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Abstract—Conventional forward-backward smoothing (FBS)
for Gaussian mixture (GM) problems are based on pruning
methods which yield a degenerate hypothesis tree and often lead
to underestimated uncertainties. To overcome these shortcomings,
we propose an algorithm that is based on merging components
in the GM during filtering and smoothing. Compared to FBS
based on the N−scan pruning, the proposed algorithm offers
better performance in terms of track loss, root mean squared
error (RMSE) and normalized estimation error squared (NEES)
without increasing the computational complexity.
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I. INTRODUCTION

Gaussian mixture (GM) densities appear naturally in a range
of different problems. One such problem is target tracking in
the presence of clutter, which is a challenging problem in many
situations. Under linear and Gaussian assumptions for the
motion and sensor models, there exists a closed form optimal
solution for this problem. The optimal solution for filtering
and smoothing involves GMs, with an exponentially increasing
number of components as a function of the product of the
number of measurements across time. Thus, approximations
are inevitable to reduce the complexity.

The optimal solution to GM filtering retains several track
hypotheses for the target, along with a probability or weight
for each hypothesis. In target tracking, each track hypothesis
has a sequence of data association (DA) hypotheses associated
to it, and corresponds to a component in the GM. The
sequence of DAs across time is usually illustrated using a
graphical structure, the hypothesis tree. Along each branch in
the hypothesis tree, there is a sequence of Gaussian densities
across time, along with the probability for the corresponding
hypothesis sequence. Within the family of multiple hypothesis
tracking (MHT) algorithms [1, 10], a large quantity employ
pruning as a means to reduce the number of branches in
the tree (or components in the GM) at each time. As a
result, the uncertainty about the DA hypotheses is significantly
underestimated if the pruning is aggressive. If the track with
the correct DAs was pruned during the pruning step, it can also
lead to incorrect DAs (being retained after pruning) during the
subsequent time instants, eventually leading to track loss.

In fixed-interval smoothing, the goal is to estimate a se-
quence of state variables given the data observed at all times,
i.e., given a batch of data. There are two main approaches to

smoothing: forward-backward smoothing (FBS) [9] and two-
filter smoothing [6]. In theory, these two methods are optimal
and thus identical, but in practice they often differ due to
approximations made in order to obtain practical implemen-
tations. In GM smoothing, we are normally forced to use
approximations during both the filtering and smoothing steps.
Therefore, the performance depends on the approximations
made during both the filtering and smoothing steps.

In the conventional FBS implementations [4, 6, 8], the
forward filtering (FF) method is performed using a traditional
pruning-based filtering algorithm, such as an MHT. For the
backward smoothing (BS) step, Rauch-Tung-Striebel (RTS)
smoothing is used along each branch in the hypothesis tree
to obtain the smoothing posterior. Along with the Gaussian
densities, the weights of all branches are also computed. The
obtained solution is optimal, if there is no pruning (or merging)
employed during FF. If the FF algorithm is based on pruning,
we usually perform BS on a degenerated hypothesis tree. That
is, the tree usually indicates that there is a large number of DA
hypotheses at the most recent times, but only one hypothesis
at earlier times. Degeneracy is not necessarily an issue for the
filtering performance as that mainly depends on the description
of the most recent DA hypotheses. However, during BS we
also make extensive use of the history of DA hypotheses,
which is often poorly described by a degenerate hypothesis
tree. There is always a risk that a correct hypothesis is pruned
at least at some time instances. BS on this degenerate tree is
not going to help in improving the accuracy of the DA. At
times when the degenerate tree contains incorrect DAs, the
mean of the smoothing posterior may be far from the correct
value. Even worse, since the smoother is unaware of the DA
uncertainties, it will still report a small posterior covariance
matrix indicating that there are little uncertainties in the state.

The degeneracy of the hypothesis tree in GM forward
filtering is closely related to the well known degeneracy of
the number of surviving particles in a particle filter. There has
been a lot of work done in the existing literature regarding
degeneracy in particle filter smoothing ([3, 5, 7]). Most of
these discuss the degeneracy issue extensively. However, the
ideas proposed in the particle smoothing literature have not yet
led to any improvements in the treatment of the degeneracy
in the GM smoothing context.

In this paper, we propose merging during FF as a way
to avoid the occurrence of degenerate trees. We consider the
problem of tracking a single target in a clutter background, in



which case the posterior densities are GMs. We present a strat-
egy for FF and BS on GMs that involves merging and pruning
approximations which we refer to as FBS-GMM (stands for
forward-backward smoothing with Gaussian mixture merging).
Once merging is introduced, we get a hypothesis graph instead
of a hypothesis tree. Using the graphical structure, we discuss
in detail how BS can be performed on the GMs that are
obtained as a result of merging (and pruning) during FF.

The FBS-GMM is compared to an FBS algorithm that
uses N−scan pruning during FF. The performance measures
compared are root mean squared error (RMSE), track loss,
computational complexity and normalized estimation error
squared (NEES). When it comes to track loss, NEES and com-
plexity, the merging based algorithm performs significantly
better than the pruning based one for comparable RMSE.

II. PROBLEM FORMULATION AND IDEA

We consider a single target moving in a clutter background.
The state vector xk is varying according to the process model,

xk = Fxk−1 + vk, (1)

where vk ∼ N (0, Q). The target is detected with probability
PD. The target measurement, when detected, is given by

ztk = Hxk + wk (2)

where wk ∼ N (0, R). The measurement set Zk is the
union of the target measurement (when detected) and a set of
clutter detections. The clutter measurements are assumed to
be uniformly distributed in the observation region of volume
V . The number of clutter measurements is Poisson distributed
with parameter βV , where β is the clutter density. The number
of measurements obtained at time k is denoted mk.

The objective is to find the smoothing density p(xk|Z1:K)
for k = 1, ...,K using FBS, and to compare different imple-
mentation strategies. If pruning is the only method used for
mixture reduction during FF, it is straightforward to use RTS
iterations to perform BS. However, if the FF approximations
involve merging as well, then we need to show how the RTS
iterations can be used for the merged components.

A. Idea

The shortcoming of performing BS after pruning-based FF
is that the DA uncertainties are typically completely ignored
for the early parts (often the majority) of the time sequence,
due to pruning in the FF. This can be easily illustrated using a
graphical structure, called an hypothesis tree. The hypothesis
tree captures different DA sequences across time. The nodes
in the graph correspond to the components of the filtering GM
density. Naturally, a pruned node will not have any offsprings.
Let us consider the example in Fig. 1. To the left, the figure
shows the tree during FF using N−scan pruning (with N = 2).
To the right in the figure is the resulting degenerate tree after
FF is completed. This example can be extended to generalize
that, for k � K, the tree after pruning-based FF will be
degenerate. By performing BS on the degenerate tree, the DA
uncertainties can be underestimated greatly.

Fig. 1: Example of a degenerate tree after FF with N−scan pruning
with N = 2. To the left, the figure shows the tree with the nodes that are
pruned. In the figure to the right, the pruned branches are removed. One
can see that eventually only one branch is retained from time 1 to 4.

Fig. 2: Same example as in Fig. 1. Here, instead of pruning, merging of
components is performed. One can see that the DA uncertainties are still
retained in the merged nodes.

To overcome this weakness, one can perform merging of the
nodes in the hypothesis tree instead of pruning. One can also
illustrate the merging procedure during FF using a hypothesis
graph, herein called the f-graph (not a tree in this case).
Consider the same example shown in Fig. 2, with merging
instead of pruning. To the left, one can see the graph with
merging performed at several places and to the right, the
result after FF that uses merging. It is clear that there is no
degeneracy after merging-based FF. The idea in this paper is
to develop a BS algorithm on the graph obtained after FF
with merging. The smoothing density is also a GM, where
GM reduction (GMR) can be employed. We use graphical
structures to illustrate the FF and BS and define hypotheses
corresponding to each node in the graphs to calculate the
weights of different branches.

III. BACKGROUND

In this section, we discuss the optimal FBS of GMs and how
FBS can be performed with approximations based on pruning
strategies. Towards the end of the section, FF using merging
approximations is also discussed. The graphical structures in
all of these scenarios are explained. In the next section, it
will be shown how a similar graph structure can be created to
illustrate the BS in a merging-based filter.

A. Forward-Backward Smoothing

In smoothing, we are interested in finding the smoothing
posterior, p(xk|Z1:K). This density can be written as,

p(xk|Z1:K) ∝ p(xk|Z1:k)p(Zk+1:K |xk). (3)



Fig. 3: Optimal Gaussian mixture filtering and smoothing are illustrated
in a hypothesis tree. At each time, each node represents a component
in the filtering GM at the corresponding time. The solid arrowed lines
represent the data associations across time. The dashed arrowed lines
represent the paths taken while performing backward smoothing from
each leaf node back to the nodes at time K− 1. During BS, these paths
continue until the root node.

In (3), the smoothing posterior is obtained by updating the fil-
tering posterior p(xk|Z1:k) with the likelihood p(Zk+1:K |xk).
This update step is analogous to the update step in the
Kalman filter. The filtering density p(xk|Z1:k) is obtained
using a forward filter. In the FBS formulation, the likelihood
is obtained from the filtering density recursively as

p(Zk+1:K |xk) ∝
ˆ
p(Zk+1:K |xk+1) f(xk+1|xk) dxk+1,

(4)

where
p(Zk+1:K |xk+1) ∝

p(xk+1|Z1:K)

p(xk+1|Z1:k)
. (5)

A problem with (5) is that it involves division of densities.
In the simple case, when the two densities p(xk+1|Z1:k) and
p(xk+1|Z1:K) are Gaussian, the division is straightforward.
Then, the RTS smoother [9] gives a closed-form expression
for the likelihood in (5) and the smoothing posterior in (3).
But, for GM densities, this division does not have a closed-
form solution, in general.

B. Optimal Gaussian mixture FBS

In a target-tracking problem with clutter and/or PD < 1, it
can be shown that the true filtering and smoothing posterior
densities at any time k are GMs [8]. The filtering density GM
is

p(xk|Z1:k) =

Mf
k∑

n=0

p(xk|Z1:k,Hf
k,n)Pr

{
Hf

k,n|Z1:k

}
,(6)

where Mf
k is the number of components in the GM (for

the optimal case, Mf
k =

k∏
i=1

(mi + 1)). The hypothesis Hn
k

represents a unique sequence of measurements or missed-
detection hypotheses assignments from time 1 to time k, under
which the density p(xk|Z1:k,Hf

k,n) is obtained. The missed-
detection assignment can also be viewed as a measurement
assignment and will be treated so in the rest of this paper.

The FF procedure in the optimal case is illustrated in the
hypothesis tree in Fig. 3. Each node n at time k in the

tree represents a Gaussian density p(xk|Z1;k,Hf
k,n) and a

probability Pr
{
Hf

k,n|Z1:k

}
.

As was pointed out in Section III-A, BS involves division of
densities. Since the densities involved here are GMs, we want
to avoid the division of densities as it is difficult to handle
in most situations. To overcome this difficulty, the smoothing
density p(xk|Z1:K) is represented as

p(xk|Z1:K) =

Mf
K∑

a=0

p(xk|Z1:K ,Hf
K,a)Pr

{
Hf

K,a|Z1:K

}
, (7)

where each component p(xk|Z1:K ,Hf
K,a) is obtained by per-

forming RTS using the filtering densities along every branch
of the hypothesis tree (cf. Fig. 3).

C. Forward filter based on pruning and merging approxima-
tions

In this section, we discuss the different existing suboptimal
strategies that are used in performing FF when the posterior
densities are GMs. These methods are based on merging and
pruning the branches in the hypothesis tree.

1) Pruning-based filter: In pruning, the nodes that have
low values for Pr

{
Hf

K,a|Z1:K

}
are removed. The way the

low values are identified can vary across different pruning
strategies. One advantage of pruning is that it is simple to im-
plement, even in multiple targets scenarios. A few commonly
used pruning strategies are threshold-based pruning, M -best
pruning and N -scan pruning [1].

The disadvantage of any pruning scheme is that in complex
scenarios, it can happen that we have too many components
with significant weights, but we are forced to prune some
of them to limit the number of components for complexity
reasons. For instance, if many components corresponding
to the validated measurements have approximately the same
weights, then it may not be desirable to prune some of the
components. However, the algorithm might prune the compo-
nents that correspond to the correct hypothesis, leading to track
loss. One other drawback of pruning is that the covariance
of the estimated state can be underestimated because the
covariances of the pruned components are lost. This can lead
to an inconsistent estimator, with a bad NEES performance.
Also, as was shown in Fig. 1, pruning during FF often returns
degenerate trees.

BS on trees obtained after pruning-based FF is performed
in a similar way as in the optimal case discussed in Section
III-B. However, the number of branches in this tree is lesser,
because of which the number of RTS smoothers run is also
less. The readers are referred to [10] and [1] for more details
of FBS on GM with pruning-based approximations.

2) Merging-based filter: To overcome the degeneracy prob-
lem in pruning-based FF, one can use a merging (or a
combination of merging and pruning) algorithm to reduce the
number of components in the filtering density, instead of only
pruning the components. In merging, the components which
are similar are approximated as identical and replaced with
one Gaussian component that has the same first two moments.
Merging can be represented in the hypothesis tree with several



Fig. 4: A part of an f-graph is shown to illustrate merging during forward
filtering (FF) (solid lines) and backward smoothing (BS) through merged
nodes (dashed lines). The solid lines represent the branches in the FF.
The small filled circles represent the components before merging. The
dashed lines illustrate that each incident component on the merged node
i while smoothing can split into many components. The hypothesis and
the parameters in the box are discussed in Section IV-A1.

components being incident on the same node as shown in Fig.
4. Therefore, the structure of the hypothesis tree changes from
a tree to a generic graph, which we refer as the f-graph.

There are several merging strategies discussed in [12], [11]
and [2], which are used for GMR. Two main criteria for choos-
ing the appropriate GMR algorithm are the computational
complexity involved and the accuracy. Merging strategies will
be discussed briefly in Section VI-B.

As a tradeoff between complexity and track loss perfor-
mance, it is more feasible to use pruning along with merging,
since pruning can be performed quickly. Pruning ensures that
the components with negligible weights are removed, without
being aggressive. Merging reduces the number of components
further. This combination of pruning and merging ensures that
the computations are under control without compromising too
much on the performance.

IV. BACKWARD SMOOTHING THROUGH MERGED NODES

In the previous section, it was discussed how optimal
GM filtering and smoothing can be performed. It was also
discussed how approximations such as merging and pruning
are employed during FF. We also observed that FBS is
simple to apply when the FF algorithm uses pruning but not
merging. In this section, we discuss in detail how BS can be
performed after an FF step that involves pruning and merging
approximations.

The idea behind BS on a hypothesis graph with merged
nodes can be understood by first analyzing how BS works on
a hypothesis tree obtained after pruning-based forward filter.
As mentioned in Section III-B, in the pruning-based FF, each
component in the filtering density p(xk|Z1:k) corresponds to
a hypothesis Hf

k,n, which is a unique DA sequence from time
1 to time k. BS is then performed to obtain the smoothing
density as described in (7). Each component in (7) is obtained
by using an RTS smoother, which combines a component
p(xk+1|Z1:K ,Hf

K,a) in the smoothing density at time k + 1

and a component p(xk|Z1:k,Hf
k,n) in the filtering density at k,

such that p(xk|Z1:k,Hf
k,n) = p(xk|Z1:k,Hf

K,a), and returns a
component p(xk|Z1:K ,Hf

K,a) in the smoothing density at k.
In other words, the RTS algorithm combines the smoothing
density component with hypothesis Hf

K,a and the filtering

density component with hypothesis Hf
k,n if the DA sub-

sequence in Hf
K,a from time 1 to time k is identical to the

DA sequence in Hf
k,n. It should be noted that due to pruning

during FF, the number of filtering hypotheses Hf
K,a at time K

is manageable. Therefore, the number of components in the
smoothing density p(xk|Z1:K) in (7) is also manageable and
approximations are not normally needed during BS.

The key difference between the FBS that makes use of
merging and the pruning-based FBS is in what the hypotheses
Hf

k,n for k = 1, . . . ,K, represent. In the former, as a result of
merging during the FF, the hypotheses Hf

K,a are sets of DA
sequences, whereas in the latter, Hf

K,a corresponds to one DA
sequence. As each DA sequence in the set Hf

K,a corresponds
to a Gaussian component, the term p(xk|Z1:K ,Hf

K,a) in (7)
represents a GM in the merging-based setting. It is therefore
not obvious how to use the RTS algorithm for the merged
hypotheses Hf

K,a. The idea in this paper is that the DA
sequences in each hypothesis Hf

K,a can be partitioned to form
hypotheses Hs

k,l such that p(xk|Z1:K ,Hs
k,l) is a Gaussian den-

sity. During BS, each of these hypotheses Hs
k,l can be related

to a hypothesisHf
k,n from the FF, during the BS, enabling us to

employ RTS recursions on these new hypothesesHs
k,l. Clearly,

this strategy results in an increase in the number of hypotheses,
leading to an increase in the number of components in the
smoothing density. Therefore, there is typically a need for
GMR during the BS. To represent these hypotheses Hs

k,l and
the GMR of the components in the smoothing density, we use
a hypothesis graph called the s-graph.

Using the new hypotheses Hs
k,l, the smoothing density is

p(xk|Z1:K) =

Ms
k∑

l=0

p(xk|Z1:K ,Hs
k,l) Pr

{
Hs

k,l|Z1:K

}
, (8)

where p(xk|Z1:K ,Hs
k,l) is a Gaussian density

N
(
xk;µ

s
k,l, P

s
k,l

)
, with weight ws

k,l = Pr
{
Hs

k,l|Z1:K

}
.

Starting with Hs
K,a = Hf

K,a at k = K, the hypotheses
Hs

k,l (partitioned from Hf
K,a) can be obtained recursively by

defining the hypotheses Hs
k+1,p at time k + 1 and Hf

k,n, as
will be shown in Section IV-B. In the following sections, we
introduce the two graphs, the relations between them and
how these relations are used to obtain the weights of the
components during BS.

A. Notation

In this subsection, we list the parameters corresponding
to each node in the f-graph and s-graph. There is a one-to-
one mapping between nodes in the graphs and components
in the corresponding GM densities (after GMR). The symbols⋃

and
⋂

used in the hypothesis expressions represent union
and intersection of the sets of DA sequences in the involved
hypotheses, respectively.

1) f-graph: For each node n = 1, . . . ,Mf
k in the f-graph

(after pruning and merging of the filtering GM) at time k, the
following parameters are defined (cf. Fig. 4):



• Hf
k,n, the hypothesis that corresponds to node n (after

merging). If H
′f
k,(i,j) represent the set of disjoint hypothe-

ses formed by associating hypothesis Hf
k−1,i of node i

at time k− 1 to measurement zk,j at time k, and if they
correspond to the Gaussian components that have been
merged to form the component at node n, then

Hf
k,n =

⋃
i,j

H
′f
k,(i,j). (9)

Note that hypothesesH
′f
k,(i,j) do not represent any node

in the f-graph. However, they can be associated to the
branches incident on node n before merging (cf. Fig. 4).
The prime in the notation of H

′f
k,(i,j) is to indicate that

it is the hypothesis before merging. Similar notation will
be used in the s-graph as well.

• µf
k,n and P f

k,n are the mean and the covariance of the
Gaussian density p(xk|Z1;k,Hf

k,n) (after merging).
• Ifk,n is a vector that contains indices i of the hypotheses
Hf

k−1,i at node i at time k − 1. An interpretation of this
is that for each i in Ifk,n, there is a branch between node
i at time k − 1 and node n at time k.

• wf
k,n is a vector that contains the probabilities

Pr
{
H

′f
k,(i,j)|Z1:k

}
of the DA hypotheses H

′f
k,(i,j) be-

fore merging. Using (9), it can be shown that
Pr
{
Hf

k,n|Z1:k

}
=
∑
i,j

Pr
{
H

′f
k,(i,j)|Z1:k

}
.

It should be noted that the parameters Ifk,n, ∀n, k, capture all
the information regarding the nodes and their connections in
the f-graph. Therefore, for implementation purposes, it suffices
to store the parameter Ifk,n along with GM parameters µf

k,n,
P f
k,n and wf

k,n, instead of storing the exponential number of
DA sequences, corresponding to Hf

k,n.
2) s-graph: At time k, the s-graph parameters correspond-

ing to the lth component of the smoothing density in (8) are:
• Hs

k,l, µ
s
k,l and P s

k,l are the hypothesis, mean and covari-
ance of the lth Gaussian component (after merging).

• ws
k,l is the probability Pr

{
Hs

k,l|Z1:K

}
.

• Isk,l is a scalar that contains the index of the node (or
component) in the f-graph at time k that is associated
to the node l in the s-graph. This parameter defines the
relation between the two graphs.

At time K, these parameters are readily obtained from the f-
graph parameters: Hs

K,l = H
f
K,l, µ

s
K,l = µf

K,l, P
s
K,l = P f

K,l,
ws

K,l =
∑
r
wf

K,l(r) and IsK,l = l. Starting from time K, the

parameters in the list can be recursively obtained at each time
k as discussed in Section IV-B. In the discussion in Section
IV-B, the hypotheses Hs

k,l are used to explain the weight
calculations. But, for implementation purposes, it suffices to
update and store the parameters µs

k,l, P
s
k,l, w

s
k,l and Isk,l.

B. Smoothing on merged nodes

The goal is to recursively find the smoothing density from
time K to time 1. We assume that the smoothing density is
available at time k + 1, or equivalently that the nodes and

Fig. 5: Illustration of BS on a merged graph: A node p in the s-graph is
shown along with the corresponding node n in the f-graph. The relations
between the different parameters are as indicated. The filled black circles
in the f-graph and s-graph represent the components before merging.

the branches in the s-graph are updated until k + 1. The
components of the smoothing density p(xk|Z1:K) at time k
are obtained by applying the RTS iterations to every possible
pair, say (p, n), of the pth component of p(xk+1|Z1:K) and the
nth component of p(xk|Z1:k). Whether a pair (p, n) depends
on if the hypothesis Hf

k,n is in the history of the hypothesis
Hs

k+1,p or not. This information can be inferred from the
relation between the f-graph and the s-graph.

The possibility of forming a pair (p, n) from node p in the
s-graph at time k+1 and node n in the f-graph at time k can
be analysed using the parameters listed in Section IV-A (cf.
Fig. 5). It always holds that node p in the s-graph, at time
k + 1, corresponds to one specific node m in the f-graph at
time k + 1, where m = Isk+1,p. A pair (p, n) can be formed
whenever node m at time k + 1 and node n at time k are
connected in the f-graph. That is, if the vector Ifk+1,m contains
the parent node index n, then the pair (p, n) can be formed.
See Fig. 5 for an illustration. In fact, for every element n in
the vector Ifk+1,m, the pair (p, n) is possible.

If the pair (p, n) is ‘possible’, we form a node in the s-graph
at time k, corresponding to that pair which is connected to
node p at time k+1. The new node in the s-graph corresponds
to a component in (8), for which we now wish to compute the
mean, covariance and weight using an RTS iteration and the
hypothesi relations. The hypotheses involved in obtaining the
component are Hs

k+1,p, Hf
k+1,m and Hf

k,n, where m = Isk+1,p

as discussed before and node n is, say, the rth element in
the vector Ifk+1,m, denoted n = Ifk+1,m(r) (cf. Fig. 5). Using
these hypotheses, the hypothesis corresponding to the resulting
component is denoted H′sk,(p,n) and is written as

H′sk,(p,n) = H
s
k+1,p

⋂
Hf

k,n. (10)

It can be shown that (See Appendix A for details.)

Pr
{
H′sk,(p,n)|Z1:K

}
∝ Pr

{
Hs

k+1,p|Z1:K

}
×Pr

{
Hf

k+1,m

⋂
Hf

k,n|Z1:k+1

}
= ws

k+1,pw
f
k+1,m(r). (11)

After applying the RTS iterations to every possible pair
(p, n), it can happen that we have many components in the
smoothing density at k. Starting with the node p at time
k + 1, we form a pair for every element n in the vector



Ifk+1,n, resulting in a component for each pair. Therefore, the
number of components in the smoothing density at time k
can possibly increase, depending on how many components
have been merged to form the node m at time k. Thus, to
reduce the complexity, we use pruning and merging strategies
during the BS step. For simplicity, merging is only allowed
among the components which have the same Hf

k,n, i.e, only
the components that correspond to the same node n in the
f-graph will be merged. After merging and pruning of the
hypothesisH′s

k,(p,n) for different (p, n), the retained hypothesis
are relabeled as Hs

k,l, and the corresponding components form
the nodes l in the s-graph at time k.

V. ALGORITHM DESCRIPTION

The algorithmic descriptions of the FF and the BS of the
proposed FBS-GMM algorithm are presented in this section.
We assume that we know the prior p(x0) at time 0 and also
that we have the parameters for gating, pruning and merging.
Given a set of measurements Z1:K , we first perform FF (cf.
Algorithm 1) from time k = 1 to k = K. We form the f-graph
and at each node n, at each time k, store the parameters µf

k,n,
P f
k,n, wf

k,n and Ifk,n described in the list in Section IV-A1.
After the FF until time K, we start smoothing backwards (cf.
Algorithm 2). We form the s-graph. For each time k, we get a
GM, with components corresponds to a node l in the s-graph.
For each of the Gaussian components, we store the parameters
µs
k,l, P

s
k,l, w

s
k,l and Isk,l in the list in Section IV-A2.

VI. IMPLEMENTATION AND SIMULATION RESULTS

A. Simulation scenario

As mentioned in the problem formulation, we consider the
problem of tracking a single target moving in a cluttered
environment. The model used for simulation is a constant-
velocity model with positions and velocities along x and y
dimensions in the state vector. The target is assumed to be
a slowly accelerating target with acceleration noise standard
deviation of 0.07 m/s2. The trajectory was generated for
K = 40 time steps with a sampling time of 1 s. The whole
volume of the track was used for generating clutter data.

The values for the measurement noise R, the probability of
detection PD and the clutter intensity β, were varied for the
simulations. The measurement noise R was set to 50 × I or
150× I . PD was either 0.7 or 1. The values used for β were
0.0001 and 0.0002. Thus, there are 8 sets of parameters for
which the simulation results are compared.

The proposed FBS-GMM algorithm was compared with
FBS based on an N−scan pruning algorithm. The FF was
performed using N−scan pruning and RTS smoother was used
on each branch in the filtering hypothesis tree.

B. Implementation details

The parameter N of the N−scan algorithm for the various
settings was chosen to be the largest possible N such that
the complexity (run-time) for a single run was within the
threshold of 2 s. To reduce the complexity, extra gating was
performed before the ellipsoidal gating mentioned in step 2 of

Algorithm 1 Forward filtering
Input: Prior: µ0|0, P0|0.

Likelihoods: H , zk,j , R and

βk,j =

{
β(1− PDPG) j = 0

PD j 6= 0
, for j = 0, . . .mk, k =

1, . . .K.
Iterate for k = 1, . . . ,K

1) Prediction: For each node i at time k − 1, per-
form prediction to compute µk|k−1,i and Pk|k−1,i from
µk−1|k−1,i and Pk−1|k−1,i.

2) Gating: Initialize G = {}. For each pair of node i at
k− 1 and measurement zk,j ∈ Zk, check if wLL,(i,j) =
N
(
zk,j ; Hµk|k−1,i, HPk|k−1,iH

T +R
)
> PG and

add G = G
⋃
{(i, j)} for the pairs that pass the thresh-

old.
3) Pruning: Initialize P = {}. For each pair

(i, j) ∈ G, calculate the posterior weight wk,(i,j) =

wf
k−1,iβk,jwLL(i, j) and re normalize. Check if

wk,(i,j) > P f
P and add all pairs (i, j) that pass the

threshold to P , i.e., set P = P
⋃
{(i, j)}.

4) Update: For each (i, j) ∈ P , update the predicted
density with the measurement innovation to get µk,(i,j),
Pk,(i,j) and wk,(i,j).

5) Merging: The GM from step 4 is passed to a merging
module. This module returns a reduced GM with com-
ponents µf

k,n and P f
k,n, each corresponding to a node

n in the f-graph. Along with performing merging of
components, the merging module also returns the vectors
Ifk,n and wf

k,n that contains the indexes i and the weights
wk,(i,j), respectively, of the components that are merged
to form node n.

Algorithm 1. This extra gate is rectangular, with dimensions
based on the measurement noise covariance and the center at
the prediction density mean. Besides the model parameters, the
gating probability PG and the pruning threshold P f

P mentioned
in step 2 and 3 of Algorithm 1 are (1 − 10−5) and 10−4

respectively. The threshold P s
P in step 3 of Algorithm 2 is

10−3.

The merging algorithm used in step 5 during FF in Al-
gorithm 1 is a variant of Salmond’s algorithm [12] aimed at
reducing the complexity compared to the original algorithm.
The original Salmond’s algorithm looks for the minimum
merging cost across every pair of components in the GM.
Thus, it has a quadratic complexity in the number of compo-
nents. But to reduce the complexity of the merging algorithm,
in this paper, instead of looking for the minimum cost, we
use a heuristic algorithm. Starting with the components that
have the least weights, we compute the cost of merging pairs
of components and if the cost is lower than a threshold
(0.001 × state dimension), then the components are merged
and replaced in the GM. The procedure is continued with this
new GM until there are no pairs of components that have a
merging cost lower than the threshold.

The merging algorithm used in step 5 during BS (Algorithm
2) is a combination of the alternative Salmond’s algorithm and



Algorithm 2 Backward smoothing of FBS-GMM

Input: Filtering GM parameters: µf
k,n, P f

k,n, wf
k,n, Ifk,n, for

n = 1, . . . ,Mf
k .

Initialize: Set Ms
K, =Mf

K , µs
K,l = µf

K,l, P
s
K,l = P f

K,l, I
s
K,l =

l and ws
K,l =

∑
r
wf

K,l(r) (summation is over the entire vector

wf
K,l).

Iterate for k = K − 1, . . . , 1

1) RTS: For each node p at time k+1 in the s-graph, form
pairs, (p, n), as described in Section IV-B. Calculate
the smoothing density mean µk|K,(p,n) and covariance
Pk|K,(p,n) using RTS on µf

k,n, P f
k,n and µs

k+1,p, P s
k+1,p

(Note, the parameters µs
k+1,p and P s

k+1,p are the same
for different n’s).

2) Weight calculation: For each pair (p, n), the weight
wk|K,(p,n) is calculated as in (16). After this, we have a
bunch of triplets

{
µk|K,(p,n), Pk|K,(p,n), wk|K,(p,n)

}
that

form a GM.
3) Pruning: Pruning can be performed on the GM based on

wk|K,(p,n) > P s
P after which the GM is re-normalized.

4) Grouping: The components in the pruned GM are sorted
into groups Gn such that all the components in the group
have a common parent n at time k− 1. The grouping is
performed across all p’s.

5) Merging: Merging can be performed within each
group Gn. The output of this merging module is{
µs
k,l, P

s
k,l, w

s
k,l

}
along with the parameter Isk,l = n.

Runnalls’ algorithm [11]. The additional Runnalls’ algorithm
is necessary to ensure that the number of components in the
GM during BS is within a threshold (50 components).

The performance measures used for comparison are the
RMSE, NEES, complexity and track loss. A track was con-
sidered lost if the true state was more than three standard
deviations (obtained from the estimated covariance) away from
the estimated state for five consecutive time steps. The track
loss was calculated only on the BS results. The complexity
results presented is the average time taken during MATLAB
simulations on an Intel i5 at 2.5GHz to run each algorithm
on the entire trajectory of 40 time steps. The graphs were
obtained by averaging over 1000 Monte Carlo iterations.

C. Results

The results of the simulations are presented in Fig. 6 to
9. It can be seen that the FBS-GMM performs significantly
better than the FBS with N−scan pruning for most of the
scenarios. From the Fig. 6 for track loss performance, one
can notice that the performance gain is higher for FBS-GMM
compared to FBS with N−scan pruning when PD is low and
the measurement noise R and the clutter intensity β are high
(point 6 on the x-axis in Fig. 6). The reason for this is that
in these scenarios, the number of components in the filtering
GMs before approximations is quite large. To limit the number
of components, the pruning during FBS with N−scan pruning
can be quite aggressive resulting in the degeneracy problem.

Fig. 6: Track Loss. Every odd point on x-axis (1,3,5,7) is for low clutter
intensity β = 0.0001 and every even point (2,4,6,8) is for high β =
0.0002. The order of the eight scenarios is the same for the others plots
in Fig. 7, Fig. 8 and Fig. 9.

Fig. 7: NEES performance: Compared to the N−scan based FBS, the
values of the NEES for the FBS-GMM are very close to the optimal
value of 4 in all the scenarios.

The impact of this degeneracy problem can also be observed
in the NEES performance plot in Fig. 7 (point 6 on the x-axis).
In the degeneracy case, the uncertainties are underestimated,
i.e., the estimated covariances are smaller compared to the
optimal, resulting in a larger value for the NEES compared
to the expected value of 4. In addition to the better track loss
and NEES performances, FBS-GMM offers a computationally
cheaper solution compared to the FBS based on N−scan
pruning as can be observed in Fig. 8. However, the RMSE
performance of the two algorithms are very similar in most
scenarios, as seen in Fig. 9.

VII. CONCLUSION

In this paper, we presented an algorithm for forward-
backward smoothing on single-target Gaussian mixtures
(GMs) based on a merging algorithm. The weight calculation
of the components in the GM during filtering and smoothing
were explained by defining hypotheses. Evaluations of root-
mean squared error and track loss were performed on a

Fig. 8: Computational complexity: The FBS-GMM algorithm is compu-
tationally cheaper compared to the FBS with N−scan.



Fig. 9: RMSE performance: The results are very similar for the both the
FBS algorithms.

simulated scenario. The results showed improved performance
of the proposed algorithm compared to forward-backward
smoothing on an N−scan pruned hypothesis tree, for low
complexity and high credibility (normalized estimation error
squared).
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APPENDIX A
WEIGHT CALCULATION

The weight calculation in (11) can be obtained using the
hypotheses definitions. Consider the hypothesis expression
in (10), and the illustration in Fig. 5. We are interested in
calculating the probability of the hypothesis

Pr
{
H

′s
k,(p,n)|Z1:K

}
= Pr

{
Hs

k+1,p

⋂
Hf

k,n|Z1:K

}
∝ Pr

{
Hs

k+1,p|Z1:K

}
Pr
{
Hf

k,n|H
s
k+1,p, Z1:k+1

}
×p(Zk+2:K |Hs

k+1,p,H
f
k,n, Z1:k+1). (12)

In the above equation, the factor Pr
{
Hs

k+1,p|Z1:K

}
is the

weight ws
k+1,p, which is available from the last iteration of BS

at time k + 1. With respect to the third factor, the following
set of equations show that it is actually independent of n:

p(Zk+2:K |Hs
k+1,p,H

f
k,n, Z1:k+1)

= p(Zk+2:K |Hs
k+1,p,H

f
k+1,m,H

f
k,n, Z1:k+1) (13)

=

ˆ
p(xk+1|Hs

k+1,p,H
f
k+1,m,H

f
k,n, Z1:k+1)

×p(Zk+2:K |Hs
k+1,p,H

f
k+1,m,H

f
k,n, Z1:k+1, xk+1) dxk+1

=

ˆ
p(xk+1|Hf

k+1,m, Z1:k+1)p(Zk+2:K |Hs
k+1,p, xk+1) dxk+1.

(14)

In (13), adding the hypothesis Hf
k+1,m to the conditional

statement does not make a difference as the hypothesis Hs
k+1,p

corresponding to the entire sequence of measurements masks
it; but it does make the latter equations simpler to handle. The
second factor in (12) is given by

Pr
{
Hf

k,n|H
s
k+1,p, Z1:k+1

}
= Pr

{
Hf

k,n|H
f
k+1,m, Z1:k+1

}
∝

Pr
{
Hf

k,n,H
f
k+1,m|Z1:k+1

}
Pr
{
Hf

k+1,m|Z1:k+1

} . (15)

The numerator term in (15) is the same as the probability
wf

k+1,m(r) of the rth branch before merging to form node m.
Consolidating (14) and (15) into (12), we get that

Pr
{
H

′s
k,(p,n)|Z1:K

}
∝ ws

k+1,p × w
f
k+1,m(r). (16)


