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Abstract

Plug-in hybrid electric vehicles have the potential to significantly reduce
the oil dependence within the transportation sector. However, there will
always be some trips that exceed the electric driving range, meaning that
both electric energy and fuel must be used. For such trips the fuel economy
is intimately connected with the energy management system and its ability
to schedule the use of the battery. The fundamental problem is that the
optimal fuel economy can be reached only if the future trip is known a priori.
It is therefore desirable to have a system that can perform three principal
tasks: i) acquire a prediction of the future trip, ii) given the prediction
precompute feedforward information for the real-time level, and iii) at the
real-time level identify the optimal operating points in the powertrain.

This thesis investigates all three of the mentioned tasks. It is shown that
frequently travelled routes can be identified from logged driving data using
hierarchical clustering. Based on the historical driving conditions along the
route, it is then possible to precompute an optimal strategy that can be used
as feedforward information for the real-time level. Two different methods for
such a precomputation are investigated, convex optimization and Dynamic
Programming. Particular attention is given to the implementation of a
computationally efficient Dynamic Programming algorithm.

A real-time control strategy that is based on a closed-form minimization
of the Hamiltonian is also presented. The strategy is derived for a power-
train with two degrees of freedom, and is implemented in a dynamic vehicle
model that is used by a vehicle manufacturer. Simulations with a linearly
decreasing battery state of charge reference indicate that the fuel economy
can be improved with up to 10%, compared to a depleting-sustaining strat-
egy. Real-time compatible controller code is also generated and tested in a
production vehicle. The vehicle behaviour during a test drive is similar to
simulated behaviour.

Keywords: Plug-in hybrid electric vehicles, Energy management, Dynamic
Programming, Pontryagin principle, Convex optimization, Splines, Data
clustering
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Chapter 1

Introduction

This chapter gives a brief background on vehicle electrification and hybrid
electric vehicles. The concept of energy management is also introduced and
the main contributions of the thesis are summarized.

1.1 Background

During the 19th and 20th century, the primary energy sources in the in-
dustrialized countries changed from renewable sources to fossil sources, as
illustrated in Figure 1.1. This also meant that the primary energy sources
for transportation purposes changed; from wind and nutrients (i.e. muscle
power), to coal, petroleum and natural gas. The energy content in these
fossil energy sources is orders of magnitude higher than for the renewable
counterparts, and as a consequence modern transportation is much faster
and cheaper than ever before in human history. Unfortunately, there are
also serious disadvantages associated with the current transportation sys-
tem. Fossil fuel sources are inherently finite and the expected peak in global
oil and gas production will most likely challenge modern mobility and cause
severe economic consequences [1]. Furthermore, the burning of fossil fuels is
responsible for significant emissions of CO2, NOX and soot. These emissions
are causing global warming [2], negative health effects [3] and various other
environmental problems.

One way to decrease the dependence on fossil fuels and improve energy
efficiency is to electrify transportation as much as possible and generate
the required electricity from renewable energy sources. A fully electrified
vehicle fleet is however not a realistic option during the foreseeable future,
mainly due to two factors: i) the high cost of battery capacity (>$500/kWh
in 2013 [4]), and ii) the limited energy capacity of modern batteries (∼102

Wh/kg for a Li-Ion cell [5] compared to ∼104 Wh/kg for gasoline). These
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Figure 1.1: Historical energy consumption in the US, 1775-2009 [13].

factors imply that Battery Electric Vehicles (BEVs) are both expensive
and heavy, at least if the driving range should be comparable to that of
a conventional vehicle. Hybrid Electric Vehicles (HEVs) and Plug-in HEVs
(PHEVs) have therefore received significant interest during the last fifteen
years and several automotive manufacturers have (once again) started to
develop and produce hybridized powertrains (the first HEVs were actually
built around 1900 [6]). The commercial breakthrough for HEVs came in
1997 with the introduction of the Toyota Prius in Japan. Toyota is still
dominant on the market and had by the end of 2013 sold more than 6
million HEVs globally [7]; the yearly sales are illustrated in Figure 1.2.
Japan is also world leading in terms of sales, in 2013 the two most sold
vehicle models were HEVs; these two models alone had 15.8% of the total
market [8]. The market penetration is in general lower in other countries,
e.g. during 2013 it was 3.2% in the US [9] and 1.7% in Sweden [10]. The
sales of PHEVs are still significantly lower, mainly explained by the fact that
these vehicles were introduced on the market only a few years ago. In 2013
the PHEV market share was 0.32% [11] in the US and 0.16% in Sweden [10].
Furthermore, HEV city buses are also available on the commercial market.
One of the leading manufacturers, Volvo buses, had in mid 2013 sold more
than 1000 hybrid buses to 21 countries, with sales tripling for each year.
The company is planning to start serial production of PHEV buses in the
next few years [12].

Hybrid electric powertrains are at the present day a mature technology
and there are more than fifty models available on the market, with many
more under development [9]. However, whether or not HEVs and PHEVs
will dominate the market in the future remains to be seen. Many factors

2
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Figure 1.2: Historical Toyota HEV sales worldwide [7].

will influence sales figures, e.g. future oil prices, battery costs, legislation,
safety and customer adoption. One thing is nonetheless certain: for hybrid
electric powertrains to be competitive, it is crucial to fully exploit their ben-
efits. The overall scope of this thesis is therefore to develop computationally
efficient methods for optimal energy management.

1.2 The hybrid electric vehicle

A hybrid electric powertrain is characterized by the existence of an internal
combustion engine (spark ignited or diesel), one or several electric machines
(typically permanent magnet) and an electrochemical energy buffer (Li-
Ion/NiMH battery or super capacitor). It is popular to categorize hybrid
vehicles according to the degree of electrification, indicating to what extent
the vehicle can drive electrically. A mild hybrid has an electric motor with
low power and a battery with limited capacity. It cannot be driven solely
using the motor and the battery cannot be charged by external sources.
Therefore the vehicle must operate in charge sustaining mode, meaning
that the net change in battery energy after a trip should be zero. The
next category, the full hybrid, has a more powerful motor and a battery
with higher capacity, meaning that pure electric driving is possible at low
speeds. However, similarly to the mild hybrid the battery cannot be charged
by external sources. The third and final category, the plug-in hybrid, has
a battery that can be charged from external sources and it has enough
capacity to give at least ten to twenty kilometres of all electric driving. The
motor is relatively powerful and can provide electric driving up to highway
speeds.

When referring to a hybrid electric vehicle it is common to distinguish

3
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Figure 1.3: The three most common powertrain configurations for hybrid
electric vehicles. Solid lines represents mechanical paths and dotted lines
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between different configurations, mainly based on the mechanical and elec-
trical paths that are present in the powertrain. The three most common
configurations are the parallel, the series and the power-split, as shown in
Figure 1.3. Each configuration has its advantages and disadvantages in
terms of cost, complexity and energy efficiency. The focus of this thesis,
however, is on optimal energy management; consequently there will be no
detailed investigation of pros and cons of particular configurations or com-
ponents, for coverage of such topics see for example [6, 14].

The overall advantages with a hybrid electric powertrain (valid for all
categories and configurations) are summarized below:

Brake energy recuperation: The energy buffer makes it possible to
recover some of the energy that is lost at the friction brakes in a conventional
vehicle.

4
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Engine start & stop: The engine can be switched off during standstill
and the auxiliary systems can (temporarily) be powered from the energy
buffer.

Engine operating point optimization: The operating point (speed and
torque) of the engine can be chosen with some degree of freedom as there
is at least one additional power source within the powertrain.

Engine downsizing: It is not necessary to have an engine with a rated
power equal to the peak power of the vehicle, as there is at least one addi-
tional power source in the powertrain. A smaller engine can be operated at
a higher average load, i.e. at a higher average efficiency.

Improved drivability: The electric motor can be used to improve the
response of the vehicle, e.g. cranking of the engine, boost when accelerating
and give smoother gear shifting.

Lower emissions: Electric driving lowers local emissions (NOX, ground
level ozone, soot and noise). Moreover, the improved energy efficiency im-
plies lower CO2 emissions, particularly for PHEVs that are charged with
electricity from renewable energy sources.

As is the case with any technical solution there are also disadvantages
with a hybrid electric powertrain. The major ones are:

Cost: A hybrid electric vehicle is typically much more expensive than a
conventional vehicle, mainly due to the high cost of battery capacity and
the additional components that are added to the powertrain.

Safety: Electrification introduces high voltage components in the power-
train that can be hazardous during service and in the event of an accident.
Furthermore, the battery must be protected from thermal runaway, an event
that is likely to cause a fire.

Complexity: The hybrid electric powertrain has more components than
a conventional vehicle, meaning that it is more complicated to design, man-
ufacture and control.

5
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1.3 The energy management system

The hybrid electric powertrain itself does not guarantee an improved fuel
economy; with a poorly designed control system it might very well have
a worse fuel economy than a conventional powertrain. The task of the
Energy Management System (EMS) is consequently to decide the preferred
operating points for the different powertrain subsystems (i.e. setpoints for
the engine, motor and battery), so that the overall cost of operating the
vehicle is minimized. This is by no means a trivial task to solve, and there
is not a single solution that is generally applicable for all driving scenarios.
In fact, it is only possible to obtain an optimal operating cost if the future
driving conditions are known a priori. It is therefore beneficial to organize
the EMS as a hierarchical system, with levels distinguished by different time
scales and predictions of the future driving.

1.3.1 The envisioned system

The EMS that is considered in this thesis consists of two different levels, a
predictive level and a real-time level. At the predictive level any a priori
information regarding the future trip is considered, and the idea is to solve
an optimal control problem based on the prediction. The computed solution
is then used as feedforward information to the real-time level, which decides
the setpoints for the subsystems in the powertrain. Optimal setpoints are
obtained by minimizing an equivalent fuel cost at each time sample, where
the term equivalent signifies a trade-off between liquid fuel and electric en-
ergy. In the thesis the idea is to obtain the required a priori information
from logged historical driving data or a navigation system. The investi-
gated prediction horizon is with respect to the entire trip and the optimal
control problem is solved either before the trip or during its initial part.
Computations can for example be performed on a server or using an app in
a smartphone or a tablet. The obtained solution can then be transmitted
to the vehicle over the cellular network, e.g. as a look-up-table defining a
reference trajectory for the battery state of charge along the trip.

Short and intermediate prediction horizons are not considered in the the-
sis, but could easily be included in such a framework. The EMS would then
have several predictive levels, each with a different time scale. A priori infor-
mation for these shorter horizons can for example then be obtained from the
cruise control system, vehicle-to-vehicle communication and infrastructure-
to-vehicle communication. The resulting optimal control problem would
then be solved in real-time, within the vehicle, and the solution could for
example suggest impending gear shifts and engine on/off decisions.

The key concept is to have an EMS with a modular structure, where the

6



1.3. The energy management system

real-time level is not dependent on predictive information; there will always
be situations where a prediction is not available for some reason. Figure 1.4
illustrates the envisioned EMS and how it is related to other systems inside
and outside of the vehicle. To conclude, some of the main issues that should
be addressed when designing the EMS are stated below, where the focus of
the thesis is on the first two topics.

Computational demand: It must be possible to solve the optimal con-
trol problem(s) within a realistic time frame and the corresponding memory
requirements must be reasonable.

Predictive information: If prediction is used, it should preferably be
obtained with minimal effort from the driver. Furthermore, the predicted
driving conditions must be represented in a suitable way.

Component wear: Normal operation of the vehicle should not cause
accelerated degradation of the powertrain components.

Robustness: The fuel economy should not be severely degraded if the
powertrain model or the prediction is slightly inaccurate. Furthermore, the
vehicle must be able to operate even if some component in the powertrain
fail.

Drivability: The driver should have a sufficient torque reserve and there
should not be excessive gear shifts and engine on/off events. The vehicle
behaviour should be intuitive for the driver.

1.3.2 Overview of energy management methodology

The first studies investigating optimal energy management of hybrid electric
powertrains appeared at the turn of the millennium [15–18] and a vast
number of papers have been published on the topic since then. The typical
objective is to minimize the operating cost for a given driving mission. The
problem formulation that is considered in most studies can be summarized
as

minimize operating cost

subject to state dynamics

state constraints

control signal constraints.

7
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Figure 1.4: An illustration of the EMS and its relation to other systems.
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1.3. The energy management system

The control signals are typically the choice of gear, the engine state and
the torque/power split between the engine and the electric machine(s). The
problem is in general both non-linear and mixed integer, due to the gear
selection and the engine state decision. Hence, it is computationally de-
manding and it is therefore common to consider a single dynamic state,
the battery State of Charge (SoC). The choice of optimal control method
is closely related to the time scale that is considered, i.e. the complexity
of the method and the resulting computation time must be consistent with
the time scale.

The real-time level of the EMS is typically based on the Equivalent
Consumption Minimization Strategy (ECMS) that is derived from the Pon-
tryagin minimum principle [19]. The resulting optimization problem is then
an instantaneous minimization of the Hamiltonian. From an implementa-
tion point of view, the main problem is generally to determine the correct
value of the costate (equivalence factor), which depends on the future driv-
ing conditions. There is in general no closed-form solution to this problem
and it is therefore common to compute the costate numerically using some
kind of shooting method. ECMS strategies have been investigated in nu-
merous studies, see for example [20–32]. At the predictive level of the EMS
a priori information is needed and several possible sources for such infor-
mation have been proposed, for example: vehicle to vehicle communica-
tion [33–35], infrastructure to vehicle communication [33,35,36], navigation
systems [21, 23, 35, 37–42], and logged historical driving data [43–51]. In
an EMS context it is common to distinguish between a deterministic and
a stochastic prediction. The former represents the driving conditions by a
predefined velocity trajectory, obtained either from the navigation system
or from a logged trajectory; the latter describes the driving conditions with
a probabilistic model, e.g. a Markov model derived from historical driving
data. The optimal control problem at the predictive level has been solved
with Dynamic Programming (DP) [52] in numerous studies. The method is
a classical optimal control technique that provides the global optimal solu-
tion for problems that are both non-linear and mixed integer. Furthermore,
it can be used both with a deterministic prediction [16,41,42,50,51,53–56]
and a stochastic prediction [44, 57–61]. However, a major drawback with
the method is that the computational demand increases exponentially with
the number of model states and control signals. DP is therefore perceived
mainly as a benchmarking method, i.e. to assess the relative performance
of methods that have lower computational demand but cannot guarantee
global optimality. Examples of methods with a lower computational de-
mand are Model Predictive Control (MPC) [29, 34, 62–64] and Quadratic
Programming (QP) [23, 38, 53].

9
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The main disadvantage with the optimization based approaches is the
computational demand; a real-time implementation might require a more
expensive microprocessor. Rule-based energy management have therefore
been considered in many studies. However, such control structures do typ-
ically not consider any predictive information and a (near) optimal fuel
economy cannot be guaranteed. Instead the powertrain is controlled by
a set of heuristic rules, which are tuned to give a good performance on a
wide variety of driving situations. The rules can for example be determined
by fuzzy logic and neural networks [65–67] or genetic algorithms [65]. An-
other approach is to define the rules based on optimal powertrain behaviour
observed in DP solutions [57].

Energy management is also important when sizing an hybrid electric
powertrain, as the total cost of ownership includes both component and
operating costs. The focus is thus slightly different since the problem is
solved during the design phase, meaning that real-time implementation as-
pects are not the main priority. The problem is then formulated so that
the energy management and powertrain dimensioning is optimized jointly.
Several different techniques have been suggested, for example: convex opti-
mization [68–72], DP [60, 73], particle swarm optimization [74] and genetic
algorithms [65].

1.4 Scope and contributions of the thesis

The focus of this thesis is on computational methods for optimal energy
management. The ideas presented are applicable both to HEVs and PHEVs,
however results are shown mainly for PHEVs. Throughout the thesis it is
assumed that the dimensioning of the powertrain is fixed and sizing is conse-
quently not considered in the problem formulation. Furthermore, driveabil-
ity and component degradation are also not treated explicitly. The energy
management optimization on the predictive level is performed with a de-
terministic representation of the driving conditions; the only uncertainty
that is considered is the exact length of the trip. The prediction horizon is
with respect to the entire trip, and short prediction horizons are not consid-
ered. Energy management on the real-time level is mainly focused on the
torque split optimization; gear shifts and engine on/off decisions are not
investigated in depth. The only dynamic state that is considered is battery
SoC.

The main contributions of the thesis are:

• A conceptual framework covering both identification of frequently
travelled routes and optimization of the energy management. The
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routes are identified from logged historical driving data using hierar-
chical agglomerative clustering and the optimal energy management
strategy is computed offline with DP.

• A methodology to approximate the DP cost-to-go with a spline func-
tion, meaning that the memory storage requirements can be reduced
significantly.

• A DP algorithm where the sub-problems are solved analytically based
on a local approximation of the cost-to-go. Thereby it is not necessary
to grid the torque split and evaluate the cost-to-go with interpolation.
The method is thus very efficient in terms of computational demand.

• A closed-form minimization of the Hamiltonian for a powertrain con-
figuration with two degrees of freedom. The solution is implemented
as an ECMS strategy with very low computational demand. The
strategy is validated in a test drive with a production PHEV.
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Chapter 2

Modelling

This chapter describes the two vehicle modelling approaches that are consid-
ered in the thesis. Furthermore, the modelling assumptions of the simplified
powertrain model and the vehicle chassis model are also introduced.

2.1 Vehicle modelling

In an energy management context it is important to distinguish between a
dynamic and an inverse model; the former is used to evaluate the EMS in
simulations and the latter mainly when optimizing the EMS.

2.1.1 Dynamic model

A dynamic model is used to simulate vehicle behaviour and fuel economy,
i.e. it is used to assess the performance of the EMS. The model is based on
a high fidelity powertrain model consisting of several different sub-systems
(e.g. engine, motor and battery), each of which having a low-level controller
and a plant model with dynamic states. Moreover, a dynamic model fea-
tures a driver model that tries to follow an input velocity reference. The
driver model is typically a PI-controller acting on the deviation between
a velocity reference and the simulated velocity of the vehicle. The output
signal from the driver model is a pedal position that is converted to a torque
request at the wheels. The torque request is then an input signal to the
EMS, which computes setpoints for the low-level controllers based on a sim-
plified powertrain model. The dynamic model is illustrated schematically
in Figure 2.1.

A dynamic model is only used for simulation as it is nonlinear and has
several dynamic and integer states. To compute an optimal strategy for
such a model would require immense computational power and is simply
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Figure 2.1: The dynamic modelling approach.

not feasible. Examples of dynamic vehicle models are AMESim [75], Dy-
mola [76], PSAT [77] and Autonomie [78]. Two dynamic models are used
for simulations in the thesis, both implemented in Matlab/Simulink. The
Autonomie software is used in papers I-II and a non-commercial software
called VSim is used in paper V; the latter is a model used internally by
Volvo Car Corporation.

2.1.2 Inverse model

The inverse model is used when optimizing the EMS and it is therefore
based on a highly simplified model of the powertrain. The sub-systems
in the powertrain are generally modelled by efficiency maps that are ob-
tained from steady state measurements. Transient dynamics are typically
neglected. There is no driver model in an inverse model and the torque
request at the wheels is determined using a non-causal approach. Given the
velocity reference, the torque required at the wheels to follow the reference
perfectly is computed inversely from a point mass model of the vehicle chas-
sis. The approach is non-causal in time, but has the advantage that vehicle
speed does not become a model state. The inverse model is illustrated in
Figure 2.2. The only dynamic state is typically the energy level in the buffer
and optimal control methods can therefore be used to compute an optimal
strategy. Examples of inverse vehicle models are the QSS-Toolbox [79] and
Advisor [80]. Inverse models are used when solving the energy management
problem in papers I, II, III and IV. The inverse models that are considered
in the thesis are derived from the dynamic vehicle models that are available
in Autonomie and VSim.

The disadvantage with this type of inverse model is that transient dy-
namics are neglected, e.g. boost pressure in a turbocharged engine. If such
dynamics are considered it might very well be the case that it is not phys-
ically possible to track the velocity reference perfectly. Hence, if the sim-
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plified model contains transient dynamics it is preferable to use a so-called
inverse-dynamic model [81]. With such an approach the transient dynamics
are inverted and a physically realizable velocity profile is generated from the
velocity reference.

2.2 Simplified powertrain model

The modelling assumptions of the simplified powertrain model and the chas-
sis model are described next, i.e. the models used when optimizing the EMS.

2.2.1 Internal combustion engine

To accurately model the dynamics of an internal combustion engine, a com-
plex model based on partial differential equations is required [82]. This type
of model is not practical when optimizing the EMS as the computational
demand would be very high. The engine model is therefore very simplified
and without any dynamics. Typically it is based on a Brake Specific Fuel
Consumption map (BSFC), in which the mass fuel rate has been measured
at different steady state crankshaft speeds and output torques. For a given
engine speed it is then possible to approximate the engine mass fuel rate as
affine or quadratic in crankshaft torque, an approach known as the Willans
approximation [14,83]. A quadratic approximation is preferable if the engine
efficiency decreases at high torque; if that is not the case an affine approx-
imation should be sufficiently accurate. With an affine approximation the
instantaneous mass fuel rate of the engine is described by

ṁf =
(
c0(ωe)Te + c1(ωe)

)
eon, (2.1)

where Te represents engine torque, ωe engine speed and eon the binary engine
state. The speed dependent coefficients c0:1 are computed from the BSFC-
map using linear least squares; Figure 2.3 illustrates the accuracy of an affine
engine approximation. Finally, with cf denoting fuel price the instantaneous
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Figure 2.3: The left plot depicts the affine approximation of the engine mass
fuel rate at different engine speeds. The plots to the right illustrates the
engine efficiency, measured and approximated. The efficiency increases with
the intensity of red and the solid black line indicates the maximum torque.

fuel cost is described by

g = cf · ṁf . (2.2)

2.2.2 Electric motor

The modelling assumptions for the electric motor (and generator) is very
similar to that of the internal combustion engine. The model is typically
based on a power loss map, where the electrical power losses have been
measured at different steady state motor speeds and output torques. The
electrical power of the motor is then often approximated as quadratic in
torque [14, 83],

Pm = d0(ωm)T 2
m + d1(ωm)Tm + d2(ωm), (2.3)

where Tm represents motor torque and ωm motor speed. The speed depen-
dent coefficients d0:2 are computed from the power loss map using linear
least squares. Figure 2.4 illustrates the accuracy of a quadratic motor ap-
proximation.

2.2.3 Power electronics & auxiliary loads

Power electronics are used to transform between alternating current and di-
rect current as well as between different voltage levels within the powertrain.
The losses in the power electronics are either included in the power loss map
of the motor or calculated using an assumption of constant efficiency.
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Figure 2.4: The left plot depicts the quadratic approximation of the elec-
trical power of the motor at different speeds. The plots to the right il-
lustrates the motor efficiency, measured and approximated. The efficiency
increases with the intensity of red and the solid black line indicates the
maximum/minimum torque.

The auxiliary systems in the vehicle, e.g. pumps, air condition, stereo,
lights etc., are all assumed to be purely electrical and connected to the
same electrical path as the battery. The load is assumed to be constant and
known by the EMS.

2.2.4 Battery

The battery in a hybridized powertrain consists of a large number of cells
that are connected in series and/or in parallel. To accurately describe the
behaviour of such a battery, a complex electrochemical model based on par-
tial differential equations is needed [84]. This type of model is however not
suitable for use in an energy management context, since the computational
demand would be very high. Hence to reduce complexity, the complete
battery is modelled as a simple equivalent circuit with a voltage source in
series with an internal resistance [85], illustrated in Figure 2.5. With such
a simple battery model the only dynamic state is the battery SoC, where a
SoC of one corresponds to a fully charged battery and a SoC of zero denotes
an empty battery. Throughout the thesis only Li-Ion batteries are consid-
ered as this is the cell chemistry predominantly used at the present day.
The voltage of a Li-Ion cell is in general relatively flat with respect to SoC,
as illustrated to the left in Figure 2.5. Hence, it is often assumed that the
open circuit voltage, Voc, is affine (or constant) with respect to the state.
Furthermore, the internal resistance, Rin, is often assumed to be constant.
Both these assumptions are reasonable over the SoC region of normal usage.
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With these modelling assumptions the battery state dynamics is described
by

ẋ = f(x, Pb) = −
I

Q
= −

Voc(x) −
√

V 2
oc(x) − 4RinPb

2RinQ
, (2.4)

where x represents the SoC state, I the battery current, Q the battery
capacity in As and Pb the net battery power.

As the battery is the perhaps most expensive part of a hybridized pow-
ertrain, it is desirable that its life length is consistent with the life length
of the vehicle. The battery is typically regarded to be at the end-of-life
when the usable capacity (power) has decreased with 20% compared to the
rated capacity (power). However, there are many factors that contribute to
battery cell degradation and it is not trivial to model/predict the battery
State of Health (SoH); the SoH is defined as one when the battery is new
and zero at end-of-life. Table 2.1 summarizes some of the main drivers for
battery degradation, where battery C-rate and Ah throughput are defined
by

C = 3600
|I|

Q
, (2.5)

Ah =
1

3600

∫ tf

t0

|I(t)| dt. (2.6)

A C-rate of one means that the battery is discharged/charged in one hour,
and the Ah throughput is a measure of the total amount of charge that has
passed through the battery.

If battery SoC is the sole dynamic state in the EMS it is only possible
to limit the degradation caused by low/high SoC values, i.e. by confining
the battery to operate within a restricted SoC interval. Nevertheless, an
optimized EMS can often decrease c-rate and Ah-throughput as a second
order effect.

2.2.5 Transmission, final drive & friction brakes

The transmission is modelled as a stepped automatic gearbox without dy-
namics, meaning that gearshifts are assumed to be instantaneous and loss-
less. The mechanical efficiency of the gearbox and the final drive are mod-
elled using constant efficiencies. Furthermore, the clutch is assumed to be
without dynamics and lossless when it is locked. If the engine is on at low
vehicle speeds the clutch is assumed to be partially engaged to prevent the
ICE from stalling. It is also assumed that the friction brakes are instanta-
neous and used only if the electric motor or the battery are saturated during
braking or downhill driving.
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Table 2.1: Degradation factors and effects on Li-Ion battery cells [86, 87].

Degradation Factor Effect

High temperatures Increased resistance, Capacity/Power Fade
Low temperatures Capacity fade

High depth of discharge Capacity fade
High SoC Increased resistance, Capacity fade
Low SoC Power fade, Enhances other effects

High C-rates Capacity/Power fade
Ah throughput Capacity fade
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Figure 2.5: Left: The battery voltage of a Li-Ion cell measured at different
SoC levels for two discharge currents [5]. Right: The equivalent circuit
battery model.
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Figure 2.6: A post transmission parallel hybrid vehicle configuration.
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2.2.6 Chassis model

The modelling assumptions of the chassis model are outlined next. The
parallel hybrid configuration shown in Figure 2.6 serves as the example,
and it is also the configuration that is considered in papers I, II, III and
IV. The lateral dynamics of the vehicle is of little relevance for the energy
management and is therefore not considered. The longitudinal dynamics of
the vehicle, modelled as a point mass, is described by Newton’s second law
of motion

(m + δme)
dv

dt
=

Td

rw

−

(
ρair

2
CdAfv

2 + mg sin θ + frmg cos θ

)

, (2.7)

where m is the vehicle mass; δme is the equivalent mass of the rotating parts;
ρair is the density of air; g is the acceleration of gravity; rw is the wheel
radius; Af is the vehicle frontal area; Cd is the aerodynamic drag resistance
and fr is the rolling resistance. Using the inverse modelling approach it is
then possible to compute the torque that is demanded at the wheels Td, to
follow the velocity v and road grade θ of a given drive cycle.

The traction torque of the powertrain at the wheels Tp is given by

Tp = ηfrf

(
Tm + ηgb,irgb,iTe

)
+ Tb, (2.8)

which must equal the torque demand Td. The torque of the friction brakes
is represented by Tb and the ratio of the final gear is denoted rf where the
corresponding efficiency, ηf , depends on the sign of the torque demand at
the wheels. The gears, i = 1, 2, ..., are represented by a drive ratio rgb,i

and a mechanical efficiency ηgb,i. With rw representing wheel radius, the
rotational speed of the motor and the engine are defined by

ωm =
rf

rw

v, (2.9)

ωe =
rfrgb,i

rw

v. (2.10)

2.3 Discretization

The sole dynamic state in the simplified model is time discretized using the
one step Euler method. The SoC dynamics are thus given by

x(ti+1) = x(ti) + hi · f
(
x(ti), Pb(ti)

)
. (2.11)

The sample time is represented by hi = ti+1 − ti, which is not necessarily
constant throughout a driving cycle.
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Chapter 3

The energy management problem

This chapter formulates the energy management problem as an optimal con-
trol problem, which is then analyzed with the Pontryagin minimum princi-
ple. Some important observations are also highlighted.

The energy management problem for a hybrid electric powertrain is of-
ten formulated as an optimal control problem where the objective is to
minimize the operating cost along a given drive cycle. A model with low
complexity is required to keep the computational demand at a reasonable
level. Therefore, consider the inverse model approach and the simplified
powertrain model introduced in Chapter 2, where battery SoC is the sole
dynamic state. Assuming that the drive cycle is known a priori, the problem
can be expressed as the following deterministic optimal control problem

J∗ = min
u(·)

G(x(tf )) +

∫ tf

t0

g(u(t), t) dt (3.1)

s.t. ẋ(t) = f(x(t), u(t), t)

x(t0) = x0

x(t) ∈ [xmin, xmax]

u(t) ∈ U
(
ωm(t), ωe(t), x(t), Td(t)

)

where x = SoC and f(x, u) represents the non-linear state equation. The
control signal u is defined by the choice of gear rgb,i, the engine state eon,
and the torque of the engine Te and the motor Tm. However, in practice
it is sufficient to define either the engine or the motor torque, since the
other will be given implicitly as the torque demand at the wheels Td must
be satisfied. Furthermore, the feasible set for the control signal U is also
defined by the speed of the engine ωe and the motor ωm, as the maximum
torque is speed dependent. The power constraints of the battery depends
on the state x and are imposed as a constraint on the motor torque. The
cost criterion J is defined by the instantaneous fuel cost of the engine g
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and a final cost G, which represents the cost to recharge the battery at the
end of the driving mission (if a PHEV is considered). There is no explicit
constraint on the final state since there is no clearly defined lower SoC limit
in terms of battery degradation. Instead the final cost G will also enforce a
soft constraint on the final state. i.e. there will be a high cost for low final
states.

It is not a trivial task to solve the optimal control problem defined
by Eq. (3.1). The problem is a non-linear and mixed integer optimization
problem and the (predicted) drive cycle is in general not given by an analytic
function, but rather as a vector where speed and road grade are specified
at different discrete time instances. Hence, in practice it is only possible to
solve the problem using numerical methods.

3.1 Analysis with the minimum principle

One of the classical results in control is the Pontryagin minimum prin-
ciple [19], which provides necessary conditions for the optimal control of
a dynamical system. To apply the minimum principle [88] to the energy
management problem defined by Eq. (3.1), neglect the state constraints
and define the Hamiltonian

H
(
x(t), u(t), λ(t), t

)
= g

(
u(t), t

)
+ λ(t) · f

(
x(t), u(t), t

)
, (3.2)

where λ represents the costate. The next step is to determine the control
signal u∗ that minimizes the Hamiltonian,

u∗(t) = arg min
u(t)∈U(t)

{
g
(
u(t), t

)
+ λ∗(t) · f

(
x∗(t), u(t), t

)}
, (3.3)

and solve the state and costate equations

ẋ∗(t) =

(
∂H

∂λ

)

∗

, (3.4)

λ̇∗(t) = −

(
∂H

∂x

)

∗

(3.5)

with boundary conditions x0 and
[

H +
∂G

∂t

]

∗tf

δtf +

[
∂G

∂x
− λ

]

∗tf

δxf = 0, (3.6)

where the optimal trajectory is represented by ∗.
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Eq. (3.2)-(3.6) can in practice not be used derive a closed form solution
for the optimal trajectories, x∗(·), λ∗(·), u∗(·), since the powertrain model
is both non-linear and mixed integer. Furthermore, the drive cycle is gener-
ally not described by an analytic expression. The Pontryagin principle do
nonetheless give some valuable insights as it provide necessary conditions
that must be satisfied along the optimal solution. More specifically, the
costate dynamics along the optimal solution is given by the partial deriva-
tive of the Hamiltonian with respect to the state. Recall that the battery
voltage of a Li-Ion battery is nearly constant with respect to the state, as
shown in Figure 2.5. Hence, if the open circuit voltage of the battery is
assumed to be constant, i.e. f(x, u) ≈ f(u), then

λ̇∗(t) = −
∂

∂x

{

g
(
u∗(t), t

)
+ λ∗(t) · f

(
u∗(t), t

)
}

= 0, (3.7)

⇒ λ∗(t) = λ0.

Consequently, as long as the battery voltage does not exhibit a strong de-
pendence on SoC, the costate will have a (nearly) constant value λ0 along
the optimal solution, provided that the state constraints are neglected. Nev-
ertheless, if state constraints are considered, the costate will change value
only when a state constraint is activated, i.e. the costate will be piecewise
constant.

These properties are illustrated in Figure 3.1, which depicts the optimal
state and costate trajectories for a PHEV and an HEV. The results are
obtained when Eq. (3.1) is solved as a convex optimization problem using
the methodology presented in Paper I, where the engine state and gear
selection are given by pre-decided rules. Furthermore, the battery voltage
is assumed to be independent of SoC and the costate is then obtained as the
dual variable to the discrete time state equation. For the PHEV the state
constraints are never activated and the costate is thus constant. However,
for the HEV the state constraints are activated and it is clear that the
costate changes value at those time instances.

The key observation, obtained by applying the Pontryagin principle and
minimizing the Hamiltonian function, is that the costate can be interpreted
as an equivalence factor (or exchange rate) between fuel and electric en-
ergy; that is, to minimize the Hamiltonian is to minimize an equivalent fuel
consumption. The main problem in practice is that the drive cycle is never
known perfectly in advance, meaning that the true value of the costate
cannot be determined beforehand.
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Figure 3.1: Example of optimal state and costate trajectories for a PHEV
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nitude depends on the size of the battery, which differs for the two vehicles.
The state constraints are illustrated by the horizontal lines.
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Chapter 4

Computational methods for the

energy management system

This chapter introduces the computational methods that are investigated
in the thesis; DP, convex optimization and ECMS. A review of some basic
convexity concepts is also given.

The EMS topology that is considered in the thesis consists of a predictive
level and a real-time level, as illustrated in Figure 1.4; a more detailed
version highlighting the computational methods in the two levels is shown
in Figure 4.1. It is here assumed that the prediction is with respect to the
entire trip and that the optimal control problem is solved only once, before
the start of the trip. The computed solution is then used as feedforward
information for the real-time level, where an instantaneous optimization
problem is solved at each time sample. To keep the computational demand
at both levels on a reasonable level, it is important to exploit convexity
whenever it is possible, something that is done in several of the appended
papers. Some basic definitions and results concerning convexity will thus
be reviewed before the computational methods are introduced.

Instantaneous power request

Optimal control problem
 - Dynamic Programming
 - Convex OptimizationTrip prediction

Feedforward information
- cost-to-go
- SoC-reference
- costate/equivalence factor

Setpoints
Vehicle states

Instantaneous optimization
          - ECMS

Predictive level

Real-time level

Figure 4.1: The EMS topology considered in the thesis.
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4.1 A brief review of basic convexity concepts

The notation follows [89], where all concepts are described in depth. Fig-
ure 4.2 provides a graphical illustration of some of the concepts.

Definition 1 A set C is convex if the line segment between any two points

in C lies in C, i.e. if for any x1, x2 ∈ C and any θ with 0 ≤ θ ≤ 1, we have
θx1 + (1 − θ)x2 ∈ C.

Definition 2 A function f : R
n → R is convex if dom f is a convex set and

if for all x, y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have f
(
θx + (1 − θ)y

)
≤

θf(x) + (1 − θ)f(y).

Definition 3 A convex optimization problem is formulated as

min
x

f0(x) (4.1)

s.t. fi(x) ≤ 0, i = 1, ..., m

hj(x) = 0, j = 1, ..., p

x ∈ X ⊆ R
n

where the feasible domain X ⊆ R
n of the decision variables x is convex; the

functions f0(x) and fi(x) are convex; and hj(x) are affine.

Some useful results concerning convexity:

• Any local minimum of a convex function is also a global minimum.

• Minus of a convex function is a concave function (and vice versa).

• An affine function, a0x + a1, is both concave and convex.

• A quadratic function, a0x
2 + a1x + a2, is convex if a0 ≥ 0.

• A sum of convex functions is a convex function.

• The pointwise maximum of a set of convex functions is convex, i.e.
f(x) = max{f1(x), f2(x), ..., fm(x)} is convex if f1:m are convex.

• Convex composition, f(x) = h
(
g(x)

)
is convex if h is convex and

nondecreasing (nonincreasing), and g is convex (concave).

• A problem is not convex if it contains integer decision variables.
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Figure 4.2: Illustration of convex vs. non-convex functions and sets.

4.2 Predictive level

In the predictive level the optimal control problem is solved based on the
trip prediction. The computation can for example be performed at the start
of the trip (or before) using cloud computing, the infotainment system of the
vehicle or an external device such as a smartphone. The obtained solution is
then used as feedforward information for the real-time level. Two methods
are used to solve the problem, DP and convex optimization, and both are
described below.

4.2.1 Dynamic programming

DP is a well known optimal control algorithm based on Bellman’s principle
of optimality [52]. The algorithm is particularly useful for complex problems
that can be partitioned into a sequence of simpler sub-problems. It is a very
versatile algorithm, in the sense that a wide range of problem formulations
can be handled, and that non-linear and mixed integer problems can be
solved without any model approximations or relaxations. The principal
steps in the algorithm is to grid the problem (in time, states and control
signals) and divide it into a sequence of smaller sub-problems that are solved
recursively, typically backwards in time from the final time step to the first.
Each point in the time and state grid defines a DP sub-problem, in which
the sum of a stage cost and the cost-to-go1 (at the next time step and state)

1Sometimes also called the value function.
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is minimized. The stage cost is the cost associated with a control decision
at a given time step and state; the cost-to-go represents the cost required
to reach the end of the problem along the optimal state trajectory, from a
specific time step and state.

To solve the optimal control problem defined by Eq. (3.1) with the DP
algorithm, the problem is first time discretized into n time steps and the
SoC state is gridded into m discrete points, x1, x2, ..., xm, thus forming a
grid of size n×m over time and state. The cost-to-go matrix, J ∈ R

n×m, is
thereafter initialized at the final time step, with a final cost at each of the
discrete points of the state, and the problem is solved recursively backwards
in time, over the grid, until the first time step is reached and the cost-to-go
matrix is defined at all grid points. To simplify the subsequent presentation,
the following notation is introduced:

Definition 4 Let a DP sub-problem be defined as the problem of finding
the optimal control signal, u∗ ∈ U , at a specific grid point [i, j], i.e. at time

step i and state xj.

Definition 5 Let Ji[j] denote the value in the cost-to-go matrix at grid

point [i, j].

Definition 6 Let Ji(x) denote a value of the cost-to-go at time step i, at a
point x between the grid points where the cost-to-go matrix is defined.

Each DP sub-problem, in the time and state grid, is thus defined by

Ji−1[j] , min
u∈U

{
hsg(u)
︸ ︷︷ ︸

stage cost

+ Ji

(
xj + hsf(xj , u)

)

︸ ︷︷ ︸

cost-to-go

}
, (4.2)

where hs represents sample time, i = n, n-1, ..., 2 and j = 1, ..., m. The
initialization of the cost-to-go is defined by Jn[j] = G(xj). The compu-
tational demand of the sub-problem is relatively high since the cost-to-go
is not an analytic function that can be evaluated or differentiated, instead
it is a matrix defined only at a finite number of grid points. The cost-to-
go is therefore typically evaluated by linear interpolation between the grid
points where the cost-to-go matrix is defined [14]. Hence, in order to solve
the sub-problem, given by Eq. (4.2), it is necessary to grid the continuous
control signal (i.e. the torque split) into p points for each feasible gear and
interpolate in the cost-to-go. The optimal control signal is then found by
minimizing over the gridded values of the continuous control signal and the
feasible integer decisions. The DP sub-problem is illustrated graphically
in Figure 4.3 and the main steps in the DP algorithm are summarized in
Algorithm 1. Fig 4.4 shows an example of a cost-to-go matrix for a PHEV.
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Figure 4.3: Illustration of a DP sub-problem for a fixed gear and engine on.
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Figure 4.4: Example of a DP cost-to-go with 2000 grid points for the state
and 2071 time steps. Every 100th point in each dimension is shown.
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Table 4.1: Illustration of the computational demand (interpolations) and
memory requirements (grid points) as the number of states and continuous
control signals increases from one to three. The numbers assume a fixed
gear and engine on.

Time State grid Control signal Number of Cost-to-go

steps points grid points interpolations grid points

n m p nmp nm
103 103 102 108 106

103 103 · 103 102 · 102 1013 109

103 103 · 103 · 103 102 · 102 · 102 1018 1012

Once the cost-to-go matrix is computed it is then possible to recover the
optimal control signal at time ti by solving

u∗(ti) = arg min
u(ti)∈U(ti)

{
hsg(u(ti)) + Ji+1

(
x(ti) + hsf(x(ti), u(ti))

)}
. (4.3)

The idea is then to use the obtained cost-to-go matrix J as feedforward
information for the real-time level, an approach that has been considered
in [42, 90, 91] and is used in Papers I and II.

Algorithm 1 The Dynamic Programming Algorithm
Time discretize the problem and grid the state
Initialize the cost-to-go matrix at final time sample
for Time steps do

Compute speed dependent coefficients, torque request and constraints
for Gridded state values do

for Integer control decisions do

Grid continuous control decisions
for Gridded continuous control decisions do

Compute stage cost and interpolate in cost-to-go
end for

end for
Find the control decision that gives the lowest total cost
Update cost-to-go matrix with cost of optimal control

end for
end for
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Reducing computational demand and memory requirements

The main drawback of DP is that the computational demand and the
memory requirements grow exponentially with the number of model states
and control signals. This property is known as the curse of dimensional-
ity [52, 92] and is illustrated in Table 4.1.

The simplest approach to decrease computational demand and memory
requirements is to use a sparse grid for the state(s). This will, however,
degrade the accuracy of the solution to some extent. Paper III investigates
how sensitive the solution is towards a sparse grid. The results indicate that
a PHEV requires at least a few hundred grid points for a decent accuracy,
whereas an HEV requires less than fifty grid points [93]. Another technique
to reduce the computational demand is to decrease the number of interpola-
tions in the cost-to-go. For example by exploiting that optimal trajectories
do not cross, meaning that it is possible to restrict the search space for the
control signals at each grid point [94]. It also possible is to only consider
control signals that brings the plant model from one grid point to another
grid point, thereby the cost-to-go can be evaluated directly [95]. However,
this type of approach is only possible if such control signals can be found,
which might not always be the case. A different approach for reducing the
computational demand is to use neuro or approximate DP [96], where the
idea is to approximate the cost-to-go with neural networks, splines or other
basis functions. It might then be possible to solve the DP sub-problem
analytically (for a fixed integer decision), rather than by gridding the con-
tinuous control signal and interpolating in the cost-to-go. These ideas were
investigated in [93] where the cost-to-go was approximated as locally linear.
With a highly simplified powertrain model it was then possible to pose the
right hand side of Eq. (4.2) as a convex function that could be minimized
analytically with respect to the continuous control signal. Paper IV of
the thesis investigates these ideas further using a more detailed powertrain
model. Moreover, in the paper the cost-to-go is also approximated with
a quadratic spline function, meaning that second order derivative informa-
tion is taken into account when minimizing the sub-problem. However, to
preserve the system dynamics during the DP recursion the update of the
cost-to-go matrix is still determined using interpolation, and the cost-to-go
approximation is only used to find the optimal control signal.

The idea of approximating the cost-to-go with a spline function is also
beneficial from a memory point of view. That is, rather than storing a large
cost-to-go matrix it is enough to store a smaller number of spline parameters.
The disadvantage of using a spline approximation is that a constrained
linear least squares must be solved at each time sample. Nevertheless, using
software such as CVXGEN it is possible to compute such an approximation
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Chapter 4. Computational methods for the energy management...

very efficiently [97]. The methodology that is used to approximate the cost-
to-go with a spline function is presented in Paper III.

4.2.2 Convex optimization

The field of convex optimization has developed and matured significantly
during the last decades. Particularly in the sense that there are reliable
solvers available that can solve problems containing thousands of variables,
for many different problem classes. The main advantage with a convex
problem formulation is that the computational demand does not increase
exponentially with the number of model states. Consequently it is compu-
tationally feasible to have more states than just battery SoC, e.g. tempera-
ture states [98] and battery SoH [99]. Much is therefore gained if the energy
management problem can be formulated as a convex problem, i.e. on the
form of Eq. (4.1). It is then possible to solve it efficiently using software
such as CVX [100] or Yalmip [101]. The main difficulty is thus to transform
the problem into a convex problem formulation. The key steps required to
obtain a tractable formulation is to:

• Remove the integer decision variables from the problem formulation,
i.e. decide gear shifts and engine on/off before the convex problem is
solved. The problem is then solved iteratively and the integer decisions
are updated until the optimal cost converges.

• Relax equality constraints that are not affine, i.e. allow the losses to be
greater than or equal to the modelled quantity. This will in general
not alter the optimal solution of the energy management problem,
since it is not optimal to increase the losses.

• Assume a constant battery voltage, or make a variable change so that
the energy state is battery energy rather than SoC.

• Discretize the problem in time.

For a more comprehensive description of how to formulate the energy man-
agement problem as a convex problem see [68–72]. It is here worth to point
out that Linear Programming (LP) and Quadratic Programming (QP) are
two well known and important sub-classes of convex optimization problems.
The energy management problem is solved as an LP in [15, 17] and a QP
formulation is considered in [23,38,53]. A convex formulation of the energy
management problem is investigated in paper I, where the idea is to use
the optimal SoC-trajectory as a SoC-reference for the real-time controller.
Figure 3.1 in Chapter 3 depicts optimal state and costate trajectories that
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are obtained when the energy management problem is solved as a convex
optimization problem.

4.3 Real-time level

In the real-time level an instantaneous optimization problem is solved and
the solution defines the setpoints for the different subsystems in the power-
train. If there is any feedforward information available from the predictive
level it is considered, but it is not a requirement. The computation is per-
formed in an Electronic Control Unit (ECU) and the sample time is typically
in the millisecond range.

4.3.1 The ECMS strategy

The ECMS strategy [20–32] is obtained by applying the Pontryagin prin-
ciple to the energy management problem, as outlined in Chapter 3. The
distinction between the two is that the ECMS strategy utilizes an approx-
imation of the costate, which is unknown in practice. The approximated
costate is often called the equivalence factor since it can be interpreted as
a weighting factor between fuel and electric energy.

The ECMS control signal at time sample ti is determined by the instan-
taneous minimization of the Hamiltonian,

u∗(ti) = arg min
u(ti)∈U(ti)

{
g
(
u(ti)

)
+ s(ti) · f

(
u(ti), x(ti)

)}
, (4.4)

where s represents the equivalence factor, i.e. the costate estimate. One
of the main challenges when using an ECMS-strategy is to determine the
value of the equivalence factor. This is a topic that has received significant
attention and many different approaches have therefore been suggested. The
two approaches that are considered in the thesis are outlined next.

SoC-reference

A frequently used approach is to apply feedback and track a SoC-reference.
The equivalence factor is then defined by

s(ti) = s0 − F
(
xref(ti) − x(ti)

)
, (4.5)

where s0 is the costate estimate and xref represents the SoC-reference. The
feedback term F is typically realized by a P/PI-controller or a tangent
function [32, 46].
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Feedforward information can then be obtained by solving Eq. (3.1) as a
convex optimization problem. The optimal SoC-trajectory defines the SoC-
reference and the costate estimate can be obtained as the dual variable to
the discrete time state equation, see Paper I and [23, 38]. However, a SoC-
reference and a costate estimate can also be obtained from a DP cost-to-go
by simulating the simplified powertrain model with the control signal given
by Eq. (4.3). It is also possible to use simpler heuristic approaches that
do not require any optimization problem to be solved. For example, for a
PHEV a near optimal fuel economy can be obtained by simply decreasing
the SoC-reference linearly with respect to trip distance, see [25, 32, 42, 48]
and Paper V, or with respect to trip energy demand as in Paper II.

In a situation where there is no feedforward information available, the
SoC-reference is typically kept constant at the desired final SoC level.

DP cost-to-go

The second approach is to utilize the DP cost-to-go as feedforward infor-
mation, see [42, 90, 91] and Paper I-II. Consider the optimal control signal
that is obtained with the DP cost-to-go using Eq. (4.3). This expression
is similar to Eq. (4.4) which defines the ECMS strategy. To illustrate the
similarity approximate the cost-to-go with a first order Taylor expansion

Ji+1

(
x(ti) + hsf(x(ti), u(ti))

)
≈ Ji+1

(
x(ti)

)
+

∂Ji+1(x)

∂x

∣
∣
∣
∣
x(ti)

hsf(x(ti), u(ti)).

(4.6)
Substituting Eq. (4.6) into Eq. (4.3) gives

u∗(ti) = arg min
u(ti)∈U(ti)

{
hsg(u(ti)) + Ji+1

(
x(ti)

)
+

∂Ji+1(x)

∂x

∣
∣
∣
∣
x(ti)

hsf(x(ti), u(ti))
}

= arg min
u(ti)∈U(ti)

{
g(u(ti)) +

∂Ji+1(x)

∂x

∣
∣
∣
∣
x(ti)

f(x(ti), u(ti))
}
. (4.7)

By comparing Eq. (4.7) and Eq. (4.4) it is clear that

s(ti) =
∂Ji+1(x)

∂x

∣
∣
∣
∣
x(ti)

, (4.8)

i.e. the equivalence factor is given by the partial derivative of the cost-to-go
with respect to the state. The same result can be derived more formally by
using the Hamilton-Jacobi-Bellman equation [92]. The cost-to-go can thus
be interpreted as a state feedback law that is defined along the predicted
trip. The advantage of using the cost-to-go compared to a SoC-reference is
that the former contains information regarding all optimal SoC-trajectories,
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Figure 4.5: Optimal SoC-trajectories for a PHEV as obtained from a DP
cost-to-go for different initial states.

for all the possible values of the state along the predicted trip, as illustrated
in Figure 4.5. By solving a convex optimization problem only a single
optimal trajectory is obtained, valid for a specific initial state.

Reducing computational demand and memory requirements

The computational demand and memory requirements of the ECMS strat-
egy is low compared to a DP problem or a convex optimization problem.
It is nonetheless important to have an efficient implementation since the
problem must be solved in real-time, with an ECU that has limited compu-
tational resources and must perform additional tasks. An effective method
to reduce the computational demand is to formulate Eq. (4.4) as a convex
function that can be minimized analytically, see [24, 62, 93, 102–104] and
Paper V. Thereby it is not necessary to store the optimal control signal(s)
in a set of precomputed maps [30,46,47,105] or to grid the control signal(s)
and interpolate in engine/motor maps in real-time [20–22,27].
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Chapter 5

Summary of included papers

This chapter provides a brief summary of the five papers that are included
in the thesis. Full versions of the papers are found in Part II of the thesis.

The author of the thesis is responsible for the main ideas, has developed
the algorithms and prepared the manuscripts for all the papers. The work
has been inspired by [90], and can be seen as further development of previous
research in the group. As for the implementation, the author has been
responsible for this except for in Paper V.

Paper I

V. Larsson, L. Johannesson, and B. Egardt, "Comparing Two
Approaches to Precompute Discharge Strategies for Plug-in Hy-
brid Electric Vehicles", Proceedings of the 7th IFAC Advances
in Automotive Control, Tokyo, Japan, September 2013

The paper investigates a scenario where a PHEV is driven along a well
known commuter route. The main idea is to evaluate two approaches that
can be used to precompute feedforward information for the real-time level,
i.e. an optimal discharge strategy for the route. With the first approach
the energy management problem is solved as a convex optimization problem
and the optimal SoC-trajectory is then used as a reference during real-time
operation. The second approach is to solve the problem with DP and use
the obtained cost-to-go as a feedback law (look-up-table) during real-time
operation. To decrease the computational demand of the precomputation
a few logged commuter trips are used to derive piecewise linear representa-
tions of the speed and altitude profiles along the route. Each linear segment
is 100 m long and defines a time step during the optimization, i.e. a few
hundred samples are considered rather than thousands. Simulations are

37



Chapter 5. Summary of included papers

performed with a dynamic vehicle model where an ECMS-strategy is im-
plemented as the real-time controller. The ECMS equivalence factor is then
either adapted to track the precomputed SoC-reference or it is given by
the precomputed DP cost-to-go. The simulation results for a few logged
commuter trips indicates that similar fuel economy and battery usage is
obtained with both approaches.

Paper II

V. Larsson, L. Johannesson, B. Egardt, and S. Karlsson, "Route
Optimized Energy Management of Hybrid Electric Vehicles",
Accepted for publication in IEEE Transactions on Intelligent

Transportation Systems, 2014

Many modern vehicles are connected to the cellular network and can thus
transmit and receive data. There is in fact already systems available on
the commercial market that upload driving data to servers. The idea pre-
sented in the paper is therefore to have an EMS that utilizes cloud com-
puting. Assuming that a few weeks of logged driving data is available on
a server, it is straight forward to identify frequent routes using hierarchi-
cal agglomerative clustering. The driving conditions along the route can
then be modelled based on the logged trips and an optimal strategy can
be precomputed with DP and transmitted back to the vehicle as a form
of feedforward information. The proposed system is evaluated in a simu-
lation study with real-world driving data from the Swedish Car Movement
Database. Two different driving patterns are considered, each roughly two
months long and having a distinct commuter pattern. The simulations are
performed in a dynamic vehicle model where an ECMS-strategy is imple-
mented as the real time controller. The results for a PHEV indicate that the
fuel consumption along the commuter routes can be reduced with 4-9% and
the corresponding battery usage with 10-15%, both compared to a trivial
charge-depleting charge-sustaining discharge strategy. However, it is also
shown that similar reductions can be obtained with a SoC-reference that is
decreased linearly with respect to the energy demand of the route.

Paper III

V. Larsson, L. Johannesson, and B. Egardt, "Cubic Spline Ap-
proximations of the Dynamic Programming Cost-to-go in HEV
Energy Management Problems", Accepted to the European Con-

trol Conference, Strasbourg, France, June 2014
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The main disadvantage with DP is that the problem must be gridded in
both time and states. Hence, to guarantee that the DP solution has a
high accuracy it is necessary to use a fine grid. This means that the DP
cost-to-go can have substantial memory requirements and that data storage
and transmission can be problematic. The first part of the paper therefore
investigates to what extent the fuel consumption of an HEV and a PHEV
is degraded if the number of grid points for the SoC state is reduced. The
results indicate that a PHEV is much more sensitive towards a sparse grid
than an HEV; the disparity is explained mainly by the different shapes of
the cost-to-go’s. The second part of the paper investigates if the cost-to-go
(at each time step) can be approximated by a cubic spline function. With
such an approximation it is not necessary to store a densely gridded cost-
to-go, but rather a small number of spline coefficients. The results for a
PHEV indicate that as few as two splines can be used without a significant
degradation in fuel economy. Furthermore, a single spline is sufficient for
an HEV.

Paper IV

V. Larsson, L. Johannesson, and B. Egardt, "Analytic Solutions
to the Dynamic Programming sub-problem in Hybrid Vehicle
Energy Management Problems", Submitted to IEEE Transac-

tions on Vehicular Technology

The DP algorithm has a high computational demand since the cost-to-go
is defined only at a finite number of grid points. Consequently, it cannot
be evaluated directly and it is therefore typically evaluated through time
consuming interpolation. This paper investigates if the cost-to-go can be
locally approximated by a low order polynomial. With such an approxima-
tion (and a sufficiently simple powertrain model) it is possible to derive an
analytic solution to the DP sub-problem, i.e. to find the optimal contin-
uous control signal at a specific grid point. Two different approximations
of the cost-to-go are considered: i) a local linear approximation, and ii) a
quadratic spline approximation. The results indicate that numerical prob-
lems can occur with a local linear approximation, particularly if the state
is gridded densely. However, with a quadratic spline approximation such
problems can be avoided since second derivative information is considered.
The reduction in computation time is about a factor seventy with the local
linear approximation and a factor forty with the spline approximation. The
increase in fuel consumption is with both approximations less than 0.2%.

39



Chapter 5. Summary of included papers

Paper V

V. Larsson, A. Karlsson, L. Johannesson, A. Lasson, and B.
Egardt, "Real-time Energy Management of a Plug-in Hybrid
Electric Vehicle based on a closed-form minimization of Hamil-
tonian", Submitted to Control Engineering Practice

This paper describes the implementation of an ECMS-strategy in a pro-
duction Volvo V60 PHEV. When implementing a real-time energy man-
agement strategy in a vehicle ECU it is crucial to keep the computational
demand and memory requirements as low as possible. Consequently, it is
not desirable to perform real-time interpolation in engine/motor maps or
to store big look-up-tables. The idea presented in the paper is therefore
to derive a closed-form solution for the optimal torque distribution in the
powertrain. The derived solution is analyzed and then implemented as an
ECMS-strategy in a dynamic vehicle model available in Matlab/Simulink.
Simulations with a linearly decreasing SoC-reference indicate that the fuel
consumption can be reduced with up to 10% compared to the nominal
charge-depleting charge-sustaining discharge strategy of the production ve-
hicle. Real-time compatible controller code is also generated using Tar-
getLink and tested in a production vehicle. A test drive along a public road
demonstrates that the vehicle behaviour is similar to simulated behaviour.
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Concluding remarks

At the present day it remains an open question if electrified powertrains
will dominate the market in the future. Nevertheless, for PHEVs to be
competitive it is crucial to have an EMS that provides a near optimal fuel
economy. If the trip length exceeds the electric driving range, a route op-
timized strategy can reduce fuel consumption with up to 10% compared
to a charge-depleting charge-sustaining discharge strategy. This thesis has
therefore investigated different computational methods that can be used in
a route optimized EMS. The focus has been on PHEVs but the presented
methods are also applicable to HEVs.

The work has covered three fundamental parts of such a system: i)
identification of frequently travelled routes from historical driving data, ii)
off-line optimization of the EMS towards a known route, and iii) instan-
taneous optimization of the setpoints in the powertrain. The two former
parts belong to the so-called predictive level and the latter to the real-time
level. The results in the thesis show that it is straightforward to identify
routes from historical driving data using clustering algorithms. Off-line op-
timization can then be used to compute feedforward information for the real
time level; two different methods have been investigated, DP and convex
optimization, both having advantages and disadvantages. With an ECMS
strategy at the real-time level it is possible to utilize the solution from either
of the former methods as feedforward information. Nevertheless, it is also
possible to obtain near optimal fuel economy using feedforward information
that is based on simple heuristic rules, e.g. discharging the battery linearly
with respect to predicted driving distance. However, such rule based meth-
ods will typically work well only if the uncertainties are relatively small.

The implementation in a production vehicle and a test drive along a
public road demonstrates that the proposed methodology works in practice.
The proposed system can consequently be realized with existing methods
and technology. However, when designing an EMS for commercial use it is
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important to acknowledge that a prediction of the future driving will not
always be available. Therefore it is vital to organize the system so that the
real-time level is not dependent on predictive information. It is also impor-
tant to recognize the current trend of increased vehicular connectivity and
the computational resources that are available in modern smartphones and
tablets. The idea is therefore to store data and perform the computations
in the predictive level outside of the vehicle ECU, e.g. on a server or in
a smartphone app. An additional advantage of moving computations and
data storage outside of the vehicle is that the EMS will be connected to an
individual driver rather than a specific vehicle.

A disadvantage with the proposed system is that the engine state deci-
sion during real-time operation is based only on the instantaneous traction
request. This can lead to frequent engine state transitions and poor driv-
ability. A possible direction of future research could therefore be to include
a short prediction horizon for the engine on/off and gear decisions. Fur-
thermore, uncertain predictions have not been investigated in depth. What
happens if there are several possible paths from point A to point B or if
there is a risk for a traffic jam? In reality there will also be uncertainties re-
garding the charging opportunities. For example, when stopping at a public
location the exact duration of the stop is generally not known in advance,
not even by the driver. Finally, autonomous driving and platooning have
received significant attention in recent years. A future topic could be to
include energy management within such a framework.
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