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There is a computer disease that anybody
who works with computers knows about.

It’s a very serious disease and it
interferes completely with the work.

The trouble with computers is
that you ’play’ with them!

Richard P. Feynman





ABSTRACT

Microwave measurement systems are attractive for diagnostics and monitoring purposes
in a number of important applications. For example, the strong interaction between mi-
crowaves and water make microwaves well-suited for moisture measurements. Moreover,
the power used in microwave measurements is often sufficiently low such that the mea-
surement can be classified as non-destructive. As such, microwave measurements systems
are appropriate for applications in, for example, biomedical imaging and monitoring of
pharmaceutical processes.

In this thesis, parameter estimation methods are employed for two microwave mea-
surement systems with application in the pharmaceutical industry. Additionally, we
present a numerical study of a simplified microwave measurement system for the local-
ization of intracranial bleedings via classification. In order to achieve good agreement
between measured and simulated data, we utilize accurate electromagnetic models by
means of the finite element method and calibration methods using a reference case mea-
surement. In addition, we utilize a priori information to mitigate problems associated
with parameter ambiguity, where the a priori information may be incorporated by means
of regularization.

First, we consider a transmission/reflection tomography measurement system. Here,
the parameter estimation method involves a goal function that corresponds to the misfit
between the measured and simulated scattering data, where a non-linear gradient-based
optimization method is used to determine the parameters. The gradients are computed
by means of continuum sensitivity expressions based on an adjoint field problem. The
tomography system is used to estimate the effective permittivity of densely packed micro-
crystalline cellulose (MCC) pellets and we find that the estimated permittivity depends
on the moisture content of the MCC pellets.

Second, we solve a minimization problem for resonance measurements in a pharma-
ceutical process vessel, which acts as a metal cavity. Here, we estimate parameters using
a quadratic minimization problem with a regularization term, which incorporates a pri-
ori information provided from other sensors. The physical model is linearized and small
perturbations of the resonant frequencies are related to small variations in the permit-
tivity. During operation, the vessel is loaded with MCC pellets that are fluidized and
circulated by injection of air, which yields a dilute MCC/air mixture. The measured reso-
nant frequencies are used to estimate the effective complex permittivity of three different
sub-regions inside the process vessel as a function of process time.

Keywords: microwave measurements, parameter estimation, finite element method,
gradient-based optimization, sensitivities, microcrystalline cellulose, permittivity
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CHAPTER 1

INTRODUCTION

The applications of microwaves are numerous and some examples of application areas
are radar systems, astronomy, telecommunication systems and heating. The focus of this
thesis is on microwave measurement systems, where the objective is to measure electrical
material parameters and related quantities. In particular, this thesis explores the usage
and benefits of accurate simulation tools in combination with extensive numerical com-
putations for the modeling of microwave measurement systems and the corresponding
development of computer algorithms for parameter estimation and classification.

1.1 Microwave Measurements

Microwave measurements offer competitive measurement techniques in many applica-
tions. We refer to Nyfors and Vainikainen [1] for a survey as well as classification of
various types of microwave sensors for applications in industry, in medicine and for re-
search purposes. The classes of microwave sensors are (i) resonance sensors, (ii) trans-
mission sensors, (iii) reflection sensors, (iv) radar sensors and (v) special sensors such as
radiometer sensors and active imaging systems.

As microwaves interact strongly with water, one fruitful application field is humidity
and moisture measurements. An example is the microwave humidity sensor for difficult
environments by Toropainen et al. [2]. This measurement system exploits the resonant1

behavior of microwave cavities, and uses the measured resonant frequency shift (around
9.5 GHz) to estimate the air humidity given the air temperature inside the sensor. A
possible limitation of the sensor is that the air and its temperature is assumed to be
homogeneous. Another example is the low cost microwave sensor2 for moisture content
measurement in the paper milling industry by Gentili et al. [3]. From measuring the
resonant frequency (around 0.85-0.95 GHz), they estimate the moisture content via an

1The sensor consists of an open ended cylindrical cavity resonator operating the TE011-mode.
2The sensor is a 2-port cavity backed slot resonator.
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inversion procedure on an artificial neural network trained on measurement data. Here,
the measured resonant frequency is affected by (i) the thin gap of air between the sensor
and the sheet of paper, (ii) the sheet’s surface roughness, (iii) the thickness of the sheet
and (iv) the moisture content. This yields a problem with multiple parameters with
limited distinguishability.

Other interesting application fields are found in biomedical imaging, for example
microwave breast imaging systems for detection of malignant tissue [4] or microwave
brain imaging for stroke detection [5]. One breast imaging system is proposed by Winters
et al. [6]. The presented measurement system consists of an array with five elliptical
rings, where each ring contains eight electrically small dipole antennas. It measures the
transmitted signal between all possible antenna pairs for a number of discrete frequencies
between 0.5 GHz and 3.5 GHz. In the reconstruction of the image, they use smooth
patient specific3 basis functions instead of a mesh based material discretization as in
Ref. [7]. They find that this approach significantly reduces the number of degrees of
freedom in the reconstruction problem.

In most applications, a major advantage of microwave measurement techniques is
that they are non-destructive4. In addition, microwaves have the ability to perform non-
intrusive measurements, e.g. without contact with the measurement region, and that
microwaves penetrate many materials. Also, microwave measurement equipment can be
a portable and low-cost alternative as compared to other competing techniques. A pos-
sible disadvantage of microwave measurements is the simultaneous dependence of many
parameters, such as temperature, density, size, position, moisture, etc., for applications
where only a selection of these quantities is of interest to measure and the others are
unknown. The possible spatial resolution in microwave imaging also depends on the
wavelength of the microwaves. This makes details with small dimensions as compared to
the wavelength difficult to resolve. Further, microwaves often have reduced penetration
depth into materials with conductive losses as the frequency is increased.

For measurements based on microwaves we need (i) a network analyzer (or simi-
lar measuring device) to generate and measure the microwave signal, (ii) one or several
antennas or probes connected to the network analyzer and (iii) a measurement region
containing the object/material we would like to measure. The network analyzer gen-
erates a microwave signal which propagates along a transmission line to a connected
antenna. The antenna radiates the microwave signal as an electromagnetic wave. The
wave propagates into the measurement region, interacts with the measurement object,
and is scattered. The scattered field is then measured by the network analyzer using ei-
ther the same antenna that transmitted the wave (i.e. reflection) or by a different antenna
(i.e. transmission). The network analyzer measure the (complex) reflection or transmis-

3The shape of the patients breast is considered known and used in the construction of the
patient specific basis functions. The basis functions are constructed by introducing Gaussian
functions on the subregions of a grid spanning the interior of the breast volume. In addition to a
basis function representing the mean value, they generate (using a singular value decomposition)
a minimal set of orthonormal basis functions, corresponding to spatial variations around the
mean.

4In these applications, the necessary amount of power is sufficiently low to classify the mi-
crowave radiation as non-destructive or unharmful.



NUMERICAL METHODS FOR ELECTROMAGNETICS 3

sion parameters. These parameters are found by comparing the amplitude and phase of
the received signal with the transmitted signal for one frequency at a time.

For systems with Np ports, the so-called scattering parameters Sp,q(f) describe the
received signal on port p given that a signal is transmitted into (only) port q for the
frequency f , where p = 1, . . . , Np and q = 1, . . . , Np. Note that for passive systems, the
scattering parameters are complex numbers with a magnitude that does not exceed unity.
The scattering parameters are usually stored in the scattering matrix S(f), where the row
index corresponds to the receiving port index and the column index to the transmitting
port index. In particular, we have the reflection coefficient on port p for p = q (i.e. the
diagonal of S). Similarly, we have the transmission coefficient from port q to port p for
p 6= q (i.e. the off-diagonal elements in S).

1.2 Numerical Methods for Electromagnetics

To interpret the measured scattering parameters, a model of the measurement system
with its measurement region is necessary. In the measurement system, we propagate
electromagnetic waves, which are described by the theory of classical electromagnetism.
An introduction to the theory of electromagnetism can be found in the book by Cheng [8].
The theory of electromagnetism is expressed by Maxwell’s equations5, which can be
used to create a physical model of the measurement system. In the physical model, the
geometry and the electromagnetic properties of the materials influence the propagation
and scattering of the electromagnetic wave.

There are a number of computational methods for solving electromagnetic field prob-
lems. The most popular methods are the finite-differences time-domain (FDTD) scheme,
the finite element method (FEM) and the method of moments (MoM). These techniques
have different advantages and disadvantages as they are compared to each other, and
none is superior for all electromagnetic problems. An introduction to these numerical
methods for electromagnetism can be found in the textbook [10].

The FDTD scheme is extensively used and it was introduced 1966 by Yee [11]. In the
FDTD scheme, a finite-difference approximation of Maxwell’s equations is employed on
a structured grid, where the most common choice is a Cartesian grid. The straightfor-
ward discretization procedure yields a scheme that is easy to understand and implement.
Moreover, a FDTD solver does not need to explicitly store the three-dimensional grid
or a system matrix, which reduces memory requirements. However, curved or oblique
boundaries are approximated by ”stair-cases” due to the brick-shaped nature of the com-
putational grid. Local refinement of the element size is unsupported by the standard
scheme, making fine geometric details computationally expensive to model accurately.

The MoM, or the boundary element method, is based on integral formulations of
Maxwell’s equations [12]. In the MoM, the boundaries between different media are nor-
mally discretized. The field solution is not expressed explicitly in the MoM. Instead,
we use the sources to the field as the unknowns. The field solution is then expressed
by means of superposition integrals of the discretized sources, which involve a so-called

5Named so in respect to J. C. Maxwell’s contributions in his paper published 1865 [9], final-
izing the classical theory of electromagnetism.
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Green’s function. The system matrix produced by the MoM is in general a full matrix,
which describes how the unknown sources on the discretized boundaries affect each other.

1.2.1 Finite Element Method

The finite element method is, like the FDTD scheme, a volume discretizing method
and it was featured in applications in structural engineering already in the 1940’s. The
finite element method was adapted to work well in electromagnetic applications with
the introduction of the edge-basis functions6 by Nédélec in the 1980’s [13]. Today, the
FEM is an important numerical method for solving a large group of problems related to
electromagnetism and numerous software packages exist. An introduction to the FEM
in electromagnetics is found in the book by Jin [14].

The FEM discretizes the computational region into a mesh of finite elements of usually
tetrahedral or hexahedral type in three dimensions and triangular or quadrilateral type
in two dimensions. Moreover, the elements can be made smaller in regions where the
solution varies rapidly, such as around field singularities at sharp edges and corners. A
suitable set of basis functions is defined on the elements and the field solution is expressed
as a linear combination of these basis functions with unknown coefficients. The solution
is then found in a weak sense by setting the weighted residual of the differential equation
to zero. In the FEM, a sparse7 system matrix is constructed, which describes the local
behavior of the field.

The most important advantage of the FEM in comparison to the FDTD scheme is its
ability to mesh arbitrary curved and oblique boundaries. Further, fine geometric details
are possible to model in FEM by reducing the mesh size locally. The FEM is, however,
more memory expensive than the FDTD scheme as the mesh and the system matrix is
normally explicitly stored. In comparison to the MoM, the system matrix in the FEM is
sparse, which significantly reduce the computational burden and advocate for the use of
efficient iterative solvers.

The basis functions employed in the FEM are often of polynomial type with some
order p. Here, p = 1 corresponds to a linear variation across an element, p = 2 quadratic
variation and so forth. Using a higher-order polynomial for the basis functions can in
some cases significantly improve the solution approximation at a similar computational
cost as compared to linear basis functions. As the local polynomial degree of the basis
function is increased, the approximate solution can more easily represent smooth fields,
which makes it possible to use larger elements. A finite element solver for an arbitrary
order p ≤ 10 is implemented for the Helmoltz equation and described in Sec. 3.1.1. This
solver is utilized in Paper I, Paper II and Paper IV.

6The edge-basis functions provided an excellent solution to problems related to spurious
solutions and field singularities around sharp geometrical features.

7In the FEM, we generally construct basis functions with local support. This makes only a
few basis functions interact with each other, resulting in a sparse linear system of equations.



CHAPTER 2

PARAMETER ESTIMATION AND CLASSIFICATION

Many different types of parameter estimation techniques are used to relate measured
quantities to sought quantities. In some cases, the measurement procedure can be trivial,
such as when we determine the length of an object using a ruler, where we simply read
the value directly from the ruler. In many applications, however, the quantity of interest
influences the directly measured value in a complicated manner and, thus, we need a
model that relates the measured quantities to the sought quantities, or vice versa. Such
a model can, for example, be a physical model based on appropriate equations describing
the system in terms of first principles, or an empirical model created from measurement
data. We refer to the book by Aster et al. [15] for further details about parameter
estimation and the broader subject of inverse problems. In this thesis, the focus is on
parameter estimation using physical models derived from Maxwell’s equations. Thus,
we attempt to relate the measured electromagnetic quantities, such as the scattering
parameters, to the dielectric properties and/or geometric dimensions of the measured
object. The estimated dielectric properties can then be used to characterize a material
in terms of other quantities, such as its moisture content.

Typically, a goal function is minimized in order to find an optimal parameter con-
figuration that fits the measurement situation. The act of minimizing the goal function
is often referred to as optimization, which is described next. An alternative approach
to parameter estimation (in characterizing the measurement situation) is classification,
which is described briefly at the end of this chapter.

2.1 Goal-Oriented Optimization

Given that the measured quantity is the scattering matrix SM at the specified frequency
and the physical model of the scattering matrix is S(p), where p are some parameters
defining the dielectric properties and/or geometric dimensions of the unknown object, a
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goal function can be constructed as

g(p) = ||S(p)− SM|| , (2.1)

where || · || is an appropriate norm. Here, Eq. (2.1) describes the misfit between the
measured scattering matrix and the computational model of the scattering matrix in the
specified norm.

The scattering matrix is a square matrix (e.g. N2
p elements) that can be measured for

Nf frequencies. As such, the scattering data can be stored as a three-dimensional array.
To simplify the mathematical description and treatment of the problem, we introduce sM

and s(p) as the respective vectorized (one-dimensional) scattering data arrays for a set
of discrete frequencies. In the following, we use a weighted norm for the goal function

g2
W(p) =

(
s(p)− sM

)H
W
(
s(p)− sM

)
= ||s(p)− sM||2W , (2.2)

where H is the Hermitian (complex conjugate transpose) operator and W is a diago-
nal matrix with real positive weights on the diagonal. An alternative goal function is
gW(p) =

√
g2
W(p), which can be directly interpreted as the weighted root-mean-square

(RMS) value of the misfit in the scattering parameters. An example of a weight matrix
is W0 = N−2

p N−1
f I, where the corresponding goal function g2

W0
(p) is the mean-squared-

deviation (MSD) between the physical model and the measurement data
For certain measurement systems, the electromagnetic problem features resonances

with high Q-values. Here, the scattering parameters can be represented in terms of the
resonant frequencies ωi, for i = 1, 2, . . .. Using for example a subspace-based multivari-
able system identification algorithm [16], we can estimate complex resonance frequencies
ωM
i for i = 1, . . . , Nω from measured scattering data sM. A goal function formulation can

be constructed for the estimated resonant frequencies ωM and a corresponding physical
model ω(p), which is similar to Eq. (2.2) for the scattering parameters.

The parameter vector p is determined by the minimization of g(p), which is what
we denote as goal-oriented optimization. Typically, the scattering parameters depend
non-linearly on the parameters p. Thus, minimizing g(p) in Eq. (2.2) is, in general, a
non-linear and non-convex problem. Moreover, the parameters p can be subject to some,
possibly non-linear, constraints. Optimization algorithms can be utilized to minimize
g(p). A common feature of many optimization algorithms is to use the sensitives of s(p)
around the current point pk to find a nearby point pk+1 that yields a reduced value of
the goal function. The focus of the Sec. 2.1.1 is the use of the sensitivities of s(p), or
gradients, with respect to p as we minimize g(p).

In some measurement situations, the expected variation of the parameters p can
be assumed small. If so, the computed quantity s(p) can be approximated to linearly
depend on the parameters p. The minimization problem can then be reduced into a
quadratic problem, where the solution satisfies a system of linear equations. We describe
this approach in detail in Sec. 2.1.2.

As the scattering parameters depend non-linearly on the parameters p, the goal
function g(p) can have many local optima. To find a sufficiently good initial guess for
a gradient-based optimization algorithm, a parameter study for a set P of parameter
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vectors {p1, . . . ,pN} is executed and the computed result s(pi) is stored in a database
∀pi ∈ P. The computation of a database is straightforward, parallelizable, and can be
executed prior to any measurement of scattering data. However, the computational cost
to compute and store a database grows exponentially with the number of parameters in
the database. In particular, if the parameter vector pi consists of N parameters, and a
Cartesian grid with Ng points for each of the parameters is employed, the computational
cost and storage requirements scale as NN

g . The computation of databases is described
in Sec. 2.1.3, together with other possible areas of usage.

2.1.1 Gradient-Based Optimization

Gradient-based optimization algorithms exploit an iterative scheme to minimize the goal
function using the negative gradient as the search direction. The algorithm starts at the
initially (k = 0) supplied guess pk and evaluates the goal function g(pk) and its gradient
∇pg(pk). For global convergence in a non-convex problem, the initial guess must be
sufficiently close to the global minimum. In each subsequent iteration, the algorithm
attempts to improve the parameter vector along the line pk+1 = pk − ν∆p, where ∆p is
the direction given by the gradient and ν is the step length [17]. Here, ν is selected such
that g(pk+1) ≤ g(pk), where a so-called line search often is employed. The algorithm
continues to evaluate the goal function and its gradient until the termination criteria are
fulfilled. The derivative of g2

W(p) in Eq. (2.2) with respect to the parameter pi is

∂g2
W

∂pi
(p) = 2<

{(
∂s(p)

∂pi

)H
W
(
s(p)− sM

)
}
. (2.3)

In Eq. (2.3), the derivative of the scattering data s(p) with respect to parameters pi
are found from sensitivity expressions derived from Maxwell’s equations. An example
of a sensitivity expression for the scattering parameters with respect to permittivity is
presented in Sec. 3.1.1. Sensitivities with respect to geometric shape and further details
about gradient-based optimization are found in Refs. [18–20].

Gradient-based optimization is used in Paper I and the algorithm utilized is the
sparse nonlinear optimizer (SNOPT) solver implemented in TOMLAB [21].

2.1.2 Linear Problems and Regularization

For small perturbations in the parameter vector p describing the scattering data, we can
linearize our model of the scattering data using the gradient as

s(p) ≈ s(pi) +∇s(pi)δpi . (2.4)

where pi is the linearization point. We find an estimated parameter perturbation δp̂i that
describe the measured scattering data sM by solving the following quadratic minimization
problem

δp̂i = arg min
δpi

||Aiδpi − bi||22 + γ||L(δpi − δp̃i)||22 , (2.5)
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where the sensitivity matrix Ai = ∇s(pi) relates the unknown perturbations δpi in the
parameters pi to perturbations in the scattering data. Here, bi = sM − s(pi) is the
deviation of the measured scattering data compared to the model evaluated at the lin-
earization point. Further, a regularization term is included in Eq. (2.5) and it penalizes
deviations in δpi far from the a priori specified values in δp̃i using a weighted Euclidean
norm. The minimization problem stated in Eq. (2.5) is a quadratic problem with reg-
ularization. However, the solution of this optimization problem can be expressed as an
over-determined system of linear equations, which is derived by setting the derivative of
the goal function in Eq. (2.5) to zero. We refer to the book by Engl et al. [22] for further
details about regularization of inverse problems.

In Paper III, we construct a quadratic model similar to Eq. (2.5). It relates the
perturbations in the resonant frequencies δω(pi) (around a linearization point) to the
perturbations in the dielectric properties of a mixture inside a process vessel and the
geometric shape of the vessel.

2.1.3 Databases

Given a measurement system, it can be advantageous to construct a database of the
scattering data response and in some cases also the gradient of the scattering data. The
database could, for example, be parameterized with respect to the dielectric properties of
the unknown object and its size and position. Such a database can be used to analyze how
well the measurement system is able to distinguish different parameter combinations. It
could also be used as a look-up table to identify one (or several) parameter configurations
that corresponds well to the measured scattering data. The parameter configuration
found via the look-up procedure could then be used as an initial guess in a gradient-based
optimization algorithm or as linearization point for a problem with small perturbations.
Then, an optimization procedure could further improve on the estimated parameters,
and even introduce additional degrees of freedom not parameterized in the database.

The computational cost of creating a database can be very high, since the number
of computations typically scales exponentially with the number of parameters in the
database. Moreover, the full electromagnetic problem must be solved for each parameter
configuration and, often, for multiple frequencies. The construction of a database is,
however, embarrassingly simple to parallelize using multiple computers in a cluster, since
each computation is independent. Also, it is sufficient to compute and store the database
once and, in subsequent uses of the database, we only need to load the stored data.

2.2 Classification

Classification is a broad subject with numerous methods and applications, where we refer
to the book by Duda et al. [23] for an overview about statistical pattern classification
and machine-learning. For classification in microwave systems, the goal is to find an
automatized procedure to associate the measured scattering data sM with a class c,
which is defined by a subset of the parameter space. Under the assumption that sM

is well approximated by the physical model s(p), the classes could, for example, be
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represented by typical parameter vectors pci for i = 1, 2, . . ., where c denotes the class
index. Further, we assume that the scattering data s(pi) spans a high-dimensional space
S, and the class specific scattering data s(pci ) span a space Sc, which is a subspace of
S. Therefore, we formulate a classification algorithm based on the assumption that each
scattering data s(pci ) for i = 1, 2, . . . in which the parameter vector pci belong to class c
is generated (possibly after some processing) according to a linear model defined as

s(pci ) = Ucα
i
c + e , (2.6)

where Uc is a linear subspace basis that represents an approximation of the space Sc,
αic contains the weights of the basis vectors and e is additive white noise. The classifier
decision of a new unlabeled scattering data point s(pi), is based on finding the minimum
of the distances to the approximated subspaces, where the distance is computed via
projection of s(pi) onto Uc using

dc(s(pi)) = ||s(pi)−UcU
H
c s(pi)||2 . (2.7)

The training of the classifier, i.e. determining Uc, is based on singular value decomposi-
tion of a set of labeled data s(pci ) for i = 1, . . . , N .

In Paper IV, we use the above described classification algorithm for localization of
intracranial bleedings. Here, the classes represent 10 different bleeding positions inside
a patients head. We refer to Paper IV as well as Ref. [24] for further details about the
subspace learning algorithm for microwave scattering classification.





CHAPTER 3

RESULTS

In this chapter, we test our parameter estimation methods (described in Sec. 2.1) on two
microwave measurement systems that feature different electromagnetic characteristics:
(i) an N -port reflection/transmission measurement system and (ii) a two-port resonance
measurement system. Also, we provide some details on the electromagnetic modeling
of these systems. Further, we discuss calibration procedures that use a reference case
measurement. We continue with a brief overview of the results in the appended papers,
where we first present results for permittivity estimation from measurements. Finally,
we present results for two numerical studies in two different N -port systems. In the
first study, we analyze the possibility of detecting variations from a constant material
distribution using a database. In the second study, we characterize the performance of
the classification algorithm presented in Sec. 2.2 for localization of intracranial bleedings.

3.1 Measurement Systems

We use two different microwave measurement systems to test our parameter estimation
methods. The first measurement system is a 6-port prototype microwave tomography
system for measurement of dielectric properties. The second measurement system is a
monitoring system for a pharmaceutical process vessel. Here, the process vessel acts as
a metal cavity and the interior resonances are exited using two H-probes. The estimated
complex resonance frequencies are used for global and local monitoring of the permittivity
inside the process vessel.

3.1.1 Microwave Tomography System

The system presented in Paper I and Paper II is a microwave tomography measurement
system, where the measurement region is completely shielded from exterior disturbances
by metal walls. In Fig. 3.1, we present a photograph of the tomography measurement
system with network analyzer and switch as well as a photograph of the measurement
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region when the tomography measurement system is opened. The measurement region
is a circular metal cavity formed by the intersection of six rectangular waveguides, which
makes the cavity heavily loaded from an electromagnetic perspective by the waveguide
apertures. Here, we measure the scattering parameters in a frequency band between 2.7
GHz and 5.1 GHz. By means of accurate electromagnetic modeling and gradient-based
optimization as described in Sec. 2.1.1, we estimate the dielectric material properties
(with uncertainties) of the material placed in the measurement region. In particular, we
estimate the dielectric properties of microcrystalline-cellulose (MCC) pellets for different
moisture contents.

Figure 3.1: To the left, photograph of the prototype tomography measurement
system with the network analyzer and switch used in Paper I and Paper II. To
the right is a photograph of the measurement region of the opened tomography
measurement system, where microcrystalline-cellulose (MCC) pellets are placed in
a plastic holder.

For microwave measurement systems such as the tomography system, it is sufficient
to analyze a two-dimensional slice as presented in Fig. 3.2. In this type of geometry,
Maxwell’s equations can be reduced to two independent Helmholtz equations. These
equations correspond to the two different polarizations commonly described as transverse
electric (TE) and transverse magnetic (TM). This decomposition is only valid for material
distributions that are well described as a right generalized cylinder1, i.e. the material
distribution must be uniform along the z-direction.

1A generalized cylinder is a ruled surface parameterized as ~r(u, v) = v~r0 + ~rs(u) where ~r0 is
a fixed point and ~rs(u) is a curve [25]. We denote the cylinder right if ~r0 ⊥ ~rs(u).
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Figure 3.2: To the left, a two dimensional geometry representation of the tomog-
raphy measurement system. The region inside the dashed circle is referred to as
the measurement region. The dotted lines represent waveguide port boundaries and
the solid line metal walls. To the right, a photograph of the (opened) tomography
measurement system.

The TM polarization2 for the geometry in Fig. 3.2 is described by

−∇2Ez − ω2µ0εEz = 0 in Ω (3.1a)

Ez = 0 on ΓD (3.1b)

n̂ · ∇Ez + jkwgEz = 2jkwgE
+
0z,p on Γp, p = 1, . . . , 6 (3.1c)

where all waveguides are identical3 and kwg is the waveguide wavenumber for each waveg-
uide. Here, E+

0z,p is the incident field amplitude of the fundamental mode for port p. We
refer to the book by Pozar [26] for further details about waveguides and modes. Eq. (3.1)
with only one non-zero incident amplitude for one of the waveguide ports yields the re-
flection coefficient at this port as well as the transmission coefficients to all other ports.
By consecutive excitation of one port at a time, while the other ports are measured (and
impedance matched), we construct the scattering matrix S that describes all possible re-
flection and transmission coefficients of the measurement system. This scattering matrix
is mainly dependent on the geometry of the structure but also on the material distribu-
tion ε = ε(~r, ω) inside the measurement region. By an adjoint field formulation [18], it
is possible to derive sensitives that relate perturbations δS in the scattering matrix to

2Note that the propagation direction is not in the z-direction, as is common practice for
waveguide structures. Here, the field is propagating in the xy-plane. We denote this case as the
TM polarization simply because we have no z-component of the magnetic field.

3The waveguides width and height are equal, as well as the homogeneous material filling the
interior of the waveguides.
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perturbations δε in the material distribution according to

δSp,q =
ω2µ0

2jkwgwwgE
+
0z,pE

+
0z,q

∫

Ω

δεEz,pEz,q dΩ , (3.2)

where wwg is the waveguide width. Moreover, Ez,p is the field when port p is excited
(the adjoint problem) and Ez,q is the field when port q is excited (the original problem).
We note that Eq. (3.2) does not require the computation of a new field solution since all
ports has to be excited once in order to compute the entire scattering matrix.

In Paper IV, we present a numerical study of a measurement helmet system in which
microwaves are used for localization of intracranial bleedings. In the numerical study,
the measurement system is simplified to a two-dimensional problem. Here, 8 waveguides
are positioned around the patients head and water bags are placed in between the skull
and the waveguide openings to increase the coupling of the electromagnetic wave into
the head. In this study, the TE polarization is used and the corresponding field problem
is similar to the TM polarization (3.1).

3.1.2 Monitoring of a Pharmaceutical Process Vessel

In Paper III, a resonance measurement system is presented for global and local monitor-
ing of a pharmaceutical process vessel. Fig. 3.3 shows a photograph of the pharmaceutical
process equipment with the cylindrical process vessel and the two H-probes that are used
to excite the resonances. Here, the objective is to monitor the material moisture content
and its distribution inside the process vessel during operation, where the purpose is to
ensure a high quality output product and minimize the risk of a batch reject due to
agglomeration. The process vessel is loaded with MCC pellets that are fluidized by air
during operation. These pellets are coated by an aqueous solution that is sprayed onto the
pellets, and they are subsequently dried. Here, we estimate multiple resonant frequencies
between 0.7 GHz and 1.5 GHz from the measured scattering parameters by means of a
subspace-based identification algorithm [16]. By means of material-based sensitives, a
quadratic optimization problem with regularization (as described in Sec. 2.1.2) is used
to estimate the material parameters for three different sub-regions inside the vessel.

For closed metal vessels, the resonant phenomena can be described by the eigenvalue
problem

∇×∇×E − ω2µ0εE = 0 in Ω (3.3a)

n̂×E = 0 on Γ (3.3b)

where Ω denotes the interior region of the metal vessel and Γ its metal walls. The
material distribution inside the vessel is characterized by the permittivity ε = ε(~r, ω).
The eigenvalue problem (3.3) yields pairs of eigenfrequencies ωi and eigenmodes Ei,
where i is an integer index. This solution depends mainly on the dimensions of the
metal vessel, but also on the material distribution inside the vessel. The dependence
of the eigenfrequencies on the material distribution in combination with perturbation
theory [27], yields sensitivities that relate perturbations δωi of the resonant frequencies
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Figure 3.3: To the left, photograph of the pharmaceutical process vessel presented
in detail in Paper III. To the right, the mounted H-probes used to excite the
microwave resonances inside the vessel.

to the corresponding perturbations δε in the material distribution. For further details in
the derivation of sensitivities, the reader is referred to Paper III.

3.1.3 Comparison Between Measurements and Simulations

In general, microwave measurement systems suffer from various sources of measurement
errors, such as noise and geometrical details that can be difficult to model. Further, the
measurement systems are often non-stationary in time, due to for example temperature
variations and cable flexing/displacements. A simulation model is in general an idealiza-
tion of the measurement system based on a number of simplifications such as (i) all the
physical dimensions of the measurement system are assumed to be known, (ii) geometrical
defects of the system are neglected and (iii) the measuring device (e.g. network analyzer
and cables) is often completely removed or simplified. In addition to the calibration of
the measuring device, a second calibration or modeling scheme is often used to remove
part of the deficiencies of the measurement system compared to the simulation model.
An example of such a calibration is the cancellation of phase variation between the mea-
surement data and the simulated data based on a reference case measurement [28]. For
scattering data, we could use sM

cal = (s(pref)./s
M
ref). × sM as the calibrated measurement

data, where element-wise division and multiplication is denoted ./ and .×, respectively.
In an alternative approach, we could compare the deviations of the measured and simu-
lated data against a reference case, such as ∆sM = sM− sM

ref and ∆s(p) = s(p)− s(pref).
The calibrated measurement data could then expressed as sM

cal = sM − sM
ref + s(pref).
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In the tomography measurement setup described in Sec. 3.1.1, we try to remove
unmodeled effects from our measured scattering parameters sM using an estimation of
the unmodeled coaxial cable to waveguide adapters, where the adapters can be seen in
Fig. 3.1. The adapters are not included in our simulation model4 and in our modeling
scheme, we estimate the adapters characteristics and remove their effect on the scattering
parameters by means of a reference case5 measurement. Here, we assume that the six
adapters are identical 2-port systems, described by the same 2-by-2 scattering matrix Sa,
see Paper I for the details. We find that using this modeling scheme as our calibration,
we achieve a residual of about -30 dB between our simulated and measured scattering
matrices as a function of frequency. In Fig. 3.4, we present the amplitude of the estimated
adapter scattering parameters, as well as the amplitude of the measured, calibrated and
simulated reflection coefficient for the first port of the tomography measurement system
for the reference case. We find that this modeling scheme is robust, the achieved residual
as a function of frequency for subsequent measurements of the reference case is almost
stable with respect to time (over the course of a day) and to opening/closing of the
measurement system.
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Figure 3.4: To the left, the amplitude of the estimated adapter scattering parame-
ters as a function of frequency. Here, the solid line represents Sa

12 and Sa
21, dotted Sa

11

and dashed Sa
22. To the right, the amplitude of the measured reflection for the first

port of the prototype measurement system is shown for the reference case (S11,ref).
Here, the solid line represents simulated scattering data, dotted measured scattering
data and dashed calibrated (via removal of adapters) measured scattering data.

For the monitoring system described in Paper III, we also remove some discrepancies
between our simulation model and our measurement system, as well as some unmodeled
effects (e.g. metal conductivity, geometric defects etc.). In detail, we compare the relative
resonant frequency shifts ∆ωM

i = (ωM
i − ωM

i,ref)/ω
M
i,ref between our measurements and

4To model the adapters we need a three dimensional model.
5The reference case is specified as the case with an empty measurement region.
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our simulation model for some resonant frequencies i = 1, . . . , N . The reference case
is here the empty measurement system at room temperature. Measurements for the
reference case are done at the start of the process operation by a series of measurements
before the process vessel is loaded with MCC pellets. The deviations in subsequent
measurements of the resonant frequencies from this initial state are then modeled via the
corresponding deviations in our system model. Here, we can estimate variations in the
complex permittivity due to changes in ∆ωM

i on the order of ppm. In Paper III, we also
present the measured and simulated resonant frequencies and find that they agree well6.
This agreement shows that our physical model is in good agreement with the measurement
setup. In the monitoring system, we have access to temperature measurements during
the process time. Temperature variations alter the size and shape of the metal vessel,
which in turn affect the resonant frequencies. However, this temperature information
is assumed a priori known and incorporated in the parameter estimation problem via
regularization.

3.2 Permittivity Estimation from Measurements

The tomography measurement system described in Sec. 3.1.1 is used to estimate the
dielectric properties of materials. To estimate the dielectric properties of a material in
the tomography system, we position a sample (of equal height to the waveguides) inside
the measurement region. Here, we find the following result; if an acrylic glass cylin-
der is positioned at the center of the measurement region and we jointly optimize both
the radius and the permittivity of the cylindrical sample, we find by analyzing the goal
function an ambiguity between the size and permittivity of the sample. In Fig. 3.5, we
present a photograph where an acrylic glass cylinder is positioned at the center of our
measurement region, and a contour plot of the RMSD7 between the calibrated measure-
ment data versus simulated data. In the simulated data, a circular cylinder is positioned
at the center of the measurement region and a database of the scattering response con-
structed. Here, the database is parameterized with respect to the cylinder radius a and
relative permittivity εr. We can see in the contour plot in Fig. 3.5 that the region with
below -28 dB agreement between the measured and simulated data is a large elongated
region. There is no clear global minima defined, and according to the used database, any
permittivity/radius combination inside the -28 dB envelope would be a good fit given
the noise level of our measurement data.

Ambiguity in scatterer permittivity versus size is not unexpected for microwave mea-
surement systems when the wavelength is large compared to the sample size. A simple
example is the induced dipole moment of a dielectric sphere of size D when illuminated by
a plane wave with wavelength λ� D. Here, the induced dipole moment is proportional

6We find deviations of the order of a few MHz, yielding relative error on the order of 10−4. We
have larger deviations in the imaginary part of the resonant frequencies due to larger differences
in the simulated and computed Q values.

7The root-mean-square deviation (RMSD) in dB is computed as 20 log10

√
g2W0

for g2W de-

fined in Eq. (2.2).
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Figure 3.5: To the left, photograph of an acrylic glass cylinder (radius 5.2 mm)
positioned at the center of the measurement domain of the (opened) tomography
measurement system. To the right, contour plot in dB of the RMSD between the
calibrated measurement data for the the acrylic glass cylinder and simulated data
of a circular cylinder positioned in the center and parameterized with radius a and
relative permittivity εr.

to (εr − 1)/(εr + 2)V , where V is the sphere volume [29]. The induced dipole moment
describes the scattered field, and we find that both εr and V can be varied in such a
manner that the dipole moment is unchanged. If the frequency is increased sufficiently
(λ ≈ D), higher-order dipole moments are induced, and we have a greater possibility of
resolving the ambiguity between size and permittivity.

For the results presented in Fig. 3.5, we utilized 200 frequency points in the frequency
band between 2.7 GHz and 5.1 GHz and measured/illuminated the sample from six dif-
ferent directions. Here, λ is approximately 12 to 24 times the radius of the acrylic glass
cylinder. In the tomography system, we can not resolve the permittivity/size ambiguity
and it could be difficult in other microwave measurement systems to resolve similar ambi-
guities using only the available frequencies and/or number of sensors. A complimentary
approach to remove or mitigate problems related to the ambiguities of this type is to in-
clude a priori information. For example, we could assume that the sample size is known
a priori to completely remove the ambiguity problem in Fig. 3.5. Other approaches could
be to only allow certain permittivity values or geometric shapes such as in Ref. [30].

In Paper I, we estimate the relative permittivity of the acrylic glass cylinder8 (where
we assume that the sample radius is known a priori) to εr ≈ 2.54±0.06 in the tomography
system, which can be compared to εr ≈ 2.62 ± 0.09 in a cylindrical cavity via a cavity
perturbation technique. These results agree well and we conclude that our tomography
measurement system can accurately measure dielectric properties. We have also analyzed

8We also have preliminary estimates of the acrylic glass cylinders permittivity presented in
Paper II. The deviations are due the new calibration method presented in Paper I.
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the positioning capabilities of the tomography measurement system. In simulations, we
find that a movement of the acrylic glass cylinder less than 5 mm from the center of
the measurement region resulted in RMSD between the scattering parameters that is
smaller than -30 dB. Thus, we could expect a positioning measurement accuracy of
about 5 mm in the tomography system. Preliminary results show that using a database
parameterized with position, we find that the estimated positions of the acrylic glass
cylinder based on microwave measurements are within 1-2 mm from the actual position
measured geometrically with a ruler.

3.2.1 Complex Permittivity of Densely Packed MCC Pellets

We continue to use the microwave tomography system presented in Sec. 3.1.1 to estimate
the effective permittivity of densely packed MCC pellets in Paper I. We estimate the
dielectric properties for four different batches of MCC pellets with increasing moisture
content for four different dispersion models. In Fig. 3.6, we present the estimated real
and imaginary part of the complex relative permittivity as a function of frequency for
the MCC/air mixture. Here, four different moisture contents of the MCC pellets are
analyzed and the estimated permittivity using the Debye, Cole-Cole and Cole-Davidsson
models9 presented.
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Figure 3.6: Real and imaginary part of the complex relative permittivity (εc =
ε′ − jε′′) for four different batches of MCC pellets. Here, the color shades black to
gray corresponds to 22.8%, 16.8%, 12.2% and 9.2% moisture content, respectively.
Solid lines represents a Debye dispersion model, dashed Cole-Cole and dashed-dotted
Cole-Davidsson.

In Tab. 3.1, we present the estimated Debye-parameters with uncertainties computed
from a sensitivity analysis around the optima. Uncertainties in the measured holder posi-

9We have for the Debye model that ε(ω) = ε0(ε∞ + εs−ε∞
1+jωτ

), see Paper I for the Cole-Cole
and Cole-Davidsson models.
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tion, size and relative permittivity, as well as an estimate of the noise in the measurement
system are propagated via their respective sensitivities to uncertainties in the optimized
parameters.

Table 3.1: Estimated Debye parameters with uncertainties for four different batches
of MCC pellets with different moisture content (MC).

MC [%] εs ε∞ τ [ps]

9.2 3.62± 0.02 2.63± 0.03 32.0± 0.9

12.2 4.27± 0.03 2.85± 0.04 24.2± 0.8

16.8 4.88± 0.05 2.79± 0.12 15.5± 0.7

22.8 5.49± 0.07 2.36± 0.26 10.3± 0.7

3.2.2 Estimation and Monitoring of Permittivity Distribution

Paper III presents a microwave measurement system for the monitoring of a pharma-
ceutical process vessel. Here, we estimate the complex relative permittivity of three
different sub-regions inside the vessel by measuring the complex resonant frequencies. In
the process vessel, a batch of 200 grams of MCC pellets are fluidized by injection of air
forming a boiling bed region in the bottom section of the process vessel. In the bed re-
gion, the homogenized relative permittivity is significantly higher than in the remainder
of the process vessel as the density of MCC particles is high. A fraction of the MCC
pellets are in addition accelerated by a spray nozzle such that they move in a fountain
like pattern inside the vessel. At the center of the fountain region, we assume that there
is a cylindrical region with moderate particle density. This cylindrical representation of
the fountain is our second sub-region. The third sub-region is selected as the remainder
of the vessels interior volume, which presumably has a very low particle density.

During typical operation of the process vessel the MCC pellets are coated by spraying
an aqueous solution. In Fig. 3.7, the estimated relative permittivity is shown for the bed
and fountain region, when coating the MCC pellets with a solution containing Mannitol
and Kollicoat IRr at a low spraying rate. We can see that the estimated permittivity in
the bed region increases during the spraying interval, which could be explained by that the
particles grow in size as a result of the coating. The growth of the particles due to coating
was verified by means of weighing after the process was completed. In the estimated
permittivity of the fountain region, we can clearly see when the fountain is switched
on. In Paper III, we also present scatter plots of the estimated complex permittivities
and we find that measurements taken at different time instants fall approximately on
a straight line. Further, we find that the slope of this line, which corresponds to the
electric loss tangent tan δε = ε′′/ε′, significantly increases when we spray the particles
with a solution featuring large dielectric losses.
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Figure 3.7: Coating of MCC pellets with low spray rate (6.6 g/min). Estimated ε′−
1 in black and ε′′ in gray for the bed region to the left and the fountain region to the
right. At the vertical dashed line equipped by circle glyphs, the fountain is switched
on. At subsequent glyphs (cross and square) the spray rate is increased successively.
The diamond glyph represent when temperature variations are relatively small. At
the triangle glyph the spraying was stopped.

3.3 Detection of Variations in Material Distribution

In Paper II, a numerical study is performed to analyze the possibility of detecting bub-
bles/agglomerations in a homogenized background representing fluidized MCC pellets.
Here, a setup similar to the experimental tomography system is utilized which could be
mounted for monitoring of the lower (bed) region of the pharmaceutical process vessel
presented in Sec. 3.1.2. In a parameter study, we construct a database with the scat-
tering response evaluated on a coarse grid that parameterize the problem with respect
to bubble location, size, relative permittivity, conductivity as well as the backgrounds
dielectric properties. We find that given an artificial measurement for the scattering
data, a look-up procedure yields reasonably close parameter values to the ground truth
if the scattering data is sufficiently close to a grid point in the database. We believe the
database approach could be significantly improved if an interpolation scheme between
the database grid points is employed. Further, the parameter values that are identified
from the database could be used as the initial guess to a gradient-based optimization
algorithm.

3.4 Localization of Bleedings via Classification

Paper IV describes a numerical study of a simplified version of a measurement system
for localization of traumatic intracranial bleedings. The goal is to classify, based on
measured scattering data, if and where a bleeding is located inside the head of a patient.
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Here, we use the subspace based classification algorithm described in Sec. 2.2. To analyze
the performance of such a classifier, we find that electromagnetic simulations is a useful
tool to generate a large number of labeled signal data for testing purposes.

In Paper IV, we train the classification algorithm and validate it on an independent
data set to analyze its accuracy. The training set contains 10 different classes correspond-
ing to different bleeding locations. To model patient variability in the training data, we
vary head size by ±6%, head position10 as well as the thickness of the bleedings from
0.2 cm to 2.5 cm. A five-fold cross validation is used to analyze the accuracy of the clas-
sifier for 100 different observations. We find that the classifier correctly identifies each
position for at least 94% of the observations and that, in all cases but one, it determines
the position as either the correct or the (geometrically) second closest position. Given
an observation for a known position, we also note that the subspace distance to classes
representing an adjacent position is in general much smaller than the distance to classes
representing positions geometrically further away.

10The head position was parameterized by a ±6◦ rotation versus the antenna array.
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CONCLUSION

In the context of microwave measurement systems, this thesis presents a number of algo-
rithms for parameter estimation and classification. Measurements for a reference case are
used to (i) establish experimentally determined models for parts of the system and/or (ii)
calibrate the model with respect to the experimental equipment. Further, we minimize
a goal function that describes the misfit between (i) the measured system response and
(ii) a model of the measurement system that depends on a set of parameters to be deter-
mined. In particular, we use (i) gradient-based optimization on a transmission/reflection
measurement system, (ii) minimization of a quadratic goal function with regularization
for a resonance measurement system and (iii) a classification algorithm that exploits
computed databases. Here, the databases can be used as look-up tables or as training
data for the (subspace based) classification algorithm. Further, the physical models of
the measurement systems are based on accurate electromagnetic models using the finite
element method.

We employ parameter estimation using gradient-based optimization for a 6-port
transmission/reflection microwave tomography measurement system. Here, the misfit
between the measured scattering parameters and the physical model of the scattering
parameters is minimized. In particular, we characterize the complex relative permittivity
of densely packed microcrystalline-cellulose (MCC) by means of four different dispersion
models for frequencies between 2.7 GHz and 5.1 GHz. For situations when the object
size is substantially smaller than the wavelength, we find that our parameter estimation
problem becomes ill-posed, and we incorporate the object size as a priori information to
mitigate this problem. For the densely packed MCC pellets, we find that the estimated
permittivity for the different material models agree well and that the estimated permit-
tivity depends on the moisture content. Additionally, the tomography system is used
to estimate the relative permittivity of an acrylic glass cylinder, and the result are in
good agreement with measurements from a cylindrical cavity resonator. The calibration
scheme, in which we also model the coaxial to waveguide adapters, is robust with respect
to opening/closing the system and we typically achieve a residual of -30 dB between
simulated and measured scattering data.
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We form a quadratic optimization problem with regularization for a resonance mea-
surement system used for monitoring of a pharmaceutical process vessel. Here, we exploit
that the vessel is a closed metal cavity and measure its complex resonant frequencies.
Small variations in the resonant frequencies are related by sensitivities to small variations
in the complex permittivity and in the cavity shape. The regularization allows for the
incorporation of a priori temperature measurement information, which affects the cavity
size and shape. In particular, we load the vessel with 200 grams of MCC pellets and exe-
cute a number of process steps. During the process, the MCC pellets are coated with an
aqueous solution and subsequently dried. In the final application, the moisture content of
the MCC pellets is important to monitor to assure a high quality output product. From
the measured relative resonance shift, we estimate the complex relative permittivity as a
function of process time for three different sub-regions inside the vessel: (i) the bed, (ii)
the fountain and (iii) the remainder of the volume. During a coating process at a low
spray rate, we find that the permittivity of the bed region increase.

In a numerical study with a geometry similar to the tomography system, we analyze
the possibility of detecting inhomogenities in a fluidized bed of MCC pellets. A look-up
procedure for a coarse database parameterized with respect to background and inclusion
properties (e.g permittivity, conductivity, position, size etc.) yields reasonable estimates
if the scattering data is sufficiently close to a precomputed grid point in the database.
In addition, the identified parameter combination in the database could be used as an
initial guess for a gradient-based optimization algorithm.

Finally, we present a numerical study of a simplified microwave measurement system
for the localization of intracranial bleedings. Here, we train a subspace based classifier and
find that it is well-suited for classification of different bleeding positions. We subject our
simulated data to patient variability (e.g. head size, orientation, bleeding size), and the
classifier correctly classifies at least 94% of the observations in a five-fold cross validation.
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[16] T. McKelvey, H. Akçay, and L. Ljung, “Subspace-based multivariable system iden-
tification from frequency response data,” IEEE Transactions on Automatic Control,
vol. 41, no. 7, pp. 960–979, 1996.

[17] J. J. E. Dennis and R. B. Schnabel, Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Soc for Industrial & Applied Math, 1996.

[18] A. Bondeson, Y. Yang, and P. Weinerfelt, “Optimization of Radar Cross Section
by a Gradient Method,” IEEE Transactions on Magnetics, vol. 40, pp. 1260–1263,
Mar. 2004.

[19] T. Halleröd, D. Ericsson, and A. Bondeson, “Shape and material optimization using
gradient methods and the adjoint problem in time and frequency domain,” COM-
PEL: The International Journal for Computation and Mathematics in Electrical and
Electronic Engineering, vol. 24, no. 3, pp. 882–892, 2005.

[20] P. Jacobsson and T. Rylander, “Gradient-based shape optimisation of conformal
array antennas,” IET Microwaves, Antennas & Propagation, vol. 4, no. 2, p. 200,
2010.

[21] K. Holmström, “The TOMLAB Optimization Environment in Matlab,” 1999.

[22] H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems,
vol. 375. Dordrecht: Springer Netherlands, 1996.

[23] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. Wiley, 2000.

[24] Y. Yinan and T. McKelvey, “A subspace learning algorithm for microwave scat-
tering signal classification with application to wood quality assessment,” in IEEE
International Workshop on Machine Learning for Signal Processing, no. 3, pp. 1–6,
Sept. 2012.

[25] E. W. Weisstein, Generalized Cylinder. From MathWorld – A Wolfram Web Re-
source, 2014.



27

[26] D. M. Pozar, Microwave Engineering. Willey, 4th ed., 2011.

[27] M. Dressel, O. Klein, S. Donovan, and G. Grüner, “Microwave cavity perturbation
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