In this section, we present the smoothed posterior pruning strategy to
approximate the BL. We show that it is valid to compare components across
groups in the backward likelihood based on the smoothing probabilities of
the corresponding hypotheses in the backward filtering. Surprisingly enough,
using these probabilities, large components or even groups of components
can be pruned from the BL and propagated, without affecting the smoothing
densities at any time instant. The smoothing probabilities of the hypotheses
in the output of the BF can be calculated using the forward filtering densities.
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Fig. 4: Illustration of smoothed posterior pruning: The green and the red curves, which
represent the posterior density before and after the approximation of the likelihood, are
very close to each other. This shows that the shape of the corresponding (smoothing)
posterior is unaffected by the posterior pruning of the likelihood. Also, parts of the blue
curve and black curve, which represent the likelihood before and after pruning, are very
close to each other.

We also show how this idea can be generalized for pruning components from
the FF as well.

The main objective is to compute the smoothing posterior density given in
(3). The two terms in the right-hand side of (3) are the filtering density and
the backward likelihood, which are the outputs of the FF and BF, respectively.
The filtering density is reduced using traditional Gaussian mixture reduction
techniques. The BL can be reduced using the intragroup approximations
discussed before, but that may not be enough due to its limitations discussed
in the previous section. We propose (and later prove) that the filtering density
of the FF in (3) can be used to prune components in the BL of the BF, in
regions where the smoothing posterior density is small, and therefore is not
affected by this pruning. Fig. 4 shows an illustration of this strategy, referred
to as smoothed posterior pruning, for one time instant. The Gaussian mixtures
are in 2D and the curves shown in the figure are the contour plots of the
GMs involved. More importantly, we can propagate the pruned version of
the BL backwards in time without affecting the smoothing density at any
other time instant.

The SPP idea can also be used the other way around. That is, it is possible
to approximate the FF based on the BL. The BL of the BF, when available,
can be used to prune components in the filtering density of the FF in the
regions where the smoothing density is small. The bottom line is that the
SPP idea presented in this section can be generalized to both the FF and
the BF, depending on what functions are available to compute the posterior.
In this section, we discuss the SPP idea for the FF, but the same arguments
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hold for SPP of BF as well.
For the pruning step in the SPP, any of the pruning strategies mentioned

in Section III-C can be used, once we know the weights of the components
to be compared. Note that the weights relate to the probability of the data
association hypothesis sequence Hfk,n (cf. Section III-C). In SPP, as stated
before, we want to perform the pruning based on the smoothing posterior.
So, we do not use the filtering probability Pr{Hfk,n|Z1:k} of the hypothesis.
Instead, we use the smoothing probability Pr{Hfk,n|Z1:K} of the hypothesis.
As we will show in the following proposition, if the smoothing posterior
probability Pr{Hfk,n|Z1:K} is zero, then the nth Gaussian component can be
pruned from the filtering density, without affecting the smoothing posterior
distributions. The intuitive reason is that the smoothing probabilities of the
offspring of the pruned component, if it was propagated, would also be zero,
which means that they would not influence the smoothing densities at later
times either. In the following proposition, we also provide the mathematical
justification for the same.

Proposition 1. Suppose that the objective is to compute the smoothing
density p(xm|Z1:K) for m = 1, . . . ,K. If Pr

{
Hfk,n|Z1:K

}
= 0, then the

nth component can be pruned from p(xk|Z1:k) and propagated to time k+1
during FF without affecting the smoothing density p(xm|Z1:K) for m ≥ k.

Analogously, if Pr{Hbk,j | Z1:K} = 0, then the jth component can be
pruned from p(Zk+1:K |xk) and propagated to time k− 1 during BF without
affecting the smoothing density p(xm|Z1:K) for m ≤ k.

Proof: See Appendix B.
The smoothing probability of a hypothesis Hfk,n in the FF can be evaluated

from the weights of the components in the smoothing density using (27) in
Appendix B:

Pr
{
Hfk,n|Z1:K

}
=

ˆ
Pr{Hfk,n|Z1:k}p(xk|Hfk,n, Z1:k)

p(Zk+1:K |xk)dxk
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=

ˆ
wfk,nN
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f
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)
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∑
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dxk

=
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(
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b
k,jP
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k,nH

bT

k,j + P bk,j

)
. (19)

The product of the three terms in the summation of (19) is indeed the
weights of the components in the smoothing density p(xk|Z1:K), obtained
as the product of the nth component in the filtering density and the BL.
Similarly, the smoothing probability for the hypothesis Hbk,j during BF can
be calculated from the smoothing posterior density as

Pr
{
Hbk,j |Z1:K

}
=
∑
n
wfk,nw

b
k,j ×

N
(
Hb
k,jµ

f
k,n;µ

b
k,j , H

b
k,jP

f
k,nH

bT

k,j + P bk,j

)
. (20)

Note that the summation is over the index n of the filtering density. Analo-
gously, the product in the summation gives the weights of the components
in the smoothing density obtained due to product of the jth component in
the BL and the filtering density.

VI. ALGORITHMIC DESCRIPTION

The algorithmic descriptions of the FBS and the TFS, using the ideas
proposed in Section IV and Section V, respectively, are presented in this
section. We assume that we know the prior p(x0) at time 0 and also that we
have the parameters for gating, pruning and merging: β, PD, PG, P fP and
P sP .

The forward filtering algorithm is common to both smoothing methods
and involves both pruning and merging approximations. It is presented in
Algorithm 1. The f-graph parameters described in Section IV are updated
during the FF. During the BS of FBS, the s-graph parameters in the list in
Section IV are computed (cf. Algorithm 2). The BF algorithm of the TFS
is described in Algorithm 3. The intragroup approximations and smoothed
posterior pruning described in Section V are included in the BF algorithm.
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The smoothing density will be obtained as part of the SPP performed in the
BF as in step 5 of Algorithm 3.

Algorithm 1 Forward filtering
Input: Prior: µ0|0, P0|0.

Likelihoods: H , zk,j , R and

βk,j =

{
β(1− PDPG) j = 0

PD j 6= 0
, for j = 0, . . .mk, k = 1, . . .K.

Iterate for k = 1, . . . ,K

1) Prediction: For each node i at time k − 1, perform prediction to
compute µk|k−1,i and Pk|k−1,i from µk−1|k−1,i and Pk−1|k−1,i.

2) Gating: Initialize G = {}. For each pair of node i at
k − 1 and measurement zk,j ∈ Zk, check if wLL,(i,j) =
N
(
zk,j ; Hµk|k−1,i, HPk|k−1,iH

T +R
)

> PG and add G =
G
⋃
{(i, j)} for the pairs that pass the threshold.

3) Pruning: Initialize P = {}. For each pair (i, j) ∈ G, calculate
the posterior weight wk,(i,j) = wfk−1,iβk,jwLL(i, j) and re normalize.
Check if wk,(i,j) > P fP and add all pairs (i, j) that pass the threshold
to P , i.e., set P = P

⋃
{(i, j)}.

4) Update: For each (i, j) ∈ P , update the predicted density with the
measurement innovation to get µk,(i,j), Pk,(i,j) and wk,(i,j).

5) Merging: The GM from step 4 is passed to a merging module. This
module returns a reduced GM with components µfk,n and P fk,n, each
corresponding to a node n in the f-graph. Along with performing
merging of components, the merging module also returns the vectors
Ifk,n and wfk,n that contains the indexes i and the weights wk,(i,j),
respectively, of the components that are merged to form node n.

VII. RESULTS

A. Simulation scenario

As mentioned in the problem formulation, we consider the problem of
tracking a single target moving in a cluttered environment. The model used
for simulation is a constant-velocity model with positions and velocities
along x and y dimensions in the state vector. The target is assumed to
be a slowly accelerating target with acceleration noise standard deviation
of 0.07m/s2. The trajectory was generated for K = 40 time steps with a
sampling time of 1s. The whole volume of the track was used for generating
clutter data.
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Algorithm 2 Backward smoothing of FBS-GMM

Input: Filtering GM parameters: µfk,n, P fk,n, wfk,n, Ifk,n, for n = 1, . . . ,Mf
k .

Initialize: Set M s
K, = Mf

K , µsK,l = µfK,l, P
s
K,l = P fK,l, I

s
K,l = l and wsK,l =∑

r
wfK,l(r) (summation is over the entire vector wfK,l).

Iterate for k = K − 1, . . . , 1

1) RTS: For each node p at time k + 1 in the s-graph, form pairs,
(p, n), as described in Section IV-B. Calculate the smoothing density
mean µk|K,(p,n) and covariance Pk|K,(p,n) using RTS on µfk,n, P fk,n and
µsk+1,p, P

s
k+1,p (Note, the parameters µsk+1,p and P sk+1,p are the same

for different n’s).
2) Weight calculation: For each pair (p, n), the weight wk|K,(p,n)

is calculated as in (25). After this, we have a bunch of triplets{
µk|K,(p,n), Pk|K,(p,n), wk|K,(p,n)

}
that form a GM.

3) Pruning: Pruning can be performed on the GM based on wk|K,(p,n) >
P sP after which the GM is re-normalized.

4) Grouping: The components in the pruned GM are sorted into groups
Gn such that all the components in the group have a common parent
n at time k − 1. The grouping is performed across all p’s.

5) Merging: Merging can be performed within each group Gn. The output
of this merging module is

{
µsk,l, P

s
k,l, w

s
k,l

}
along with the parameter

Isk,l = n.

The values for the measurement noise R, the probability of detection PD
and the clutter intensity β, were varied for the simulations. The measurement
noise R was set to 50 × I or 150 × I . PD was either 0.7 or 1. The values
used for β were 0.0001 and 0.0002. Thus, there are 8 sets of parameters for
which the simulation results are compared.

The proposed forward-backward smoothing with Gaussian mixture merg-
ing (FBS-GMM) and the two-filter smoothing algorithm with the intra-
group approximations and the smoothed posterior pruning are compared with
forward-backward smoothing based on an N−scan pruning algorithm where
the forward filtering is performed using N−scan pruning.

B. Implementation details

During FF, the merging algorithm used in step 5 in Algorithm 1 is a variant
of Salmond’s algorithm [19] aimed at reducing the complexity compared to
the original algorithm. The original Salmond’s algorithm looks for the mini-
mum merging cost across every pair of components in the Gaussian mixture
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Algorithm 3 Backward filter of TFS
Input: Likelihoods: βk,i, H , zk,i and R for i = 0, . . .mk and k = 1, . . .K.
Initialize: k ← K − 1, wbK,j ← 1, Hb

K,j ← [], µbK,j ← [] and P bK,j ← [] for
j = 0.
Repeat

1) Update: for every i, j, compute ηk+1,l = βk+1,iw
b
k+1,j ,

Uk+1,l =

[
H

Hb
k+1,j

]
, ψk+1,l =

[
zk+1,i

µbk+1,j

]
and Gk+1,l =[

R 0
0 P bk+1,j

]
.

a) If rank(Uk+1,l) = Nx, then set ηk+1,l =
ηk+1,l

det(Uk+1,l)
, ψk+1,l =

U−1k+1,lψk+1,l, Gk+1,l = U−1k+1,lGk+1,lU
−T
k+1,l, and Uk+1,l = INx

end
2) Grouping: If components l1 and l2 are such that Uk+1,l1 = Uk+1,l2 ,

then the components belong to the same group.
3) Intragroup approximation: Within each group, the traditional prun-

ing and merging are performed.
4) Retrodiction: Set wbk,l = ηk+1,l, µbk,l = ψk+1,l, Hb

k,l = Uk+1,lF and
P bk,l = Uk+1,lQU

T
k+1,l +Gk+1,l.

5) Smoothing density: For every n and j, compute wsk,l, µ
s
k,l and P sk,l

same way as in update step 1 with k = k − 1, n = i, βk+1,i = wfk,n,
H = INx

, zk+1,i = µfk,n and R = P fk,n. Note that the rank calculated
will always be Nx for this case.

6) SPP: Calculate wbsk,j =
∑
l

wsk,l according to (20). Remove component

j from the BL based on the weights, wbsk,j and re-normalize.
7) k ← k − 1

until k = 1

(GM). Thus, it has a quadratic complexity in the number of components. But
to reduce the complexity of the merging algorithm, in this paper, instead
of looking for the minimum cost, we use a heuristic algorithm. Starting
with the components that have the smallest weights, we compute the cost
of merging pairs of components and if the cost is lower than a threshold
(0.001 × state dimension), the components are merged and replaced in the
GM. The procedure is continued with this new GM until there are no pairs
of components that have a merging cost lower than the threshold.

The merging algorithm used in step 5 during BS (Algorithm 2) is a
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combination of the alternative Salmond’s algorithm and Runnalls’ algorithm
[18]. The additional Runnalls’ algorithm is necessary to ensure that the
number of components in the GM during BS is within a threshold (50
components).

In the BF of the TFS, both the intragroup approximations and the smoothed
posterior pruning are used to reduce the components in the backward likeli-
hood. The intragroup pruning is based on the maximum weight in the group.
The components that have weights lesser than 1/100th of the maximum
weight in the group are pruned. The intragroup merging is based on the
variant of the Salmond’s algorithm discussed above. To employ the SPP
method followed by these intragroup approximations, first the smoothing
density has to be computed. This involves taking the product of the filtering
density GM and the RDGM BL, which is an expensive operation. So, to
reduce the number of operations involved in computing this smoothing den-
sity, we reduce the filtering density GM to a single Gaussian, and compute
the smoothing density using this reduced filtering density and the BL. Then,
using this interim smoothing density, SPP is employed to prune components
from the BL.

In case of N−scan pruning in the FBS algorithm, the parameter N for
the various settings is chosen to be the largest possible N such that the
complexity (run-time) for a single run is within the threshold of 2 s. To
reduce the complexity, extra gating was performed before the ellipsoidal
gating mentioned in step 2 of Algorithm 1. This extra gate is rectangular,
with dimensions based on the measurement noise covariance and the center
at the prediction density mean. This rectangular gating is also employed
in the FF and the BF of TFS. Besides the model parameters, the gating
probability PG and the pruning threshold P fP mentioned in step 2 and step
3 of Algorithm 1 are (1 − 10−5) and 10−4 respectively. The threshold P sP
for BS in step 3 of Algorithm 2 is 10−3. It should be mentioned here that
the most of our effort has been into optimizing the parameters for the FBS
with N-scan.

The performance measures used for comparison are the RMSE, normalized
estimation error squared (NEES), computational time and track loss. A track
was considered lost if the true state was more than three standard deviations
(obtained from the estimated covariance) away from the estimated state for
five consecutive time steps. The complexity results presented is the average
time taken during MATLAB simulations on an Intel i5 at 2.5GHz to run
each algorithm on the entire trajectory of 40 time steps. The graphs were
obtained by averaging over 1000 Monte Carlo iterations.
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Fig. 5: Track Loss performance: Every odd point on the x-axis (1, 3, 5, 7) is for low
clutter intensity β = 0.0001 and every even point (2,4,6,8) is for high β = 0.0002. The
order of the eight scenarios is the same also for the other plots in Fig. 6, Fig. 7 and Fig.
8.

Fig. 6: NEES performance: Compared to the FBS based on N−scan pruning, the values
of the NEES for the proposed FBS and TFS algorithms are very close to the optimal
value of 4 in all the scenarios.

C. Results

The results of the simulation are presented in Fig. 5 to 8. It can be seen
that the proposed FBS and TFS algorithms perform significantly better than
the FBS with N−scan pruning for most of the scenarios. From the Fig. 5 for
track loss performance, one can notice that the performance gain is higher
for the proposed algorithms compared to FBS with N−scan pruning, when
PD is low and the measurement noise R and the clutter intensity β are high
(point 6 on the x-axis in Fig. 5). The reason for this is the degeneracy in
the FBS with N−scan pruning. The impact of this degeneracy problem can
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Fig. 7: Computational complexity: The proposed FBS and TFS algorithms are computa-
tionally cheaper compared to the FBS with N−scan pruning.

Fig. 8: RMSE performance: The results are very similar for the TFS and the FBS
algorithms except for the complex scenario with low PD , high intensity β and high
measurement noise R (point 6 on the x-axis).

also be observed in the NEES performance plot in Fig. 6 (point 6 on the
x-axis). In the degeneracy case, the uncertainties are underestimated, i.e., the
estimated covariances are smaller compared to the optimal ones, resulting in a
larger value for the NEES compared to the expected value of 4. In addition
to the better track loss and NEES performance, TFS based on intragroup
approximations and SPP, as well as FBS-GMM, offers a computationally
cheaper solution compared to the FBS based on N−scan pruning as can
be observed in Fig. 7. However, the RMSE performance of the TFS and
FBS are very similar in most scenarios as seen in Fig. 8, except for point 6
where the track loss is high for FBS based on N−scan pruning. It should
be noted that the instances when the N−scan pruning-based FBS algorithm
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loses tracks are not considered in the calculations of the RMSE.

VIII. DISCUSSION

The simulations for the data association problem in the single target sce-
narios show that the proposed two-filter smoothing and the forward-backward
smoothing algorithms have very similar performance. In this section, we
compare and discuss the two smoothing algorithms based on the possibilities
of extending the algorithms to more complex scenarios. We also suggest
some ideas on how some of the existing problems with the algorithms can
be handled.

A. Data association with multiple targets

Let us consider how the FBS and TFS can be applied to the data associa-
tion problem in multiple target tracking. For simplicity, we limit our discus-
sion to situations where the number of targets is fixed and known. The algo-
rithms studied in this paper can be viewed as single-target multiple hypothesis
tracking algorithms, and there are two common types of MHT algorithms for
multiple target tracking: hypothesis-oriented MHT, [17] and track-oriented
MHT [15] algorithms. The hypothesis-oriented MHT can be conveniently
combined with both the algorithms that we have proposed above, where
there are only global hypotheses. The popular track-oriented MHT, on the
other hand, is normally combined with a pruning-based reduction technique,
since merging complicates the treatment of DA conflicts between different
tracks. Therefore, pruning-based FBS and TFS are applicable to the problem.
However, as discussed before, this pruning-based FBS solution does not
perform well due to the degeneracy problem. Fortunately, this degeneracy
problem does not exist in the pruning-based TFS. To implement the pruning-
based TFS, one has to run two track-oriented MHTs, one for the FF and one
for BF, along with the track-conflict handling. It would be interesting to see
how the two MHTs can be combined, along with their corresponding track
hypotheses to obtain the smoothing density.

B. Fixed-lag FBS smoothing to avoid degeneracy

As we have explained above, the FBS based on pruning for the fixed-
interval smoothing problem suffers from the degeneracy problem. That is,
the number of branches in the hypothesis tree is just one except for the
latest few time steps. As BS is performed backwards in this degenerate tree,
the components in the smoothing density become more and more similar,
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eventually resulting in a single Gaussian density. One of the serious con-
sequences of degeneracy is underestimated uncertainties during backward
smoothing in the hypothesis tree. One approach to reduce the impact of the
degeneracy in particle filter smoothing, where degeneracy is an even bigger
problem, is the fixed-lag approximation idea [7]. That is, as an approximation
of fixed-interval smoothing, fixed-lag smoothing can be used, in which the
BS is performed only on the latest part of the hypothesis tree instead of the
entire tree. In other words, p(xk|Z1:K) ≈ p(xk|Z1:k+δ) for k � K, where
δ is chosen based on the level of degeneracy. For instance, in the FBS with
N−scan pruning, the ideal choice of δ is such that δ ≤ N . Our preliminary
simulations for this N−scan pruning based FBS have shown that the NEES
and the track-loss performances of the fixed-lag algorithm, which depends
on the estimated covariances, is better than the fixed-interval smoothing and
that the performance improves with smaller δ such that δ ≤ N . However, the
RMSE performance has shown the opposite trend. In summary, these results
suggest that there is a trade-off between the estimated mean and covariance
from the fixed-lag approximation. So, the choice of δ should be made based
on the requirements of the application in hand.

C. Non-linear models

There are applications in which the mode-specific measurement and mo-
tion models are non-linear. A common technique to handle non-linearity is
to linearize the functions, either analytically as in an extended Kalman filter
[9] or using statistical linear regression as in, e.g., an unscented Kalman
filter [23], in order to obtain a Gaussian approximation for each mode in the
mixture. These techniques have been successfully combined with FBS in
both Gaussian filtering settings [20] as well as in Gaussian mixture filtering.

It is possible to extend the TFS and FBS of GMs to non-linear models.
This can be achieved in many ways. One way is to extend the extended
Kalman filter idea, in which the functions involved are linearized. That is,
by making linearizations of the functions in the process and sensor models,
one can get GM densities. Traditionally, the linearization points for the FF is
based on the prior density. For the BS of FBS, it is straightforward, and no
extra linearization is necessary since the smoothing densities only depend
on the FF outputs, which are already obtained after linearization. For the
BF of the TFS, one way to choose the linearization points can be based on
the components in the forward filter density. This way, there will be several
linearization points for each component in the backward filter, based on each
component in the forward filter. Strategies on how these several linearizations
for the same component can be handled is worth investigating.
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D. TFS for generic factor graphs

The FF, BS and BF recursions of FBS and TFS can be viewed as message
passing algorithms in a factor graph representation [13] for the state-space
model. The factor graph representation for the state-space model is a simple
tree in which the state variables are all lined up in one branch. It would
be interesting to extend the FBS and TFS ideas presented in this paper to
factor graphs with general graphical structures, for example, to trees with
nodes that have more than two branches and to graphs with loops. It is
trivial to extend the idea of TFS with smoothed posterior pruning to message
passing on generic graphs. For each branch in the factor graph, separate
filtering recursions are run, and the messages along each branch can then be
approximated based on the smoothing density before propagation.

In case of the FBS method for the state space model, a closer analysis
reveals that there is a defined order in the two steps involved, i.e., first FF
on the whole of the tree and then BS of messages that are computed based
on the FF densities. This suggests that to extend the idea of FBS to generic
graphs, one needs to choose an order in which message passing is performed
in the different branches of the graph. There are normally several choices
for the ordering, since there can be several leaf nodes in the factor graph. It
would be interesting to investigate the advantages of one order over another.
In summary, the TFS seems simpler and more straightforward to extend to
general factor graphs, whereas FBS might be feasible and there are several
implementation choices one has to make.

IX. CONCLUSION

In this paper, we presented algorithms for forward-backward smoothing
and two-filter smoothing on single-target Gaussian mixtures. We presented
how the the forward filtering and backward smoothing steps of forward-
backward smoothing can be performed using data association hypotheses
including merging approximations. For the backward filtering of the two-
filter smoothing, two different approximation techniques — intragroup ap-
proximation and smoothed posterior pruning — were proposed. Evaluations
of root-mean squared error and track loss were performed on a simulated
scenario. The results showed that both proposed algorithms perform simi-
larly. Compared to FBS based on N−scan pruning, the proposed algorithms
showed improved performance for low complexity and high credibility (nor-
malized estimation error squared).
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APPENDIX A
WEIGHT CALCULATION FOR FBS

The weight calculation in (16) can be obtained using the hypothesis def-
initions. Consider the hypothesis expression in (15), and the illustration in
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Fig. 3. We are interested in calculating the probability of the hypothesis

Pr
{
H′s
k,(p,n)|Z1:K

}
= Pr

{
Hsk+1,p

⋂
Hfk,n|Z1:K

}
∝ Pr

{
Hsk+1,p|Z1:K

}
Pr
{
Hfk,n|H

s
k+1,p, Z1:k+1

}
×p(Zk+2:K |Hsk+1,p,H

f
k,n, Z1:k+1). (21)

In the above equation, the factor Pr
{
Hsk+1,p|Z1:K

}
is the weight wsk+1,p,

which is available from the last iteration of BS at time k + 1. With respect
to the third factor, the following set of equations show that it is actually
independent of n:

p(Zk+2:K |Hsk+1,p,H
f
k,n, Z1:k+1)

= p(Zk+2:K |Hsk+1,p,H
f
k+1,m,H

f
k,n, Z1:k+1) (22)

=

ˆ
p(xk+1|Hsk+1,p,H

f
k+1,m,H

f
k,n, Z1:k+1)

×p(Zk+2:K |Hsk+1,p,H
f
k+1,m,H

f
k,n, Z1:k+1, xk+1) dxk+1

=

ˆ
p(xk+1|Hfk+1,m, Z1:k+1)p(Zk+2:K |Hsk+1,p, xk+1) dxk+1. (23)

In (22), adding the hypothesis Hfk+1,m to the conditional statement does
not make a difference as the hypothesis Hsk+1,p corresponding to the entire
sequence of measurements masks it; but it does make the latter equations
simpler to handle. The second factor in (21) is given by

Pr
{
Hfk,n|H

s
k+1,p, Z1:k+1

}
= Pr

{
Hfk,n|H

f
k+1,m, Z1:k+1

}
∝

Pr
{
Hfk,n,H

f
k+1,m|Z1:k+1

}
Pr
{
Hfk+1,m|Z1:k+1

} . (24)

The numerator term in (24) is the same as the probability wfk+1,m(r) of the

rth branch before merging to form node m. Consolidating (23) and (24) into
(21), we get that

Pr
{
H′s
k,(p,n)|Z1:K

}
=

wsk+1,p × w
f
k+1,m(r)∑

r
wfk+1,m(r)

. (25)
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APPENDIX B
PROOF FOR SMOOTHED POSTERIOR PRUNING

In the following, we sketch the proof for the first part of the proposition
1, i.e., for SPP on the FF. It is possible to derive an analogous proof for SPP
on the BF.

Let us first consider how the suggested pruning of components in the FF
affect the smoothing density p(xk

∣∣Z1:K) at time k. At time k, the relation
between the smoothing density p(xk|Z1:K) and the smoothing probability
Pr
{
Hfk,n|Z1:K

}
is given by

p(xk|Z1:K) =
∑
n

p(xk|Z1:K ,Hfk,n)

×Pr{Hfk,n|Z1:K} (26)

∝
∑
n

Pr{Hfk,n|Z1:k}p(xk|Hfk,n, Z1:k)

×p(Zk+1:K |xk) (27)

where the product Pr{Hfk,n|Z1:k}p(xk | Hfk,n, Z1:k) is the nth component

in the filtering density GM p(xk|Z1:k). Clearly, the nth component in the
summation of (26), is due to the product of the nth component of the filtering
density p(xk|Z1:k) and the BL p(Zk+1:K | xk) as in (27). We note that the
Pr
{
Hfk,n|Z1:K

}
= 0, for some value of n, implies that the nth component

can be removed from the filtering density without affecting the smoothing
density p(xk|Z1:K) at k.

We are now left to prove that the suggested pruning technique does not
affect the smoothing density p(xm|Z1:K) for m = k+1, . . .K. To this end,
we use the fact that

Pr
{
Hfk,n|Z1:K

}
=

∑
j∈Sk→m,n

Pr
{
Hfm,j |Z1:K

}
(28)

where the summation is over the set Sk→m,n that contains the indexes of
the components j at time m which are offspring of the component n at
time k. So, Pr

{
Hfk,n|Z1:K

}
= 0 ⇐⇒ Pr

{
Hfm,j |Z1:K

}
= 0 ∀j ∈ Sk→m,n.

Arguing as we did for pruning the nth component from p(xk|Z1:k) at time k,
we can show that the components j ∈ Sk→m,n with Pr

{
Hfm,j |Z1:K

}
= 0

can be pruned from p(xm|Z1:m), without affecting the smoothing density
p(xm|Z1:K).
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