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Abstract

In this thesis, the dc network dynamics of VSC-HVDC systems is investigated through
eigenvalue and frequency domain analysis. The eigenvalue analysis has been used to iden-
tify the factors that have an impact on the system stability. It has been determined that
instability in the form of sustained oscillations can take place, and that the operating point,
the dc side electrical characteristics, the strength of the ac system and the controller struc-
ture, are the major factors that impact the stability of the system.

A frequency domain approach is proposed in this thesis in order to explain the instability
that occurs in the system. A two-terminal VSC-HVDC system is modelled as a Single-
Input-Single-Output feedback system, and the VSC-system and the dc grid transfer func-
tions are defined and derived. The VSC-system transfer function has been interpreted as
an admittance, whose conductance is positive or negative, depending on the direction of
the power. The main characteristic of the dc grid transfer function is the resonance peak,
which appear as a result of the RLC characteristic of the dc transmission line. When the re-
sonance phenomenon takes place at a frequency in which the VSC conductance is negative,
there is a risk that the resonance becomes amplified. Whether or not the system becomes
unstable depends on the magnitude of the dc grid resonance peak and the magnitude of
the VSC conductance. Then, the proposed procedure can provide criteria for the design of
controllers which guarantee that dc side resonances do not become amplified.

Finally, simulations in a four-terminal HVDC system show that instability takes places
according to the conditions stated in the previous analysis. The dynamic performance of
the voltage-droop and the voltage-margin control strategies have been compared as well and
it has been found that the former performs better than the latter. The impact of other control
loops is also studied through simulations, and it is shown that reactive power injection and
the control of the alternating-voltage increases the stability limit. Furthermore, it has been
shown that abrupt changes on the control modes trigger other types of phenomena which
need to be studied from the large signal point of view.

Index Terms: HVDC, VSC, Eigenvalue Analysis, Frequency Domain Analysis, DC Side
Dynamics, DC Grid Resonance, VSC Admittance, DC Grid Impendance.
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Chapter 1

Introduction

1.1 Background and motivation

In recent years, Voltage Source Converter based HVDC (VSC-HVDC) systems have been
proposed as an attractive solution for the integration of renewable energy sources located
far away from the consumption centres [1, 2] and for the integration of electricity mar-
kets located over large geographical areas [3, 4]. Since the first installation put in ope-
ration in 1997 [5] to interconnect the North and the South regions of Gotland, the VSC
technology has improved tremendously in terms of power ratings, losses, and harmonic
performance [16]. An example of that are the multilevel VSC topologies developed by
the main manufacturers [10–12], which have decreased the losses to a level comparable
to thyristor-based HVDC systems (around 1% [10]). Moreover, compared to the thyristor-
based converters, VSCs have very convenient controllability features, such as the indepen-
dent control of active and reactive power. It is recognized also that VSC-HVDC systems
are convenient for the interconnection of weak grids [15, 16]. In addition, in the dc side,
VSCs are so versatile that various strategies can be devised for the control of voltage-power
in the dc side [31–33,57]. Those features make VSC convenient for more complex HVDC
structures, such as the multi-terminal HVDC (MTDC) systems proposed in [2–4, 6, 7].

From the dynamic performance perspective, VSC-HVDC systems have been traditionally
viewed as means to enhance the dynamic performance of the existing ac system. For exam-
ple, several works has been devoted to the use of VSC-HVDC systems for power oscillation
damping, and for ac voltage support [43]. Another concern has been the undesired inter-
actions between VSCs and the ac systems to which they are connected [44, 45]. However,
few studies regarding the dynamic interaction between VSCs and the dc network can be
found in the literature [47–49]. On the other hand, a large number of works can be found
regarding the analysis of the dc network dynamics in low power multi-converter systems
(dc microgrids) [36, 39, 41, 42]. For example, the impact of the load characteristics on the
stability of the system is studied in [38,39,42]. For this kind of investigations, a frequency
domain approach is proposed in [40, 41] from which design criteria are provided. In high
power applications, the interest in the dc network dynamics has arisen with the interest
in MTDC system. In [49], a thorough analysis on the control and protection of MTDC
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Chapter 1. Introduction

systems has been carried out. In this work, instability in the dc side of the system was iden-
tified also in a point-to-point HVDC system. Other works, such as [50–52], deal with the
study of the stability of MTDC systems from a broad perspective. In these works, MTDC
systems are modelled and the impact of the controller parameters on the stability of the
system is determined through eigenvalue analysis. The risk of dc-side resonances is recog-
nized in [7], where it is mentioned that the mitigation of low frequency dc-side resonances
might become a complicated task in complex HVDC structures such as MTDC systems.

The interest in the dc-side dynamics in VSC-HVDC systems has risen when more complex
dc network structures have come into the scene. Typically, the investigation of the dynamic
characteristics of VSC-HVDCs system has been carried out through eigenvalue analysis
and, to some extent, frequency domain analysis. However, they do not strictly focus on
the possible stability problems originated from the dc side of the system. The reviewed
research work indicates that undesired dynamic problems, which originate in the dc net-
work, can take place in any kind of dc system, especially, when considering more complex
HVDC structures, such as MTDC systems. For that reason, a conscientious study on the
dynamic characteristics of the dc-side of VSC-HVDC systems is needed.

1.2 Purpose of the thesis and main contributions

The purpose of this thesis is to explain of the different factors that impact the dc-side
dynamic performance of VSC-HVDC systems. In order to accomplish this goal, eigenvalue
and frequency domain analysis are used in this thesis. To the best author’s knowledge, the
following are the main contribution of this work:

1. From the dc-side stability point of view, the main factors that limit the power trans-
fer in a point-to-point VSC-HVDC system has been established through eigenvalue
analysis. Along with this, a general procedure to obtain the state space model of a
general HVDC configuration, VSC-based, has been provided.

2. An approach based on the frequency response of the subsystems (defined in this
thesis) that form the VSC-HVDC system, is proposed to explain the origin of the
dc-side instability found with eigenvalue analysis.

1.3 Structure of the thesis

Chapter 1 provides the introduction to the topic, where the background, the motivation,
the purpose, and contributions of the thesis are presented. In Chapter 2, the VSC-HVDC
technology, the VSC control structure, and the challenges for future VSC-HVDC systems
are presented in order to provide the reader with a basic background on the topic. Chapter
3 begins with a review on the main dynamic issues investigated in low power dc grids,
since their characteristics are similar to high power dc systems. The chapter continues
with a review on the dynamic problems found in VSC-HVDC systems. In Chapter 4,
the analysis of the dc-side dynamics is performed in a two-terminal VSC-HVDC system.

2



1.4. List of publications

A general procedure to develop a state space model of an HVDC system is presented,
which is valid for more complex HVDC structures. Eigenvalue analysis is used to find
the conditions in which instability takes place in the system. In Chapter 5, the instability
cases are explained through the analysis of the frequency response of the main elements
which compose the two-terminal VSC-HVDC system. The VSC admittance and the dc
grid impedance are defined and derived in this chapter. In Chapter 6, simulations which
verify the results obtained in the previous chapters are presented. Finally, the thesis ends
with the conclusions and ideas planned for future work, presented in Chapter 7.

1.4 List of publications

The articles originated from this research work are the following

I. G. Pinares, T. A. Le, L. Bertling-Tjernberg, C. Breitholtz, A. Edris, "On the analysis of
the dc dynamics of multi-terminal VSC-HVDC systems using small signal modeling,"
IEEE Power Tech conference, Grenoble, France, 16-20, June, 2013.

II. G. Pinares, T. A. Le, L. Bertling-Tjernberg, C. Breitholtz, "Analysis of the dc Dy-
namics of VSC-HVDC Systems Using a Frequency Domain Approach," presented at
IEEE Asia Pacific Power Energy Engineering Conference, Hong Kong, China, 8-11,
December, 2013.

III. G. Pinares, “Analysis of the dc Dynamics of VSC-HVDC Systems Connected to Weak
AC Grids Using a Frequency Domain Approach,” submitted to the Power Systems
Computation Conference PSCC, Wroclaw, Poland, 18-22, August, 2014.

The author has also contributed with the following papers not included in this thesis:

1. G. Pinares, M. Bollen, "Understanding the Operation of HVDC Grids," presented at
Cigre International Symposium The Electric Power System of the Future, Integrating
supergrids and microgrids, Bologna, Italy, 13-15, September, 2011.

2. G. Pinares, N. Ullah, P. Brunnegard, M. Lindgren, "Fault Analysis of a Multilevel-
Voltage-Source-Converter-based Multi-terminal HVDC system," presented at Cigre
HVDC Colloquium, San Francisco, March 7, 2012.
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Chapter 2

VSC-HVDC systems

The intention of this chapter is to provide the reader with a basic background on the VSC-
HVDC technology. This chapter starts with a brief introduction to VSC-HVDC systems.
Following to that, a brief description of the most important elements which compose a VSC
station is presented. Then, an introduction to the operating principle of the VSC-HVDC is
presented. Afterwards, the control system is described in detail, since it plays an important
role in the dynamic behaviour of the VSC-HVDC system. Finally, new challenges for the
VSC-HVDC systems are summarized.

2.1 Introduction to VSC-HVDC system

The typical configuration of a two-terminal VSC-HVDC system is displayed in Figure 2.1,
where two VSCs are interconnected through a dc transmission line (cable or overhead trans-
mission line). Usually, the control of the transmitted power flow over the dc-transmission
line is achieved by setting one VSC to regulate the direct-voltage of the dc-node to which it
is connected, and setting the other VSC to regulate the power. As will be explained later in

Figure 2.1: Two-terminal VSC-HVDC system.

Section 2.3, the control of the direct-voltage is essential for the operation of the VSC, since
VSCs are able to generate a three-phase alternating-voltage with a desired phase, magni-
tude and frequency as long as there is a sufficiently stiff direct-voltage source in the dc side

5
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of the converter. The VSC’s ability of generating a desired alternating-voltage makes the
independent control of the active and reactive power possible, which is one of the greatest
advantages of this converter technology over the thyristor-based converters. Moreover,
since the valves which compose the VSC allow bidirectional flow of current, the power can
be reversed without the need of inverting the polarity of the direct-voltage, as opposite to
the classical HVDC system. VSCs are suitable also for multi-terminal configurations, i.e.
HVDC systems in which more than two VSCs are interconnected through a dc grid.

Since the VSCs are essential devices of a VSC-HVDC system, the VSC station’s main
components, operating principles and control system are described in the next sections.

2.2 Main components of a grid-connected VSC station

Figure 2.2 shows the typical configuration of a grid-connected two-level VSC station. Ty-
pically, a VSC station is composed of capacitors in the dc side, and phase reactors, filters
and transformers in the ac side. These components are briefly described next.

Figure 2.2: Configuration of a VSC station

2.2.1 DC side capacitor

The dc side capacitor is one of the key components of the VSC since it is this element which
provides a stable direct-voltage from which the alternating-voltage can be generated. The
capacitor also reduces the ripple introduced by the harmonics injected by the VSC into the
dc side [15]. The capacitor rating is usually designed considering the amount of energy
that the capacitor can store. The capacitor time constant is often used as a measure of the
amount of capacitor energy. Taking Figure 2.2 as a reference, the capacitor time constant
is defined as

τ =
Ce2

1rated

2P1rated

(2.1)

6
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where C is the pole-to-neutral capacitance, e1rated is the pole-to-neutral rated voltage, and
P1rated is the per-pole rated power of the VSC. Physically, the capacitor time constant
represents the time that it takes to fully discharge the capacitor when a constant power,
P1rated, is drawn from it. A τ of 2ms is recommended in [15], while in [10], it is claimed
that the total energy stored per rated power is typically 30-40kJ/MVA, which leads to a
capacitor time constant of 30-40ms. In this thesis, 5ms is assumed. For example, from
the values that will be indicated in Table 3.1 (e1rated = 300 kV and P1rated = 300 MW
per-pole), the size of the capacitor is calculated as

C =
2(0.005)300

3002
(2.2)

which gives a capacitance of 33.33µF.

2.2.2 Phase reactor

The phase reactor facilitates the control of the active and reactive power exchange between
the converter and the ac system. The voltage drop over the reactor induces a current whose
phase and magnitude defines the power injected or absorbed by the converter. The VSC
is able to generate an alternating-voltage with a desired phase angle and magnitude and,
therefore, is able to control the current through the reactor via the voltage drop over it.

The phase reactor also filters the high frequency harmonics of the current. Another function
of the phase reactor is to limit short-circuit currents when faults occur in the dc side of the
converter [15]. According to [15], the typical short-circuit impedance of this type of phase
reactor is 0.15 pu.

2.2.3 AC side filters

As will be explained in the next section, the voltage generated by a VSC is composed of
a fundamental frequency ac component, plus harmonics. These high-order harmonics are
filtered through second or third-order high-pass filters, whose typical configurations are
shown in Figure 2.3. Depending on the topology of the VSC, the high-order harmonic
content can be decreased to a level where ac filters might be unnecessary.

Figure 2.3: Typical AC Filters [15]
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Chapter 2. VSC-HVDC systems

2.2.4 Converter transformer

The main function of the converter transformer is to facilitate the interconnection of the
VSC with an ac system of different rated voltage [15]. The transformer also isolates the
ac grid from the multiples of the third-order harmonics and its multiples generated by the
converter. Furthermore, the transformer provides galvanic isolation to the VSC station.
The transformer typically has a tap-changer whose main function is to provide voltage
regulation support to the system [15].

2.3 Operating principles

Different from line-commutated converters (classic HVDC), self-commutated converters
(VSC) are able to turn off their power electronic valves at any desired current flowing
through them. This ability makes it possible that the VSC generates a desired alternating-
voltage, provided it is connected to a sufficiently strong dc source on the dc side. As
explained in this section, this makes it possible to control the active and reactive power
independently, contrarily to the classical HVDC system. Later, the Pulse-Width Modu-
lation (PWM) method is described. PWM is one of the most popular techniques used to
generate alternating-voltage while avoiding low-order harmonics. Finally, the generation
of alternating-voltages through multilevel topologies is briefly described

2.3.1 VSC as a controllable alternating-voltage source

Figure 2.4 shows the phase a of the valve bridge from Figure 2.2. Let us assume that a
strong dc source (instead of a capacitor) is connected to the dc side of the VSC. Then,
consider the following sequence:

1. During the time ∆t1, +Swa is on, and −Swa is off. Then, uca is +e1.

2. During the time ∆t2, +Swa is off, and −Swa is on. Then, uca is −e1.

The voltage uca generated by the previous sequence is as shown in Figure 2.4. A square
wave with two voltage levels, +e1 and −e1, is obtained, which is the reason why the con-
figuration shown in Figure 2.2 is called two-level converter.

The times ∆t1 and ∆t2 can be selected as desired, in such a way that a square wave of
50 Hz is generated with any phase angle. Moreover, considering that the direct-voltage
source can change its magnitude, a square voltage with any phase angle and magnitude
can be generated by the VSC. From the Fourier theory, the square wave is composed by a
fundamental component plus harmonics, as

uca = (ûca)1sin(ω1t+ φ1) +
∞∑

h=2

(ûca)h sin(ωht+ φh) (2.3)

8



2.3. Operating principles

Figure 2.4: Phase a of the valve arrangement (adapted from [8]).

where (ûca)1 is the amplitude of the fundamental sinusoidal component, ω1 is the funda-
mental frequency, φ1 is the phase shift at the fundamental frequency, (ûca)h is the amplitude
of the h-th harmonic, ωh is the angular frequency of the h-th harmonic, and φh is the phase
shift at the h-th harmonic frequency.

Considering only the fundamental component, waiving the need of filters, and the trans-
former reactance included into the reactor impedance, the interconnection between the
VSC and the ac system can be represented by the equivalent diagram shown in Figure
2.5. For such a system, it is well known that the steady-state active and the reactive power
injected to the ac system are

Pg =
uguc

Xf

sin(δ) (2.4)

Qg = − u
2
g

Xf

+
uguc

Xf

cos(δ) (2.5)

Considering that the angle δ is very small1, then sin(δ) can be approximated to δ and cos(δ)
to 1. Equations (2.4) and (2.5) can be re-writen as

Pg =
uguc

Xf

δ (2.6)

Qg =

(
uc − ug

Xf

)
ug (2.7)

From (2.6), it can be seen that the variation of the δ produces a larger variation of Pg, while
(2.7) shows that the variation of the voltage difference, uc − ug produces a larger variation
on the reactive power Qg. For that reason, it is usually claimed that the active power is
controlled by the angle difference of the voltages, and the reactive power is controlled by
the magnitude difference of the voltages. Since the VSC can generate a voltage with any
frequency, phase, and magnitude, then, the VSC is able to control the active and reactive
power independently. Thus, VSCs can be seen as an ideal synchronous machine with no
inertia. Different from synchronous generators, the VSC can adjust the phase angle of its
generated voltage (and therefore the active power) in a very short time.

1The angle δ is assumed to be around zero for the sake of illustration. Actually, for a VSC, δ could
theoretically take any value between 0◦ and 90◦.

9



Chapter 2. VSC-HVDC systems

Figure 2.5: AC side of the VSC, with the VSC represented by an ideal alternating-voltage source

Going back to Figure 2.4, the square waveform has a fundamental component with an
amplitude equal to [9]

(ûca)1 =
4

π
e1 (2.8)

and the amplitudes of the harmonics are

(ûca)h =
(ûac)1

h
, h = 3, 5, 7, ... (2.9)

Equation (2.9) shows that the low-order harmonics are relatively high, which is one of the
disadvantages of this modulation method since filters for low order harmonics require bulky
components. A solution to this are different modulation methods such as the sinusoidal
pulse width modulation, the space vector modulation, or the harmonic elimination [9]. The
pulse-width modulation method is summarized next.

2.3.2 Pulse-width modulation method

The Sinusoidal Pulse-Width Modulation (SPWM) method can be explained with the help
of Figure 2.6. The SPWM defines the switching pattern for the VSC valves by comparing
a carrier signal and a reference signal, as shown in Figure 2.6 (upper plot). In the example
shown in the figure, the carrier signal is a 850 Hz triangular wave which varies from −1 to
+1. The reference signal is a 50 Hz sinusoidal waveform described as

urefa = masin(2πf1t+ φ) (2.10)

where ma is called the amplitude modulation index, f1 is the frequency of the reference
voltage and φ its phase angle. The signals are compared, and the following rule defines the
switching pattern:

1. If the reference is higher than the carrier, then +Swa is on and −Swa is off.

2. If the reference is lower than the carrier, then +Swa is off and −Swa is on.

The resulting voltage uca (phase-to-neutral) is also shown in Figure 2.6 (middle plot), con-
sidering a rated direct-voltage of ± 300 kV and a amplitude modulation index of 0.9 (it
is also assumed ideal commutation for the valves). The harmonic spectrum in Figure 2.6
(lower plot), shows that the fundamental harmonic has a magnitude of 270 kV (0.9×300
kV). Moreover, the figure shows that there is considerable harmonic content at the multi-
ples of the switching frequency, 850 Hz, and the side bands. It is shown in [9] that the three
voltages generated by the converter using the PWM method state above are

uca = (urefa)e1, ucb = (urefb)e1, ucc = (urefc)e1 (2.11)
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Although the harmonic content is higher than the voltage generated by the square wave
modulation, filtering high frequency harmonics requires smaller components which is con-
venient to reduce costs and footprint. However, high switching frequency increases the
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Figure 2.6: Voltage generated by a two-level converter through the SPWM. Upper: Carrier and
reference voltages. Middle: Voltage generated and fundamental component. Lower:
Harmonic spectrum of the generated phase-to-neutral voltage.

switching losses in the VSC. The nature of the switching losses is described in [9], and it
shown that they depend on the valve technology, the voltage across the valves, the current
that the valves conduct, and the switching frequency. From that, the following are means
to decrease the switching losses:

1. Decrease the switching frequency. However, that increases the low order harmonics
which requires bigger filters. On the other hand, multilevel topologies decreases
the individual switching frequency of the valves while improving the generated ac
voltage waveform.

2. Decrease the voltage across the valves. That can be achieved through other VSC
topologies such as the multilevel technology.

3. Improve the valve technology, in such a way that the switching process becomes
faster.

Multilevel topologies have been proposed as a solution to improve the generated voltage
waveform and to decrease the losses. With the multilevel technology, not only the voltage
across the valves are decreased, but also the individual valve’s switching frequency, there-
fore, the corresponding losses. A three-level Neutral-Point-Clamped (NPC) converter [8]
is shown in Figure 2.7 and the generated voltage is shown in Figure 2.8. In contrast to
the two-level converter, this type of converter allows three voltage levels, +e1, −e1 and 0.
Moreover, in the two-level topology, the voltage across the valve is actually 2e1, while in
this topology the voltage across the valves is e1. Furthermore, the harmonic content, shown
in Figure 2.8, is decreased compared to the two-level VSC.
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Chapter 2. VSC-HVDC systems

Figure 2.7: Three-level neutral-point-clamped converter
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Figure 2.8: Voltage generated by a three-level converter through the SPWM. Upper: Voltage gene-
rated and fundamental component. Lower: Harmonic spectrum of the voltage generated

A five-level NPC converter can also be constructed in the same way. Another topology
is the flying-capacitor configuration, which can be reviewed in [8]. The more the number
of levels, the less switching losses and the less the harmonic content. However, the main
disadvantage is the complexity of the circuit, which increases with the number of levels.
This is overcome by the recently developed multilevel topologies, which will be briefly
described in Section 2.5.

2.4 VSC control system

Several control methods for the control of VSC have been developed and are available in
the literature. For example, in the review carried out in [17], the resonant controller, the
vector current control, and the power synchronization control methods are mentioned. The
vector control method is widely used in grid connected VSCs [12,15] and it is the one used
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in this thesis. The typical structure of a VSC control system is illustrated in Figure 2.9.
The core of the control system is the Vector Current Controller (VCC), whose output is a
three-phase voltage reference to the PWM block, which issues firing signals to the VSC
switches. The VCC has two inputs, idref

f and iqref
f which are the current references.

Figure 2.9: VSC control system

Outer controllers are implemented in order to control other quantities, such as the active
power, reactive power, direct-voltage and alternating-voltage. The control of the direct-
voltage involves active power, since the direct-voltage value is defined by the amount of
energy stored in the converter capacitor. Then, the reference idref

f is used to control either
the active power and the direct-voltage, as shown in the figure1. Another strategy can
be to make the active power to be dependent on the direct-voltage, following a voltage-
droop characteristic. The control of the alternating-voltage is related to the amount of
reactive power support present in the system. Then, the reference iqref

f is used to control
either the reactive power or the alternating voltage. As in the dc side, the control of the
alternating voltage can be done following a voltage-droop characteristic. A third strategy is
to control the alternating-voltage to a fixed frequency waveform (working as a slack bus).
This strategy is only useful when VSCs are connected to passive ac grids which do not
count on ac sources (or they are weak).

In this section, the different blocks that integrate the control system of the VSC are de-
scribed. The derivation of the VCC, which is implemented in the dq frame, is presented.
Furthermore, the phase-locked loop, which calculates the angle needed to perform the dq
transformation, is described. Afterwards, the derivation of the direct-voltage controller is
presented. Finally, the active and reactive power controllers are described.

Since the description of the controllers involves voltages and currents in different coordi-

1It will be explained in the next section that the dq frame is aligned to the rotating voltage vector uαβg .
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nate systems, the conventions and symbols adopted in this thesis are as specified in Appen-
dix B. Moreover, in most of the cases, the electrical variables are expressed in per-unit
values, whose base definitions are also presented in Appendix B.

2.4.1 Vector current control method

The principle of the vector current control method lies in finding the right magnitude and
phase of the generated voltage, in such a way that the induced current over the phase reactor
has the desired phase and magnitude. In the vector current control method implemented in a
rotating frame1, the three-phase ac quantities are transformed to two dc quantities through
the so-called dq transformation which is detailed in Appendix A. As an illustration, in
Figure 2.10, the steady-state vector diagram of the voltage drop over the reactor and the
corresponding current is plot in two coordinate systems. In Figure 2.10(a), vectors in a
generic rotating frame, the xy frame, are shown. The xy frame it is a coordinate system
which rotates at the same speed than the vectors, but not aligned to any of them. The vector
uxyg , in the xy frame, is expressed as

uxyg = uxg + juyg. (2.12)

From the vector diagram in the xy frame shown in Figure 2.10(a), the complex power Sg is
calculated as

Sg = Pg + jQg = uxyg (ixyf )∗ (2.13)

from where, the active power and reactive power are

Pg = uxg i
x
f + uyg i

y
f (2.14)

Qg = −uxg iyf + uyg i
x
f . (2.15)

On the other hand, Figure 2.10(b) shows the mentioned steady-state vector diagram in the
dq frame where the d axis is aligned to the vector udqg . In that case, the q component of udqg

is zero. For instance, the vector udqg , in the dq frame, is

udqg = udg. (2.16)

Then, applying (2.13) in the dq frame, the active and reactive power are

Pg = udg i
d
f (2.17)

Qg = −udg iqf (2.18)

which means that the active power can be controlled with the d component of the current,
idf , and the reactive power with the q of the current, iqf .

Considering the ac side of the system shown in Figure 2.11, the following equation, ex-
pressed in the αβ frame (see Appendix B), describes the dynamics of the current through
the phase reactor.

diαβf

dt
= −Rf

Lf

iαβf +
1

Lf

uαβg −
1

Lf

uαβc (2.19)

1A controller in a stationary frame can also be developed.
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(a) (b)

Figure 2.10: Rotating reference frames. (a) generic xy coordinates not aligned to udqg . (b) dq coor-
dinates aligned to ug.

Figure 2.11: Equivalent scheme of a VSC

Note that, in Figure 2.11, the VSC is represented as a voltage source in the ac side, and as
a current source in the dc side. In the dq frame, (2.19) becomes

didqf

dt
= −Rf

Lf

idqf − jωgi
dq
f +

1

Lf

udqg −
1

Lf

udqc (2.20)

or more explicitly

didf
dt

= −Rf

Lf

idf + ωgi
q
f +

1

Lf

udg −
1

Lf

udc (2.21a)

diqf
dt

= −Rf

Lf

iqf − ωgi
d
f +

1

Lf

uqg −
1

Lf

uqc (2.21b)

where the synchronization angle θg (necessary to perform the dq transformation) and the
frequency ωg are obtained from the three-phase voltage ug by a Phase-Locked Loop (PLL).
From (2.21), it can be seen that there is a cross-coupling between the currents idf and iqf .
Moreover, it can be seen that the current idqf is affected by disturbances on the voltage
udqg . If the current if and the voltage ug are perfectly measured, the following control law
decouples the interaction between idf and iqf , and compensates the disturbances introduced
by variations on the voltage udqg

udqref
c = udqg − jωgLfi

dq + r. (2.22)

where r is the control input. Assuming that the VSC is ideal, then it can generate the output
voltage, udqref

c , exactly as requested by the VCC and with no delay, then

udqc = udqref
c . (2.23)
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Considering (2.23), (2.22) can be entered to (2.20), resulting in

di

dt

dq

= −Rf

Lf

idq − 1

Lf

r (2.24)

which is a decoupled, disturbance-free system. In [18], the internal model control method
is used to design the VCC for electric drives applications, which has been further used in
grid-connected VSC. Equation (2.24) can be expressed in the Laplace domain as

if = G(s)r (2.25)

where

if =

[
idf
iqf

]
, G(s) =

[− 1
Lfs+Rf

0

0 − 1
Lfs+Rf

]
, r =

[
rd

rq

]
(2.26)

The input r can take the following form

r = F(s)(idqref
f − idqf ) (2.27)

where

F(s) =

[
F (s) 0

0 F (s)

]
, idqref

f =

[
idref
f

iqref
f

]
(2.28)

Equations (2.25) and (2.27) can be represented by the block diagram shown in Figure 2.12.
From the figure, the closed-loop transfer function, Gc(s) is

Gc(s) = (I + G(s)F(s))−1G(s)F(s) (2.29)

For the system (2.29) to be a decoupled first-order system, then, the following should be
fulfilled

G(s)F(s) =

[
α
s

0
0 α

s

]
(2.30)

Figure 2.12: Block diagram representation of (2.25) and (2.27)

where α is the bandwidth of closed-loop system. Then, F(s) should be

F(s) = G(s)−1

[
α
s

0
0 α

s

]
=

[
−
(
αLf + αRf

s

)
0

0 −
(
αLf + αRf

s

)
]

(2.31)

which means that F (s) is a proportional-integral (PI) controller with a proportional gain,
kp, equal to αLf and an integral gain, ki, equal to αRf . Finally, using (2.22), (2.27) and
(2.31), the control law is for the VCC in the dq frame is in time domain

udqref
c = udqg − jωgLfi

dq
f − kp(idqref

f − idqf )− ki

∫ t

0

(idqref
f − idqf )dt (2.32)
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The output of the controller is the voltage reference udqref
c , which is the input to the PWM

block as shown in Figure 2.9. As indicated by (2.11), the three-phase voltage generated by
the converter, expressed in the dq frame is

udqc = udqref
c e1 (2.33)

where, it must be stressed that udqref
c and e1 are in per unit. Equation (2.33) shows that,

even for ideal conditions, i.e. no delays and perfect measurement, the voltage generated by
the VSC is not exactly the output of the VCC, but it depends on the dc-side direct-voltage.
In order to avoid the influence of the direct-voltage, the voltage reference, udqref

c can be
pre-multiplied by 1

e1
, as shown in Figure 2.13. In that case, the voltage generated by the

Figure 2.13: VCC representation in the dq frame

VSC will be equal to the voltage reference generated by the VCC, as

udqc = udqref
c . (2.34)

The VCC can be further improved with current limiters, anti-windup functions in case of
voltage saturation, or active damping for disturbance rejection [20]. Other improvement
is the operation under non-symmetrical conditions e.g. non-symmetrical faults, where al-
gorithms to estimate the positive and negative sequence components of the current are
proposed in [19,21]. These additional features, however, are not studied in this thesis since
the small signal dynamics of the system is investigated in the neighborhood of an opera-
ting point. Therefore, it is assumed that the converters are working in their linear range,
unsaturated, and in balanced conditions only.

2.4.2 Phase-locked loop

The alignment of the d axis to the rotating voltage uαβg is achieve by the knowledge of the
phase angle of uαβg , which is, likewise, estimated by the PLL. The PLL block diagram is
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shown in Figure 2.14 and can be mathematically described as

dnω
dt

= kilε (2.35)

dθg

dt
= nω + kplε (2.36)

where nω is an state which accounts for the integral part of the PLL, θg is the phase angle
of uαβg , kpl and kil are gain parameters, and ε is the phase error. Equation (2.35) means
that the estimated frequency is updated with a term which is proportional to the error ε.
Furthermore, (2.36) says that the angle is updated by the integral of the estimated speed
ω̂g plus a correction factor which is proportional to the error ε [23]. The error, according
to [22], can have the form of

ε = KPLL sin(θig − θg) (2.37)

In Figure 2.15, a representation of the converter dq frame1 and the ideally aligned dq frame2

are shown. The converter dq frame is not necessarily aligned to the vector uαβg , since the

Figure 2.14: Typical PLL block diagram.

PLL cannot estimate the correct angle instantaneously. On the other hand, the ideal dq
frame is always aligned to the rotating voltage uαβg . The converter dq frame should be the
same as the ideal dq frame in steady-state conditions, but not necessarily during a transient.
In Figure 2.15, the d axis of the converter dq frame is intentionally not aligned, reflecting a
transient where the PLL is in the process of calculating the angle which aligns d axis of the
converter dq frame to the rotating voltage uαβg . From the figure, it can be seen easily that

Figure 2.15: Comparison between the converter dq frame and ideally aligned dq frame.

the q component of the voltage in the converter dq frame is given by

uqg = |uαβg | sin(θ̃g) (2.38)

1In the converter dq frame, the angle θg estimated by the PLL is used to perform the dq transformation.
2In the ideally aligned dq frame, the d axis is always perfectly aligned to the rotating vector uαβg .

18



2.4. VSC control system

where θ̃g = θig − θg. Equation (2.38) shows that uqg can be used as the PLL error shown in
(2.37). If KPLL in (2.37) is set to one, the normalized voltage uqg can be treated as the error
ε, that is

ε =
uqg

|uαβg |
(2.39)

which is the expression used in [22] and [23]. In works such as [44–46], nevertheless, the
per unit value of uqg used as the input error of the PLL since they are used in grid-connected
VSCs. The error assumed in this thesis is then

ε = uqg (2.40)

and then, the block diagram shown in Figure 2.16 represents the PLL used in this thesis.
Furthermore, the parameters kpl and kil are selected as suggested in [18], that is

kpl = 2αPLL, kil = α2
PLL (2.41)

where αPLL is the bandwidth of the PLL. The value of αPLL is a trade-off between a desired
speed of the PLL, and low-frequency harmonics and noise rejection [18, 24, 25]. In [24] a
bandwidth of 5 Hz is selected, and in [23] it is mentioned a typical bandwidth of a PLL is
between 3 and 5 Hz. In this thesis, a PLL bandwidth of 5 Hz is selected.

Figure 2.16: PLL block diagram implemented in this thesis.

2.4.3 Direct-voltage controller

The control of the direct-voltage provides the stiffness of a dc source from where the VSCs
are able to generate the ac voltages. It also maintains the direct-voltage within acceptable
limits. In works such as [45, 46], the energy stored in the VSC capacitor is controlled,
instead of the voltage e1 directly (See Figure 2.11). The expression that describes the
dynamics of the energy stored in the VSC (in per unit) is

C

2

de2
1

dt
= P1 − P12 (2.42)

where P1 is the active power per-pole injected by the VSC to the capacitor, and P12 is the
power that flows through the dc cable, as shown in the dc side of Figure 2.11. If the power
P1 can be controlled perfectly, the following PI controller can be used to control the energy
of the VSC capacitor

P1 = kpe

(
(eref

1 )2 − e2
1

2

)
+ kie

∫ t

0

(
(eref

1 )2 − e2
1

2

)
dt + P ′12 (2.43)
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Figure 2.17: DVC block diagram

where the power P ′12 is the measurement of the power P12 which is feed-forwarded to
remove disturbances, kpe and kie are the proportional and the integral gains of the Direct-
Voltage Controller (DVC), and eref

1 is the direct-voltage reference. Neglecting the losses
over the reactor and the VSC, the active power P1 injected (or absorbed) by the VSC to the
capacitor can be approximated to the active power absorbed (or injected) from ac system
at the node G (see Figure 2.11). Furthermore, If the VCC is assumed much faster than the
DVC, the current idf can be further approximated to the current reference idref

f . In that case

P1 ≈ udgi
dref
f . (2.44)

Hence, using (2.43) and (2.44), the control law of the DVC can be defined as

idref
f =

kpe

udg

(
(eref

1 )2 − e2
1

2

)
+
kie

udg

∫ t

0

(
(eref

1 )2 − e2
1

2

)
dt +

P ′12

udg
. (2.45)

If the power P12 is measured perfectly, and assuming that P1 is equal to (2.44), (2.45) can
be entered to (2.42) and the following can be obtained in the Laplace domain

e2
1 =

C−1(kpes+ kie)

s2 + C−1kpes+ C−1kie

(eref
1 )2 (2.46)

whose characteristic polynomial is of second order and has the following form

s2 + 2ωnξs+ ω2
n (2.47)

where ωn is the undamped resonance frequency, and ξ is the damping ratio. From (2.47)
the controller gains can be selected as

kpe = 2Cωnξ, kie = Cω2
n (2.48)

which are typical expressions that can be find in works such as [46, 54]. The design vari-
ables are ωn and ξ which has to be selected considering the assumption that the VCC is
much faster than the DVC.

Others authors, such as [21, 26], derive the DVC considering that the voltage e1 is con-
trolled, instead of the energy stored at the VSC capacitor. The following describes the
dynamics of the voltage on the VSC capacitor

C
de1

dt
= i1 − i12 (2.49)
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where i12 is the current that flows through the dc cable as indicated in Figure 2.11. Consi-
dering the approximation made in (2.44), the current i1 can be approximated as

i1 ≈
udgi

dref
f

e1

(2.50)

then, the DVC is typically defined as the PI controller

idref
f =

e1

udg

[
kpe

(
eref

1 − e1

)
+ kie

∫ t

0

(
eref

1 − e1

)
dt + i′12

]
. (2.51)

Using (2.49), (2.50) and (2.51), and considering that i′12 is equal to i12, a similar expression
as (2.46) is obtained

e1 =
C−1(kpes+ kie)

s2 + C−1kpes+ C−1kie

eref
1 . (2.52)

It must be highlighted that, under the considerations made, (2.46) and (2.52) are linear sys-
tems which do not depend on the initial operating conditions1. The assumptions made are
helpful to develop rules to select the controller parameters; however, when the assumptions
are no longer considered, the system is actually nonlinear. The DVC which controls the
energy of the VSC capacitor can be analyzed to show that. For instance, consider that the
measurement P ′12 can be modelled as a low-pass filter of P12 and also that P12 is equal
e1i12. In addition, if a Π model is considered for the dc cable, the dynamics of i12 have to
be considered. Then, the state-space model of the VSC which control the direct-voltage is

de2
1

dt
= kpeC

−1
(
(eref

1 )2 − e2
1

)
+ kieC

−1n+ 2C−1P ′12 − 2C−1e1i12 (2.53a)

dn

dt
= (eref

1 )2 − e2
1. (2.53b)

dP ′12

dt
= −γP ′12 + γe1i12 (2.53c)

di12

dt
= −R12

L12

i12 +
1

L12

e1 −
1

L12

e2 (2.53d)

where γ is the bandwidth of device that measures the power P12, n accounts for the integral
term of (2.45). In this model, the states are e2

1, n, P ′12 and i12, and the inputs are eref
1 and e2.

Clearly, (2.53a) and (2.53c) are nonlinear since the term e1i12 is the square root of the state
e2

1 multiplied by the state i12. The same can be deduced when (2.52) is analyzed.

Another controller can be implemented if the proportional and the integral terms, without
feedforward term, of the DVC is directly fed to the current reference idref

f without the
feedback linearization performed in (2.45) and (2.51). That is

idref
f = kpe

(
eref

1 − e1

)
+ kie

∫ t

0

(
eref

1 − e1

)
dt (2.54)

which is going to be used in the analysis performed in Chapter 4 and 5 for the sake of
simplicity.

1Note that the transfer functions (2.46) and (2.52) do not have terms which are related to operating points.
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2.4.4 Active cower control

The objective of the active power controller is to control the active power transfer over the
VSC-HVDC system to the desired value. As mentioned in [21,26], the power controller can
be implemented as a combination of an open-loop and feedback controller. The expression
that defines the control law of the active power controller is

idref
f =

P ref
g

udg
+ kpP

(
P ref

g − Pg

)
+ kiP

∫ t

0

(
P ref

g − Pg

)
dt. (2.55)

A block diagram representing (2.55) is shown in Figure 2.18. In this thesis, however,
the active power is controlled directly with the current reference idref

f without using the
controller shown in Figure 2.18.

Figure 2.18: Active power controller.

2.4.5 Reactive power and alternating-voltage control

Similarly to the active power controller, the reactive power controller can be implemented
as a combination of an open-loop and a feedback controller, as follows

iqref
f = −Q

ref
g

uqg
− kpQ

(
Qref

g −Qg

)
− kiQ

∫ t

0

(
Qref

g −Qg

)
dt (2.56)

which, likewise, is represented in Figure 2.19. The alternating-voltage controller can be

Figure 2.19: Reactive power controller.
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implemented as a PI controller [26]

iqref
f = kpU

(
uref

g − |udqg |
)

+ kiU

∫ t

0

(
uref

g − |udqg |
)

dt. (2.57)

As assumed for the control of active power, the reactive power is controlled directly with
the current reference iqref

f without using the controller shown in Figure 2.19

2.5 New challenges for VSC-HVDC systems

In recent years, VSC-HVDC systems have been in the spotlight, particularly, due to the
development of new converter topologies, and the proposal of using VSCs in MTDC con-
figurations. The developers of the new multilevel topologies claim to have reduced the
losses of VSCs to a level similar to the thyristor-based HVDC systems. Moreover, VSCs
are considered suitable for MTDC configuration due to their versatile controllability fea-
tures. In this section, both topics are briefly reviewed.

2.5.1 New multilevel topologies

The Modular Multilevel Converter (MMC), the Cascaded Two-Level converter (CTL) and
the hybrid-HVDC-circuit topology described in [10–12], overcomes the lack of modularity
of the NPC topology previously introduced. The MMC and CTL, illustrated in Figure 2.20,
are similar topologies which builds up the voltage uca by inserting the submodules follo-
wing a modulation method. The waveform generated by a twenty-module converter (ten
modules in each arm) is shown in Figure 2.21. An eleven-level voltage is generated, and
the harmonic spectrum shows that the harmonic level has decreased considerably compared
to Figures 2.6 and 2.8. Apart from decreasing the harmonic content, the MMC reduces also
the switching losses, since each submodule operates at lowers frequencies compared to the
two and-three level converters. If the number of submodules is increased1, the generated
voltage waveform can be almost sinusoidal, so filters might become significantly small or
even unnecessary.

The hybrid-HVDC-circuit configuration is described in [12]. It consist of a series con-
nection of a two-level configuration and a H-bridge modules as illustrated in Figure 2.22.
Basically, the idea is to use the two-level part of the converter to generate a low frequency
voltage waveform and to use the H-bridges as active filter to shape the ac voltage wave-
form [13]. The main advantage of this topology compared to the MMC and CTL topologies
is its performance in dc side faults. In case of dc side faults, the valves of the H-bridges will
turn off in such a way that the converter stops feeding the fault. In the case of the MMC
and CTL, a dc side fault will be fed through the diodes connected in anti-parallel with the
valves.

1According to [14], the Trans-Bay cable HVDC system has more than 200 modules per arm.
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Figure 2.20: Modular Multilevel Converter [11].

2.5.2 VSC-based multi-terminal HVDC systems

An MTDC system can be defined as an HVDC system where more than two VSCs are
interconnected through a common dc grid. Similarly to ac systems, in an MTDC system
there might be a number of converters injecting power into the dc grid (analogously to
generators in ac systems) and a number of converters absorbing power from the dc grid
(analogously to loads in ac systems). Furthermore, some converters can be operated in vol-
tage regulating mode, similar to the frequency-regulating generators that are operated in ac
systems, i.e. compensating the unexpected “generation-load” mismatches. In that regard, it
has been recognized in [30] that the control of the direct-voltage plays an important role on
the power balancing task of the dc side. The following are the main conclusions from [30]:

1. Power unbalances in the dc system produces fluctuations in the direct-voltage of the
system. If there is excess (deficit) of power going into the dc system, the direct-
voltage will increase (decrease). Then, the direct-voltage can be used as an indicator
of power unbalances in the dc side, as the frequency is used in the ac side.

2. The VSC which controls the direct-voltage acts as the slack generator in ac systems.
It compensates the deficit or surplus of the power in the MTDC system.

3. The dynamics of the dc side is fast since capacitors are designed to store only a small
amount of energy. Then, measures to compensate power unbalances should be taken
automatically.

Using those principles, control strategies have been proposed in works such as [31–33].
The control strategies in the dc side aim at providing a back up to the direct-voltage control
in case of contingencies such as faults in the ac side, or converter outages. The most basic
control strategy in an MTDC is that one single VSC controls the direct-voltage while the
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Figure 2.21: Voltage generated by a 20 module MMC through the SPWM. Upper: Generated vol-
tage and fundamental component. Lower: Harmonic spectrum of the generated vol-
tage.

Figure 2.22: Hybrid-HVDC-circuit topology [12].

others control their power set-points to a fixed value. However, the disadvantage of such
control strategy is that, if there is an outage of the only VSC which controls the direct-
voltage, the voltages will either rise or drop in the dc system in a sustained way.

In Figure 2.23, a three-terminal HVDC system is shown. The system is composed of the
VSC1, VSC2 and VSC3, whose voltages at their dc side nodes are e1, e2 and e3, respectively.
Moreover, the VSC1, VSC2 and VSC3 transfer the powers P1, P2 and P3 to the dc grid,
where a positive value means that the converter “supplies” power to the dc grid, while a
negative value means the converter “consumes” power from the dc grid. This setup is used
to explain the voltage-margin control and the voltage-droop control strategies.

The voltage-margin control strategy has been presented in [31, 32]. As an example, in
Figure 2.24, the voltage-power characteristic of each VSC (in the system from Figure 2.23)
would follow under the voltage-margin control strategy. According to Figure 2.24, VSC1

is consuming 300 MW, VSC2 is supplying 100 MW, and VSC3 is supplying 200 MW
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Figure 2.23: Three-terminal HVDC system.

(assuming a lossless dc grid). According to the voltage-margin control, if the converter
VSC1 is lost, VSC2 and VSC3 will continue supplying 300 MW together. As stated earlier
in this section, this surplus of power will make the voltage of the dc grid to increase. From
the figure, it can be seen that VSC3 will change from a constant power control mode to a
direct-voltage control mode when the voltage at its dc-node increases to e03. Finally, after
the outage of VSC1, VSC2 will be supplying 100 MW, and VSC3 will be consuming 100
MW and will be controlling the direct-voltage of the system.

Figure 2.24: Voltage-margin control strategy with e01 < e03 < e02.

The disadvantage of this method is that, only one converter is exposed to large variations
of power in case of contingencies. In our example, VSC3 has to change from +100 MW
to −200 MW which means that a fast variation of a 300 MW will be experienced in the
VSC3’s ac side.

In order to overcome the disadvantage of the voltage-margin control, the voltage droop-
control is proposed in [33, 34]. A voltage-droop control strategy for the studied three-
terminal HVDC system is shown in Figure 2.25. In this scheme, if VSC1 is suddenly out
of service, the voltage will rise in the dc system, and the power output of VSC2 and VSC3

will change according to the voltage-power characteristics shown in Figure 2.25 the voltage
will rise until the power in the dc-system is balanced. The advantage of this method is that,
the balance of the power is performed by the two remaining converters instead of only
one. However, the disadvantage is that the final power set-points are uncontrolled. One
method to control the power after the contingency is proposed in [57]. In Figure 2.26 the
principle of the method is illustrated. Basically, the power can be controlled by changing
the no-load voltage of the voltage-droop characteristic. For instance, if the power output of
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Figure 2.25: Voltage-droop control strategy.

a converter is −300 MW after the contingency, it can be changed to −100 MW (if desired)
by increasing the no-load voltage value of voltage-droop characteristic.

Figure 2.26: Autonomous power control.

Through solving the problem of the power balance in the dc side of an MTDC system, some
control strategies have been proposed. However, an MTDC is a system which is composed
of complex elements such as the VSC and the dc grid. The dynamics of a VSC, for example,
depends on the control structure which, likewise, has to do with the selection of the control
strategies proposed in this section. The dc grid on the other hand, is composed by cables
and overhead transmission lines, which shows a resonance behaviour in certain conditions.
Then, along with considering the power balance issue, the dynamic interactions between
elements that conform the MTDC have to be studied when developing a control strategy
for MTDC systems.

2.6 Conclusions

In this Chapter, a basic theory on VSC-HVDC systems has been presented. The functions
of the main components of a VSC, together with their typical ratings has been summa-
rized. The operating principles of the VSC have been presented and the SPWM modula-
tion method has been introduced. Then, a typical control system of the VSC has been de-
scribed with a special stress on the derivation of the vector current controller and the direct-
voltage controller, and the selection of their parameters. Finally, the new challenges for
VSC-HVDC system, regarding new converter topologies and the control of multi-terminal
HVDC systems, have been presented.
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Chapter 3

Overview on dc network dynamics

Considerable research effort on the subject of control and stability of dc networks can be
found in the literature [31–38,49,50,52]. On a low power level, it has been recognized that
constant power loads (CPLs) in dc microgrids introduce an incremental negative resistance,
which can be detrimental for the dynamic performance of the system. Various analysis
methods and control strategies have been proposed to overcome the instability introduced
by CPLs. On the high power level, several works have been carried out concerning the
stability of HVDC systems, however, with emphasis on the ac side dynamics rather than
the dc side of the system. The interest on the dc side dynamics has risen when MTDC
systems have come into the scene, since the conditions in MTDC are more variable than in
point-to-point HVDC systems. The small signal analysis has been used, mostly to assess
the effect of the operating conditions and the controller parameters on the stability of the
studied MTDC systems.

In order to get an idea of the challenges that brings HVDC systems from the dynamics
perspective, a review of publications on the dynamic analysis of dc microgrids and HVDC
systems has been carried out. The main findings from the review are presented in this
chapter.

3.1 Dynamic issues in dc microgrids

Multi-converter power electronic systems, in the form of dc microgrids, have been a sub-
ject of research for some years. In [36], for instance, definitions and applications of multi-
converter power electronics systems are presented. Proposed dc microgrids configurations
for automotive power systems, electric and hybrid vehicles, aircraft power systems, and
space power systems are presented as examples. As shown in Figure 3.1, a dc microgrid
is typically composed of a number of converters connected to a common bus. Those con-
verters interface either power sources or loads or can be used to interconnect systems of
different voltage levels. From the dynamic point of view, the challenges in multi-converter
systems, as stated in [36], ranges from system modelling, dynamic assessment and control.
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CPLs have been recognized as the main source of instability in dc microgrids [35–40]. As
pointed out in [38], a CPL can be a DC/DC converter which tightly regulates its output
voltage with a passive load connected to its output. In this case, since the load voltage is
maintained constant, the current is constant as well, therefore, seen from the dc bus, the
DC/DC converter acts as a constant power load. Another example of a CPL is a DC/AC
inverter regulating the speed of a motor. If the speed is maintained constant and considering
a constant torque, the power seen from the input is also constant. Figure 3.2 shows an sketch
of the two examples mentioned.

Figure 3.1: Architecture of a power electronic system for automotive applications [36].

Figure 3.2: Typical CPLs. Left: a DC/DC converter regulating the voltage at its output. Right: a
DC/AC inverter regulating the speed of a motor [38].

Figure 3.3: Incremental negative impedance of CPLs [38].
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Although the instantaneous impedance of a CPL is positive, the incremental impedance
is negative as illustrated in Figure 3.3. That is, if a there is a decrease voltage at the DC
bus, there will be an increase of current drawn from the converter in order to maintain a
constant power. As an example of the influence of a CPL on the stability of a dc system, a
buck converter supplying power to a resistive load and a CPL (both connected in parallel)
is studied in [35]. From Figure 3.4, and using the averaging technique, the following are
the equations that describe the dynamics of the studied circuit.

diL
dt

= −R
L
iL +

1

L
d · E − 1

L
ec (3.1)

dec

dt
=
iL
C
− ec

CRL

− PL

Cec

(3.2)

where d is the duty cycle of the buck converter, iL is the current through the filter inductor,

Figure 3.4: Buck converter supplying power to a resistive load and a CPL [35].

C is the filter capacitor, R is the inductor resistance, L is the inductance inductor, E is the
main source voltage, ec is the load voltage, RL is the resistance of the resistive load, and
the PL is the constant power load. Equations (3.1) and (3.2) can be linearized around an
operating point. From the linearized equations the state space model of the system is

d

dt

[
∆iL
∆ec

]
=

[ −R
L
− 1
L

1
C

PT

Ce2c0

] [
∆iL
∆ec

]
+

[
d0
L

E0

L

0 0

] [
∆E
∆d

]
(3.3)

where d0 is the initial duty cycle, E0 is the initial source voltage, ec0 is the initial output
voltage, and PT = PL − e2

c0/RL. The poles of the system are then

λ1,2 = −1

2

(
R

L
− PT
Ce2

c0

)
± 1

2

√(
R

L
+

PT
Ce2

c0

)2

− 4

LC
. (3.4)

If the term inside the square root is negative, then, the system is stable if

PL <
e2

c0

RL

+ Ce2
c0

R

L
. (3.5)

If the inductor is considered lossless, then, from (3.5) the condition for stability is that
the amount of CPLs should be lower than the amount of resistive loads. This principle is
illustrated in [37] and [38]. In [35], the principle is extended to a multi-converter system
in which the principle is generalized. A multi-converter system is claimed to be stable as
long as ∑

PConstant power loads <
∑

PResistive loads (3.6)
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Going back to (3.5), if there is no resistive load, the maximum power that a CPL can be
supplied is given in terms of C, R, L and ec0. From (3.5), if C is increased, the stability
limit is also increased as proposed in [39]. Other measures to avoid instability such as
load shedding or the addition of a bulk energy storage device are also proposed in [39].
Advanced methods, such as sliding-mode control, and feedback linearization are proposed
in [38] as solutions to stabilize the system.

A frequency domain approach is proposed in [40] and [41]. The so-called immittance
analysis is preferred over the eigenvalue calculations since it provides design specifications
to be fulfilled by the load. The basic idea can be explained with the help of Figure 3.5.
The method consist, first, of calculating the source impedance ZS and the load admittance
YL in terms of the frequency for all operating points. Then, based on the Nyquist criterion,
some stability criteria are defined. Basically, the curve defined by ZS(jω)YL(jω) for all
frequencies should not intersect a certain forbidden region in the s-plane. Figure 3.6 shows
three criteria which are described in [40]. Figure 3.6(a) shows the Middlebrook criterion
where the forbidden area is the area outside dashed circle meaning that the contour defined
by ZSYL should remain inside the dashed circle. If the source impedance ZS is given, then,
according to the criterion, YL should be shaped to meet the Middlebrook criterion. It is
claimed in [40] that the Middlebrook criterion is a conservative method, since, according
to the Nyquist criterion, the only condition for the system to be stable is that the contour
defined by ZSYL should not encircle clock-wise the real axis to a point lower than −1.
The Gain Margin and Phase Margin (GMPM) criterion shown in Figure 3.6(b) is a less
conservative method, since it allows the contour ZSYL to be located in a larger area of the
s-plane. An even less conservative method is the ESAC criterion shown in Figure 3.6(c)
where the forbidden area is even smaller.

Figure 3.5: Equivalent source and load of a dc microgrid [40].

(a) (b) (c)

Figure 3.6: Stability criteria [40]. (a) Middlebrook criterion. (b) Gain margin phase margin crite-
rion. (c) ESAC criterion.
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Another interesting work is [42] where the load characteristic is investigated. The load
dynamics is studied taking into consideration the controller and the load dynamics together
instead of the sole simplification of a CPL. It is found that the load can have other desta-
bilizing forms depending on the load characteristic and the controller design. The load
impedance can have unstable poles or zeros in the right-half plane (RHP) which impose
limitations in the control system. If the load has unstable poles, the system needs a feed-
back controller to stabilize the system. On the other hand a non-minimum phase load can
cause instability if the controller gain is high.

Although there are significant differences with HVDC systems, such as power and voltage
ratings, there are similarities on the electrical configuration and control structure. The fo-
llowing aspects, where dc microgrids and HVDC systems are comparable, are summarized
next:

1. The studied dc microgrids are converters connected to a common dc bus, while the
converters in HVDC systems are interconnected through dc transmission lines. Ho-
wever, the filter configuration (composed of inductors and capacitors) of the dc mi-
crogrid’s converter resembles the dc transmission lines of HVDC systems.

2. In dc microgrids, CPLs are considered as the main source on instability. Further-
more, the converter control structure and the load characteristic can have destabi-
lizing forms such as unstable poles or zeros in the RHP. In HVDC systems, if the
control system dynamics and the converter dynamics are considered, the load (in-
verter) or the source (rectifier) connected to the dc grid (transmission line) can also
have destabilizing forms in the dc side.

3. Methods developed for the analysis of the dc microgrids, based of the averaging
techniques, eigenvalue analysis, and frequency domain analysis can be adapted for
HVDC systems.

3.2 Dynamic issues in VSC-HVDC systems

In this section, a literature review on HVDC system dynamics is presented. The section
starts with an investigation of the dynamics concerns of HVDC systems from the ac side
perspective. Then, two studies on the interaction between VSCs and the dc side of the
system are presented. Finally, works on the analysis of the dc side dynamics of VSC-
MTDC are reviewed.

The control structure illustrated in Figure 3.7 has been used in most of the reviewed publi-
cations. The controllers are implemented in the dq frame and with PI controllers, similarly
to the ones presented in Section 2.4. For the sake of uniformity, the variable names used in
the publications discussed in this section are adapted to the ones shown in Figure 3.7.
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Figure 3.7: Sketch of the control structure of a VSC.

3.2.1 AC side dynamics of VSC-HVDC

Surprisingly, the dynamic analysis of the dc side of VSC-HVDC systems has not been a
subject widely investigated. HVDC systems have been rather viewed as means to overcome
the weaknesses of the existing ac system. An example of that is [43], where supplementary
functions are designed for a VSC-HVDC system. The aim of the supplementary functions
is the mitigation of dynamic problems of ac system, such as power oscillation and transient
stability. Typically, in such works, electromechanical dynamics from the generators and
motors connected to the ac system are of interest rather than the fast dynamics that takes
place at converter controllers and the dc side of the system. In most of the cases, fast
dynamics are neglected by representing the HVDC system as active and reactive power
injections to the ac system with the dc network dynamics neglected.

The stability of VSC-HVDC systems is investigated in [44] and [45] focusing on the in-
teraction between the converter and the ac grid to which they are connected. The input
impedance of the converter seen from the ac bus, as illustrated in Figure 3.8, is calcu-
lated in [44]. There, it is shown that the input admittance shows a negative conductance
characteristic at low frequencies. This negative conductance can amplify low frequency
resonances originated in the ac system, as shown in [44], where a series compensated line
is studied (see Figure 3.8). The impact of the dc side of the system on the converter input
admittance is studied as well. However, only a capacitor is considered to be connected on
the dc side and not a dc transmission line. Moreover, experiments are performed where
only the converter is connected to an ac system. In some tests, there is a strong dc source in
the dc side of the VSC, while in other tests, there is a capacitor in parallel with a resistor.

Figure 3.8: Series compensated line and the input admittance of the VSC [44].
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In [46], the operation of VSC-HVDC systems connected to weak ac systems is investigated.
The power-synchronization control (PSC) approach is proposed as an alternative to the
VCC. In the PSC, the control of active power is performed by adjusting the phase angle of
the alternating-voltage generated by the converter, θc, while the magnitude of the voltage
ug is controlled with the magnitude of the alternating-voltage generated by the converter,
uc, (Figure 3.7 can be used as a help). In the VCC, the active power is controlled with
the d component of the current and the magnitude of the voltage ug is controlled with the
q component of the current. In the analysis, the so-called Jacobian1 transfer matrices are
derived for both, the VCC and the PSC, and it is found that, for low short-circuit ratios
and high power transfers, cross-coupling interactions are more considerable in the VCC
compared to the PSC. That is, in the mentioned conditions, a change of the d component
of the current affects more the voltage ug compared to a change in the phase angle of θc.

The dc side of the system is analyzed to some extend in [46]. The Jacobian transfer ma-
trix of the dc grid (the cable) is derived and it is found that it is unstable. The unstable
pole means that the bandwidth of the direct-voltage controller should be higher than the
unstable pole. Concerning the direct-voltage control, it is design as a PI controller and the
gains are designed in terms of the desired closed-loop bandwidth and the capacitor size.
Furthermore, the capacitor size is specified considering the maximum allowed overvoltage
and the capacitor charging time.

3.2.2 DC side dynamics of VSC-HVDC

Attempts to investigate the dynamics of the dc side of the HVDC system are [47] and [48].
In [47], the effects of the injection of harmonics into a dc cable is investigated. The admit-
tance of the dc cable is calculated and the resonance peaks and the corresponding frequency
are identified for different lengths. The harmonic content of the current injected by the con-
verter into the dc cable is calculated as well. In a particular example presented in [47], the
resonance frequency of a 30 km cable is 3 kHz and one 3 kHz harmonic component is found
for a switching frequency of 1.5 kHz. It is claimed that simulations in those conditions are
unstable, although, the simulation results are not shown. In [48], the VSC model is sim-
plified into a single-input-single-output system (SISO). The model is developed in the dq
frame, and, after some simplifications, the influence of the current iq and the voltage vcq is
decoupled from the direct-voltage e1 resulting in the model illustrated in Figure 3.9. It is
found that the transfer function e1(s)/id(s) has a zero in the RHP which impose a limita-
tion on the performance of the closed-loop control system. Basically, a RHP zero limits the
achievable bandwidth of the closed-loop system. Experimental results show that the fre-
quency response of a converter matches closely the theoretical results of its corresponding
simplified model.

It is clear that the research on the dynamics of VSC-HVDC systems has been driven more
by the interest on the interaction between the VSCs and the ac systems to which they are
connected. In contrast to the dc microgrid case, the dc side dynamics has been overlooked
to some extend in point-to-point VSC-HVDC systems, most likely, due to the foreseeable

1It should be highlighted that the Jacobian transfer matrix it is not the matrix composed by the all the
partial derivatives of a vector-valued function.
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Figure 3.9: One simplified model of a VSC [48].

operating modes of such configurations. However, in MTDC systems, operating conditions
are expected to be changeable, particularly, if renewable energy sources are connected to
the system. Moreover, the topology of the dc grid is not going to be fixed, as in point-
to-point VSC-HVDC systems. Cables can be disconnected due to maintenance or faults
changing the dynamic properties of the dc grid. Thus, the question of whether undesirable
interactions between VSCs and the dc grid takes place in MTDC systems is relevant and
has become a subject of interest, as shown next.

3.2.3 DC dynamics in multi-terminal VSC-HVDC systems

The small-signal modelling approach has been mainly used when investigating the dynamic
performance of MTDC systems. A decade ago, in [49], the stability of VSC-MTDC has
already been studied using eigenvalues analysis. Instability in the form of sustained os-
cillations in the dc side is found. In order to investigate the origin of the oscillations, a
small-signal model of a point-to-point VSC-HVDC system, sketched in Figure 3.10(a), is
developed in [49]. The poles of the system are then calculated and it has been found that
unstable poles appear when the VSC2 (which controls power) transfers power from the dc
side to the ac side. Moreover, the unstable poles are found to be related to the dc side dyna-
mics, i.e. the resonance phenomenon which occur in the dc cable. According to the author,
the instability is caused by the CPL-like behaviour of the VSC2. As explained in Section
3.1, a CPL introduces a negative incremental resistance which may amplify the resonance
originated from the dc cable. A solution proposed in [49] is to add an RLC circuit, tunned
to the resonance frequency, at the dc side of the VSC2, as shown in Figure 3.10(b).

Other examples of the use of the small signal modelling approach are [50–52]. In [50, 51],
the stability of VSC-MTDC systems is investigated through the calculation of the eigen-
values of the systems’s linearized model. The effect of different controller parameters on
the poles location of the system is investigated. In [50], the effects of the droop setting
of the direct-voltage controller kdroop (see Figure 3.11), is investigated. In this work, appa-
rently, the ac systems are considered strong, since the PLL dynamics is not mentioned
in the model of the VSC. The results indicate that high values of kdroop turn the studied
point-to-point system unstable. The investigation carried out in [51] deals with the study
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(a) (b)

Figure 3.10: (a) Point-to-point VSC-HVDC system. (b) Damping filter proposed in [49].

of a four-terminal VSC-MTDC system, with two-level converters connected to the main
ac system, and the other two connected to wind farms. The influence of different con-
trollers loops (alternating-current controller, direct-voltage controller, alternating-voltage
controller) in the stability of the system is studied. The controllers are implemented as PI
controllers and the ranges in which the gains can be varied without losing stability are cal-
culated. Similarly to [50], for the direct-voltage controller, there is a lower and upper limit
in which the proportional gain (corresponding to the droop setting in [50]) can be varied.
Again, in [52], VSC-MTDC systems are linearized and the different control structures are
investigated through eigenvalue analysis. One thing to highlight is that, in [50–52], the in-
fluence of the operating point on the stability of the VSC-MTDC system is not investigated.

Figure 3.11: Simplified block diagram of the direct-voltage controller [50].

From this review, it has been shown that the interest in dynamics of VSC-HVDC has been
driven more by the analysis of the ac side rather than the dc side of the system, where only
a few references can be found. With VSC-MTDC, the dc side dynamics has become a
relevant subject, and the main findings from the review are summarized next:

1. There is a risk of instability originated from the dc side of the system. From the re-
viewed literature, sustained oscillations appear when the power flows from the con-
verter which controls the direct-voltage to the converter which controls the power.
Moreover, it has been found that the instability is related to the resonance phe-
nomenon of the dc cable.

2. Through eigenvalue analysis, it has been shown that the size of the controller gains,
also influences on the stability of the system. Too low or too high gains can turn
the system unstable. Moreover, [48] has found a RHP zero in the converter transfer
function which may be the reason why the system becomes unstable for high gains.
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Then, as pointed out in [42], there might be destabilizing forms that the VSC can
have under certain conditions.

3. Eigenvalue analysis shows that unstable scenarios, which are originated from the
dc side of the system, may occur. However, to the best of the author’s knowledge,
no rigorous analysis has been carried out on explaining the origin of the dc side
instability. In [49], the dc side instability is attributed to the CPL-like behaviour of
the VSC which controls the power, however, no clear evidence has been provided.

In the following section, as an introduction to the problem, a point-to-point VSC-HVDC
system is investigated through simulations.

3.3 Study of an ideal case

The purpose of this section is to explore the effect of the operating points, the controller
parameters, and the dc side electrical topology on the stability of a point-to-point VSC-
HVDC system. The system under study is sketched in Figure 3.12 and the control system
is implemented as presented in 2.4. In this case, VSC1 is set to control the direct-voltage,
while VSC2 is set to control the active power. Table 3.1 and Table 3.2 summarize the main
data used in the simulations. The system is modeled in PSCADTM.

Figure 3.12: Point-to-point VSC-HVDC system under study.

The ac sources to which the converters are connected are assumed to be infinite, so, the
unstable cases found are only related due to the interaction between the converters and the
dc side dynamics. In other words, with this assumption, the ac side of the system cannot
be blamed when unstable cases take place.

The effect of the operating point is evaluated through varying the power transfer between
both VSCs. The effect of controller parameter is evaluated for two values of the propor-
tional gain of the DVC, kpe, and the effect of the dc side electrical topology is evaluated
with different lengths of the dc cable. The studied cases are listed as follow:

Case 1.1: Ramp up of power from zero to 600 MW with the direction of the power from
VSC1 to VSC2. The cable length is 50 km.
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Table 3.1: Converter Ratings

Rating Value
Rated Power 600 MVA
AC rated voltage 300 kV
DC rated voltage ± 300 kV
Phase reactor inductance 0.12 mH
Phase reactor resistance 0.375Ω
Capacitor per pole 33.33 µF

Table 3.2: CL12 Cable Data

Parameter Value
Cable capacitance 0.207 µF/km
Cable inductance 0.189 mH/km
Cable resistance 0.038Ω/km

Case 1.2: Ramp up of power from zero to 600 MW with the direction of the power from
VSC2 to VSC1. The cable length is 50 km.

Case 2.1: Repetition of Case 1.1 with a higher proportional gain kpe of the DVC.

Case 2.2: Repetition of Case 1.2 with a higher proportional gain kpe of the DVC.

Case 3.1: Repetition of Case 2.1 with a cable length of 100 km.

Case 3.2: Repetition of Case 2.2 with a cable length of 100 km.

It should be highlighted that, in a two-terminal VSC-HVDC system, the typical control
strategy is to set the sending VSC to control the direct-voltage, while the receiving VSC to
control the active power, as illustrated in Figure 3.13. However, in this thesis, it is always
assumed that the same VSC controls the direct-voltage regardless of the direction of the
power. This is to investigate the effect of the whole range of power variation on the control
system of the VSC. That means that, in all the above mentioned cases, VSC1 controls the
direct-voltage, and the power transfer is ramped-up or ramped-down by controlling the
power at VSC2.

The results are shown in Figures 3.14, 3.15, 3.16, and 3.17 where the direct-voltage, e1,
and the active power, P1, are plotted for each case. Figure 3.15 shows the Cases 1.1 and
1.2 where the last instants before reaching 600 MW (in both directions) is shown. It can be
seen that the system is able to reach the “steady state” without any inconvenience. Figure
3.16 shows the Cases 2.1 and 2.2, where the proportional gain of direct-voltage controller
has been increased. Figure 3.16(a) show that, in Case 2.1, the system turns unstable when
the power almost reaches 600 MW, with the direction of the power from VSC1 to VSC2.
However, Figure 3.16(b) shows that when the power flows in the opposite direction, the
system manages to reach 600 MW without problems. Finally, the results from the Cases
3.1 and 3.2 are shown in Figure 3.17. It can be seen that the unstable case, produced in
Case 2.1 due to the high gain kpe, does not occur in Case 3.1, when the dc cable is longer.
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Figure 3.13: Typical control strategy in a point-to-point VSC-HVDC system. Upper: Control strat-
egy for a power flow direction from the ac system 1 to the ac system 2. Lower: Control
strategy for a power flow direction from the ac system 2 to the ac system 1
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Figure 3.14: Detail of the direct-voltage e1 from case 2.1.

Figure 3.14 shows a zoomed picture of the direct-voltage e1 between 2.20 s and 2.21 s.
It can be seen that there is an oscillation with a period of approximately 2.8 ms, which
corresponds to a frequency of around 357 Hz. Considering a lossless Π model of the dc
cable, the resonance frequency is given by

fres =
1

2π
√
LC

2

(3.7)

where L is the inductance of the cable, and C is the cable capacitance together with the
converter capacitor per pole. For a cable length of 50 km, L is 9.43 mH, and C is 43.67 µF.
With these values, the resonance frequency, fres, is around 350.7 Hz, which is very close
to the frequency found from Figure 3.14. Then, it can be inferred that the instability takes
place when the dc side resonance phenomenon becomes amplified by a mechanism that
should be investigated.

40



3.3. Study of an ideal case

1 1.5 2 2.5 3 3.5 4
500

550

600

650

700

e 1
[k

V
]

1 1.5 2 2.5 3 3.5 4
0

200

400

600

Time [s]

P
1

[M
W

]

(a)

1 1.5 2 2.5 3 3.5 4
500

550

600

650

700

e 1
[k

V
]

1 1.5 2 2.5 3 3.5 4

−600

−400

−200

Time [s]
P
1

[M
W

]
(b)

Figure 3.15: Simulation results of Case 1. (a) VSC1 direct-voltage and power of Case 1.1. (b) VSC1

direct-voltage and power of Case 1.2
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Figure 3.16: Simulation results of Case 2. (a) VSC1 direct-voltage and power of Case 2.1. (b) VSC1

direct-voltage and power of Case 2.2
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Figure 3.17: Simulation results of Case 3. (a) VSC1 direct-voltage and power of Case 3.1. (b) VSC1

direct-voltage and power of Case 3.2
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3.4 Conclusions

In this chapter, an overview on the dynamic of dc microgrids and HVDC systems has been
presented. In dc microgrids, CPLs has been recognized as the main source of instability.
Other sources of instability are the destabilizing form of power electronic loads, such as
unstable poles or zeros in the RHP. In HVDC systems, the interest is mainly focused on the
interaction between the converter and the ac side to which it is connected. Since MTDC
systems has been lately proposed, the interest of the stability of the dc side of the system
has captured more attention. Several works have found, through eigenvalues analysis, that
the operating point, the converter dynamics characteristics, and the topology of the dc side
play a major role in the stability of MTDC systems. Moreover, in Section 3.3, an ideal case
has been studied confirming the findings of other authors, where it has been shown also
that the instability is related to the resonance phenomenon produced in the dc cable.

Although interesting conclusions have been obtained through eigenvalue analysis, the source
of the instability in VSC-HVDC systems has not been properly identified yet. Thus, the
work presented in this thesis attempts to fill this gap. The dynamic performance of the dc
side of VSC-HVDC systems is explored in Chapter 4 through eigenvalue analysis, and a
frequency domain approach is proposed in Chapter 5 in order to explain the source of the
dc side instability.
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Chapter 4

Small signal modelling and analysis of
VSC-HVDC system

In the previous chapter, the investigations carried out from different authors on the dyna-
mics of dc network have been reviewed. For instance, instability related to the resonance
phenomenon of the dc-side and the operating point of the system has been found in a point-
to-point HVDC system in [49]. The same phenomenon has been found through simulations
in a two-terminal VSC-HVDC system, whose results have been presented in Section 3.3.
In this chapter, the causes of the instability are further investigated through eigenvalue ana-
lysis of the system. The investigated system is linearized around an operating point and the
obtained state space model is derived following a modular approach, explained in Section
4.1. The modelling approach is not constrained to a two-terminal VSC-HVDC system but
can also be used to model more complex HVDC structures, such as VSC-MTDC systems.
For the sake of simplicity, the stability analysis is carried out in a two-terminal VSC-HVDC
system using eigenvalue analysis. The influence of different factors on the dynamics of the
system is studied. Among the studied factors are operating points, controller parameters,
electrical characteristic of the dc side of the system, and characteristics of the ac system to
which the VSCs are connected.

4.1 Modelling approach

The modelling approach consists of defining subsystems which are interconnected into the
final system of interest. The advantage of this approach is that details can be easily added
in individual models. Moreover, in a computational program, it is simpler to implement
routines to model small subsystems to later be merged into the system of interest, rather
than to implement a large system at once. It also allows flexibility, since the subsystems
can be modelled individually and then reused in different configurations. Furthermore, the
dynamics of the system of interest can be investigated through the analysis of the individual
subsystems, as will be shown in Chapter 5. For example, in Figure 4.1, a three-terminal
VSC-HVDC is represented as a multivariable feedback system, which can be divided into
two subsystems, the VSC-set subsystem (which, assuming a three-terminal HVDC system
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is constituted by VSC1, VSC2, VSC3) and the dc grid subsystem. Each subsystem has
inputs and outputs which are used as interconnection variables. In this case, the VSC-
set subsystem has the references to the control system of the VSCs as the inputs, and the
currents that the VSCs inject to the dc side, i1, i2, and i3, as the outputs. Likewise, the dc

Figure 4.1: Sketch of the modelling approach proposed in this thesis

grid has the currents injected by each VSC, i1, i2 and i3, as the inputs, and the voltages of
the dc nodes to where the VSCs are connected, e1, e2 and e3, as the outputs. The state-space
model of the VSC-set subsystem can be represented as

ẋc = fc (xc, e, r) (4.1a)
i = hc (xc, e, r) (4.1b)

where

xc is the VSC-set state vector,
r is the VSC-set reference input vector, defined as [ref11 ref12 ref21 ref22 ref31 ref32]T,
e is the VSC-set voltage vector, defined as [e1 e2 e3]T,
i is the VSC-set current vector, defined as [i1 i2 i3]T.

The state-space model of the dc grid subsystem is

ẋg = fg (xg, i) (4.2a)
e = hg (xg) (4.2b)

where xg is the dc grid state vector. The state space model of the VSC-MTDC system can
be derived by combining (4.1) and (4.2). That is

ẋc = fc(xc,hg(xg), r) (4.3a)
ẋg = fg(xg,hc(xc,hg(xg), r)). (4.3b)

From (4.3), it can be seen that the HVDC system state space model can be derived using
the expressions that define the subsystem models, which is the approach adopted in this
chapter.

The small signal analysis is used in this work due to the nonlinear characteristic of the
system. Therefore, in order to use the linear analysis tools, the system must be linearized
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around a given operating point. It is well known that a nonlinear system

ẋ = f(x, r) (4.4)

can be linearized as

∆ẋ =

[
∂f

∂x

]

0

∆x +

[
∂f

∂r

]

0

∆r (4.5)

where

∆x is the deviation of x from the operating point x0,
∆r is the deviation of r from the initial reference r0,[

∂f

∂x

]

0

and
[
∂f

∂r

]

0

are the jacobians of f with respect to x and r, respectively,
evaluated at the initial point (x0, r0),

x0, r0 are the initial states and the initial references, respectively.

Equation (4.5) describes the small signal dynamics around the operating point (x0, r0).
This method is used throughout this chapter for the linearization of the nonlinear expre-
ssions of the system model.

4.2 Assumptions

The objective of this chapter is to investigate the instability described in Section 3.3. In
order to facilitate the analysis, the models should be as simple as possible but still con-
taining a sufficient level of detail to represent the dynamic issues under investigation. The
following assumptions are adopted in this thesis in order to simplify the system model.

1. The electrical properties of the capacitors, inductors and resistors are linear. They
are also temperature and frequency independent.

2. The measuring devices are ideal. The signals coming from these devices are noise-
free, instantaneous with no distortion.

3. The converter is treated as a linear amplifier. That means that the high frequency
harmonics originated by the switching actions of the power electronic valves are
neglected. Besides, the converter is assumed lossless meaning that the power in the
ac side is equal to the power in the dc side of the converter.

In addition to the above assumptions, initially, the VSC models are developed considering
that they are connected to infinite ac sources. This allows to neglect PLL block, since the
angle it measures becomes constant. Assuming infinite ac sources also reduces the scope
of the problem to only the dc side of the system, so if stability problems are found, they are
only due to the interaction between the converters and the dc grid. Later, the ac sources are
considered non-infinite, and their effects on the stability of the system are studied.
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4.3 State space model of a VSC connected to an infinite ac
source

The VSC system to be modelled is depicted in Figure 4.2. In the ac side, the converter
is modelled as a ideal controllable three-phase voltage source connected to the ac source
through the phase reactor. In this section, the ac sources connected to the Point of Common
Coupling (PCC), are assumed infinitely strong (See Figure 4.2). This means that the source
impedance is zero (i.e. Rsi = 0 and Lsi = 0). In the dc side, the converter is modelled
as a current source, where the magnitude of the current is such that the powers in the ac
side and the dc side of the converter are equal. The control system is the same as the one
described in Section 2.4. The converter capacitor is considered as part of the dc grid, then,
it is not modelled as part of the VSC system. Next, the state space model of a VSC system
connected to a infinite ac source is derived.

Figure 4.2: Model of the i-th VSC system

4.3.1 VSC open-loop model

From Figure 4.2, the model that describes the current injection of the i-th VSC to the i-th
dc node can be expressed in the converter dq frame as

didfi
dt

= −Rfi

Lfi

idfi + ωgii
q
fi +

1

Lfi

udgi −
1

Lfi

udci (4.6a)

diqfi
dt

= −Rfi

Lfi

iqfi − ωgii
d
fi +

1

Lfi

uqgi −
1

Lfi

uqci (4.6b)

ii =
udcii

d
fi + uqcii

q
fi

ei
(4.6c)

where the subscript “i” denotes that the variable corresponds to the i-th VSC system. The
currents idfi and iqfi are the d and q components of the current through the phase reactor,
respectively; udgi and uqgi are the d and q components of the ac grid voltage, respectively;
udci and uqci are the d and q components of the converter voltage, respectively; ωgi is the
angular frequency of the ac side of the VSC; ii is the current injected to the dc side of the
VSC; ei is the voltage of the dc node to which the VSC is connected. Furthermore, Rfi and
Lfi are the resistance and the inductance of the phase reactor.
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It should be noted that the system (4.6) is nonlinear, since (4.6c) is a nonlinear expression.
Equation (4.6) can be linearized as follows

d∆idfi
dt

= −Rfi

Lfi

∆idfi + ωgi0∆iqfi + iqfi0∆ωgi +
1

Lfi

∆udgi −
1

Lfi

∆udci (4.7a)

d∆iqfi
dt

= −ωgi0∆idfi −
Rfi

Lfi

∆iqfi − idfi0∆ωgi +
1

Lfi

∆uqgi −
1

Lfi

∆uqci (4.7b)

∆ii =
udci0
ei0

∆idfi +
uqci0
ei0

∆iqfi +
idfi0
ei0

∆udci +
iqfi0
ei0

∆uqci −
Pi0
e2
i0

∆ei (4.7c)

where the subscript “0” denotes the initial conditions as

Pi0 = Pc0 = udci0i
d
fi0 + uqci0i

q
fi0. (4.8)

When the ac source is assumed infinite, udgi, u
q
gi and ωgi are constant. In addition, uqgi is

zero since the d axis of the dq frame is aligned to the rotating vector uαβgi . Considering the
mentioned items, the following applies

uqgi = 0, ∆udgi = 0, ∆uqgi = 0, ∆ωgi = 0. (4.9)

It should be stressed that (4.9) does not hold when the ac source is not infinitely strong.
Next, the closed-loop system models are derived when the VSC is implemented with the
VCC and the DVC described in Section 2.4.

4.3.2 VSC closed-loop model with current controller

Considering the controller algorithm described by (2.32), the VCC of the i-th VSC can be
expressed as

dmd
i

dt
= kii(i

dref
fi − idfi) (4.10a)

dmq
i

dt
= kii(i

qref
fi − iqfi) (4.10b)

udref
ci = udgi + ωgiLfii

q
fi − kpi(i

dref
fi − idfi)−md

i (4.10c)

uqref
ci = uqgi − ωgiLfii

d
fi − kpi(i

qref
fi − iqfi)−mq

i (4.10d)

where md
i and mq

i are states that accounts for the integral action of the controller (2.32).
Under the assumptions made, the voltage udqref

ci can be considered equal to udqci . Then, the
closed-loop system of the VSC is

d

dt

[
idfi
iqfi

]
=

[
−αi 0

0 −αi

] [
idfi
iqfi

]
+

[
αi 0
0 αi

] [
idref
fi

iqref
fi

]
(4.11a)

ii =
udcii

d
fi + uqcii

q
fi

ei
(4.11b)

where kpi and kii have been selected as αiLfi and αiRfi. Equation (4.11a) is linear and can
be easily expressed in terms of small signals. The linearized expression of (4.11b) becomes
(4.7c). Moreover, when the VCC outputs, (4.10c) and (4.10d), are linearized they result in

∆udci = ∆udgi + kpi∆i
d
fi + ωgi0Lfi∆i

q
fi + iqfi0Lfi∆ωgi −∆md

i − kpi∆i
dref
fi (4.12a)

∆uqci = ∆uqgi − ωgi0Lfi∆i
d
fi + kpi∆i

q
fi − idfi0Lfi∆ωgi −∆mq

i − kpi∆i
qref
fi . (4.12b)
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Furthermore, it can be also shown that, for the selected values of kpi and kii,md
i isRfii

d
fi and

mq
i is Rfii

q
fi. Finally, considering (4.9), and combining (4.12) with (4.7c), the closed-loop

system model (VSC and current controller) in terms of small signals is

d∆xc
si

dt
= Ac

si∆xc
si + Bc

sri∆rc
si + Bc

sei∆ei (4.13a)

∆ii = Cc
si∆xc

si + Dc
sri∆rc

si +Dc
sei∆ei (4.13b)

where

∆xc
si =

[
∆idfi
∆iqfi

]
, ∆rc

si =

[
∆idref

fi

∆iqref
fi

]
, Ac

si =

[
−αi 0

0 −αi

]
, Bc

sri =

[
αi 0
0 αi

]
, Bc

sei =

[
0
0

]
,

Cc
si =

[
udg0 − 2Rfii

d
fi0 + idfi0αiLfi

ei0

−2Rfii
q
fi0 + iqfi0αiLfi

ei0

]
,

Dc
sri =

αiLfi

ei0

[
−idfi0 − iqfi0

]
, Dc

sei = −Pi0
e2
i0

.

Interestingly, the system (4.13) can be further reduced to a first order system as

d∆zi
dt

= −αi∆zi + αi
[
a b

] [∆idref
fi

∆iqref
fi

]
(4.14a)

∆ii = ∆zi +
αiLfi

ei0

[
−idfi0 − iqfi0

] [∆idref
fi

∆iqref
fi

]
− Pi0
e2
i0

∆ei (4.14b)

where

∆zi = a∆idfi + b∆iqfi, a =
udg0 − 2Rfi + idfi0αiLfi

ei0
and b =

−2Rfi + iqfi0αiLfi

ei0
.

However, the model (4.14) does not allow the access to variables such us the currents ∆idfi
and ∆iqfi. The model (4.13) is considered in this thesis since it gives access to the ac side
variables.

4.3.3 VSC closed loop model with direct voltage controller

The DVC studied in this thesis is the one described by (2.54), and, for the i-th VSC, it can
be expressed as

dni
dt

= kiei(e
ref
i − ei) (4.15a)

idref
fi = kpei(e

ref
i − ei) + ni. (4.15b)

where ni is the state that accounts for the integral actions of the controller. In terms of
small signals, (4.15) becomes

d∆ni
dt

= kiei(∆e
ref
i −∆ei) (4.16a)

∆idref
fi = kpei(∆e

ref
i −∆ei) + ∆ni (4.16b)
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whose output is the current reference ∆idref
fi which is one of the inputs of the system (4.13).

Combining (4.13) and (4.16), the state space model of closed-loop system is

d∆xe
si

dt
= Ae

si∆xe
si + Be

sri∆re
si + Be

sei∆ei (4.17a)

∆ii = Ce
si∆xe

si + De
sri∆re

si +De
sei∆ei (4.17b)

where

∆xe
si =




∆idfi
∆iqfi
∆ni


 , ∆re

si =

[
∆eref

i

∆iqref
fi

]
, Ae

si =



−αi 0 αi

0 −αi 0
0 0 0


 , Be

sri =



αikpei 0

0 αi
kiei 0


 ,

Be
sei =



−αikpe

0
−kiei


 , Ce

si =

[
udg0 − 2Rfii

d
fi0 + idfi0αiLfi

ei0

−2Rfii
q
fi0 + iqfi0αiLfi

ei0
− αiLfii

d
fi0

ei0

]
,

De
sri =

αiLfi

ei0

[
−kpeii

d
fi0 − iqfi0

]
, De

sei =

(
αiLfikpeii

d
fi0

ei0
− Pi0
e2
i0

)
.

As mentioned in Section 2.4.4, the active power is controlled directly through the current
reference ∆idref

fi . Then, if a VSC connected to a strong ac grid is set to control the active
power, its state space model is given by (4.13), while if it is set to control the direct-voltage,
its state space model is given by (4.17).

4.4 State space model of a VSC connected to a non-infinite
ac source

Models for VSCs connected to non-infinite ac sources are derived in this section since it
is desired to investigate the impact of weak ac sources on the dc network dynamics of the
VSC-HDVC system. Two ac side configurations are considered in this section. In the first
configuration, the VSC is connected to a non-infinite ac source with no voltage support.
In the second configuration, apart from considering a non-infinite ac source, a shunt ac
capacitor is connected at the PCC. Next, the representation of vectors with constant rotating
speed in the converter dq is presented.

4.4.1 Constant frequency vectors in the converter dq frame

It must be borne in mind that the converter dq frame uses the angle estimated by the PLL
to perform the transformation from the stationary αβ frame to the rotating dq frame. That
means that, in transient conditions, a vector with a constant rotating speed and magnitude
will not be necessarily constant in the converter dq frame when considering a non-infinite
ac source. Similarly to [44], a grid dq frame can be defined. In order to perform the
transformation, the grid dq frame uses the synchronous angle, θsgi, which changes at a
constant rate ωgi0, and initially coincides with the converter dq frame (see Figure 4.3).
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After a disturbance, the grid dq frame and the converter dq frame do not coincide anymore,
and they can be represented as shown in Figure 4.3 where the voltage ugi is plotted1.

Figure 4.3: Left: ugi represented in the grid and the converter dq at initial conditions (t = t0). Right:
ugi represented in the grid and the converter dq frame after a disturbance (t = t1).

From Figure 4.3, both rotating frames, when transformed to the αβ frame, should give the
same vector, that is

usdqgi e
jθsgi = udqgi e

jθgi = uαβgi (4.18)

or in general, any vector z in the converter dq frame is related to the grid dq frame as

zdq = zsdqe−j∆θgi (4.19)

where ∆θgi = θgi − θsgi. In terms of small signal deviations, (4.19) becomes

∆zdq = ∆zsdq − jzsdq0 ∆θgi (4.20)

In particular, vectors which have a constant frequency, phase and magnitude, have constant
components in the grid dq frame. For example, the ac source voltage, usdqsi , indicated in
Figure 4.2, is constant since usi is a three-phase voltage with constant frequency, phase and
magnitude. This also implies that ∆usdqsi is zero. Then, ∆usdqsi expressed in the converter dq
frame is

∆udqsi = −jusdqsi0 ∆θgi (4.21)

or, more explicitly

∆udsi = usqsi0∆θgi (4.22a)
∆uqsi = −usdsi0∆θgi (4.22b)

where usdsi0 and usqsi0 are the initial operating voltages.

4.4.2 VSC closed-loop model - no ac filter capacitor at the PCC

The VSC model with the current controller is described by (4.11). However, different from
the case when the ac grid is assumed infinite, the voltage deviation ∆udqgi is not zero in the

1Note that variables in the grid dq frame have the superscript “s”
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linearized expression (4.12). Then, in terms of small signals, the current injected by the
VSC to the dc side, ∆ii, is:

∆ii =

[
udgi0 − 2Rfii

d
fi0 + αiLfii

d
fi0

ei0

−2Rfii
q
fi0 + αiLfii

q
fi0

ei0

] [
∆idfi
∆iqfi

]
(4.23)

+

[
−αiLfi

d
fi0

ei0
−αiLfi

q
fi0

ei0

] [
∆idref

fi

∆iqref
fi

]
− Pi0
e2
i0

∆ei

+

[
idfi0
ei0

iqfi0
ei0

] [
∆udgi
∆uqgi

]

where it can be seen that the only difference between (4.13b) and (4.23) are the additional
terms related to the voltage ∆udqgi . However, ∆udgi and ∆uqgi are not actually inputs nor
states of the closed-loop VSC system. Then, they have to be expressed in terms of the
states and inputs of the system. The voltage ∆udqgi can be expressed as

∆udqgi =

(
Lfi

Lsi + Lfi

)
∆udqsi +

(
Lsi

Lsi + Lfi

)
∆udqci +

(
RfiLsi −RsiLfi

Lsi + Lfi

)
∆idqfi . (4.24)

Using (4.12) and (4.24), it can be shown that, in terms of small signals, the voltage ∆udqgi

becomes

∆udgi = ∆udsi −Rsi∆i
d
fi + iqfi0Lsi∆ωgi + ωgi0Lsi∆i

q
fi + αiLsi∆i

d
fi (4.25a)

−αiLsi∆i
dref
fi

∆uqgi = ∆uqsi −Rsi∆i
q
fi − idfi0Lsi∆ωgi − ωgi0Lsi∆i

d
fi + αiLsi∆i

q
fi (4.25b)

−αiLsi∆i
qref
fi

where the term ∆ωgi denotes the frequency deviation. Regarding the angular frequency
and the angles, from Figure 4.3, it can be claimed that

∆θgi = θgi − θsgi, ∆ωgi = ωgi − ωgi0,
dωgi0

dt
= 0,

dθsgi
dt

= ωgi0. (4.26)

Using (4.26), the PLL described in Section 2.4.2 can be written in terms of small signals as

d∆nωi
dt

= kili∆u
q
gi (4.27a)

d∆θgi

dt
= ∆nωi + kpli∆u

q
gi. (4.27b)

Equation (4.22) can be entered into (4.25) and using (4.11), (4.23) and (4.27) the state space
model of the closed-loop VSC system, analogously to (4.13), is in this case

d∆xc
si

dt
= Ac

si∆xc
si + Bc

sri∆rc
si + Bc

sei∆ei (4.28a)

∆ii = Cc
si∆xc

si + Dc
sri∆rc

si +Dc
sei∆ei (4.28b)
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where

∆xc
si =

[
∆idfi ∆iqfi ∆nωi ∆θgi

]T
, ∆rc

si =
[

∆idref
fi ∆iqref

fi

]T
,

Ac
si =




−αi 0 0 0
0 −αi 0 0

−kiliLsiωgi0d kili (αiLsi −Rsi) d −kiliLsii
d
fi0d −kiliu

d
si0d

−kpliLsiωgi0d kpli (αiLsi −Rsi) d d −kpliu
d
si0d




Bc
sri =

[
αi 0 0 0
0 αi −αiLsikilid −αiLsikplid

]T

, Bc
sri = 04×1

Cc
si =

[
udsi0 − 2Rtii

d
fi0 + αiLtii

d
fi0

ei0

uqsi0 − 2Rtii
q
fi0 + αiLtii

q
fi0

ei0
0

idfi0u
q
si0 − iqfi0udsi0
ei0

]
,

Dc
sri =

[
−αiLtii

d
fi0

ei0
−αiLtii

q
fi0

ei0

]
, Dc

sei = −Pi0
e2
i0

, d =
1

1 + ifi0Lsikpli

where Lti = Lfi +Lsi and Rti = Rfi +Rsi. Considering (4.16) into (4.28), the closed-loop
system of the VSC and the DVC is given by

d∆xe
si

dt
= Ae

si∆xe
si + Be

sri∆re
si + Be

sei∆ei (4.29a)

∆ii = Ce
si∆xe

si + De
sri∆re

si +De
sei∆ei (4.29b)

where

∆xe
si =

[
∆idfi ∆iqfi ∆nωi ∆θgi ∆ni

]T
, ∆re

si =
[

∆eref
i ∆iqref

fi

]T

Ae
si =




−αi 0 0 0 αi
0 −αi 0 0 0

−kiliLsiωgi0d kilid (αiLsi −Rsi) −kiliLsii
d
fi0d −kiliu

d
si0d 0

−kpliLsiωgi0d kplid (αiLsi −Rsi) d −kpliu
d
si0d 0

0 0 0 0 0




Be
sri =

[
αikpei 0 0 0 kiei

0 αi −αiLsikilid −αiLsikplid 0

]T

,

Be
sei =

[
−αikpei 0 0 0 −kiei

]T

Ce
si =

[
udsi0−2Rtii

d
fi0+αiLtii

d
fi0

ei0

uqsi0−2Rtii
d
fi0+αiLtii

q
fi0

ei0
0

idfi0u
q
si0−i

q
fi0u

d
si0

ei0
−αiLtii

d
fi0

ei0

]

De
sri =

[
−αiLtikpeii

d
fi0

ei0
−αiLtii

q
fi0

ei0

]
, De

sei =

(
αiLtikpeii

d
fi0

ei0
− Pi0
e2
i0

)
.

4.4.3 VSC closed-loop model - ac filter capacitor at the PCC

An ac filter capacitor is connected at the PCC, as shown in Figure 4.4. In this case, the
dynamics of the voltage at the ac side capacitor, udqgi , and the current through the source
impedance, idqsi , must be considered together with (4.11).
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Figure 4.4: VSC system model with an ac capacitor

The dynamics of the current idqsi is

didsi
dt

= −Rsi

Lsi

idsi + ωgii
q
si +

1

Lsi

udsi −
1

Lsi

udgi (4.30a)

diqsi
dt

= −Rsi

Lsi

iqsi − ωgii
d
si +

1

Lsi

uqsi −
1

Lsi

uqgi (4.30b)

while the dynamics of the voltage udqgi is given by

dudgi
dt

= − 1

Cfi

idfi +
1

Cfi

idsi + ωgiu
q
gi (4.31a)

duqgi
dt

= − 1

Cfi

iqfi +
1

Cfi

iqsi − ωgiu
d
gi. (4.31b)

Considering (4.22), in terms of small signals, (4.31) and (4.30) become

d∆idsi
dt

= −Rsi

Lsi

∆idsi + ωgi0∆iqsi + iqsi0∆ωgi +
uqsi0
Lsi

∆θgi −
1

Lsi

∆udgi (4.32a)

d∆iqsi
dt

= −Rsi

Lsi

∆iqsi − ωgi0∆idsi − idsi0∆ωgi −
udsi0
Lsi

∆θgi −
1

Lsi

∆uqgi (4.32b)

d∆udgi
dt

= − 1

Cfi

∆idfi +
1

Cfi

∆idsi + uqgi0∆ωgi + ωgi0∆uqgi (4.32c)

d∆uqgi
dt

= − 1

Cfi

∆iqfi +
1

Cfi

∆iqsi − udgi0∆ωgi − ωgi0∆udgi. (4.32d)

Therefore, the state space model of the closed-loop VSC system is

d∆xc
si

dt
= Ac

si∆xc
si + Bc

sri∆rc
si + Bc

sei∆ei (4.33a)

∆ii = Cc
si∆xc

si + Dc
sri∆rc

si +Dc
sei∆ei (4.33b)

where

∆xc
si =

[
∆idfi ∆iqfi ∆idsi ∆iqsi ∆udgi ∆uqgi ∆nωi ∆θgi

]T
, ∆rc

si =

[
∆idref

fi

∆iqref
fi

]
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Ac
si =




−αi 0 0 0 0 0 0 0
0 −αi 0 0 0 0 0 0

0 0 −Rsi

Lsi

ωgi0 − 1

Lsi

iqsi0kpli iqsi0
uqsi0
Lsi

0 0 −ωgi0 −
Rsi

Lsi

0 − 1

Lsi

− idsi0kpli −idsi0 −u
d
si0

Lsi

− 1

Csi

0
1

Csi

0 0 ωgi0 uqgi0 0

0 − 1

Csi

0
1

Csi

−ωgi0 −udgi0kpli −udgi0 0

0 0 0 0 0 kili 0 0
0 0 0 0 0 kpli 1 0




,

Bc
sri =

[
αi 0 0 0 0 0 0 0
0 αi 0 0 0 0 0 0

]T

, Bc
sei = 08×1,

Cc
si =

[
udgi0 − 2Rfii

d
fi0 + αiLfii

d
fi0

ei0

udgi0 − 2Rfii
d
fi0 + αiLfii

q
fi0

ei0
0 0

idfi0
ei0

iqfi0
ei0

0 0

]

Dc
sri =

[
−αiLfii

d
fi0

ei0
−αiLfii

q
fi0

ei0

]
, Dc

sei = −Pi0
e2
i0

.

Similarly to Section 4.4.2, the closed-loop system of the VSC and the DVC (4.16) is as
follows

d∆xe
si

dt
= Ae

si∆xe
si + Be

sri∆re
si + Be

sei∆ei (4.34a)

∆ii = Ce
si∆xe

si + De
sri∆re

si +De
sei∆ei (4.34b)

where

∆xe
si =

[
∆idfi ∆iqfi ∆idsi ∆iqsi ∆udgi ∆uqgi ∆nωi ∆θgi ∆ni

]T
, ∆re

si =

[
∆eref

i

∆iqref
fi

]

Ae
si =




−αi 0 0 0 0 0 0 0 αi
0 −αi 0 0 0 0 0 0 0

0 0 −Rsi

Lsi
ωgi0 − 1

Lsi
iqsi0kpli iqsi0

uqsi0
Lsi

0

0 0 −ωgi0 −Rsi

Lsi
0 − 1

Lsi
− idsi0kpli −idsi0 −udsi0

Lsi
0

− 1
Csi

0 1
Csi

0 0 ωgi0 uqgi0 0 0

0 − 1
Csi

0 1
Csi

−ωgi0 −udgi0kpli −udgi0 0 0

0 0 0 0 0 kili 0 0 0
0 0 0 0 0 kpli 1 0 0
0 0 0 0 0 0 0 0 0




Be
sri =

[
αikpei 0 0 0 0 0 0 0 kiei

0 αi 0 0 0 0 0 0 0

]T

Be
sei =

[
−αikpei 0 0 0 0 0 0 0 −kiei

]T

Ce
si =

[
udgi0−2Rfii

d
fi0+αiLfii

d
fi0

ei0

uqgi0−2Rfii
d
fi0+αiLfii

q
fi0

ei0
0 0

idfi0
ei0

iqfi0
ei0

0 0 −αiLfii
d
fi0

ei0

]

De
sri =

[
−αiLfikpeii

d
fi0

ei0
−αiLfii

q
fi0

ei0

]
, De

sei =

(
αiLfikpeii

d
fi0

ei0
− Pi0
e2
i0

)
.
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Finally, the selection of the VSC model depends on the configuration of the ac side. To
summarize:

VSC connected to an infinite ac source: The model (4.13) is used if the VSC is set to
control the active power injection to the dc side. The model (4.17) is used if the VSC is set
to control the direct-voltage.

VSC connected to a non-infinite ac source, without ac side capacitor: The model (4.28)
is used if the VSC is set to control the active power injection to the dc side. The model
(4.29) is used if the VSC is set to control the direct-votlage.

VSC connected to a non-infinite ac source, with ac side capacitor: The model (4.33) is
used if the VSC is set to control the active power injection to the dc side. The model (4.34)
is used if the VSC is set to control the direct-votlage.

4.5 DC grid state space model

The state space model of a generic dc grid with n nodes, m branches and where p VSCs are
connected, will be derived in this section. In this thesis, cables or overhead transmission
lines are both modelled as Π-sections. As an example, Figure 4.5 shows a dc cable rep-
resented as a Π-section connected between the dc nodes j and k. The nodes are electrical
points where branches and shunt elements (such as the equivalent capacitors Cbj and Cbk
connected to the nodes j and k, respectively) are connected. A node is characterized by its
voltage. For example, in the figure, ej and ek are the voltages of the nodes j and k, respec-
tively. The series elements which interconnect the nodes are called branches. For instance,
in the figure it is shown the branch bi (which is composed by a series connection of the re-
sistance Rbi and the inductance Lbi) which interconnects the nodes j and k. The branches
are characterized by the current which flows from one node to the other corresponding
node. In the figure, the currents ij and ik represent current injections from external sources,
such as converters.

Figure 4.5: A cable connected between the nodes j and k modelled as a π section

From Figure 4.5, the dynamics of the voltages ej and ek, and the current ibi, are given by
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the following equation

Cbj
dej
dt

= −ibi + ij (4.35a)

Cbk
dek
dt

= ibi + ik (4.35b)

Lbi
dibi
dt

= −Rbiibi + ej − ek (4.35c)

which can be generalized as

C
de

dt
= −TTib + Qi (4.36a)

L
dib
dt

= −Rib + Te (4.36b)

where e is the vector of voltages of the n dc node defined as

∆e = [e1 e2 ... en]T (4.37)

ib is vector of currents through the m branches, defined as

∆ib = [ib1, ib2 ... ibm] (4.38)

i is the vector of currents injected by the p VSCs connected to the dc grid, defined as

∆i = [i1, i2 ... ip]. (4.39)

C is the capacitance matrix and the following rules define its jk-th element

cjk =

{
0 if j 6= k
Ceqj if j = k

(4.40)

In this case, the indices j and k are related to the dc node number, and their maximum
values are n. Ceqj is the equivalent capacitor connected to the dc node j. The equivalent
capacitor is given by

Ceqj = Cbj1 + Cbj2 + ...+ Cbjh + Cjvsc (4.41)

where the subscript h represents the number of cables connected to the dc node j and Cjvsc

is the VSC capacitor connected to the node j, if any is connected to it. Then, the matrix C
is a diagonal matrix whose size is n × n. L is the inductance matrix and its jk-th element
is defined as follows

ljk =

{
0 if j 6= k
Lbj if j = k

(4.42)

In this case, the indices j and k are related to the branch number, and their maximum values
are m. Lbj is the equivalent inductor of the branch bj, which comes from the Π-model of
the cable. Then, the matrix L is a diagonal matrix whose size is m×m. Finally, the jk-th
element of the resistance matrix R is defined as:

rjk =

{
0 if j 6= k
Rbj if j = k

(4.43)
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In this case, the indices j and k are related to the branch number, and their maximum values
are m. Rbj is the equivalent resistor of the branch bj, which comes from the Π-model of
the cable. Then, the matrix R is a diagonal matrix whose size is m×m.

T is the so-called incidence matrix [53], which gives information about the interconnection
of the different branches and nodes. The information needed to build matrix T is “from”
which node “to” which node the branch current flows. Then, the jk-th element of the
matrix T is defined as follow:

tjk =





+1 if k corresponds to the “from” bus of the branch j
−1 if k corresponds to the “to” bus of the branch j

0
if k does not correspond to any of the buses
to where the branch j is connected

(4.44)

In this case, the index j is related to the branch number and its maximum value is m. The
index k is related to the dc node number, and its maximum value is n. Then, the size of the
matrix T is m× n.

Q is called the current injection matrix in this thesis, since it gives information on to which
nodes the VSCs inject current. The following defines the jk-th element of Q

qjk =

{
0 if the VSC k is not connected to the node j
1 if the VSC k is connected to the node j (4.45)

where qjk is the jk-element of the matrix Q. In this case, the index j is related to the
dc node number and its maximum value is n, while the index k is related to the VSC
“identification” number and its maximum value is p. Then, the matrix Q is a diagonal
matrix whose size is n× p.

As a result, the state space model of the dc grid is given by

dxg

dt
= Agxg + Bgig (4.46a)

e = Cgxg (4.46b)

which is a linear system. Equation (4.46), in terms of small signals, is

d∆xg

dt
= Ag∆xg + Bg∆i (4.47a)

∆e = Cg∆xg (4.47b)

where

∆xg =

[
∆e
∆ib

]
, Ag =

[
0n×n −C−1TT

L−1T L−1R

]
, Bg =

[
C−1Q
0m×p

]
, Cg = [In×n 0n×m]

4.6 HVDC system state space model

In order to show the generality of the modelling procedure, the state space model of a
three-terminal HVDC system, such as the one shown in Figure 2.23 and Figure 4.1, is
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developed in this section as a example. Let us assume that the VSC1 is set to control the
direct-voltage, and the VSC2 and VSC3 are set to control the power. The state space models
of VSC1, VSC2 and VSC3 are:

VSC1

d∆xe
s1

dt
= Ae

s1∆xe
s1 + Be

sr1∆re
s1 + Be

se1∆e1 (4.48a)

∆i1 = Ce
s1∆xe

s1 + De
sr1∆re

s1 +De
se1∆e1 (4.48b)

VSC2

d∆xc
s2

dt
= Ac

s2∆xc
s2 + Bc

sr2∆rc
s2 + Bc

se2∆e2 (4.49a)

∆i2 = Cc
s2∆xc

s2 + Dc
sr2∆rc

s2 +Dc
se2∆e2 (4.49b)

VSC3

d∆xc
s3

dt
= Ac

s3∆xc
s3 + Bc

sr3∆rc
s3 + Bc

se3∆e3 (4.50a)

∆i3 = Cc
s3∆xc

s3 + Dc
sr3∆rc

s3 +Dc
se3∆e3 (4.50b)

Then, the state space model of the VSC-set subsystem (as defined in Figure 4.1), where the
inputs are the references ∆re

s1, ∆rc
s2 and ∆rc

s3 and the outputs are i1, i2 and i3, is

d∆xvsc

dt
= Avsc∆xvsc + Br

vsc∆rvsc + Be
vsc∆e (4.51a)

∆i = Cvsc∆xvsc + Dr
vsc∆rvsc + De

vsc∆e (4.51b)

where

∆xvsc =




∆xe
s1

∆xc
s2

∆xc
s3


 , Avsc =



Ae

s1 0 0
0 Ac

s2 0
0 0 Ac

s3


 , Br

vsc =



Be

sr1 0 0
0 Bc

sr2 0
0 0 Bc

sr3


 ,

∆rvsc =




∆re
s1

∆rc
s2

∆rc
s3


 , Be

vsc =



Be

se1 0 0
0 Bc

se2 0
0 0 Bc

se3


 , Cvsc =



Ce

s1 0 0
0 Cc

s2 0
0 0 Cc

s3


 ,

Dr
vsc =



De

sr1 0 0
0 Dc

sr2 0
0 0 Dc

sr3


 , De

vsc =



De

se1 0 0
0 Dc

se2 0
0 0 Dc

se3




In order to obtain the state space model of the MTDC system, (4.47) can be combined with
(4.51). The following is the state space model of a three-terminal VSC-HVDC system

d∆xsys

dt
= Asys∆xsys + Bsys∆rsys (4.52a)

∆ysys = Csys∆xsys (4.52b)

where

∆xsys =

[
∆xvsc

∆xg

]
, Asys =

[
Avsc Be

vscCg

BgCvsc Ag + BgD
e
vscCg

]

∆rsys = ∆rvsc, Bsys =

[
Br

vsc

BgD
r
vsc

]
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and the matrix Csys can be defined in such a way that the desired states are obtained as
outputs. From the model (4.52) the dynamic characteristic of the MTDC system can be
studied by calculating the eigenvalues of the system.

Finally, the expressions that define the VSC models are dependent on the initial operating
conditions. The initial values of the dc side, Pi0 and ei0 and the initial values of the ac side,
idfi0, iqfi0, idsi0, iqsi0, udgi0, uqgi0, and udsi0 are calculated iteratively using the Newton-Raphson
algorithm.

4.7 Eigenvalue analysis

While the modelling procedure is developed for a general case in Section 4.6, two-terminal
VSC-HVDC systems are modelled for the sake of simplicity. The state space model of two-
terminal VSC-HVDC system is obtained following the procedure presented in Section 4.6,
and the stability of the system is evaluated through the calculation of its eigenvalues. The
impact of different factors, such as operating points, controller parameters and ac system
configuration, on the stability of the system is studied. Next, the data considered for the
system under analysis is presented. It should be borne in mind also that, as stated in Section
3.3, the typical control strategy of two-terminal VSC-HVDC systems is not assumed in
this section, but instead, the VSC which controls the direct voltage is fixed regardless the
direction of the power.

4.7.1 System data

The two-terminal VSC HVDC system, analyzed in Section 3.3, is further studied in this
section. The system is illustrated more in detail in Figure 4.6. The ratings of both VSCs
and the dc cable data are as indicated in Table 3.1 and Table 3.2, respectively. The values of
the phase reactor and the VCC parameters for both VSCs are given in Table 4.1 in per unit.
In addition, the parameters of the dc cable are shown in Table 4.2 in per unit per kilometer.

Figure 4.6: Sketch of the two-terminal VSC-HVDC system under study

The bases are selected as shown in Table B.2. It should be noted that the inductance of
the phase reactor of both VSCs, Lf1,2, has been selected as 0.25 pu (which accounts for
the typical reactance of the transformer, 0.1 pu, together with the typical reactance of the
converter phase reactor, 0.15 pu [15]). The resistances of the phase reactor, Rf1,2, are
assumed as 1% of the reactance. The converter capacitors, C1,2 has been selected such
that the capacitor time constant is 5ms, as suggested in Section 2.2.1. The bandwidth of

61



Chapter 4. Small signal modelling and analysis of VSC-HVDC system

the VCC of both VSCs, α1,2, are selected as 4 pu (1256.6 rad/s), as suggested in [44].
Finally, the DVC parameters of VSC1 are varied in the different tests performed, and they
are specified at the beginning of every test.

Table 4.1: Converter data

Electrical parameter Value
Phase reactor inductance (Lf1, Lf2) 0.25 pu
Phase reactor resistance (Rf1, Rf1) 0.0025 pu

Capacitor per pole (C1, C2) 3.142 pu
VCC bandwidth (α1, α2) 4.0 pu

VCC proportional gain (kp1, kp2) 1.0 pu
VCC integral gain (ki1, ki2) 0.01 pu

Table 4.2: CL12 Cable Data in pu

Electrical parameter Value
Cable capacitance (Cb1) 0.0195 pu/km
Cable inductance (Lb1) 1.975·10−4 pu/km
Cable resistance (Rb1) 1.253·10−4 pu/km

4.7.2 VSCs connected to infinite ac sources

Similar to Section 3.3, the VSCs of the two-terminal HVDC system are assumed to be
connected to infinite ac sources in this section. Two cases are studied, and they are diffe-
rentiated by the choice of the DVC parameters kpe1 and kie1. The choice kpe1 and kie1 is
shown in Table 4.3. In both cases, the cable length is assumed as 50 km.

Table 4.3: DVC parameters of VSC1

Parameter Case 1 (pu) Case 2 (pu)
ωn1 0.40 0.80
ξ1 3.0 3.0
kpe1 4.62 9.23
kie1 0.31 1.23

It should be highlighted that the choice of kpe1 and kie1 are higher than the values re-
commended in [44], which, adapted to (2.48), means that ξ1 should be equal to 1 and ωn1

should be less than 0.1α1. However, high values are chosen for the sake of illustration. Be-
sides, it should be borne in mind that the ac source to which VSC1 is connected is assumed
infinite which makes the system quite robust.

The VSC-set subsystem is modelled as indicated in Section 4.3, meaning that VSC1 is
modelled as (4.17) and VSC2 as (4.13). The dc grid subsystem is modelled following
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the procedure indicated in Section 4.5. Finally, the system state space model is obtained
according to the procedure indicated in Section 4.6. The power transfer between VSC1 and
VSC2 is regulated with the current reference idref

f2 . In this section, the current references,
iqref
f1 and iqref

f2 are set to zero. The direct-voltage reference, eref
1 is set to 1.

Table 4.4 shows the eigenvalues for idref
f2 equal to +1 pu, 0 and −1 pu. The table shows

that, in case 1, the system is stable for the three values of idref
f2 since the real parts of all

eigenvalues are negative. The eigenvalues λ1,2 are complex conjugate which means that
they are oscillatory modes. Moreover, the real parts of λ1,2 are very small compared to
the imaginary parts meaning that they are not well damped oscillation modes. Another
interesting observation is that the real part of λ1,2 increases as idref

f2 decreases. In case 2,
λ1,2 are not-well-damped oscillatory modes again. However, the main difference from case
1 is that, for idref

f2 equal to −1, the real parts of λ1,2 are positive, which means that the
system is unstable. The eigenvalues λ3,4 changes also with the operating point, but their
real parts are negative in all the cases. Finally, λ5,6,7,8 are negative real numbers and they
do not change when the initial operating point is changed.

Table 4.4: Eigenvalues for different idref
f2 and DVC parameters

Set-points Eigenvalues case 1 (pu) Eigenvalues case 2 (pu)

idref
f2 = +1

λ1,2 = −0.59± j7.00 λ1,2 = −0.87± j6.96
λ3 = −3.99 λ3 = −3.97
λ4 = −0.49 λ4 = −0.98
λ5 = −0.08 λ5 = −0.15
λ6 = −4.00 λ6 = −4.00
λ7 = −4.00 λ7 = −4.00
λ8 = −4.00 λ8 = −4.00

idref
f2 = 0

λ1,2 = −0.38± j7.13 λ1,2 = −0.44± j7.27
λ3 = −3.22 λ3,4 = −1.80± j0.61
λ4 = −0.58
λ5 = −0.08 λ5 = −0.15
λ6 = −4.00 λ6 = −4.00
λ7 = −4.00 λ7 = −4.00
λ8 = −4.00 λ8 = −4.00

idref
f2 = −1

λ1,2 = −0.13± j7.25 λ1,2 = 0.12± j7.49
λ3 = −2.41 λ3,4 = −1.21± j1.37
λ4 = −0.74
λ5 = −0.08 λ5 = −0.15
λ6 = −4.00 λ6 = −4.00
λ7 = −4.00 λ7 = −4.00
λ8 = −4.00 λ8 = −4.00

Table 4.5 and Table 4.6 show the absolute values of the participation factors for case 1 when
idref
f2 = +1 and when idref

f2 = −1, respectively. From the participation factors the following
can be claimed:

1. The eigenvalues λ1,2 are related to the states ∆e1, ∆e2 and ∆ib1 which indicates that
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λ1,2 are related to the resonance phenomenon of the dc side.

2. The eigenvalue λ3 is related to ∆idf1, which reflects the VCC dynamics. However, in
Table 4.6 it can be seen that λ3 is related to ∆idf1, ∆e1 ∆e2, which reflects a possible
interaction between the VCC and the DVC.

3. The eigenvalue λ4 is related to ∆e1 and ∆e2, which means that it is related to the
DVC dynamics. However, Table 4.6 shows that λ4 also influences ∆idf1 reflecting a
possible interaction between the VCC and the DVC.

4. The eigenvalue λ5 is related the integral part of the DVC, ∆n1.

5. The eigenvalues λ6,7,8 are related to the states ∆iqf1, ∆idf2 and ∆iqf2 meaning that they
relate to the VCC of VSC1 and VSC2.

Table 4.5: Absolute values of the participation factors for case 1 and idref
f2 = 1

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

∆idf1 0.0006 0.0006 1.0078 0.0085 0.0001 0 0 0
∆iqf1 0 0 0 0 0 1 0 0
∆n1 0.0015 0.0015 0.0004 0.192 1.1886 0 0 0
∆idf2 0 0 0 0 0 0 1 0
∆iqf2 0 0 0 0 0 0 0 1
∆e1 0.2542 0.2542 0.0069 0.6134 0.0945 0 0 0
∆e2 0.2542 0.2542 0.003 0.6006 0.0942 0 0 0
∆ib1 0.5062 0.5062 0.0017 0.0135 0 0 0 0

Table 4.6: Absolute values of the participation factors for case 1 and idref
f2 = −1

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8

∆idf1 0.0386 0.0386 1.7282 0.7864 0.0072 0 0 0
∆iqf1 0 0 0 0 0 1 0 0
∆n1 0.0004 0.0004 0.0261 0.2003 1.1748 0 0 0
∆idf2 0 0 0 0 0 0 1 0
∆iqf2 0 0 0 0 0 0 0 1
∆e1 0.2894 0.2894 0.5021 1.0181 0.0905 0 0 0
∆e2 0.2186 0.2186 0.3535 1.009 0.0919 0 0 0
∆ib1 0.4697 0.4697 0.1013 0.0403 0.0004 0 0 0

Impact of the operating point

Figure 4.7 shows the pole placement when the current reference idref
f2 decreases from +1 pu

(indicated with the triangle) to−1 pu (indicated with the circle), decreased in steps of−0.1
pu. Figure 4.7(a) shows that, in case 1, the eigenvalues λ1,2 approach the unstable region1

1The unstable region is defined as the part of the s-plane where the real part of the complex numbers are
all positive, i.e. from Figure 4.7, the unstable region is to the right side of the dashed gray line.
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of the s-plane as idref
f2 decreases. Figure 4.7(b) shows that, in case 2, the system becomes

unstable when idref
f2 is less than−0.8 pu for this case. Actually, calculations show that when

idref
f2 is equal to−0.81, λ1,2 are 0.0014± j7.46 which are an unstable eigenvalues. The other

eigenvalues, however, remain inside the well damped area defined by the dotted gray lines.

The show the effects of removing the dc-side resonance, the dc cable is modelled as only
a resistance of 0.01 pu. Although not realistic, for a two-terminal HVDC system, this
configuration might well represent a back-to-back VSC-HVDC system. The eigenvalues
of the system are calculated again for case 1 and 2. The eigenvalues when idref

f2 is changed
from +1 to −1, in steps of −0.1 are plotted in Figure 4.8. It can be seen that similar
eigenvalues as λ1,2 are not found in Figure 4.8 since the dc-side resonance is removed.
The other eigenvalues are well damp, meaning that the bandwidth of the DVC can be high
without jeopardizing the dynamics of the system. This also means that, modelling the dc
cable as only a resistance can give optimistic values for the DVC gains [51]. Then, for the
dynamic of the dc network, the dc cables must be modelled in detail.

−4 −3 −2 −1 0

−5

0

5

Well damped area

λ1

λ2

λ3 λ4λ4

λ5λ6,7,8

real axis

im
ag

in
ar

y
ax

is

(a) Pole placement, case 1
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(b) Pole placement, case 2

Figure 4.7: Eigenvalues of the system for idref
f2 from +1 (4) to −1 (◦), in steps of −0.1. The cable

length is 50 km

According to results shown in Table 4.4, 4.5, 4.6 and Figures 4.7 and 4.8, the following can
be concluded:

1. The stability of the system depends on the power transfer, the DVC parameters, and
the dynamic characteristic of the dc side of the system. In the analyzed cases, the
system becomes unstable when the current reference idref

f2 is less than −0.8 pu, and
when the DVC gains are high.

2. In the analyzed cases, it has been found that the instability is related to the resonance
phenomenon of the dc side of the system. In fact, when the dc side resonance is
removed (by modelling the as a resistance), all the eigenvalues are well damped in
all the cases.
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(a) Pole placement for case 1 and the cable modelled
as a resistance
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(b) Pole placement for case 2 and the cable modelled
as a resistance

Figure 4.8: Eigenvalues of the system for idref
f2 from +1 (4) to −1 (◦), in steps of −0.1. The cable

is modelled as only a resistance.

Eigenvalue analysis also confirms the results from the simulations shown in Section 3.3.
In that case, instability occurred when the power transfer from VSC1 to VSC2 is ramped
up to 600 MW (corresponding to idref

f2 = −1 pu). It has been shown in this section that
the eigenvalues λ1,2 approach to the unstable region when the idref

f2 gets around −1 pu. In
addition, the oscillation frequency in the unstable case is found to be around 350 Hz in
Section 3.3. For idref

f2 equal to −0.81 pu, the eigenvalues λ1,2 are 0.0014 ± j7.46, which
correspond to an oscillation frequency of 7.46× 50 = 373 Hz. This value is in the order of
the oscillation frequency found in Section 3.3.

When the power transfer from VSC2 to VSC1 is ramped up to 600 MW (corresponding to
idref
f2 = 1 pu), the system is shown to be stable in Section 3.3. From the analysis, it is shown

that λ1,2 move away from the unstable region when idref
f2 is increased to +1 pu. This means

that the real values of λ1,2 become more negative and the oscillation gets better damped.

Impact of the cable length and the DVC integral gain

In Section 3.3, the impact of the cable length has been also investigated through simula-
tions. It has been shown that the system remains stable in all the analyzed cases when the
cable length is 100 km. In this section, the impact of the cable length on the system dyna-
mics is investigated through eigenvalue analysis. Figure 4.9(a) shows the pole placement
when the idref

f2 is −1 pu, iqref
f1 and iqref

f2 are zero, eref
1 is 1 pu, the DVC gains are set according

to case 2, and the length is changed from 50 km to 150 km in steps of 5 km. It can be seen
from the figure that the real part of λ1,2

1 decreases and become negative as the length in-

1In this section, from now on, λ1,2 represents the eigenvalues that are related to the resonance phenomenon
of the dc side.
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creases which means that the oscillations are more damped. The imaginary part of λ1,2 also
decreases meaning that the oscillation frequency decreases. This means that, the longer the
transmission line, the lower the resonance frequency of the dc side of the system.

Figure 4.9(b) shows the pole placement when idref
f2 is set to −1 pu, iqref

f1 and iqref
f2 are zero,

eref
1 is 1 pu, kpe1 is 9.23 pu, and the integral term of the DVC, kie1, is changed from 0 to

12.31 pu. It can be seen that the variation of kie1 has negligible effects on λ1,2. However, it
has a considerable impact on the eigenvalues related to the DVC, which move towards the
unstable region (although they still remain inside the stable region). If the eigenvalues of
interest are λ1,2, kie1 can be neglected since it does not have a significant impact on these
poles. This implies that the DVC can be implemented as only a proportional controller.
That is

∆idref
f1 = kpe1(eref

1 − e1) (4.53)
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(a) Pole placement when the cable length is changed
from 50 km (4) to 150 km (◦) in steps of 5 km.
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(b) Pole placement when kie1 is changed from 0 (4)
to 12.31 pu (◦) in steps of 0.62 pu.

Figure 4.9: Eigenvalues of the system with idref
f2 = −1

Impact of the current controller bandwidth

Another test performed is the increase of the VCC bandwidth of the VSC which controls
the active power, VSC2. In Table 4.7, the eigenvalues of the system are shown when the
VCC bandwidth of VSC2, α2, takes three values, 4, 40 and 400 pu. The other controller
parameters are set as defined for case 2, i.e. α1 = 4 pu, kpe1 = 9.23 pu and kie1 = 1.23 pu.
The eigenvalues are obtained for two different values of idref

f2 , +1 and −1 pu.

The results in Table 4.7 show that the speed of response of VSC2 has no effect on the
eigenvalues of the system, except on those that correspond to the dynamics of the VCC
of VSC2, i.e. λ7,8. If the speed of response of the VCC is assumed to be very high, the
currents idf2 and iqf2 can be assumed constant; and, therefore, having the voltage source us1
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Table 4.7: Eigenvalues for different idref
f2 and VSC2’s VCC bandwidth

Set-points idref
f2 = +1 idref

f2 = −1

α2 = 4

λ1,2 = −0.87± j6.96 λ1,2 = 0.12± j7.49
λ3 = −3.97 λ3,4 = −1.22± j1.37
λ4 = −0.98
λ5 = −0.15 λ5 = −0.15
λ6 = −4.00 λ6 = −4.00
λ7 = −4.00 λ7 = −4.00
λ8 = −4.00 λ8 = −4.00

α2 = 40

λ1,2 = −0.87± j6.96 λ1,2 = 0.12± j7.49
λ3 = −3.97 λ3,4 = −1.22± j1.37
λ4 = −0.98
λ5 = −0.15 λ5 = −0.15
λ6 = −4.00 λ6 = −4.00
λ7 = −40.00 λ7 = −40.00
λ8 = −40.00 λ8 = −40.00

α2 = 400

λ1,2 = −0.87± j6.96 λ1,2 = 0.12± j7.49
λ3 = −3.97 λ3,4 = −1.22± j1.37
λ4 = −0.98
λ5 = −0.15 λ5 = −0.15
λ6 = −4.00 λ6 = −4.00
λ7 = −400.00 λ7 = −400.00
λ8 = −400.00 λ8 = −400.00

constant, the active power injection or absorption to the dc side can also be considered
constant. That means that the i-th VSC which controls the active power can be modelled
as a constant power device without affecting the other eigenvalues of the system. Then, the
current injected by the i-th VSC to its dc side can be modelled as

∆ii = −Pi0
e2
i0

∆ei (4.54)

which means that a VSC which controls the power can be modelled as a resistance whose
sign depends on the direction of the power, and whose value depends on the power and
voltage values. If the VSC is injecting power into the dc side, the resistance is negative. If
the VSC is absorbing power from the dc side, the resistance is positive.

The impact of the bandwidth of the current controller of VSC1 is also investigated. One of
the main assumptions for arriving to the formula for the parameters of the DVC (2.48) is
that the VCC is assumed very fast compared to the DVC. According to the recommenda-
tions in [44], for a VCC bandwidth of 4 pu, kpe1 and kie1 should be not higher than 1.54 pu
and 0.31 pu, respectively, which considers the assumption that the bandwidth of the DVC
should be ten times smaller than the VCC. However, the values analyzed and shown in
Table 4.3 are relatively high and make the speed of the DVC comparable to the speed of
the VCC. Then, if higher values of kpe1 and kie1 are desired, the bandwidth of the VCC, α1

should also be increased. Figure 4.10 shows the eigenvalues when α1 is varied from 4 to
24 pu in steps of 1 pu. It can be seen that when α1 is between 4 and 7 pu, the real part of
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λ1,2 increases. When α1 is greater than 7 and less than 14 pu, the real parts of λ1,2 starts
decreasing but they are still positive. Finally, when α1 is greater than 14 pu, the real parts
of λ1,2 becomes more negative, therefore, better damped.
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Figure 4.10: Eigenvalues for case 2, idref
f2 = −1, cable of 50 km, and a change of α1 from 4 to 24 in

steps of 1

4.7.3 VSCs connected to non-infinite ac sources

The same two-terminal VSC HVDC system studied previously is analyzed in this section,
but considering that the VSCs are connected to non-infinite ac sources. The VSC controller
parameters are as specified in Tables 4.3 and 4.4. The strength of ac system is characterized
through the Short-Circuit Ratio (SCR). The SCR is defined in [55] as the ratio between the
short-circuit power of the ac system to which the converter (either VSC or thyristor-based
converter) is connected, and the rated power of the VSC. That is

SCR =
Ssc

Srated

(4.55)

where Ssc is the short-circuit MVA of the ac system, and Srated is the converter MVA rating.
Let us start the analysis with a SCR of 5, which means that the ac source reactance xs is
0.2 in pu. If an additional resistance equal to 10% of the reactance is considered, then, for
a SCR of 5, the ac source inductance Ls is 0.2 pu and the resistance Rs is 0.02 pu.

Since the VSCs are connected to non-infinite ac sources, then, VSC1 is modelled as (4.29)
and VSC2 is modelled (4.28), where the PLL is taken into consideration. The PLL para-
meters are selected as indicated by (2.41), where αPLL is selected as 5 Hz (0.1 pu). About
the VSC’s setpoints, iqref

f2 is set to zero, iqref
f1 is set to −0.3 pu (to improve the voltage ug),

and eref
1 is set to 1 pu. Table 4.8 shows the eigenvalues of the system for idref

f2 equal to +1,
0, and −1.

It can be shown through the participation factors that the eigenvalues shown in Table 4.8
are related to the dynamics of the system, as follow:
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1. λ1,2 are related to the resonance phenomenon of the dc grid.

2. λ3,4,7,8 are, in most of the cases, related to the dynamics of the VCC, i.e. the currents
idf1, iqf1, idf2 and iqf2, respectively.

3. λ5,6 are related to the dynamics of the DVC.

4. λ9,10 are related to the PLL dynamics of VSC1.

5. λ11,12 are related to the PLL dynamics of VSC2.

Similarly to Section 4.7.2, the eigenvalues λ1,2 are identified as the relevant ones in terms of
the stability of the system. As in the previous case, the eigenvalues related to the resonance
phenomenon of the dc side are not well damped. Moreover, when idref

f2 is set to −1 pu
the real parts of λ1,2 are positive in both cases, differently from the infinite ac source case,
where only in case 2 the real parts of λ1,2 are positive. This implies that a weak ac source
deteriorates the dc side dynamic performance of the system compared to the cases with a
strong ac source. In order to clarify this, Figure 4.11 plots the pole placement for both,
case 1 and case 2, with idref

f2 changed from +1 to −1 pu in steps of −0.1 pu. It can be seen
that, in case 1, the system turns unstable when idref

f2 is approximately less than −0.81 pu,
while, in case 2, the system turns unstable when idref

f2 is approximately less than −0.45 pu.
In Table 4.9, the maximum power that can be transfered without losing stability, for SCRs
equal to infinite, 5 and 3, and the DVC set as case 1 and 2 are presented. It can be seen
from the table that the lower the SCR (the weaker the system), the lower the power limit.
Note that, in Table 4.9, a positive power direction is from VSC1 to VSC2.

The same tests regarding the dc cable length and the integral term of the DVC are performed
in this section. As in section 4.7.2, the length of the cable is varied from 50 km to 150 km
in steps of 5 km, the integral term kie1 is changed from 0 to 12.31 pu in steps of 0.62
pu. In addition, the controller parameters are set according to case 2, and the SCR of the ac
systems is 5. Similarly to Section 4.7.2, Figure 4.12(a) shows that the increase of the length
turns the eigenvalues λ1,2 better damped, although the system remains unstable for a length
150 km. Figure 4.12(b) shows that the variation of kie1 does not impact λ1,2 considerably.
However, it has an negative effect on the eigenvalues related to the DVC. The eigenvalues
related to the DVC move towards the unstable region, and actually becomes unstable. If
λ1,2 are the eigenvalues of interest, kie1 can be considered zero, meaning that, as in Section
4.7.2, the DVC can be implemented as a proportional controller.
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Table 4.8: Eigenvalues for different values of idref
f2 and DVC parameters, non-infinite ac sources

Set-points Eigenvalues case 1 (pu) Eigenvalues case 2 (pu)

idref
f2 = +1

λ1,2 = −0.73± j6.90 λ1,2 = −1.07± j6.68
λ3 = −4.58 λ3 = −5.35
λ4 = −3.89 λ4 = −3.88
λ5 = −0.45 λ5 = −0.80
λ6 = −0.08 λ6 = −0.15
λ7 = −4.04 λ7 = −4.04
λ8 = −4.20 λ8 = −4.02
λ9,10 = −0.10± j0.02 λ9,10 = −0.10± j0.01
λ11,12 = −0.10± j0.02 λ11,12 = −0.10± j0.02

idref
f2 = 0

λ1,2 = −0.38± j7.13 λ1,2 = −0.44± j7.27
λ3 = −3.28 λ3,4 = −1.81± j0.50
λ4 = −0.55 λ5 = −4.04
λ5 = −0.14 λ6 = −0.17
λ6 = −4.04 λ7 = −4.04
λ7 = −4.04 λ8 = −4.04
λ8 = −4.04 λ9 = −0.12
λ9,10 = −0.08± j0.01 λ10 = −0.08
λ11,12 = −0.10 λ11,12 = −0.10

idref
f2 = −1

λ1,2 = 0.11± j7.32 λ1,2 = 0.69± j7.51
λ3 = −1.76 λ3,4 = −0.83± j1.56
λ4 = −0.94
λ5 = −4.22 λ5 = −4.22
λ6 = −0.08 λ6 = −0.15
λ7 = −4.04 λ7 = −4.04
λ8 = −3.88 λ8 = −3.88
λ9,10 = −0.09± j0.03 λ9,10 = −0.09± j0.03
λ11,12 = −0.10± j0.001 λ11,12 = −0.1± j0.001

Table 4.9: Maximum power transfer for different SCRs and DVC set as case 1 and 2

Cases SCR = Inf. SCR = 5 SCR=3
Case 1 1.51 0.81 0.64
Case 2 0.81 0.45 0.36
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(a) Eigenvalues, case 1
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(b) Eigenvalues, case 2

Figure 4.11: Eigenvalues of the system for idref
f2 from +1 (4) to−1 (◦), in steps of −0.1. The cable

length is 50 km. The SCRs of the ac systems is 5.
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(a) Ploce placement for a cable length 50 km
(4) to 150 km (◦)in steps of 5km
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(b) Pole placement when kie1 is changed from 0
(4) to (◦) 12.32 pu in steps of 0.62 pu.

Figure 4.12: Eigenvalues of the system for idref
f2 = −1, case 2 and SCR of 5.
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4.7.4 VSCs connected to non-infinite ac sources with an shunt capaci-
tor at the PCC

The results of the eigenvalue analysis for a system in which an ac capacitor is connected
at the PCC is briefly presented in this section. The ac capacitor susceptance is 3 pu, the
DVC parameters are set as defined in case 2, and the cable length is 50 km. Figure 4.13
shows the pole placement when idref

f2 is changed from +1 to −1 for two different reactive
power injections, Qg1 = 0 and Qg1 = 0.3. The poles related to the dc-side resonance, λ1,2

remain inside the stable area for all power transfers, which is different from a similar case
with no ac capacitor. New poles which are related with the ac-side resonance appear, and
it is found that they move into the RHP as the converter consumes more reactive power. A
close-up look of the ac-side resonance related poles is depicted in Figure 4.14, and it can
be seen that the system is unstable when idref

f1 is positive. In fact, the system is unstable as
long as idref

f1 is greater than −0.4 pu. This is opposite to the finding related to the dc-side
instability, in which the instability occurred when idref

f1 is lower than certain value, such as
−0.45 pu for the case without capacitor. This is further studied using the frequency domain
approach presented in Chapter 5.
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(b) Case 2, Qg1 = 0.3

Figure 4.13: Eigenvalues of the system for idref
f2 from +1 (4) to−1 (◦), in steps of −0.1. The cable

length is 50 km. The SCRs of the ac systems are 5.
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(b) Case 2, Qg1 = 0.3

Figure 4.14: Eigenvalues of the system for idref
f2 from +1 (4) to−1 (◦), in steps of −0.1. The cable

length is 50 km. The SCRs of the ac systems are 5.
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4.8 Conclusions

In this chapter, the development of a state space model of a VSC-HVDC system has been
presented. A modular approach has been adopted, which means that the system is divided
into subsystems which are modelled individually. Afterwards, the subsystems are merged
in order to form the system state space model of interest. The modelling approach is not
restricted to a particular configuration, which means that more complex HVDC structures,
such as MTDC systems can be modelled with the proposed modelling approach. For the
sake of simplicity, the dynamic analysis in this chapter has been carried out for a two-
terminal VSC-HVDC system.

The dynamic analysis of a two-terminal VSC-HVDC system has been performed through
eigenvalue analysis. The analysis reveals that the unstable oscillations found in Section
3.3 through simulations are due to the fact that unstable eigenvalues appear when the gains
of the DVC are high, and when the power transfer exceeds a certain value. Moreover,
it has been indicated that the instability is related to the dc-side resonance phenomenon.
Actually, it has been shown that, when removing the dc-side resonance by modelling the
cable as a resistance, the eigenvalues are all located in the well damped area. The effects
of the strength of the ac system to which the VSCs are connected have been also analyzed.
It has been shown that the weaker the ac system, the more limited the power transmission
from the stability point of view is. The effects of an ac capacitor connected at the PCC
have also been investigated. It has been shown that the connection of an ac capacitor
manage to damp the resonance phenomenon. However, in the studied conditions, the ac
side resonances introduced by the LC circuit in the ac side introduce stability problems
which are related to the amount of reactive power compensation.

Additional tests have been performed with the aim of studying the impact of other factors
on the stability of the system. The increase of the dc cable length improves the dynamic
performance of the system, since it makes the eigenvalues λ1,2 to move towards the stable
region as the length increases. The increase of the integral term of the DVC seems not
to have any effect on λ1,2, but its impact on the DVC related poles is considerable. The
increase of the VCC bandwidth of the VSC which controls the power has shown not to have
almost any effect on the poles of the system. Increasing the speed of the VCC bandwidth of
the VSC which controls the direct-voltage has shown to improve the dynamic performance,
confirming the rule that the DVC bandwidth should be at least ten times smaller than the
VCC bandwidth.

Although eigenvalue analysis has been helpful in establishing the influence of different
parameters on the dynamic performance of the system, it does not give a clear reason why
the system turns unstable. For instance, it is not clear why the direction of the power matters
on the stability of the system, or why the resonance of the dc grid becomes undamped
when the proportional gain of the DVC increases. In order to gain a better understanding
on the origin of the instability, a frequency domain approach is presented in Chapter 5. The
frequency domain analysis provides other tools such as bode plots and the nyquist criteria,
which are also of help on the investigation the nature of the unstable cases.
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Chapter 5

Frequency domain analysis on HVDC
systems

In Chapter 4, it has been found through eigenvalue analysis that, in some particular situa-
tions, a two-terminal VSC-HVDC system becomes unstable. The investigation indicates
that the instability is related to the interaction between the dc side resonance phenomenon
and the VSC which controls the direct-voltage. For a given system, this instability depends
on the parameters of the DVC and the direction of the power transfer. However, the origin
of the instability has not being clarified. In this chapter, some of the remaining questions
from Chapter 4 are investigated through the frequency response of the different elements
that compose the system. The system under analysis is divided into subsystems whose
passivity properties are studied. The two-terminal VSC-HVDC system from Chapter 4 is
still studied in this chapter. The dc-grid subsystem and the VSC subsystem are defined and
their transfer functions are derived. The properties of the transfer functions are studied in
order to find out the conditions that can lead to instability.

5.1 Stability analysis using a frequency domain approach

The stability of the SISO feedback system shown in Figure 5.1 can be evaluated through
the frequency response of the transfer functions, h1(s) and h2(s). According to [56], a
stable linear SISO system is passive if, and only if,

Re[h(jω)] ≥ 0,∀ω ≥ 0 (5.1)

where h(s) is the closed-loop transfer function of the system shown in Figure 5.1 given by

h(s) =
h1(s)

1 + h1(s)h2(s)
. (5.2)

Moreover, the system is dissipative if,

Re[h(jω)] > 0,∀ω ≥ 0. (5.3)
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It is claimed also in [56] that h(s) is dissipative if either h1(s) or h2(s) is dissipative, and the
other is at least passive. However, the converse is not true. That is, if one of the subsystems
is not passive (i.e. the real part of say h1(jω) is negative for some ω ≥ 0), then, h(s) is
not necessarily non passive, or unstable. In that case, the Nyquist criterion can be used to
finally determine the conditions in which the system h(s) is unstable, as will be shown in
this chapter.

Figure 5.1: SISO feedback system

Here, the VSC-HVDC system is modelled by an equivalent SISO system similar to the
one shown in Figure 5.1. Thus, the stability of the system can be studied by analyzing the
passivity properties of the subsystems at different frequencies, particularly, for frequencies
around the one of the dc side resonance phenomenon.

5.2 Preliminary considerations

In order to derive an equivalent SISO system for the two-terminal VSC-HVDC under ex-
amination, the following simplifications are made:

1. The integral gain of the DVC is set to zero since it has been shown that it has a
negligible effect on the dc-side resonance-related eigenvalues.

2. The VSC which controls the active power, VSC2, is modelled as a constant power
device since it has been shown that the bandwidth of the current controller does not
impact the location of the other eigenvalues.

The first simplification implies that the linearized DVC is modelled as

∆idref
f1 = kpe1(∆eref

1 −∆e1). (5.4)

Moreover, the currents injected by VSC1 and VSC2 are

i1 =
P1

e1

, i2 =
P2

e2

(5.5)

where P2 is constant since VSC2 is modelled as a constant power device. That means that
P2 = P20. Then, from (5.5), the linearized injected currents are

∆i1 = −P10

e2
10

∆e1 +
1

e10

∆P1 (5.6)

∆i2 = −P20

e2
20

∆e2 (5.7)
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or, ∆i1 and ∆i2 can be represented as

∆i1 =
1

R10

∆e1 + ∆i∗1 (5.8)

∆i2 =
1

R20

∆e2 (5.9)

where R10 and R20 are equivalent resistances, given by

R10 = − e
2
10

P10

, R20 = − e
2
20

P20

, (5.10)

with ∆i∗1 = ∆P1/e10
1. Note that the resistances R10 and R20 can take negative values and

that they have opposite signs. Furthermore, P10, P20, e10 and e20 are the initial operating
powers and direct voltages that comes from the initial steady state of the system. Physically,
(5.8) means that the current variation ∆i1 has two components, one component, which is
resistive and proportional to the voltage variation ∆e1, and another component, ∆i∗1, which
comes from the converter dynamics. Similarly, (5.9) means that the current ∆i2 represents
a resistive current which is proportional to the voltage ∆e2. From (5.8) and (5.9), the two-
terminal VSC-HVDC system can be modelled as illustrated in Figure 5.2. In the figure, the
capacitors Ceq1 and Ceq2 are the parallel of the corresponding VSC capacitor and the dc
cable equivalent capacitor.

Figure 5.2: Linearized model of the VSC-HVDC system. Ceq1 and Ceq2 are the parallel equivalent
of the converter capacitor and the dc cable capacitance

In Figure 5.2 two subsystems can be identified. The first subsystem is the dc grid (enclosed
in the dashed box labeled as “dc grid” in the figure) whose input is the current ∆i∗1 and
output is voltage ∆e1. The second subsystem is the VSC-system (enclosed in the dashed
box labeled as “VSC system” in the figure) which is controlling the direct-voltage. In this
case, the input is the voltage error ∆u1 = ∆eref

1 −∆e1, which is used by the DVC to set the
current reference, ∆idref

f1 , which, likewise, defines the current output ∆i∗1, injected to the dc
grid. Therefore, the system shown in Figure 5.2 can be represented by the block diagram
shown in Figure 5.3. In the figure, F (s) is the VSC-system transfer function and G(s) is
the dc grid transfer function. A useful identity is

R12 = R10 +R20 (5.11)
1Some authors use the superscript ∗ to denot a reference to a controller. However, in this thesis, references

are indicated with the superscript ref . Then, ∆i∗1 should not be confused with a current reference.
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Figure 5.3: Block diagram of the simplified VSC-HVDC system

which can be shown with the help of the equivalent circuit of the dc side in steady state
conditions, depicted in Figure 5.4. From the figure, the steady-state current i120 can be
expressed as

i120 =
e10

R10

= − e20

R20

=
e10 − e20

R12

(5.12)

From (5.12), two relationships can be derived

e20 = −R20

R10

e10 (5.13)

e10

R10

=
e10 − e20

R12

(5.14)

Entering (5.13) into (5.14), (5.11) is obtained.

Figure 5.4: Representation of the dc side in steady state conditions.

5.3 The dc grid transfer function

The dc grid system, in this case, is the Π model of the cable along with the resistances R10

and R20. The system is represented in the Laplace domain in Figure 5.5.

Figure 5.5: DC grid model

The capacitances Ceq1 and Ceq2, shown in Figure 5.2, are considered equal to Ceq, since
the VSC capacitors are equal for both VSCs in the studied case. In an electrical circuit, the
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voltage ∆e1 is obtained as Zdc(s)∆i
∗
1, where Zdc(s) is the equivalent impedance. Then, the

transfer function G(s) is the impedance Zdc(s), as

∆e1

∆i∗1
= Zdc(s) = G(s) (5.15)

The equivalent impedance Zdc(s) seen from the point where the current ∆i∗1 is injected is

C−1
eq (s2 + (ωrl + ωc2)s+ ω2

lc + ωrlωc2)

s3 + (ωrl + ωc1 + ωc2)s2 + (2ω2
lc + ωc1ωc2 + ωrl(ωc1 + ωc2))s+ 2ω2

lc(ωc1 + ωc2)
(5.16)

where

ωc1 =
1

R10Ceq

, ωc2 =
1

R20Ceq

, ω2
lc =

1

L12Ceq

, ωrl =
R12

L12

. (5.17)

The denominator of (5.16) is a third order polynomial whose roots are difficult to obtain an-
alytically. A term “δ” can be added and subtracted from the denominator of (5.16) without
modifying it. If

δ = −ωc1ωc2(ωc1 + ωc2), (5.18)

then, it can be shown that (5.16) can be also expressed as

G(s) =
C−1

eq n(s)

(s+ ωc1 + ωc2)(d(s) + ωc1ωc2) + δ
(5.19)

where

n(s) = s2 + (ωrl + ωc2)s+ ω2
lc + ωrlωc2 (5.20)

d(s) = s2 + ωrls+ 2ω2
lc (5.21)

The roots can be found approximately by neglecting δ in the denominator of (5.19). In
order to do that, it should be shown that

|2ω2
lc(ωc1 + ωc2)| � |δ| (5.22)

In order to determine in which conditions (5.22) is fulfilled, let us begin with some useful
inequalities. First, the steady state initial powers are limited by the rated power of the
VSCs. That is

|P10| ≤ 1, |P20| ≤ 1 (5.23)

assuming also, for the sake of simplicity, that the direct-voltages are approximated to 1 pu,
then, the inverse of resistances R10 and R20 are limited by

0 ≤ 1

|R10|
≤ 1, 0 ≤ 1

|R20|
≤ 1. (5.24)

Moreover, considering that R10 and R20 are of opposite signs, the inverse of the product of
the resistances are approximately

− 1 ≤ 1

R10R20

≤ 0. (5.25)
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Considering (5.11), δ, ωc1 + ωc2 and ωc1ωc2 are

δ = − R12

C3
eqR

2
10R

2
20

, ωc1 + ωc2 =
R12

CeqR10R20

, ωc1ωc2 =
1

C2
eqR10R20

(5.26)

and, using (5.25), δ, ωc1 + ωc2 and ωc1ωc2 are bounded as

− R12

C3
eq

≤ δ ≤ 0, −R12

Ceq

≤ ωc1 + ωc2 ≤ 0, − 1

C2
eq

≤ ωc1ωc2 ≤ 0. (5.27)

Equation (5.22) can be rewritten as

|2ω2
lcR12Ceq||ωc1ωc2| � |ωc1 + ωc2||ωc1ωc2|. (5.28)

If |ωc1ωc2| 6= 01, then, (5.28) is fulfilled if

|2ω2
lcR12Ceq| � |ωc1 + ωc2|. (5.29)

Using (5.27), (5.29) is fulfilled if

2ω2
lcR12Ceq �

R12

Ceq

(5.30)

where the absolute value symbol of the left side of (5.29) is removed in (5.30) since all the
variables are positive. Considering the definition of ω2

lc made on (5.17), (5.30) is fulfilled if

L12

Ceq

� 2 (5.31)

which means that, in order to neglect δ, (5.31) must be fulfilled. It should be kept in mind
that Ceq is an equivalent capacitor conformed by the parallel of the converter capacitor and
the cable capacitance. As a rule of thumb, we can say that (5.31) is fulfilled if

L12

Ceq

= z2
0 ≤ 0.02 (5.32)

since it can be considered that 0.02 � 2. From the values in Tables 4.2 and 4.1, for a 50
km cable, z2

0 is equal to

z2
0 =

1.975 · 10−4 · 50

3.142 + 0.0195 · 50
= 0.0024

which means that δ can be neglected in (5.19). Then, the dc grid transfer function can be
approximated by the following transfer function

G′(s) =
C−1

eq n(s)

(s+ ωc1 + ωc2)(d(s) + ωc1ωc2)
. (5.33)

Moreover, if (5.32) is fulfilled it means

2ω2
lc � ωc1ωc2. (5.34)

1|ωc1ωc2| is zero when either P10 or P20 is zero. In that case, δ is zero as well, so the poles of 5.16 can be
found analytically.
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Then, the dc grid transfer function can be further approximated to

G̃(s) =
C−1

eq n(s)

(s+ ωc1 + ωc2)d(s)
(5.35)

where the poles can be calculated as

λ1 = −(ωc1 + ωc2), λ2,3 = −ωrl

2
±
√

2ωlc

√
ω2

rl

8ω2
lc

− 1. (5.36)

Observe that the transfer function of the dc grid presents an unstable pole, λ1, for P10 and
P20 different from zero. If either P10 or P20 are zero, then p1 = 0. Therefore, when either
P10 and P20 are different from zero, Bode diagrams cannot be used to study G̃(s) since
any sinusoidal input will make the output to grow unboundedly. However, this does not
mean that the closed-loop of the overall system is unstable, since, as mentioned in [58], an
unstable system can be stabilized with a feedback controller. Moreover, the value of the
unstable eigenvalue indicates the value that the controller bandwidth must be in order to
stabilize the system [58]. From (5.27), the upper bound of λ1 is R12/Ceq, which is small
compared to λ2,3. The small upper bound of λ1 suggests that the term ωc1 + ωc2 can be
neglected if the controller gain is sufficiently high. This suggest that (5.35) can be further
approximated to the marginally stable transfer function

G̃0(s) =
C−1

eq n(s)

s× d(s)
(5.37)

if the controller bandwidth is sufficiently high to stabilize the system. For example, Figure
5.6(a) shows the unstable system G′(s) driven by a proportional controller with a gain k,
and Figure 5.6(b) shows the approximated marginally stable system, G̃0(s), driven by the
same controller. The eigenvalues of both feedback systems are calculated for k varied from

(a) G′(s) driven by a proportional controller (b) G̃0(s) driven by a proportional controller

Figure 5.6: Feedback systems controlled by a proportional controller

0.01 to 100 and the error1 between the eigenvalues of the two systems are shown in Figure
5.7. In both systems there are three eigenvalues, one real and two complex conjugated. In
Figure 5.7(a), the errors of the real and the imaginary components of the complex eigen-
values are shown, while in Figure 5.7(b) the error of the real eigenvalue is shown. It can
be seen in Figure 5.7(a) that, in the first case, the error is small for the range in which k
is varied. Furthermore, Figure 5.7(b) shows for the real eigenvalue that the error is signif-
icantly high for small values of k. For instance, for k lower than 0.5, the error is above
2.6%. However, the error decreases quickly as k increases, falling below 1% when k is
higher than 1.4. It should be mentioned that the x axes in Figure 5.7(a) and 5.7(b) are not
the same for the sake of clarity.

1There error is defined as |λG′−λG̃0

λG′
|100%, where λG′ is a pole of G′ and λG̃0

is a pole of G̃0.
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Figure 5.7: Comparison between the eigenvalues of the systems shown in Figure 5.6

Although not rigorous, the analysis above suggests that the dc grid transfer function can be
approximated by the marginally stable system (5.37). The advantage of using the approxi-
mation (5.37) is that Bode plots can be used to study the frequency response of G̃0(s) and
its implication on the stability of the system can be drawn.

5.4 The VSC-system transfer function

In this section, the VSC-system transfer function, named F (s) in Figure 5.3, is derived. In
this case, the input to the transfer function is the voltage error ∆u1, and the output is ∆i∗1.
We can recall from (5.8) that the current ∆i∗1 is

∆i∗1 =
∆P1

e10

(5.38)

Since the converter is assumed lossless, the active power at the ac side of VSC1 is equal to
the power at the dc-side. That is

P1 = udc1i
d
f1 + uqc1i

q
f1 (5.39)

which in terms of small deviations, ∆P1 is

∆P1 = udc10∆idf1 + uqc10∆iqf1 + idf10∆udc1 + iqf10∆uqc1. (5.40)

Therefore, the current ∆i∗1, defined in (5.38), can be expressed as

∆i∗1 =
1

e10

(
udc10∆idf1 + uqc10∆iqf1 + idf10∆udc1 + iqf10∆uqc1

)
. (5.41)

Considering the ac side of VSC1 shown in Figure 4.6, the voltages udc1 and uqc1 in the
converter dq frame are expressed in the Laplace domain as

udc1 = uds1 − (Rt1 + sLt1)idf1 + ωg1Lt1i
q
f1 (5.42a)

uqc1 = uqs1 − (Rt1 + sLt1)iqf1 − ωg1Lt1i
d
f1 (5.42b)
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where Lt1 = Lf1 + Ls1 and Rt1 = Rf1 + Rs1. Furthermore, as explained in Section 4.4.1,
uds1 and uqs1 can be expressed as in (4.22). Then, (5.42) can be linearized and expressed in
the converter dq-frame as

∆udc1 = uqs10∆θg1 − (Rt1 + sLt1)∆idf1 + ωg1Lt1∆iqf1 + iqf10Lt1∆ωg1 (5.43a)
∆uqc1 = −uds10∆θg1 − (Rt1 + sLt1)∆iqf1 − ωg1Lt1∆idf1 − idf10Lt1∆ωg1 (5.43b)

and, in steady state udc10 and uqc10 are

udc10 = uds10 −Rt1i
d
f10 + ωg10Lt1i

q
f10 (5.44a)

uqc10 = uqs10 −Rt1i
q
f10 − ωg10Lt1i

d
f10 (5.44b)

It should be highlighted that if VSC1 is connected to an infinite ac source, Ls1 and Rs1 are
zero and udqs is equal to udqg ; this voltage is constant, meaning that ∆udqg is zero. Continuing
with (5.43), if (5.44) is put into (5.41), the following is the current injected to the dc-side
by the VSC1

∆i∗1 = −i
d
f10Lt1

e10

(s+ zd1)∆idf1 −
iqf10Lt1

e10

(s+ zq1)∆iqf1 +
uqs10i

d
f10 − uds10i

q
f10

e10

∆θg (5.45)

where zd1 and zq1 are

zd1 = 2
Rt1

Lt1

− uds10

idf10Lt1

, zq1 = 2
Rt1

Lt1

− uqs10

iqf10Lt1

. (5.46)

Moreover, from (4.11a), the transfer function of current controller is

∆idf1 =
α1

s+ α1

∆idref
f1 , ∆iqf1 =

α1

s+ α1

∆iqref
f1 . (5.47)

Entering (5.47) into (5.45) and assuming that iqref
f1 is constant (∆iqref

f = 0), then, (5.45)
becomes

∆i∗1 = −α1i
d
f10Lt1

e10

(
s+ zd1
s+ α1

)
∆idref

f1 +
Qs10

e10

∆θg1 (5.48)

where Qs0 is uqs0i
d
f0 − uds0iqf0. As mentioned earlier, it is assumed that the DVC of VSC1 is a

proportional controller, then, the DVC is modelled as (5.4). Equation (5.4) can be entered
into (5.48) and the following is obtained

∆i∗1 = Fc(s)∆u+
Qs10

e10

∆θg (5.49)

where:

Fc(s) = −α1i
d
f10Lt1kpe1

e10

(
s+ zd1
s+ α1

)
. (5.50)

If the ac system is infinite, the angle variation ∆θg is zero since ug is the voltage of an
infinite ac source. Then, the VSC-system transfer function F (s) for infinite ac sources is

F (s) =
∆i∗dc1

∆u1

= −α1i
d
f10Lf1kpe1

e10

(
s+ zd1
s+ α1

)
(5.51)
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where

zd1 = 2
Rf1

Lf1

− udg10

idf10Lf1

. (5.52)

Continuing with (5.49), ∆θg1 has to be expressed in terms of ∆idf1 and ∆iqf1 in order to derive
a transfer function similar to (5.51). The angle θg1 and the frequency ωg1 are estimated by
the PLL block, and it is defined by (4.27). In the Laplace domain, (4.27) is expressed as

∆θg1 =
kpl1s+ kil1

s2
∆uqg1 = Fpll(s)∆u

q
g1. (5.53)

Considering the voltage drop over the ac source impedance and that ∆ωg1 = sθg1, then,
∆uqg1 can be expressed as

∆uqg1 = −(uds10 + sidf10Ls1)∆θg1 − (Rs1 + sLs1)∆iqf1 − ωg10Ls1∆idf1. (5.54)

Combining (5.53) and (5.54), the following is expression for the angle ∆θg1 is obtained

∆θg1 = − (Rs1 + sLs1)Fpll(s)

1 + (uds10 + sidf10Ls1)Fpll(s)
∆iqf1 −

ωg10Ls1Fpll(s)

1 + (uds10 + sidf10Ls1)Fpll(s)
∆idf1. (5.55)

Considering (5.47), and that ∆iqref
f is zero, (5.55) becomes

∆θg1 =
e10

Qs10

Fθ(s)∆u1. (5.56)

where

Fθ(s) = − ωg10Qs10Ls1kpe1Fpll(s)

e10(1 + (uds10 + sidf10Ls1)Fpll(s))(s+ α1)
. (5.57)

Finally, using (5.56) into (5.49), the transfer function F (s) for the non-infinite ac source
case is

F (s) = Fc(s) + Fθ(s). (5.58)

In a more general case, the VSC-system transfer can be found using (4.48). Then, the state
space model of VSC1, where the input is ∆u1 and the output is ∆i∗1, can be written as

d∆xe
s1

dt
= Ae

s1∆xe
s1 −Be

se1∆u1 (5.59)

∆i∗1 = Ce
s1∆xe

s1 + De
sr1q∆u1 (5.60)

where q is [ 1 0 ]T. The VSC-system transfer function is then

F (s) =
∆i∗1
∆u1

= [−Ce
s1(sI−Ae

s1)−1Be
se1 + De

sr1q] (5.61)

Note that (5.59) represents either a VSC connected to infinite or non-infinite sources, or a
VSC system in which an ac capacitor is connected at the PCC. Finally, the system shown
in Figure 5.3 can be represented by the SISO feedback system shown in Figure 5.8, where
F (s) is the VSC-system transfer function given by either (5.51), (5.58) or (5.61), and G̃0 is
the approximated dc grid transfer function given by (5.37).
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Figure 5.8: System block diagram with the approximated dc grid transfer function.

5.5 Stability investigation using a frequency domain ap-
proach

In this section the stability of the two-terminal VSC-HVDC system is studied considering
the passivity properties of F and G̃0, and the Nyquist criterion. The Bode diagrams of both,
F and G̃0, are used to study their passivity properties at different frequencies.

5.5.1 Analysis of the dc-grid subsystem

Figure 5.9 shows the frequency response of G̃0 for two power transfers: −1 and +11.
Observe that the numerator of G̃0, given by (5.20), depends on the initial operating point.
Along with both plots, the frequency response of the transfer function of the dc cable, G0

is also plotted. The transfer function G0
2 is obtained when the resistances R10 and R20 are

not considered as part of the model dc grid model, and it is

G0(s) =
C−1

eq (s2 + ωrls+ ω2
lc)

s(s2 + ωrls+ 2ω2
lc)

(5.62)

which is independent from the operating point. Moreover, the data used for G̃0 and G0 are
as indicated in Tables 4.1 and 4.2 for a cable length of 50 km. It can be seen from Figure
5.9 that G̃0 and G0 are passive systems since they are marginally stable and their phase
angle is always between −90◦ and 90◦. Moreover, it can be seen that the three cases match
closely to the dc cable transfer function, G0, which suggests that the frequency response of
the actual impedance seen from the point where VSC1 is connected could be utilized for
the analysis instead of G̃0. The fact that the dc grid transfer function is passive implies that
VSC-system transfer function is non-passive in the unstable cases. This is analyzed next.

5.5.2 Analysis of the VSC subsystem - The infinite ac source case

Let us begin the analysis with the case when VSC1 is connected to an infinite ac source. In
this case, the VSC-system transfer function is defined by (5.51). It can be seen from (5.51)

1In this case, a positive power transfer means that the power flow direction is from VSC1 to VSC2
2Actually, G0 coincides with (5.19) when P20 = 0.
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Figure 5.9: Frequency response of: Solid gray: G0(s). Solid black: G̃0(s) for a power flow of −1.
Dotted G̃0(s) for a power flow of +1

that F is a stable system that has one pole, −α1, and one zero, −zd1 . Moreover, (5.52)
shows that zd1 depends on the operating point. If the resistance Rf1 is neglected, −zd1 is

− zd1 =
udg10

idf10Lf1

. (5.63)

It can be seen that the zero is located in the left-half plane (LHP) of the s-plane when
the idf10 is negative (VSC1 absorbs power from the dc system), and the zero is located in
the RHP when idf10 is positive (VSC1 injects power to the dc grid). In [56], it is men-
tioned that the necessary conditions for the system to be strictly positive real (or in other
words, dissipative) are that the system must be stricly stable and the system must be stricly
minimum-phase. From (5.52), F is minimum phase as long as VSC1 absorbs power from
the dc side, meaning that, for this power direction, the necessary conditions for F to be
passivity are fulfilled when VSC1 absorbs power from the dc grid. However, when the
direction is opposite, F is non-minimum phase. This means that F is non-passive for any
positive power transfer. Moreover, as mentioned in [58], RHP zeros impose a limitation on
the bandwidth that the closed-loop system can achieve, meaning that high controller gains
can lead the system to instability. This explains why for the same positive power direction,
the system with higher DVC gains (case 2 in Table 4.3) results unstable.

Figure 5.10(a) shows the frequency response of F for negative power transfers. It can be
seen that the phase angle of F is between −20◦ and 0◦ for power transfers of −1, −0.8
and −0.5, meaning that the system is passive (even dissipative). On the other hand, Figure
5.10(b) shows the frequency response of F for three positive power transfers, +1, +0.8 and
+0.5. It can be seen that, in this case, the phase angle is around zero for low frequencies,
and it decreases towards −180◦as the frequency increases, which means that F is non-
passive for high frequencies and positive power transfers. Besides, it can be seen that the
magnitude of F increases as the absolute value of the power transfer increases.
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(a) Frequency response ofF for three negative power
transfers. Solid black: Power flow =−1. Dashed:
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(b) Frequency response of F for three positive power
transfers. Solid black: Power flow = +1. Dashed:
Power flow = +0.8. Dotted: Power flow = +0.5

Figure 5.10: Frequency response of F for different power transfer (Positive means from VSC1 to
VSC2)

5.5.3 The VSC admittance and the dc grid impedance

Similarly to [40], the VSC-HVDC system can be seen as an interconnection of the VSC
admittance and the dc grid impedance. The VSC admittance for some frequency ω is
defined by

F (jω) = Fx(ω) + jFy(ω) (5.64)

where Fx is the VSC conductance and Fy is the VSC susceptance. The VSC conductance
dissipates energy when it is positive, and accumulates energy when it is negative. In addi-
tion, the dc grid impedance for some frequency ω is defined by

G̃0(jω) = G̃0x(ω) + jG̃0y(ω) (5.65)

where G̃0x(ω) is the dc grid resistance and G̃0y is the dc grid reactance. The dc grid
impedance has a peak at the resonance frequency, and its resistance is positive for all fre-
quencies. Then, the resonance phenomenon originated in the dc grid is dissipated by the
VSC-system if the VSC conductance is positive. However, the resonance phenomena may
be amplified if the VSC conductance is negative. To determine whether the system is stable
or not, the Nyquist stability criterion can be used. According to the Nyquist criterion, if
the open loop system, F (s)G̃0(s) is stable, then, the closed loop system is stable if the
mapping of F (s)G̃0(s) along the Nyquist path does not encircle the point −1 + j0 in the
clock-wise direction. That is

Fx(ω180◦)G̃x0(ω180◦)− Fy(ω180◦)G̃y0(ω180◦) > −1 (5.66)

where ω180◦ is the frequency at which the phase of F (jω)G̃0(jω) is 180◦ or, in other words,
it is the frequency at which F (jω)G̃0(jω) intersects the real axis of the complex plane.
In this particular case, it has been shown that, at low frequencies, F is conductive and
positive, while G̃0 is capacitive, meaning that the real part of F (jω)G̃0(jω) is very small at
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low frequencies. At high frequencies, F is conductive but negative, while G̃0 is capacitive
and very small. This means that the real part of F (jω)G̃0(jω) is much smaller. At the
resonance frequency it can be assumed that G̃0 is purely resistive (meaning that G̃y0 is
zero), then, the condition (5.66) turns approximately into

Fx(ωdcres)G̃x0(ωdcres) > −1 (5.67)

where ωdcres is the dc-side resonance frequency. This means that the Nyquist criterion is not
fulfilled if the VSC conductance is negative and high at ωdcres. For example, in Figure 5.11,
the real and imaginary parts of G̃0 and F are plotted. The figure shows that, for negative
power transfers, the resonance peak finds a positive VSC conductance, meaning that the
resonance is dissipated and (5.67) is fulfilled. On the other hand, Figure 5.12 shows the
real and imaginary parts of G̃0 and F when the power transfer is positive. It can be seen
that the resonance peak coincides with negative VSC conductances, which increases as the
power transfer increases. The more negative the VSC conductance is, the higher the risk for
the system to turn unstable. This explains why, for the investigated system and for the given
set of controller parameters, the system is more prone to instability when the transmitted
power transfer increases (from VSC1 to VSC2).
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Figure 5.11: Real (up) and imaginary (down) parts of F and G̃0 for negative power transfers. Solid
gray: G̃0. Solid black: F for −1. Dashed: F for −0.8. Dotted: F for −0.5

The effects of the dc cable length on the stability of the system can be studied with the help
of Figure 5.13. The figure shows the real part of F together with G̃0 plotted for three cable
lengths, 50 km, 100 km, and 150 km. It can be seen that, as the dc cable length increases,
the resonance peak and the resonance frequency decrease. At the decreasing resonance
frequency of the dc cable, the VSC conductances becomes less negative, thus reducing the
risk of instability. Observe that, the VSC conductance is positive at the cable resonance
frequency.
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Figure 5.12: Real (up) and imaginary (down) parts of F and G̃0 for positive power transfers. Solid
Gray: G̃0. Solid: F for +1. Dashed: F for +0.8. Dotted: F for +0.5
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Figure 5.13: Gray: Re[F ] for +1. Solid: Re[G̃0] for 50 km. Dashed: Re[G̃0] for 100 km. Dotted:
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The effects of the DVC parameters on the VSC conductance are shown in Figure 5.14. The
parameters shown in Table 4.3 are used to plot the VSC conductance, but considering kie1

as zero. It can be seen that for case 2 the VSC conductance is more negative than case
11 at the resonance frequency, which indicates that the risk that instability takes place is
higher in case 2 compared to case 1. The impact of the proportional gain kpe on the VSC
conductance can also be inferred from (5.51) since it shows explicitly that the magnitude
of F depends on kpe1. The higher kpe1, the more negative the VSC conductance, making
the system prone to instability. This explains why the power transfer limit is lower with
high DVC gains compared with low DVC gains, as shown in Table 4.9.

Finally, a direct relationship between the controller parameters, the dc side characteristics,
and the operating point can be obtained by assuming that the dc side resonance occurs at

1Remember that case 1 corresponds to the case in which the DVC gains are high, while case 2 corresponds
to the case in which the DVC gains are low.
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Figure 5.14: Real part of F and G̃0 for a power transfer equal to +1 pu and different cases. Gray:
Re[G̃0]. Solid: Re[F ] for case 2. Dashed: Re[F ] for case 1.

a high frequency. This can be assumed since it can be seen that the VSC conductance
decreases to a minimum value which remains almost constant as the frequency increases.
From (5.58), at high frequencies, the VSC conductance is approximately

Fx = −α1i
d
f10Lt1kpe1

e10

(5.68)

and, assuming that the resonance frequency of the dc cable corresponds to the resonance
frequency of a lossless dc cable, i.e.

ωres =

√
2√

L12Ceq

(5.69)

the peak of the dc grid resistance can be found approximately replacing (5.69) into (5.62).
That gives

G̃0x =
L12

2R12Ceq

. (5.70)

Using (5.67), and considering that P1 = udg10i
d
f10, it can be found that the power transfer

limit is given by

P1lim <
2Ceqe10u

d
g10R12

α1Lt1kpe1L12

(5.71)

which is a conservative value, since instability can take place at a VSC conductance higher
than the minimum one. Equation (5.71) shows that the (positive) power transfer is reduced
if either the system is the ac system is weak, the bandwidth of the controllers are high, the
cable resistance is small, etc.

5.5.4 Analysis of the VSC subsystem - The non-infinite ac grid case

In Section 4.7.3, eigenvalue analysis has been used to study the stability of VSC-HVDC
systems when connected to non-infinite ac grids. From this study, it has been found that
the power transfer is further limited when the SCR of the ac grids decreases. Since the
dc grid impedance is unchanged (there is no change in the topology), then, the reason for
the instability has to do with the VSC conductance. This can be shown by studying the
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frequency response of F , this time given by (5.58). Figure 5.15, show the real parts of
F and G̃0. F is plotted for SCRs equal to 3, 5 and infinity. It can be seen that the VSC
conductance becomes more negative when SCR decreases, i.e. when the system is weaker.
The effect of kpe is similar to infinite ac source case as shown by (5.58), meaning that, if kpe

is set according to case 2, the VSC conductance is more negative at the dc side resonance
frequency compared with case 1.
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Figure 5.15: Frequency response of F for a power transfer equal to +1 pu, DVC set as case 2, and
three different SCRs. Solid: SCR infinite. Dashed: SCR = 5. Dotted: SCR = 3.

5.5.5 Analysis of the VSC subsystem - Capacitor connected at the
PCC

In Section 4.7.4 the effects of a capacitor connected at the PCC has been studied with
eigenvalue analysis. It has been shown in Section 4.7.4 that the dc-side-resonance-related
eigenvalues (λ1,2) are better damped when the capacitor is connected at the PCC. However,
instability has been identified in the system, and it is related to the resonance of the ac side
LCL circuit. This is further investigated using the approach developed in this section. In
Figures 5.16 and 5.17 the VSC conductance and susceptance are plotted for power transfers
of +1 and −1, respectively, and with the DVC parameters as defined for case 2. The VSC
conductance and susceptance when there is no ac capacitor is also plotted for the sake of
comparison. It can be seen that, when an ac capacitor is connected to the PCC, the VSC
subsystem is non passive for some frequencies in both power directions. This is different
from the case with no ac capacitor in which the VSC subsystem is passive for negative
power transfers and non passive for positive power transfers. Nevertheless, the passivity
of the VSC subsystem can be checked at each particular resonance frequency. Concerning
the dc side resonance phenomenon, for the case when the power transfer is +1, the VSC
conductance is more positive as compared with the case with no ac capacitor meaning that
the resonance is better damped. When the power transfer is in the opposite direction, i.e.
−1 the VSC conductance is still negative but it is higher, compared to the case when there
is no ac capacitor.

From the figures, it can be seen that the VSC conductance presents fairly high resonance
peaks. However, at those frequencies, the dc grid resistance is very small, since the dc
grid impedance is capacitive. If at the ac-side resonance frequencies the dc grid resistance
and the VSC conductance are neglected, the stability of the system can be approximately
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Figure 5.16: Unstable case. Frequency response of G̃0 and F with DVC paramters set as case 2 and
SCR as 5: Solid gray: G0(s). Solid black: F for a power transfer of +1 and no ac
capacitor, . Dashed: F for a power transfer of +0.5 and ac capacitor. Dotted: F for a
power transfer of +1 and ac capacitor

assessed by claiming that the system is stable if

Fy(ωacres)G̃0y(ωacres) < 1 (5.72)

where ωacres is the ac-side resonance frequency under examination. From Figure 5.16,
the VSC susceptance peak at the resonance frequency 2.8 pu is around −100 pu and the
corresponding dc grid reactance is around -0.034 pu, which makes FyGy equal to 3.4 pu,
meaning that (5.72) is not fulfilled. At the second resonance frequency, 4.8 pu, the VSC
susceptance peak is around−70 pu, while the magnitude of G̃0 is around−0.004 pu which
means that (5.72) is fulfilled. On the other hand, from Figure 5.17, the VSC susceptance
peak is around 80 pu and the dc grid reactance is around −0.032 pu for a resonance fre-
quency of 2.95 pu, which fulfills (5.72) since FyGy is negative. The same is true for the
second resonance frequency, since the VSC conductance resonance peak is positive, and
the dc grid reactance is negative.

Although the VSC admittance and the dc grid impedance has been analyzed considering
their definition in this thesis, it is recommendable that the analysis is performed as carried
out in [44]. In that way, the ac side resonance is captured without the influence of the VSC
system, and then VSC admittance seen as shown in Figure 5.18 can give better information
on whether or not the resonance is amplified or damped.
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Figure 5.17: Sstable case. Frequency response of G̃0 and F with DVC paramters set as case 2 and
SCR of 5: Solid gray: G0(s). Solid black: F for a power transfer of −1 and no ac
capacitor, . Dashed: F for a power transfer of −0.5 and ac capacitor. Dotted: F for a
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Figure 5.18: AC system impedance and VSC admittance to analyse the ac side resonance
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Chapter 5. Frequency domain analysis on HVDC systems

5.6 Conclusions

In this chapter, the dc-side dynamics of the two-terminal VSC-HVDC system has been
studied using a frequency domain approach. The VSC-HVDC system has been modelled
as a SISO feedback system, in which two subsystems have been defined: the VSC and
their dc grid subsystems. The corresponding transfer functions have been derived and the
passivity properties have been studied. It has been shown that the dc grid subsystem is
an unstable system which can be approximated to a marginally stable system, G̃0. G̃0 has
been found to be a passive subsystem, meaning that it is not the source of the instability.
However, the dc grid subsystem presents a resonance which can interact with the VSC
subsystem. The VSC subsystem has been found passive when the VSC, which controls the
direct-voltage, absorbs power from the dc grid. This means that, when the VSC absorbs
power from the dc side, the system is stable even for high DVC gains. The VSC subsystem
is non passive when the VSC injects current into the dc grid which means that there is a
risk that the resonance phenomenon developed in the dc side becomes amplified due to the
non passive behaviour of the VSC subsystem.

The VSC admittance has been defined also in this chapter, and it is shown that in the un-
stable cases, the VSC-subsystem presents a “negative conductance” characteristic at the
frequencies of interest. When the dc-side resonance encounters a negative VSC conduc-
tance, the resonance can be amplified depending on the size of the negative VSC conduc-
tance. It has been shown that the following influence the magnitude of the negative VSC
conductance:

1. The amount of active power injected by the VSC into the dc grid. The more power is
injected into the dc grid, the more negative the VSC conductance.

2. The DVC proportional gain. The higher the DVC proportional gain, the more nega-
tive the VSC conductance.

3. The SCR of the ac system to which the VSC it is connected. The weaker the system,
the more negative the VSC conductance.

The analysis has been performed for a particular control system. However, the procedure
is not restricted to the control system assumed in this chapter. If the interaction between
the VSC which controls the direct voltage and the dc grid dynamics is to be investigated,
the next procedure can be followed:

1. Identify the resonance frequency and the resonance peak of the dc-side. Commercial
tools which calculates the harmonic impedance of electrical networks can be used
for this purpose.

2. Determine if the converter conductance is negative at the resonance frequency. De-
termine also if the Nyquist stability criterion is fulfilled.

3. If the system is unstable, investigate if the magnitude of the converter admittance can
be decreased by modifying the controller structure.
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Chapter 6

Simulations in a multi-terminal
configuration

In this chapter, simulations are performed in order to further investigate the dc network
dynamics in VSC-MTDC configurations. A four-terminal HVDC system is modelled in
PSCADTM, and its performance when using two control strategies, the voltage-margin and
the voltage-droop control, is tested. Some events, such as converter disconnections and
operating point changes, are tested for both control strategies and different controller para-
meters. The effect of other control loops, not studied analytically in this thesis, are investi-
gated in this section as well through simulations.

6.1 System description

The system under analysis is a radial four-terminal VSC-HVDC system, as depicted in
Figure 6.1. The cables are modelled as Π sections and their lengths are as shown in the
figure. The equivalent cable inductance, capacitance, and resistance per kilometer are as
indicated in Table 3.2. The VSCs are two-level converters and they have their ratings as

Figure 6.1: System under analysis

indicated in Table 3.1 and Table 4.1, i.e. 600 MVA power rating, 300 kV rated line-to-
line voltage in the ac side, and ±300 kV rated pole-to-pole voltage in the dc side. In
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Chapter 6. Simulations in a multi-terminal configuration

this example, VSC1 and VSC2 are set to control the direct-voltage, following a strategy
defined in the next sections, and VSC3 and VSC4 are set to control the power. Table 6.1
summarizes the controller parameters considered in the simulations. The controllers of
VSC1 and VSC2 are selected two times faster than VSC3 and VSC4 in order to provide a fast
voltage regulation in the dc side of the system. In VSC1 and VSC2, the recommendation
that the DVC should be ten times slower than the VCC is adopted [44, 45].

Table 6.1: Controller parameters in per unit

Parameter VSC1 VSC2 VSC3 VSC4

VCC bandwidth (α) 8.0 8.0 4.0 4.0
DVC nat. res. frequency (ωn) 0.8 0.8 − −

DVC damping factor (ξ) 1.0 1.0 − −
VCC proportional gain (kp) 2.0 2.0 1.0 1.0

VCC integral gain (ki) 0.02 0.02 0.01 0.01
DVC proportional gain (kpe) 3.078 3.078 − −

DVC integral gain (kie) 1.231 1.231 − −

Furthermore, a current limiter is added in order to limit the output of the DVC, as illustrated
in Figure 6.2. The limits are set±1.3 pu. In some cases, the current limiters are deactivated
in order to investigate the effect on the system dynamics.

Figure 6.2: Implementation of a current limiter

6.2 Simulated case

The following sequence of events is simulated in the four-terminal VSC-HVDC system:

t=0.0 s: Initially VSC1 and VSC2 are controlling the direct-voltage following a certain
control strategy. VSC3 consumes 300 MW and VSC4’s power is zero.

t=0.5 s: VSC4 begins increasing its power consumption at a rate of 150 MW/s.

t=1.0 s: VSC1 is disconnected.

In all cases, the voltage at the VSC2 dc-side node and the power injected/absorbed by VSC2

are plotted. The depicted powers are filtered through a low pass filter with a bandwidth of
2000 rad/s in order to remove the high harmonic content present in the power waveforms.
However, the direct-voltages are shown unfiltered.
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6.3. Voltage-margin control strategy

6.3 Voltage-margin control strategy

VSC1 and VSC2 are set according to the voltage-margin control discussed in Section 2.5.
As illustrated in Figure 6.3, in normal conditions, VSC1 is in charge of regulating the
voltage of the dc network and VSC2 acts as power regulating converter, supplying 300
MW to the dc network. If VSC1 is disconnected, the excess of power consumption1 makes
the voltage to decrease, meaning that VSC2 starts regulating the power when the voltage
reaches 0.95 pu. In that case, VSC2 will carry out the task of regulating the voltage in the
dc network.

Figure 6.3: Voltage-margin control strategy for VSC1 (left) and VSC2 (right).

Through eigenvalue analysis, it can be shown that, when VSC1 is out of service, the max-
imum power that VSC2 can supply to the dc network is 0.8 pu for the given configuration
and set of parameters. Figure 6.4 shows the results of the sequence of events stated in
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Figure 6.4: Simulated sequence of events. Voltage-margin control. DVC with ωn = 0.8 and ξ = 1.
Left: VSC1 voltage, e1. Right: VSC1 power, P1.

Section 6.2. It can be seen that, when the VSC1 is disconnected, the voltage decreases and
oscillates at a frequency of around 11 Hz. This oscillation cannot be explained with the ana-
lysis performed in this thesis since it is triggered by a large disturbance, while this thesis
deals with the small signal dynamics of the system. VSC2 takes over the control of the di-
rect voltage and it can be seen that oscillations of 512 Hz appear (see Figure 6.5). It should
be noted that the power at which VSC2 turns unstable is around 0.8 pu, which confirms
the limit calculated through eigenvalue analysis. In order to confirm that the oscillations

1As mentioned in Section 2.5.2, the term “consumption” means that the power flows from the dc network
to the ac side of the VSCs. Likewise, the term “supply” means that power flows from the ac side into the dc
network.
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Figure 6.5: Zoom of the voltage e1 from Figure 6.4 at 1.5s. The period is 1.95ms, then, the fre-
quency is 512 Hz.

are related to the resonance phenomenon which occurs in the dc cable, the impedance fre-
quency scan at the node where VSC2 is connected is shown in Figure 6.6. The figure shows
three resonance peaks occurring at 98 Hz, 284 Hz, and 519 Hz. As studied in Chapter 5,
the conductance of VSC2 becomes negative as the frequency increases. Then, it can be
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Figure 6.6: Frequency response of the dc grid

inferred that the VSC2 conductances at 98 Hz and 284 Hz are either positive or not suffi-
ciently negative as to turn the system unstable while at 519 Hz, the VSC2 conductance is
negative and sufficiently low.

Interestingly, Figure 6.7 shows that, when iqref
f2 is set to 0.2 pu (which means that the VSC

injects around 0.2 pu reactive power to the ac system), the dc-side resonance related osci-
llations appear later. Similarly to Figure 6.4, low frequency oscillations appear at around t
= 2.5s, which coincides with the development of instability related to the dc side resonance.
In order to further investigate whether these low frequency oscillations are related to the
saturation characteristic of the current limiters, the same case is run without limiting idref

f2 .

The results are shown in Figure 6.8 and it can be seen that the same oscillations appear
but the amplitude has increased. Then, it could be that the oscillations are related to the
saturation of the voltage generated by the VSC. The VSC cannot deliver a peak-to-peak
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Figure 6.7: Simulated sequence of events. Voltage-margin control. DVC with ωn = 0.8 and ξ = 1.
iqref
f2 = 0.2. Left: VSC1 voltage, e1. Right: VSC1 power, P1.

voltage higher than the voltage of its dc-side capacitor1. Furthermore, Figure 6.9 shows a
detailed picture of the direct-voltage at t = 2.6s, and it can be seen that there is again a 512
Hz frequency resonance, which is around the frequency at which the greatest peak appears
in the dc grid frequency scan (See Figure 6.6). In order to confirm if the power limit has

0.5 1 1.5 2 2.5

0.8

0.9

1

1.1

Time [s]

e 1
[p

u]

0.5 1 1.5 2 2.5
0

0.5

0.8
1

Time [s]

P
1

[p
u]

Figure 6.8: Simulated sequence of events. Voltage-margin control. DVC with ωn = 0.8 and ξ = 1.
iqref
f2 = 0.2. No current limiter. Left: VSC1 voltage, e1. Right: VSC1 power, P1.
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Figure 6.9: Zoom of the voltage e1 from Figure 6.8 at 2.8s. The period is 1.95ms, then, the fre-
quency is 512 Hz.

increased with the injection of reactive power, the case is run again, but with power the
consumption of VSC4 ramped up to 0.4 pu (240 MW). The results are shown in Figure
6.10, and it can be seen that no oscillations appear even after the VSC4 has reach 0.4 pu.

From the analysis carried out in Chapter 5, one way to avoid the instability related to the
dc side resonance is to decrease the magnitude of the VSC2 admittance. It has been shown

1In this case, the PWM is not optimized using zero-sequence voltage injection.
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Figure 6.10: Simulated sequence of events. Voltage-margin control. DVC with ωn = 0.8 and ξ = 1.
iqref
f2 . VSC4 power consumption is ramped up until 0.4 pu. Left: VSC1 voltage, e1.

Right: VSC1 power, P1.

also that the magnitude of the VSC2 admittance is related to the bandwidth of the DVC.
Therefore, the magnitude of the VSC2 admittance can be decreased by reducing the speed
of the DVC. The controller parameters of VSC2, corresponding to a DVC bandwidth of
0.4 pu, are set according to Table 6.2. The same sequence of events defined in Section 6.2
is run (without reactive power injection) and the results are plotted in Figure 6.11. It can
be seen that the instability shown in Figure 6.4 does not appear in this case, even with an
active power transfer of 1 pu.

Table 6.2: Controller parameters of VSC2

α ωn ξ kp ki kpe kie

Values 4.0 0.4 1.0 1.0 0.01 1.54 0.31
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Figure 6.11: Simulated sequence of events. Voltage-margin control. DVC with ωn = 0.4 and ξ = 1.
Left: VSC1 voltage, e1. Right: VSC1 power, P1.

6.4 Voltage-droop control strategy

For this set of simulations, VSC1 and VSC2 are set according to the voltage-droop control
strategy discussed in Section 2.5. The droop setting for the i-th VSC is implemented as
indicated in Figure 6.12, where kdri is the slope of the droop setting and enl

i is the no-load
voltage reference. The values of kdr1,2 are selected as 0.1 pu for both VSCs, meaning
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6.4. Voltage-droop control strategy

that the converter will increase its power output by 1 pu, if a voltage droop of 10 % the
rated voltage occurs. The no-load voltages, enl

1 and enl
2 , are selected as 1.0 pu and 1.05 pu,

respectively. For the sake of simplicity, the reference current idref
fi is used instead of the

power, since it is proportional to active power of the VSC. With the parameters and the
configuration selected, initially, VSC1 will be supplying 300 MW, VSC2 and VSC4 will be
operating with zero power, and VSC3 will be consuming 300 MW.

Figure 6.12: Direct-voltage droop control block diagram implemented in this section.

The parameters of the DVC and VCC of VSC1 and VSC2 are set as indicated in Table
6.1. The sequence of events stated in Section 6.2 is also run in this case, and the results
are shown in Figure 6.13. The first difference that can be observed is that the sudden
disconnection of VSC1 does not produce the high fluctuation in the voltage, as in the voltage
margin control. Another difference is that the instability occurs at a higher power compared
to the case shown in Figure 6.4, where, almost immediately after VSC2 is disconnected, the
instability related to the dc-side resonance occurs. In this case, the instability occurs when
the power at VSC 1 is around 0.9 pu. The increase of the stability limit can be explained
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Figure 6.13: Simulated sequence of events. Voltage-droop control. DVC with ωn = 0.8 and ξ = 1.
Left: VSC1 voltage, e1. Right: VSC1 power, P1.

by deriving the transfer function of the DVC including the voltage droop characteristic. In
terms of small signals, the voltage droop characteristic can be expressed as

∆eref
2 = ∆enl

2 − kdr2∆idref
f2 (6.1)

which, combined with the DVC described by (4.15), gives

d∆n2

dt
= − kie2kdr2

kpe2kdr2 + 1
∆n2 +

kie2

kpe2kdr2 + 1
(∆enl

2 −∆e2) (6.2)

∆idref
f2 =

1

kpe2kdr2 + 1
∆n2 +

kpe2

kpe2kdr2 + 1
(∆enl

2 −∆e2) (6.3)
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which subsequently gives the transfer function

∆idref
f2 = βkpe2

(
s+ (kie2kdr2β + 1

kpe2
)

s+ kie2kdr2β

)
(∆enl

2 −∆e2) (6.4)

with β = 1
kpe2kdr2+1

. Equation (6.4) shows that the DVC acts as a phase-lag compensator
(since 1

kpe2
> 0). Using the numerical values from Table 6.1, the zero and the pole of (6.4)

are
z1 = −0.42 pu, λ1 = −0.094 pu (6.5)

which means that (6.4) adds a negative phase to the VSC admittance at low frequencies.
At frequencies higher than 0.42 pu, the gain of the DVC transfer function is approximately
βkpe, which explicitly is

βkpe2 =
kpe

1
kdr2

kpe2 + 1
kdr2

(6.6)

which is less than kpe2 since kdr2 is usually less than 1. From (6.6), it can be interpreted
that the effect of the droop characteristic on the VSC admittance is actually to decrease
the magnitude of the VSC admittance. In this way, at the dc side resonance frequencies,
the VSC conductance is smaller when the droop characteristic is introduced compared to
the case without it. That explains why the stability limit has increased when using the
voltage-droop control.

6.5 Impact of other control loops

In this section, the impact of other control loops on the dynamic performance of the system
is investigated through simulations. One of the first assumptions made on the modelling
of VSC is that the active power has been controlled directly by the current reference idref

fi

instead of an outer loop power controller. The power controllers for VSC3 and VSC4 are
implemented as suggested in Section 2.4.4 with kpP = 0 and kiP = 31.42 pu, which gives
a rise time of 220 ms. The parameters of the VCC and the DVC of all VSCs are set as indi-
cated in Table 6.1 and the sequence of events stated in Section 6.2 is simulated. Figure 6.14
shows the voltage and the power of VSC2 and it can be seen that the instability related to the
dc-side resonance still occurs in a similar way as shown in Figure 6.4, where no outer loop
power controller had been implemented. However, the low frequency oscillations which
appear in Figure 6.4 from t = 2.5s, are not present when the power controller is imple-
mented as can be seen in Figure 6.14. The comparison indicates that the power controller
does not have a major impact on the dynamics related to the dc-side resonance, so the cur-
rent reference idref

f2 can be used directly to control the active power supply/consumption of
the converter. Observe that the difference between Figures 6.4 and 6.14 are mainly dictated
by the slight different in transmitted power when the power controllers are activated.

The alternating-voltage controller can be implemented at VSC1 and VSC2 in order to im-
prove the voltage profile, since the voltage at the PCC decreases as the power supply in-
creases. Since, in the studied sequence of events VSC2 ends up to be the only converter
that controls the direct-voltage of the system, the alternating-voltage controller described
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Figure 6.14: Simulated sequence of events. Voltage-margin control with act. power controller. DVC
with ωn = 0.8 and ξ = 1. Left: VSC1 voltage, e1. Right: VSC1 power, P1.

in Section 2.4.5 is implemented in this converter with kpU = 1 pu and kiU = 0.32 pu. The
results of the simulation are shown in Figure 6.15; it can be seen that the instability takes
place at a higher power transfer, compared to Figure 6.4. The results presented in Figure
6.15 are very similar to ones shown in Figures 6.7 and 6.8 where reactive power is injected
to the ac side of VSC2. This indicates that a small variation in the VSC2 admittance (due
to the reactive power injection) together with a better voltage profile at the PCC leads to
an increase of the amount of active power that the VSC2 can inject into the dc grid without
losing stability.
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Figure 6.15: Simulated sequence of events. Voltage-margin control with alternating-voltage con-
troller. DVC with ωn = 0.8 and ξ = 1. Left: VSC1 voltage, e1. Right: VSC1 power,
P1.

6.6 Conclusions

In this chapter, simulations have been performed in order to extend the analysis develo-
ped in the previous chapters. A four-terminal VSC-HVDC system has been modelled in
PSCAD, and its dynamic performance has been tested for different parameters, control
strategies, and operating points. Simulation results confirm the results obtained through
the analysis carried out in the previous chapters. It has been shown that the dc-side reso-
nance are not amplified when decreasing the bandwidth of the DVC. Through simulations,
it has been shown that the voltage-droop control strategy has a better dynamic performance,
since it has the effect of decreasing the magnitude of the VSC admittance. Additional tests
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were carried out, in which the impact of other loops on dc-side resonance related stabil-
ity is studied. The tests have shown that the injection of reactive power, or the control of
the alternating-voltage at the PCC, increase the stability limit since it improves the voltage
profile at the PCC and changes the VSC admittance. The active power controller does not
seem to have any significant effect on the dc side dynamics. This is due to the fact that the
active power controller will only respond to disturbances in the ac side. It is of importance
to stress that the analysis carried out in Chapters 4 and 5 considers that the VSCs are linear
amplifiers that are capable of delivering any kind of power level. However, in the imple-
mented PSCAD model, actual switching converters have been considered. This leads to
small mismatches between the theoretical and the simulated models.
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, the dc network dynamics of VSC-HVDC systems has been thoroughly in-
vestigated. Small signal analysis has been used, initially, to determine the main factor that
impact the stability of the VSC-HVDC system. A modelling procedure to obtain the state
space model of the system has been developed in such a way that individual subsystems
are modelled, and, after that, they are merged into the system of interest.

From eigenvalue analysis in a two-terminal HVDC system, it has been found that the main
factors that impact the dc-side stability of the system are the following:

1. The dc-side resonance phenomenon, which takes place due to the RLC characteristics
of the cables which conform the dc network.

2. The direction of the power transfer, since it has been shown that the more power
the VSC which controls the direct voltage injects to the dc side, the more the poles
related to resonance phenomenon moves to the left side of the s-plane. On the other
hand, the more power the VSC which controls the direct voltage absorbs from the dc
side, the more the poles move to the right side of the s plane.

3. The size of the gains of the direct-voltage controller. It has been shown that high
gains turns the system more prone to instability than low gains.

4. The strength of the ac system to which the VSC which controls the direct voltage is
connected. The weaker the system, the more the poles related to the dc side resonance
move to the left side of the s-plane.

5. The ac side grid configuration. The case when a capacitor is connected at the PCC
has been studied and it was found that ac side resonances can also turn the system
unstable.

Although eigenvalue analysis is a powerful tool to study the stability of the system, it does
not give a clear insight on the source of the instability found in the analysis. A frequency
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domain approach is proposed in this thesis to explain the conditions in which the sys-
tem turns unstable. A two-terminal VSC-HVDC system is modelled as a SISO feedback
system, where the VSC-system transfer function and the dc grid transfer function are de-
fined. The VSC-system transfer function can be interpreted as an admittance, called the
VSC admittance in this thesis, and the dc grid transfer function as an impedance. The dc
grid impedance has its real part positive for all frequencies since its electrical circuit is
composed by passive elements. The main characteristic of the dc grid impedance are the
resonance peaks that appear as a result of the RLC resonances. On the other hand, the
real part of the VSC admittance is negative or positive depending on the direction of the
active power and the frequency. In the unstable cases, the dc grid resonance peak coincides
with a negative VSC conductance, meaning that, instead of being damped, the resonance
is amplified, if the conductance is sufficiently high. The impact of different factors on the
VSC admittance is studied as well. The frequency domain approach proposed in this thesis
can provide design criteria for the VSC control system. For example, in order to avoid
instability related to dc-side resonances, the control system can be designed such that the
magnitude of the VSC admittance is below a certain value at frequencies around the dc-side
resonance frequency.

Finally, a four-terminal HVDC system has been modelled and some events has been tested
for two control strategies, the voltage-margin control, and the voltage-droop control. The
results confirms the findings from previous chapters, and the knowledge acquired from
the analysis performed in the previous chapters is utilized to explain the instability which
occurred in the simulated cases. Particularly, it has been shown that the voltage-droop
control strategy has a better performance than the voltage-margin control strategy, from
the dynamic point of view. It has been found that the application of the voltage-droop
controller decreases the magnitude of the VSC admittance, reducing then the risk of dc
side instabilities. Other control loops has been studied, and it has been shown that the
injection of reactive power, or the voltage control at the PCC increases the power limit
from the stability point of view. Moreover, the impact of the active power controller has
been studied and it has been found that it does not have a significant impact on the system
dynamics.

7.2 Future work

The main philosophy adopted in this thesis has been the simplification of the studied model
as much as possible. This facilitates the analysis since, obviously, the study of simple sys-
tems are easier than the study of complex systems that accounts for all the possible control
loops into the model. Simplifications adopted in this thesis are, for example, waiving the
active and reactive power control loops, the alternating-voltage control loop, assuming the
measurement devices ideal, etc. A next step on this work is then to study the stability of
an increasingly complex HVDC system, not only considering the complexity of the VSC
control structure, but also the complexity of the dc network (composed by different types
of cables and overhead transmission lines).

Moreover, this works has been devoted to the explanation of the instability found in the dc
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network. However, the design of the control system such that the instability is avoided has
not been investigated in this thesis. The approach proposed in this thesis can be used to
provide criteria for the design of the control system.

Experimental verification of the theoretical derivations and the simulation results is needed
in order to give strength to the findings pointed out in this thesis.

In addition, in this thesis, small signal analysis is performed, meaning that the results are
only valid for very slow changes of the operating conditions. Large disturbance phenomena
such as the low frequency oscillations identified in Section 6.5 and Section 6.3 can also
occur and their investigation are of interest, especially in complex infrastructures such as
MTDC systems. For these investigations, the ideal converter models used for the theoretical
analysis in this thesis, can be further improved by implementing average converter models.

Further analysis can be carried with the aim of providing design and operation practices.
For example, the VSC capacitor can be designed considering the benefits that the selected
capacitor can bring to the HVDC system dynamic performance. Requirements on maxi-
mum power ramp up/down time or rise times considering a given controller speed can also
be determined.

The performance of the HVDC control system during and after a fault, either in the ac
side or dc side, is also an important topic to investigate, especially in meshed HVDC grids.
Issues such as fault detection methods, protection schemes, calculation of electrical quan-
tities in fault conditions, etc, are some of the topics to investigate in the future.
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Appendix A

Three-phase transformations

In this appendix, the necessary transformations from three-phase quantities to vectors in
stationary αβ and rotating dq frames, and vice versa, are described.

A.1 Transformation of three phase quantities to vectors

A three-phase system composed by three quantities ua(t), ub(t) and uc(t) can be trans-
formed into a two-component vector, uαβ(t), in a stationary complex reference frame,
usually called αβ-frame, by applying the transformation defined by

uαβ(t) = uα(t) + juβ(t) = Ktr(ua(t) + ub(t)e
j 2
3
π + uc(t)e

j 4
3
π). (A.1)

The transformation constant Ktr can be chosen between
√

2/3 or 2/3 to ensure power
invariant or amplitude invariant transformation, respectively. It should be highlighted that
amplitude invariant transformation is used in this thesis. Equation (A.1) can be expressed
in matrix form as

[
uα(t)
uβ(t)

]
= T32



ua(t)
ub(t)
uc(t)


 (A.2)

where the matrix T32 is given by

T32 = Ktr




1 −1

2
−1

2

0

√
3

2
−
√

3

2


 .

The inverse transformation, assuming no zero-sequence, i.e. ua + ub + uc = 0, is given by


ua(t)
ub(t)
uc(t)


 = T23

[
uα(t)
uβ(t)

]
(A.3)
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with the matrix T23 given by

T23 =
1

Ktr




2

3
0

−1

3

1√
3

−1

3
− 1√

3



.

A.2 Transformation between stationary and rotating co-
ordinate systems

For the vector uαβ(t) rotating in the αβ-frame with the angular frequency ω(t) in the po-
sitive (counter-clockwise) direction, a dq-frame that rotates in the same direction with the
same angular frequency ω(t) can be defined. In this reference frame, the vector uαβ(t) ap-
pears as a stationary vector. A projection of the vector uαβ(t) in the d-axis and q-axis of the
dq-frame gives the components of the vector in the dq-frame as illustrated in FigureA.1.

Figure A.1: Relation between αβ-frame and dq-frame.

The transformation can be written in vector form as

udq(t) = ud(t) + juq(t) = uαβ(t)e−jθ(t) (A.4)

with the angle θ(t) in Fig.A.1 given by

θ(t) = θ0 +

∫ t

0

ω(τ)dτ.

The inverse transformation, from the rotating dq-frame to the fixed αβ-frame is defined by

uαβ(t) = udq(t)ejθ(t). (A.5)

In matrix form, the transformation between the fixed αβ-frame and rotating dq-frame can
be written as [

ud(t)
uq(t)

]
= R(−θ(t))

[
uα(t)
uβ(t)

]
(A.6)
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[
uα(t)
uβ(t)

]
= R(θ(t))

[
ud(t)
uq(t)

]
(A.7)

where the projection matrix R(θ(t)) is

R(θ(t)) =

[
cos(θ(t)) −sin(θ(t))
sin(θ(t)) cos(θ(t))

]
.

119



Appendix A. Three-phase transformations

120



Appendix B

Symbols and Per-unit Convention

The adopted symbolic representation of the variables in different coordinate systems are
explained in this appendix. In addition, since per-unit values are used extensively in this
thesis, their definition are also presented.

B.1 Coordinate systems

From the ac side perspective, three types of electrical variables are used throughout this
thesis. The three-phase ac voltages and currents, the αβ quantities, and the dq quantities
(where the transformation methods are presented in Appendix A). Three-phase variables
are represented as non-underlined variables with a subscript which highlights certain char-
acteristics of the variable. The subscripts a, b and c are added when the individual phase of
the variable is handled. For example, from Figure 2.9:

if : is the three-phase current that flows through the filter.
ifa : is the current that flows through the phase a of the filter.
ifb : is the current that flows through the phase b of the filter.
ifc : is the current that flows through the phase c of the filter.

In the αβ-frame (or coordinate system), the three-phase quantities are transformed into
two-component rotating vectors. Vectors in this thesis are represented as underlined vari-
ables and the complex number notation is often used to represent the vector. For example,
the three-phase current if in the αβ-frame is represented as

iαβf = iαf + jiβf .

where iαβf is a current vector in the stationary αβ-frame, and iαf and iβf are the current
components in the α and β axis, respectively. In the same fashion, the current if can be
expressed in the dq-frame as

idqf = idf + jiqf

where idqf is the current vector in the rotating dq-frame, and idf and iqf are the current compo-
nents in the d and q axes, respectively. In addition, other rotating reference frames, such as
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the ideally aligned dq-frame, are referred to in the thesis. In that case, a superscript is added
to denote that rotating frame corresponds a particular coordinate system. For example, in
the ideally aligned dq-frame, the the current if is expressed as

iidqf = iidf + jiiqf

where iidqf is the current vector in the rotating ideal dq frame, and iidf and iiqf are the current
components in the ideal d and q axes, respectively. The filter reactor current in the grid dq
frame, defined in Section 4.4.1, is represented as usdqf . However, variables in the converter
dq frame, defined in Section 4.4.1, are represented without any special superscript, e.g.
idqf . In some cases, the matrix notation is used instead of the complex number notation,
especially in the Laplace domain. For instance, the current idqf in matrix notation is

idqf =

[
idf
iqf

]
.

Matrices, in general, are represented as bold symbols and do not represent necessarily
electrical variables. Thus, their elements are always specified in order to avoid confusion.

Variables in the dc side are represented similar to three-phase variables, i.e. not underlined
and with a subscript which describes a characteristic of the variable. Whether the variable
represents an ac or dc quantity is stated in the thesis.

B.2 Per unit values

In this thesis, the electrical variables (currents and voltages), as well as variables which de-
note electrical properties (impedances, inductances, capacitances, frequencies) are treated
in per unit. The bases are defined as defined in Table B.1.

It should be highlighted that the base voltage and current in the ac side are the peak of the
line-to-neutral voltage and the peak of the line current, respectively. Moreover, in the dc
side, only one of the poles are studied since only symmetrical cases are assumed. Thus,
the dc-side base power is half of the ac-side base power. As an example, Table B.2 shows
numerically the base values selected for the system shown in Figure 3.12 and whose ratings
are as indicated in Table 3.1.

122



B.2. Per unit values

Table B.1: Base values

Base value Definition

Base time (tbase) (2πfnominal)
−1

Base frequency (ωbase) 2πfnominal

Base Power (Sacbase) SVSC-rated

ac side - Base voltage (Uacbase)
√

2/3ULL-rated

ac side - Base current (Iacbase)
2
3

Sbase

Uacbase

ac side - Base impedance (Zacbase)
Uacbase

Iacbase

ac side - Base inductance (Lacbase)
Zacbase

ωbase

ac side - Base capacitor (Cacbase) (Zacbaseωbase)
−1

dc side - Base power (Sdcbase)
SVSC-rated

2

dc side - Base voltage (Udcbase) Erated

dc side - Base current (Idcbase)
Sdcbase

Edcbase

dc side - Base impedance (Zdcbase)
Udcbase

Idcbase

dc side - Base inductance (Ldcbase)
Zdcbase

ωbase

dc side - Base capacitor (Cdcbase) (Zdcbaseωbase)
−1

Table B.2: Example of base values for the rated values from Table 3.1

Base value Numerical value
ωbase 314.16 rad/s
Sacbase 600 MVA
Uacbase 244.95 kV
Iacbase 1.63 kA
Zacbase 150 Ω
Lacbase 477 mH
Cacbase 21.22 µF
Sdcbase 300 MW
Udcbase 300 kV
Idcbase 1 kA
Zdcbase 300 Ω
Ldcbase 955 mH
Cdcbase 10.6 µF
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