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1 Introduction

The discovery of a 126GeV Higgs boson [1, 2] has sharpened the hierarchy problem by con-

firming the existence of a scalar particle at the electroweak (EW) scale. Broadly speaking,

the mass of the Higgs boson can be stabilized against a higher scale in two ways, either

by (broken) supersymmetry or by a (broken) shift symmetry. The second case is realized

when the Higgs boson appears as a pseudo Nambu-Goldstone boson (pNGB) and is the

case of interest for this paper.

The first task of the Higgs boson is to give mass to the vector bosons via BEH mecha-

nism [3–5]. This can be accomplished in a strongly coupled theory with a global symmetry

group GF spontaneously broken to a subgroup HF containing the EW group. Turning on

the EW interactions and the top quark couplings turns some of the NGBs in GF /HF into

pNGBs [6]. Their vacuum expectation value can then give rise to EW symmetry breaking.

A separate task accomplished by the Higgs boson in the Standard Model (SM) is that

of giving mass to the fermions. In this context, it is difficult to obtain large enough top

quark masses without fine tuning. A more promising avenue seems to be the introduction of

additional fermionic fields from the strong sector coupling linearly to the top (and possibly

also to the other fermions) and mediating the EW breaking. This idea was introduced by

Kaplan [7] and goes under the name of partial compositeness. We refer to the review [8]

for a thorough exposition and a list of relevant references.

Most of the literature so far has concentrated on the phenomenological aspects of

these models, assuming that the low energy lagrangian has such properties and using the

CCWZ formalism [9, 10] without asking for a UV description.1 Notable exceptions are the

1We are considering here only four-dimensional models. Much work has been done in higher dimensional

models and we refer again to [8] for the relevant literature.
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work [11] in the context of supersymmetric theories and very recently [12] in the context

of strongly coupled gauge theory with a purely fermionic matter content. Similar thoughts

had been pursued by us and presented in [13].2

The purpose of this short note is to classify the possible UV completions that are avail-

able for four-dimensional models of partial compositeness with a purely fermionic matter

content. We will not explore here the more phenomenological constraints arising from

the dynamics, but we feel that this classification is useful to get an idea of the possibili-

ties available. Needless to say, our classification will only be as good as the assumptions

we make.

The paper is organized as follows. In section 2 we present the “wish list” of conditions

that we want our theory to obey. These conditions are divided into assumptions that we

make to concretely define the framework in which we work and consistency requirements

that are necessary (but by no means sufficient!) for these theories to be acceptable models

of partial compositeness. In section 3 we present the solutions to our requirements. In

section 4 we take a more critical look at the models obtained and discuss which ones seem

more promising for phenomenological applications.

2 The wish list

We begin in 2.1 by spelling out the framework in which we work. Within this framework,

the model has to satisfy certain simple conditions in order to be a viable candidate for

partial compositeness. We list these conditions in 2.2.

2.1 Assumptions

We look for a microscopic theory of partial compositeness based on a simple hyper-color

group GHC and only (LH Weyl) fermions ψ ∈ n1R1 + · · · + npRp. Ri is an irreducible

representation (irrep) of GHC repeated ni times. For i 6= j it is always intended Ri 6= Rj .

Thus p is the number of different irreps in the model. (The model of [12] corresponds

to p = 2.)

Restricting the search to simple hyper-color groups is motivated by a criterion of

minimality. In the absence of additional discrete symmetries one expects the different

simple factors to become strongly coupled at different scales and one could restrict the

attention to the last step. Discrete symmetries could be used to keep the gauge couplings

of different groups to be equal but we will not make this extra assumption.

This choice already implies that the anomaly-free global symmetry group is GF =

SU(n1) × · · · × SU(np) × U(1)p−1. The SM fermions are neutral under GHC whereas the

hyper-fermions ψ will be given appropriate charge under GSM to have the appropriate

bound states serving as composite Higgs and top partners.

We will limit our search to asymptotically free (AF) theories. It may seem that the

requirement of asymptotic freedom is not relevant because we are going to need some four-

fermi interactions to couple the elementary top quark to its composite partners. What is

2Errata: see footnote 4 in this paper.
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crucial however is that the theory becomes strongly coupled in the IR and this is generically

attained in a AF theory if one starts at small coupling in the UV and there are no additional

perturbative fixed points. There could be other phases, but we will not consider that

possibility. We recall for convenience that the β-function is β(αHC) = −b0 α
2
HC

/(24π)+. . . ,

with b0 = 11C(Ad) − 2
∑

R T (R), where the sum is over all irreps (for Weyl fermions)

including the degeneracy.

One further step, that will not be investigated here, is to try to generate the required

four-fermi couplings by including both GSM and GHC into an extended hyper-color theory.

This seems like a tall order but as a first step one should have a list of possible theories

that can be merged anyway.

2.2 Consistency conditions

The basic requirements we impose in order for our model to be a potential candidate are

1. Absence of gauge anomalies for GHC = SU(N) and global anomalies for GHC =

Sp(2N).

2. The possibility of a symmetry breaking pattern: GF → HF ⊃ Gcus. ⊃ GSM, where

we defined Gcus. = SU(3)c × SU(2)L × SU(2)R × U(1)X and, of course, GSM =

SU(3)c × SU(2)L ×U(1)Y .

3. GSM free of ’t Hooft anomalies.

4. GF /HF ∋ (1,2,2)0 of Gcus..

5. ψ3 hyper-color singlets that can be used as top partners. The minimal requirement

being that they are spinors whose LH components have GSM quantum numbers op-

posite to the third generation of quarks QL and tcR, namely (3̄,2)−1/6, (3,1)2/3.

We spend a few words on some of these condition.

The requirement that HF contains Gcus. and not simply GSM follows from the re-

quirement of custodial symmetry. An extra SU(2)R is needed to avoid large tree-level

corrections to the ρ parameter. However, if the SM hyper-charge Y were to be obtained

from SU(2)R only, one could not get realistic values for the fermion fields. Hence the

necessity of introducing the extra U(1)X . In these model: Y = T 3
R +X.

When investigating the possible symmetry breaking patterns we assume that at strong

coupling a condensate forms. In the case where this condensates affects one single SU(n)

flavor group, symmetry reasons and the analysis of [14, 15] implies that the only possibilities

are for SU(n) to break to SO(n) (if the fermionic bilinear is formed with fermions in a real

irrep R) or to Sp(n) (if R is pseudo-real). This is easily understood by recalling that

a real (pseudo-real) irrep has a symmetric (anti-symmetric) invariant two-tensor of GHC

and that this determines the corresponding symmetry properties of the order parameter.

We will return to this issue and its relation to the maximally attractive channel (MAC)

hypothesis [16] in section 4.

The subgroup GSM of HF must be free of ’t Hooft anomalies from the obvious fact

that we need to gauge it when coupling the hyper-color fermions ψ to the SM.

– 3 –
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One of the NGB H in GF /HF must transform as the (1,2,2)0 of Gcus. in order to be

the candidate for the composite Higgs. In general there will be other pNGB in the model.

They should obviously acquire a mass that is consistent with the current bounds. The field

H should be “misaligned”, presumably by the coupling with the top quark, and condense.

This phenomena should occur along the same lines as in the effective field theory language

reviewed in [8] and we will not discuss it.

Lastly, we must be able to form fermionic bound states of type ψ3 that can be inter-

preted as top quark partners. The existence of a linear coupling requires that they are

spinors with the same GSM quantum numbers as the third generation of quarks QL and

tR. We will see that various possible quantum numbers with respect to HF are possible.

We will not impose the existence of partners for each SM fermion, the top quark being the

most pressing issue. Also, in order for this to work, the trilinear in question must pick up

a large anomalous dimension, taking them from the perturbative value 9/2 to near 5/2.

That this is possible in some models has been argued in [12] but we will not address this

issue in this note. If there are fermions λ in the adjoint representation, there is also the

possibility of constructing dimension 7/2 fermionic invariants3 of the type F a
µνσ

µσ̄νλa.

We do not require the existence of partners for every SM fermion. In fact, in many of

the models we find, this is not possible if the search is restricted to trilinear GHC invariants

only. We return to this issue in the conclusions.

3 Solution to the constraints

We will now classify the models satisfying the above requirements for the case of p =

1, 2 and 3. The cases p = 1 and 3 were presented in [13].4 At the time, the case p = 2 did

not seem promising, but the appearance of the model [12] made us reconsider this case and

we now include it in the discussion. Models with p > 3 do not seem to add any substantial

new feature and we will not discuss them.

Given a GHC and a set of Ri satisfying the constraints, for each Ri there will be

generically a range of integers ni allowed. We will list only the smallest possible values

of ni in each case. Within each class of solutions one can easily find the other values of

ni allowed by checking when one loses asymptotic freedom. This leads to non-minimal

models with a larger set of fields and bigger cosets. Good sources for the group theoretical

material required in some of the calculations are [17–19]. In the following, we will denote

specific irreps either by their dimensionality or by the symbols F, Sn, An, Ad and Spin

for the fundamental, n−symmetric, n−antisymmetric, adjoint and spin.

3.1 The p = 1 case

This is a somewhat unrealistic case but we discuss it for completeness and to illustrate the

point. Consider ψ ∈ R a unique representation repeated n times yielding GF = SU(n). We

3We learned from M. Serone that this possibility has been suggested by A. Wulzer.
4The p = 3 case presented in [13] was actually incomplete. Here we present the full list of models in

table 4.

– 4 –



J
H
E
P
0
3
(
2
0
1
4
)
0
7
7

need to break GF with a gauge invariant bilinear condensate 〈ψ2〉 and this can be formed

only if the irrep R is real or pseudoreal.

The further requirement that there be ψ3 invariants forces R to be real and the required

symmetry breaking pattern becomes SU(n) → SO(n). Assuming that this is the case,

Gcus. ⊂ SO(n) requires n ≥ 10. However (1,2,2)0 6∈ SU(10)/SO(10) which requires instead

n ≥ 11. This last point can be seen by showing that the decomposition of the S2 = 54 of

SO(10) contains no Higgs candidates. (The X-charge is arbitrarily normalized here.)

54 → (8,1,1)0 + (6,1,1)4 + (6̄,1,1)−4 + (1,3,3)0 (3.1)

+(3,2,2)−2 + (3̄,2,2)2 + (1,1,1)0

On the other hand, already with n = 11 there will be one such field as can be seen by

recalling the decomposition of the S2 of SO(11) into SO(10): 65 → 54+ 10+ 1 and that

10 → (1,2,2)0 + (3,1,1)−2 + (3̄,1,1)2 (3.2)

Asymptotic freedom requires thus T (R) < 1

2
T (Ad).

This already rules out many possible choices for GHC. The further top partner re-

quirement singles out G2 (with R = 7) and F4 (with R = 26) as the only possibilities.5

Embedding the group Gcus. into SO(11) as above one can obtain the correct quantum

numbers for the top partners.

We do not believe these models to be promising because of the difficulties with proton

stability. Amongst the large number of pNGB there will be some that mediate proton

decay, confirming assertions made in e.g. [20]. Even if one strictly couples only the top

quark to the composite sector, one expects B violating terms to be induced at higher orders

unless a symmetry is enforced to prevent this. Attempts at saving models of this “GUT”-

type are made in [21] albeit with a different coset. For instance, one could try n > 11 and

imposing an ad hoc symmetry that commutes with the whole GSM but this would require

many repetitions and incomplete (split) multiplets.

3.2 The p = 2 case

In this case we assume ψ ∈ mR1 + nR2, yielding a flavor group GF = SU(m) × SU(n) ×

U(1). We want to be allowed to break the first SU(m) to a custodial subgroup containing

SU(2)L×SU(2)R and the Higgs in the appropriate representation. This means that m ≥ 4

if R1 is pseudo-real (coset SU(4)/Sp(4)) or m ≥ 5 if R1 is real (coset SU(5)/SO(5)).6

The other SU(n) group is required to contain the group SU(3)c×U(1)X in an anomaly

free way. This requires n ≥ 6 and we will assume in the discussion the minimal case n = 6.

The fermions can be decomposed as in table 1. Note that in principle SU(6) could be

broken to one of its special maximal subgroups SO(6) ≡ SU(4) or Sp(6) and that would

5Fun fact: the ’t Hooft anomaly matching condition cannot be satisfied for G2 which implies that GF

must be broken.
6The smallest cosets of this type have been classified in [22]. Models of the type SU(5)/SO(5) have been

investigated in [23]. Models of the type SU(4)/Sp(4) ≡ SO(6)/SO(5) have been investigated in [24]. For

earlier investigations of SU(4) cosets in the context of technicolor, see [25, 26].
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GHC SU(m = 4 or 5) SU(6) ⊃ SU(3)c ×U(1)X

ψ1 ≡ ψ R1 F 10

ψ2 =

(

χ

χ̃

)

R2 1 6 =

(

3X

3̄−X

)

Table 1. The fermions of the UV theory and their quantum numbers. The charge X will be equal

to 2/3 in those cases were the top partners are constructed out of one ψ2 field and equal to −1/3 in

the cases were one needs two such fields. To avoid cluttering we do not write this charge in the text.

still allow one to embed SU(3)c × U(1)X in an anomaly free way as we have essentially

done in the p = 1 case. This case would give rise to additional pNGB’s that may be lifted

if an SU(3)c × U(1)X invariant mass can be constructed. We shall return to this issue in

section 4.

We can immediately eliminate the possibility GHC = SU(NHC). In this case b0 =

22NHC − 2mT (R1) − 12T (R2), where m = 4, (5) depending on R1 pseudo-real (real) and

we set n = 6 from the onset. Since R1 is real or pseudo-real, it does not contribute to

the gauge anomaly. Thus R2 must be real or pseudo-real as well, since its anomaly could

not cancel against anything. The possible irreps with the smallest indices are thus the

Ad (real) or the An (real/pseudo-real for SU(2n), n even/odd). In all such cases one

immediately sees that asymptotic freedom is lost. In a similar way one eliminates all the

exceptional groups.

For the remaining groups there are interesting solutions, including of course the one

in [12]. Let us thus start with Sp(2NHC). (NHC ≥ 2 since Sp(2) ≡ SU(2).) The indices

for these groups can be ordered in increasing order as T (F), T (A2), T (Ad), · · · (Ad = S2)

with the only exception of Sp(6), in which T (A3) = 5 fits in between T (A2) = 4 and

T (Ad) = 8. For these groups T (A2) = 2NHC − 2 and T (Ad) = 2NHC + 2. Also, Ad and

A2 are real, whereas F and A3 are pseudo-real.

One easily checks that the only case where A3 is allowed to appear by asymptotic

freedom is Sp(6), with four R1 = A3 and six R2 = F. However, since both are pseudoreal,

no baryons are allowed and the ψ3 requirement is not fulfilled. The only case where the

Ad can be present without losing asymptotic freedom is five R1 = Ad and six F. (Recall

that we are only considering the minimal values of m and n allowed.) In this case there

are cubic invariants that can function as top partners of the type χψχ, χ̃ψχ̃, χ†ψ†χ̃, χ̃†ψ†χ

and their RH conjugates. (Use 3 × 3 = 3̄ + 6 and 3 × 3̄ = 1 + 8.). Asymptotic freedom

requires 2NHC ≥ 12.

Similarly, one can replace the five ψ ∈ Ad with five ψ ∈ A2. The possible top partners

now also include two combinations that were not allowed before: χ†ψχ† and χ̃†ψχ̃† and

their RH conjugates.

The last class of models based on Sp(2NHC) are the ones discussed in [12], namely

four R1 = F and six R2 = A2. These models are asymptotically free for 2NHC ≤ 36. The

baryons are now formed with only one of the χ’s and transform in various irreps of SU(4),

e.g. 6 as discussed in [12]. By contrast, the previous cases had top partners in the 5 of

SU(5). There are no global anomalies in any of these cases.

– 6 –
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GHC R1 R2 Restrictions

Sp(2NHC) 5×Ad 6× F 2NHC ≥ 12

Sp(2NHC) 5×A2 6× F 2NHC ≥ 4

Sp(2NHC) 4× F 6×A2 2NHC ≤ 36

SO(NHC) 5× S2 6× F NHC ≥ 55

SO(NHC) 5×Ad 6× F NHC ≥ 15

SO(NHC) 5× F 6× Spin NHC = 7, 9, 10, 11, 13, 14

SO(NHC) 5× Spin 6× F NHC = 7, 9

SO(NHC) 4× Spin 6× F NHC = 11, 13

Table 2. All allowed cases for p = 2.

Lastly, consider SO(NHC) (NHC ≥ 7). The first two classes are a repetition of the

Sp(2NHC) case with the difference that now Ad = A2. Hence we have the case of five

R1 = S2 and six R2 = F (with NHC ≥ 55) and five R1 = Ad and six R2 = F (with

NHC ≥ 15). Particularly for the first case, the size of the hyper-color group is too large to

be considered interesting for phenomenology, but we include these cases for completeness.

In the case of SO(NHC) we must also consider spinor irreps. If both R1 and R2 were

spinors, one could not construct top partners. One of the two must be a vector irrep.

Since we use only one spinor irrep, we can simply denote it as Spin without specifying

its chirality, the opposite choice being equivalent. Asymptotic freedom allows only F to

appear and we have thus two separate classes: R1 = F, R2 = Spin and viceversa. In

both cases7 we must have NHC ≤ 14. There are further restrictions excluding the case

NHC = 8, 12 for which it is not possible to have top partners.

We summarize the results of this section by listing the models that pass the constraints

of section 2 in table 2.

3.3 The p = 3 case

We move on to the case of three different irreps of GHC that was presented in [13]. (See

however footnote 4.)

The main difference from the previous case is that now the QCD group SU(3)c is

embedded as the diagonal group of a semi-simple group SU(3)× SU(3)′ and not SU(6) as

before. The new attempt is thus ψ ∈ mR1 + 3R2 + 3R3 where Ri are different irreps of

some hyper-color group GHC. This leads to GF = SU(m)×SU(3)×SU(3)′×U(1)×U(1)′,

with m = 5(4) for R1 real(pseudo-real) as before. The quantum numbers of the fermions

are summarised in table 3.

A further restriction is that d(R2) = d(R3) and T (R2) = T (R3) to allow for the

possible symmetric embedding of SU(3)c to the anomaly free diagonal. This restriction

rules out all symplectic and exceptional groups. As far as GHC = SU(NHC) goes, imposing

7Note that the Spin irreps of SO(15) and SO(16) are both real, so they require m = 5 and thus cannot

be used by the requirement of asymptotic freedom.
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GHC SU(m = 4 or 5) SU(3)c ×U(1)X

ψ1 ≡ ψ R1 F 10

ψ2 = χ R2 1 3−1/3

ψ3 = χ̃ R3 1 3̄1/3

Table 3. The fermions of the UV theory for p = 3 and their quantum numbers. As before, we do

not indicate the X-charge explicitly in the text.

GHC R1 R2 R3 Restrictions

SU(NHC) 5×A2 3× F 3× F̄ NHC = 4

SO(NHC) 5× F 3× Spin 3× Spin′ NHC = 8, 10, 12, 14

Table 4. All allowed cases for p = 3.

asymptotic freedom, we can only have R1 = Ad (m = 5) and R2 = F, R3 = F̄ and three

exceptional cases:

• GHC = SU(4) with R1 = A2 (m = 5) and R2 = F, R3 = F̄

• GHC = SU(6) with R1 = A3 (m = 4) and R2 = F, R3 = F̄

• GHC = SU(6) with R1 = A3 (m = 4) and R2 = A2, R3 = Ā2

Only the first of the three exceptional cases is acceptable. The general SU(NHC) case leads

to GHC singlets in the 8 of SU(3)c, the GHC = SU(6) case with R2 = F, R3 = F̄ has no

baryons whatsoever and the case with R2 = A2, R3 = Ā2 has colored GHC singlet but none

of them carries a non-trivial irrep of SU(4) needed for a top partner. For the acceptable

SU(4) case, the top quark partners are χψχ, χ̃ψχ̃, χ†ψ†χ̃, χ̃†ψ†χ, χ†ψχ†, χ̃†ψχ̃† and their

RH conjugates.

Consider now SO(NHC) groups with NHC even and with R2 and R3 spinor irreps of

opposite chirality. Asymptotic freedom allows NHC = 8, 10, 12, 14 and one can construct

top partners for all of these cases. For the cases SO(8) and SO(12) the partners are

restricted to χψ†χ̃†, χ̃ψ†χ† and their RH conjugates only. We summarize the results of

this section by listing the models that pass the constraints of section 2 in table 4. (Spin

and Spin′ denote spinor irreps of opposite chirality.) In the case of SO(8) one can use

triality to obtain equivalent solutions.

4 Discussion

In the previous section we classified the purely fermionic gauge theories that give a UV

completion of composite Higgs models. The list of models is given in tables 2 and 4.

For each class we have given the realization with the minimal set of fields. We listed

the models according to the numbers of distinct irreps of GHC needed but, as far as the

IR properties are concerned, a more relevant distinction is between models that yield the

coset SU(5)/SO(5) and models that yield SU(4)/Sp(4). The second type is more rare and

consists of the model presented in [12] and two more based on GHC = SO(11) and SO(13).

– 8 –
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We have not proven that the symmetry breaking actually occurs, although the analysis

of [12] suggests that this is indeed the case for their model and one could easily generalize

their argument to any of the models presented here. Given that we only consider asymp-

totically free theories, it is quite reasonable to expect a bilinear condensate to form as the

theory flows to strong coupling in the IR. Given the nature of the irreps and assuming

that non-chiral flavor groups are left unbroken we are thus led to the symmetry breaking

patterns presented.

Some models comprise an unreasonably large number of fermions that will lead to

a Landau pole too close to the EW scale. Amongst the models that allow for a low

dimensional GHC we note the second and third entry in table 2 and the SU(4) model

in table 4.

There is an important refinement of the above discussion that requires some extra care.

According to the heuristics of the MAC hypothesis [16], the symmetry breaking patterns

occur in a specific order determined by the quadratic Casimir operators C of the various

irreps. In short, amongst all irreps Ri one considers the scalar bilinears Ri ×Rj =
∑

k R
′
k

(including those that might break the GHC symmetry). The channel that is expected

to condense first is the maximally attractive one, i.e. the one with the lowest value of

C(R′
k) − C(Ri) − C(Rj). After that, the fermions responsible for the condensate are

removed and the process continues.

It would be desirable if this trend was not in conflict with our necessity to keep GHC

and SU(3)c unbroken at low energies. This condition removes the SO(10) and SO(14) cases

from table 2 and the SO(8) and SO(12) cases from table 4. Consider for example the case

SO(14) of table 2 (sixth row). The MAC is Spin×Spin → F, for which 13/2−91/8−91/8 =

−65/4, which is even stronger than F × F → 1, for which 0 − 13/2 − 13/2 = −13. The

strong dynamics would then tend to break the hyper-color group and no mass term can

be introduced to prevent this. It seems unlikely that this models give rise to acceptable

IR behavior.

The above condition is related to asking for the possibility to write a GHC × SU(3)c ×

U(1)X invariant mass term for the fermions χ, χ̃. The actual form of this mass matrix

depends on the symmetry breaking pattern favored by the MAC hypothesis. Consider

the p = 2 case. For those models in which R2 is pseudo-real (the first two rows and the

NHC = 11, 13 cases in the sixth row in table 2) one expects a Sp(6) preserving condensate

and a suitable mass term can be, up to a global rotation

m

2
ψT
2

(

0 1

−1 0

)

ψ2 + h.c. = mχχ̃+ h.c. (4.1)

having set χ = (ψ1
2
, ψ2

2
, ψ3

2
)T and χ̃ = (ψ4

2
, ψ5

2
, ψ6

2
) (Weyl and GHC indices suppressed). For

the remaining models in table 2 the preferred pattern is to a SO(6) condensate. A mass

term that preserves this symmetry is

mψT
2 ψ2 + h.c. = mχχ̃+ h.c. (4.2)

where now χ = (ψ1
2
+ iψ4

2
, ψ2

2
+ iψ5

2
, ψ3

2
+ iψ6

2
)T and χ̃ = (ψ1

2
− iψ4

2
, ψ2

2
− iψ5

2
, ψ3

2
− iψ6

2
).
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Concerning the remaining cases in table 2 involving spinorial irreps, we also notice

that the channel Spin×Spin → 1 becomes more attractive than F×F → 1 for NHC ≥ 9.

Thus, for the models in the sixth row, NHC = 7 is the only case in which R1 is expected to

condense first in the absence of masses and the opposite is true for the models in the last

two rows.

In the p = 3 case, the symmetry breaking goes directly to the diagonal SU(3)c subgroup

and the mass term is mχχ̃+h.c. from the start. This is allowed in the SU(4), SO(10) and

SO(14) cases but not for the SO(8) and SO(12) cases. Also note that, in the SO(12) case,

the MAC are Spin× Spin → 1 and Spin′ × Spin′ → 1, tending to break SU(3)c.

An even stronger condition would be to require that no hyper-mesons of any type (even

spin one) in the 3 or 6 of SU(3)c be present. Bound states of this type are potentially dan-

gerous because quantum corrections might induce trilinear B-violating couplings between

them and two SM fermions. This disfavors all the p = 2 models for which such mesons can

always be formed e.g. as combinations χχ or χ̃χ† and singles out the coset SU(5)/SO(5)

(the only one attainable in p = 3 models) and GHC = SU(4) as its minimal UV realization.

This last case is an interesting model, yielding top partners in the 5 of SO(5) that

decompose, after EW symmetry breaking, into the usual partners plus an exotic top of

electric charge 5/3. The latest bounds on such objects are discussed in [27]. The pNGB

spectrum is obtained by decomposing the 14 of SO(5) into SU(2)L ×U(1)Y

14 → 3±1 + 30 + 2±1/2 + 10 (4.3)

yielding, assuming that EW symmetry breaking is driven by the doublet, the usual Higgs

boson h plus a double-charge meson φ±±, two single-charge ones φ±, φ′± and four neutral

ones φ0, φ′0, φ′′0, η0, the last one being totally neutral under Gcus..

Cosets of type SU(5)/SO(5) are not free from phenomenological problems, such as

the couplings of the weak isotriplet, but these problems have been argued [23] not to be

insurmountable. That work also shows that EW breaking is expected to proceed as desired.

The extra pNGBs would then be a generic prediction of these models.

Let us also comment on the issue of finding partners to the other SM fermions. None

of the models give rise to cubic composite partners for all states. Consider for instance the

bcR and the lighter members of this family. With the exception of the third and last two

entries in table 2, in all other models the X-charge of χ/χ̃ must be equal to ±1/3. This

precludes the possibility of having a bcR partner amongst the trilinear hyper-color invariants

as can be easily checked recalling that such invariants must contain two fields of type χ or

χ̃. The remaining models suffer of similar problems in the lepton sector. For instance, it

is clearly not possible to construct leptonic partners that are doublets under SU(2)L with

only cubic invariants.

Our view on this issue is that the top quark should be treated differently since it

has a mass at the EW scale, compared to all the others masses that, while differing from

each other by many orders of magnitude, are all small compared to that scale. For lighter

fermions, a more standard quadratic coupling as in extended technicolor could still be

viable, although the issue deserves a more careful investigation.
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Lastly, given the presence of additional anomaly free U(1)s, all of the models presented

here also give rise to NGBs that are totally neutral under Gcus. and do not acquire mass

under this approximation. We did not discuss them here but their properties would have

to be addressed in a cosmological contest.
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