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Abstract  

Urban areas adjacent to surface water are exposed to soil movements such as erosion and slope 

failures (landslides). A landslide is a potential mechanism for mobilisation and spreading of pollutants. 

This mechanism is in general not included in environmental risk assessments for contaminated sites, 

and the consequences associated with contamination in the soil are typically not considered in 

landslide risk assessments. This study suggests a methodology to estimate the environmental risks 

associated with landslides in contaminated sites adjacent to rivers. The methodology is probabilistic 

and allows for datasets with large uncertainties and the use of expert judgements, providing 

quantitative estimates of probabilities for defined failures. The approach is illustrated by a case study 

along the river Göta Älv, Sweden, where failures are defined and probabilities for those failures are 

estimated. Failures are defined from a pollution perspective and in terms of exceeding environmental 

quality standards (EQS) and acceptable contaminant loads. Models are then suggested to estimate 

probabilities of these failures. A landslide analysis is carried out to assess landslide probabilities based 

on data from a recent landslide risk classification study along the river Göta Älv. The suggested 

methodology is meant to be a supplement to either landslide risk assessment (LRA) or environmental 

risk assessment (ERA), providing quantitative estimates of the risks associated with landslide in 

contaminated sites. The proposed methodology can also act as a basis for communication and 

discussion, thereby contributing to intersectoral management solutions. From the case study it was 

found that the defined failures are governed primarily by the probability of a landslide occurring. The 

overall probabilities for failure are low; however, if a landslide occurs the probabilities of exceeding 

EQS are high and the probability of having at least a 10% increase in the contamination load within 

one year is also high.  

 

Keywords: Contaminated sites; environmental risk assessment; landslide risk assessment; Monte Carlo 

simulation; pollution transport, water quality 

 

1. Introduction 

Contaminated land subject to landslides poses a risk for mobilisation and spreading of contaminants 

into rivers, as has previously been highlighted in papers by Göransson et al. (2009; 2012). The first 

paper identified the combination of landslides and contaminated land as a multi-risk and suggested a 

conceptual model for the governing processes. The second paper applied a one-dimensional advection-

dispersion equation for the description of possible sediment, and subsequent contaminant transport for 

the instantaneous release of contaminants from landslides.  

Landslides are often natural geomorphological processes resulting from nature striving towards 

equilibrium and they are important for the rejuvenation of the ecology (Geertsema et al., 2009). In 

pristine environments such events release nutritious sediments to the surroundings and are 



  

3 
 

mechanisms for maintaining aquatic and terrestrial biodiversity and heterogeneity (Attiwill, 1994; 

Geertsema and Pojar, 2007). A landslide can cause an instantaneous increase in turbidity, which 

influences light suppression, and it may induce a sudden change in redox and pH, or cause 

instantaneous fish kill because of the physical chock. Such impacts only remain for a limited period of 

time and most natural systems are resilient to these events and have capacity for recovery (Folke et al., 

2004; Holling, 1973; Waples et al., 2009).  

However, when a natural system is no longer pristine but transformed into an anthropogenic system, a 

landslide may not only be triggered by human activities but the consequences may also increase 

because anthropogenic systems are often contaminated to various extents. For example, release of 

excessive nutrients from agriculture or bacteria and viruses from pasture lands into rivers from 

landslides (Ohlson and Serveiss, 2007)and landslides that involve contaminated material can transport 

pollutants from land to rivers. This can occur either directly due to the sliding masses or indirectly by 

flooding and bank erosion of polluted areas as a consequence of damming and landslide generated 

impulse waves (Göransson et al., 2012; Göransson et al., 2009; Bonnard et al., 2004). A landslide that 

involves the release and transport of contaminating substances may also trigger a shift into an 

ecosystem of less resilience (Folke et al., 2004; Holling, 1973; Walker et al., 2009). 

Although urban areas and industrial sites are commonly located adjacent to surface water, very few 

studies have paid attention to the risk for mobilisation and spreading of pollutants to surface waters 

due to landslides (Göransson et al., 2012). Existing methods for environmental risk assessment (ERA) 

and risk management at a river basin scale do not provide information on the possible environmental 

impact from landslides or other types of mass movement. Yet fine sediment, sediment transport, as 

well as contaminant transport and mobilisation due to groundwater flow and the release of 

contaminated sediments from rivers and floodplains due to flooding are typically mentioned in ERA 

(see for example Landis, 2004; Marcus et al., 2001; US EPA, 2012; and European projects like 

RISKBASE, MODELKEY, AguaTerra; e.g., Diaz-Cruz et al., 2007; Finkel et al., 2010; or visit 

www.riskbase.info, www.modelkey.org). In addition, existing methods for landslide risk assessments 

(LRA) do not account for the pollution potential although the environment is often included as an 

http://www.riskbase.info/
http://www.modelkey.org/
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element at risk (see for example Li et al., 2010; Ohlson and Serveiss, 2007; Serveiss and Ohlson, 

2007; Poli and Sterlacchini, 2007; Sterlacchini et al., 2007; or visit the European project SafeLand at 

www.safeland-fp7.eu).  

The risk of landslides in polluted areas is increasingly relevant since there are indications that: (1) 

landslide frequencies may increase in areas with increasing precipitation or temperature (although the 

uncertainties still remain high) and (2) there is a possible increase in anthropogenic landslides due to 

unsustainable development (Borgatti and Soldati, 2010; Crozier, 2010; Jakob and Lambert, 2009; 

Kuriakose et al., 2009; Klimeš and Novotný, 2011; Larsen, 2008; Listo and Vieira, 2012; Ren et al., 

2011). It is therefore relevant to develop an approach for assessing the risks associated with 

contaminant mobilisation from landslides in order to include this issue into risk models. 

The main aim of this study is to propose a methodology for quantitative estimation of risks to water 

bodies from landslides involving contaminated land. Risk is here related to the probability of 

exceeding a defined failure criterion, whereby the consequences associated with the event of interest 

can not necessarily be quantified. The suggested methodology may be a useful complement to ERA at 

contaminated sites or in LRA, or provide important input in river basin management. The suggested 

methodology is illustrated through a case study. 

 

2. Conceptualisation 

The governing processes for the release and exposure of contaminants from landslides have been 

described in Göransson et al. (2009; 2012). Based on these two studies, the following 

conceptualisation of the contaminant release and exposure mechanisms is as follows:  

A. An instantaneous exposure in the near field as the contaminated masses come into contact 

with the water because of the slide.  

B. An instantaneous release of particle bound contaminants from the landslide deposit as it 

reaches the surface water and soil particles go into suspension. Particle bound contaminants 

http://www.safeland-fp7.eu/
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are mobilised and further transported downstream (upstream transport is also possible) with 

the landslide-generated wave and the river flow. Exposure along the downstream transport 

pathway is possible as the contaminant pulse moves down the river.  

C. An instantaneous release of dissolved substances from the landslide deposit as the 

contaminated masses reach the water column and are transported with the flow. Exposure 

along the downstream transport pathway with the water flow is possible. 

D. More or less instantaneous exposure in the accumulation area (far field) when the released 

substances settle. 

E. A long-term exposure in the near field from the contaminated landslide deposits. Releases of 

both particle and dissolved contaminants from the runout are expected as a consequence of 

erosion and diffusion. Such releases can continue for a very long time (years, decades), if 

dredging does not take place. Possible long-term exposure along the pathway depends, for 

example, on dispersion processes. 

F. A long-term exposure in the far field is expected as contaminants accumulate from the event.  

Given the conceptualisation above, potential consequences can be related to three impact zones: I) the 

near field, II) along the transport pathway, and III) the far field accumulation area; see Fig. 1 and 

Table 1. Zone II may be limited when the slope runs out directly into a lake or the sea. 

 

3. Suggested risk estimation methodology 

The common definition of risk includes the combination of the probability of an event and the 

undesirable consequences of such an event. Typically, a risk assessment starts with hazard 

identification. Here, the hazard is already defined as the combination of slope instability and land 

contamination; thus, the identification step is not included in the suggested methodology but is 

described in Göransson et al. (2009). 

There are no studies on environmental consequences for the impact zones described above and the 

consequences must therefore be defined from something other than field measurements or 
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experiments, for example from a policy or acceptance aspect. The suggestion made here is to use 

environmental quality standards (EQS) since they indirectly tell something about the risk because they 

consider effects (e.g., biological) and responses (e.g., the amount affected). Accordingly, the 

methodology does not describe the consequences but is based on the identification of failures. These 

failures are defined in terms of exceeding relevant guideline or threshold values related to contaminant 

concentration or maximum additional contaminant load to the system. Failure criteria are defined for 

each of the impact zones (I – III) and a decision is then made on the probability models to use for the 

calculation of these failures. For each case, one needs to investigate data availability, find expert 

judgements when data are lacking and consider the uncertainties in the data and the judgements. The 

risk is then estimated by calculating the probability of failure in each impact zone. The following 

working approach is suggested and further explained under the coming sections: 

1. Identify initial conditions of the surface water system. 

2. Define failure for impact zones I – III. 

3. Decide models to calculate probabilities of failure. 

4. Set parameter values and parameter uncertainties. 

5. Compute the probability of failure (Pf) for all identified failures. 

6. Perform a sensitivity analysis.  

The work is preferably carried out in an iterative mode, since the level of complexity of the analysis 

depends on what the result will be used for and on the available resources in the form of data, 

knowledge, and funding.  

 

3.1 Identifying initial conditions of water system (step 1) 

The condition of the surface water is important for what might be considered an acceptable risk; the 

consequences of a pollution release to a water system will depend on its environmental status (e.g., 

water quality, impacts from point and non-point sources), sensitivity and vulnerability (e.g., species 

susceptibility to contamination, vulnerable species), and usage, now and in the future (e.g., fishing, 
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nurseries for important species, bathing, fresh water supply). The consequences of any additional 

pollution load will depend on these aspects. As an example, species in a system with good water and 

sediment quality can be sensitive to very small changes in concentrations, i.e., they have less tolerance 

to toxicants (Blanck, 2002) and the level of acceptance for an additional load is probably low.  

 

3.2 Defining failure (step 2) 

With respect to ERA and LRA, defining failure best corresponds to the assessment of endpoints in 

traditional ERA methods (see for example Ohlson and Serveiss, 2007; Suter et al., 2004) or to a 

combination of assessing the vulnerability and the elements at risk in LRA methods (see for example 

AGS, 2000; Li et al., 2010).  

In this study, failure is considered from a pollution perspective and defined in terms of environmental 

quality standards (EQS) and levels of acceptance. According to the Environment Agency in UK, EQS 

aim to ‘protect wildlife and nature’, and ‘control risks to the quality of water’ (The UK Environment 

Agency, 2013). The EQS may be generic or site-specific based on the conditions in the water system, 

whereas levels of acceptance would be site-specific considerations. The motivations for defining 

failure in each of the impact zones are: 

 Failure, impact zone I: The concentration in soil on land should be related to the possible 

concentration in the sediments (as landslide runout deposit). If the contaminated soil 

constitutes a high risk then it will certainly constitute high risk also if it ends up as sediment in 

the water. In soil, concentration decreases in general with depth but depends on the density of 

the contaminants. The contaminated soil volume to the total slide volume should thus be 

considered. It should be decided what is worth protecting at the site, for example, a fresh water 

intake at the site or biodiversity and the establishment of organisms in the ‘new’ sediment. A 

contamination level should be determined as a criterion for failure. Such a failure criterion 

could for example be concentrations above EQS for the sediments. The amount of the sliding 

soil mass that will stay in the river at the site and the amount that instantaneously will go into 
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suspension and be further transported away should be estimated. Mixing with sediment 

already in the river may occur and may dilute the particle bound fraction in the water column. 

There is a time aspect to be aware of as erosion of the runout deposits located beneath the 

water surface eventually begins.  

 Failure, impact zone II: It should be decided what is worth protecting along the pathway, for 

example, a bathing area, a fresh water intake, or fishing and recreation areas.  Thus, bathing 

water criteria, drinking water criteria, or environmental quality standards for fresh water and 

aquatic life can be used as criteria for failure. For European sites, the European Directives are 

relevant for failure definition (e.g., Water Framework Directives, Surface Water Abstraction 

Directive, Freshwater Fish Directives, Bathing water Directives, and Marine Strategy 

Directive). Exposure time and exposure level will have impact on the acute and chronic 

effects. In this case we only consider the instantaneous release and thus focus more on the 

acute consequences. 

 Failure, impact zone III: Accumulation or receiving areas should be identified and a decision 

made on what is worth protecting in these areas. Although the environmental consequences 

will depend on the persistency, degradability, and chronic or acute toxicity of a substance, the 

suggestion is to evaluate the potential additional pollution a landslide may cause with regard 

to a background load and mean concentration, because of the large uncertainties concerning 

where the contaminants exactly will accumulate and in what form. The European Directives 

(see above) are relevant for determining failure criteria for European sites. 

Note that each failure is regarded separately from the others even if there are relationships between 

them (e.g., a failure in zone II does not need to be preceded by a failure in zone I), because the 

probability of failure should be estimated at all locations. 

 

3.3 Deciding on probability models (step 3) 
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Most risk assessment methods apply physical models to quantify the risk. The working approach 

suggested here explicitly accounts for parameter uncertainty in the physical models in order to 

estimate the probability of failure in each zone. This can be achieved by simulations, e.g., Monte Carlo 

techniques, where the parameter values in the physical models are represented by a probability 

distribution instead of a single value. The Monte Carlo simulation technique samples these 

distributions a defined number of times and generates a probability distribution as the final outcome 

for the variable studied.  

The complexity of the model should be compatible with the quantity and quality of available data. 

High model complexity can give the impression of credibility, but a complex model does not 

compensate for lack of data, thus the apparent credibility may be misleading. Alternatives to 

simulations are available (Alén, 1998), but Monte Carlo techniques are often easily applied with an 

add-in to Excel such as Crystal Ball (Oracle, 2012) or @Risk6 (Palisade, 2013). In this study, slope 

failure is calculated using an analytical solution to a traditional slope stability model including 

parameter uncertainty (see Appendix A) instead of Monte Carlo simulations, i.e. the uncertainties are 

solved analytically, whereas Monte Carlo simulations are used in the physical models for the 

calculation of contamination failure.   

 

3.4 Setting parameter uncertainties (step 4) 

If there is an existing dataset for a parameter (e.g., flow velocity), the dataset can be evaluated by 

defining the parameters of their distribution. However, if there is no dataset available, the choice of 

distribution for a specific parameter should be carefully chosen based on similar datasets from the 

literature and/or using expert judgment. The choice is dependent on the type of parameter. A triangular 

distribution can, for example, be a suitable choice if the most likely value as well as the minimum and 

maximum values can be estimated. The uniform distribution would represent a situation with 

maximum uncertainty but with known minimum and maximum values. If no absolute minimum and 

maximum values can be estimated, however, or if the parameter is likely to have tails in one or two 
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directions, these types of distribution are unsuitable and a normal or a lognormal distribution may be a 

good choice. For the landslide probability and the corresponding chosen basic model, the parameter 

uncertainties are described by lognormal distributions. In natural science, normal, lognormal, and 

exponential probability distributions are frequently used (Gordon et al., 2004; Parker et al., 1999; 

Grönholm and Annila, 2007). 

 

3.5 Computing probability of failure (step 5) 

The probabilistic model for each of the failure zones contains one or several physical models in which 

the parameter uncertainties in each of these models are defined in the earlier steps; thus the 

computation itself is now done by Monte Carlo simulation or by any other chosen method. In this step, 

the main issue is to make the results easily understandable to decision-makers in order to discuss the 

acceptable probability of failure. As earlier stated, the working mode is iterative and it is important to 

revise the calculations so that the results are reasonable and robust.  

 

3.6 Performing sensitivity analysis (step 6) 

A sensitivity analysis provides insight to the calculations since it allows the analyser to identify which 

parameters will have the greatest influence on the results of the calculations and gives input to whether 

collection of additional data is worthwhile or even necessary.  

 

4 Case study: Surte 

The property Surte 2:38 is located adjacent to the river Göta Älv in Sweden (Fig. 2). The study site is 

situated 8.4 km upstream of the raw water intake that supplies about 700 000 inhabitants in 

Gothenburg with drinking water. The distance to the Gothenburg city centre is about 15 km.  
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Surte 2.38 is a former dump area that between the 1930’s and 1960’s was filled with residues from the 

old shipbuilding industry in Gothenburg. Material and soil deposits were also dumped in the river in 

order to expand the land area further into the river. The site has been classified according to the 

framework for risk classification of contaminated land of the Swedish Environmental Protection 

Agency (Naturvårdsverket, 1999) and it was judged to pose a very high risk (worst level of four levels 

in total).  

The site contains a variety of contaminating metals and organic compounds. However, in this study we 

have focused on lead (Pb) and mercury (Hg), which were considered to provide design conditions for 

the risk assessment and the decision on remediation (SWECO VIAK, 2007). Both compounds are non-

essential for humans, are persistent in the environment even though organic mercury is degradable, 

and have large adsorption capacity to particles.  

A recent LRA, performed within the Göta Älv investigation (SGI, 2011) assessed a primary landslide 

area at the site with a probability (P) of 10
-4

 ≤ P < 3×10
-3

, and a secondary landslide area with a 

probability of 3×10
-6

 ≤ P < 10
-4

. However, no time aspects were considered in the analysis and the 

landslide probability refers to parameter uncertainties in the calculations of factor of safety for each 

section. In our study time is included.   

 

4.1 Description of initial conditions (step 1) 

The study deals with the river Göta Älv downstream of the bifurcation near the town of Kungälv that 

discharges its water into the harbour and the inner estuary of the City of Gothenburg (Fig. 2). This 

river stretch has a rather flat floodplain that is surrounded by bedrock. The river is a national priority 

in terms of the protection of reproduction areas for eel and salmon. Both commercial and recreational 

fishing occur in the estuary and coastal area. There are bathing areas at several locations in the outer 

harbour and estuary. The river water quality is continuously monitored by the Recycling and Water 

Department of Gothenburg City (the Gothenburg water management) and the GÄVVF (the water 

quality association of the river Göta Älv). The water quality is considered good based on the available 
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data. According to the water authority that implements the WFD in the region, a good ecological status 

will be achieved for the river; but good chemical status will not be attained in the harbour area.  

Several industries are located along the river. In the City of Gothenburg, several areas have been 

identified that contain contaminating legacies from the past.. The annual load of Pb and Hg from the 

river Göta Älv is estimated to 1735 kg Pb/year and 8 kg Hg/year, based on monthly data sampled at 

the freshwater intake by GÄVVF and data on river flow for the years 2002-2009.   

The river water has a mean flow of 161 m
3
/s in the branch (measured between the years 2001-2009). 

Limited sedimentation occurs in the river upstream Gothenburg city and settlement and accumulation 

of particles take place only where the river widens and the water velocity decreases: from the city 

centre/inner harbour through the outer harbour and the estuary. This can be observed in the sediments 

deposited in the harbour and estuary area, which contain a mixture of all sorts of contaminants (Brack 

and Stevens, 2001; Brack, 2002; Brack et al., 2001b, 2001a; Johannesson et al., 2000). The sediments 

are considered as moderately to highly contaminated with respect to mercury, copper, lead, zinc, and 

PAH, PCB and tin organic compounds, all showing significantly elevated concentrations (Brack and 

Stevens, 2001). In the harbour and estuary, the pollution has been observed to effect fish (Sturve et al., 

2005, 2006). Maintenance dredging is done every 3-5 years in the harbour area and polluted dredge 

materials need to be managed. 

The river Göta Älv has a long landslide history, where some landslides have caused disastrous 

consequences including damaged and destroyed buildings, industrial facilities, and entire 

communities, as well as fatalities. The initial slides are classified as rotational slides around a circular 

failure plane and consist of a rather coherent moving soil mass of mainly clayey soil beneath filling 

material. As such, a greater proportion of the landslide deposit remains in the river at the site of the 

event. In areas where quick clay is present, slides have progressed both along the riverbank and 

upwards, encompassing very large areas. In case of a landslide, dredging will occur almost 

immediately to free the fairway as the river is an important channel for the Swedish import and export 

industry.  
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4.2 Defining failure (step 2) 

Defining failure for the case study focuses on the exposure mechanisms A, B and D in the 

conceptualisation above. The reasoning behind this is that dredging of the landslide deposit in the 

studied river will most certainly take place within a short period of time after the slide event.  

The overall aim of the European Water Framework Directive (WFD) and the Marine Strategy 

Directive (MSD) is that all waters are protectable. These directives thus provide a basis for the 

definition of undesirable events and failures at each of the impact zones together with national and 

local environmental goals.  

The undesirable event in impact zone I is defined as the occurrence of a bottom sediment that does not 

promote the (re-)establishment and growth of species. A failure criterion is here defined as having a 

sediment with a mean concentration of Pb or Hg above EQS for Pb and Hg in sediment. There are no 

Swedish EQS for Pb and Hg in sediment and the Canadian Interim Sediment Quality Guidelines 

Sediment Screening Benchmark (CISQG) values are used (RAIS, 2012). The CISQG values indicate 

threshold levels below which adverse biological effects are not expected. 

The undesirable event in impact zone II is defined as reaching a level of acute toxicity in the water for 

fish and other living organisms, but also if contaminated water enters the water intake. In this case it is 

therefore relevant with two sub-zones: (a) one for the river water closest to the site of the event, 

because the highest concentration will occur closest to the landslide deposit; and (b) the other for the 

water intake. Swedish EQS for Pb and Hg in freshwater are missing and international EQS was used 

again. 

The failure in impact zone IIa is defined as the probability to reach an instantaneous water 

concentration above acute toxicity levels, chosen to be the Acute National Ambient Water Quality 

Criteria (ANAWQC) (RAIS, 2012).  

The second failure, impact zone IIb, is defined as a water concentration above the Swedish drinking 

water guideline value (which is the same as the European Drinking Water Directive 98/83/EC, 
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EDWD) at the water intake. On average, the water intake is closed approximately 100 days a year due 

to excessive turbidity levels (associated with pathogens and contaminants), salt water intrusion, or if 

the water management has received information on spills or accidents.  

The undesirable event in impact zone III is defined from the contribution to the deterioration of the 

river mouth and estuary, implying an additional stress to the organisms. It is generally more interesting 

to look at total quantities for persistent and chronic toxic substances, whereas concentrations and 

concentration peaks are important for acute toxic biodegradable and dilutable substances. Pb and Hg 

are assumed to belong to the former and failure is therefore defined from a load perspective with 

respect to the environmental goals for the region, as formulated by the City of Gothenburg.  

A failure criterion in impact zone III is defined based on what can be transported to the accumulation 

or receiving areas from the studied landslide and in relation to the background pollution load of Pb and 

Hg from the river. An accumulation area is not completely static and sediments are re-suspended and 

further transported to the continental shelf during high flow velocities (Sunderland et al., 2012) and 

critical contaminant concentrations in sediment can be an option for failure criteria.  However, 

sediment concentrations are note only relying on the contribution from the landslide. Working with 

load instead of concentrations in impact zone III appeared to be more reasonable for our case. The 

additional load a landslide could cause to the system is hence considered. The definition is not 

unproblematic, and defining a critical level, either from a non-acceptable or ecosystem tipping point 

aspect, proved to be quite difficult because no authority could specify acceptable levels or locations of 

ecosystem tipping points. Thus, three levels of critical loads were investigated: additional loads (W) of 

1%, 10%, and 50% of the background load (Wbg). The background load was calculated at the water 

intake, which is the sampling point used by the GÄVVF. 

The failure criterion for each zone is shown in Table 2.  

 

4.3 Deciding on probability models (step 3) 
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To reduce the complexity, an analytical solution is applied for the calculation of landslide 

probabilities, and an analytical solution to the advection-dispersion equation is employed to compute 

the probability of failure in impact zones II and III. The advection-dispersion equation assumes 

homogeneous conditions along the transport pathway and does not describe heterogeneities. The time 

aspect for the landslide is considered by specifying the landslide probability for an arbitrarily chosen 

reference time. The analysis of the case study does not account for second-order uncertainties (i.e., 

uncertainties about probabilities) and model uncertainties are not explicitly considered. However, the 

suggested approach allows for considering these aspects as well.  

Failure in impact zone I is defined as the mean concentration (μsed) of Pb or Hg in the runout deposits 

> CISQG. To calculate the probability of failure in zone I (Pf, I), the probability of this event needs to 

be multiplied with the probability of a landslide (PL) at the site: 

 

Pf,I = PL × P[µsed > CISQG] (1) 

 

Failure in impact zone IIa is defined as the occurrence of a mean concentration (µw) of Pb or Hg in the 

water > ANAWQC. To calculate the probability of failure in zone IIa (Pf,IIa), the probability of this 

event also needs to be multiplied with the probability of a landslide at the site: 

 

Pf,IIa = PL × P[µw > ANAWQC] (2) 

 

Failure in impact zone IIb is defined as the occurrence of a water concentration (c w) of Pb or Hg at the 

water intake > EDWD. The probability of failure in zone IIb (Pf, IIb) is defined as:  
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Pf,IIb = PL × P[cw > EDWD] × Prw (3) 

 

where Prw is the probability that the water intake is open when the contaminant pulse passes the intake.  

Failure in impact zone III is defined as an additional load (W) of Pb or Hg from the landslide at the 

point of interest, chosen to be downstream of the water intake in order to compare with load 

calculations by GÄVVF. The probability of failure in zone III (Pf, III) is defined as:  

 

Pf,III = PL × P[W > αWbg] (4) 

 

where α is 1, 10 or 50% of the background load (Wbg), i.e., the diffuse pollution load. 

 

4.3.1 Calculation of PL,  

Calculations of the probability of a landslide along the river Göta Älv were recently carried out by the 

Swedish Geotechnical Institute (SGI) as a part of a three-year government mandate to determine the 

landslide risk in the Göta Älv river valley (SGI, 2011). The methodology is reported in Berggren et al. 

(2011) and was developed from Alén (1998). In summary, the mathematical model is based on a 

number of geotechnical cross-sections and the calculation of a probability to achieve a slope safety 

factor below one. Areas between these sections are expert judged, as was the case for our case study 

area. Alternative methods for the assessment of landslide probability are presented in, for example, 

AGS (2000), Lee and Jones (2004), Michael-Leiba et al. (2003), Roslee et al. (2012), and Geertsema 

et al.  (2009). Listo and Vieira (2012) defined landslide probability as a combination of geotechnical 

and geological conditions, in addition to expert judgements.  
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In the Göta Älv study, the site Surte 2:38 was assessed to be a primary landslide area with a landslide 

probability of 0.0001-0.003. However, in the analysis no time scale was considered although the 

model description accounted for it. For the present case study, the landslide probability was 

recalculated and a reference time for the probability was incorporated in the analysis. Figures 3a and 

3b show the schematic models for the slope stability analysis and the erosion in the river. Figure 3a 

shows the theory behind a rotational landslide with a slip surface that is typical for the area, and Fig. 

3b shows how erosion is included in the model. Erosion is used as the time variable to calculate 

changes in geometry by a certain time limit together with water level variations, affecting the changes 

in safety factor by time. The calculated landslide probability as a function of a chosen reference time is 

shown in Fig. 4 (see Appendix A for further explanation). For comparison, the landslide probability is 

shown both with and without considering erosion and for the reference time. A description of the 

landslide analysis methodology is given in Appendix A. The default reference time in the Eurocode 

system (EN1990, 2002) is 50 years, which was also chosen in this study. Hence, the landslide 

probability becomes PL = 0.003 (see Appendix A and Fig. 4). As mentioned, no second-order 

uncertainty is considered here and the probability of a landslide is calculated as a point estimate.  

 

4.3.2 Calculation of P[µsed > CISQG] 

Data from soil investigations at the site were used to assess the probability that the landslide deposits 

are contaminated. In the analysis, we only account for the part of the soil that is heavily contaminated, 

i.e. the uppermost two meters. The survey was conducted by a consultancy firm (SWECO VIAK, 

2007) on behalf of Ale municipality. We hypothesised that the mean concentration of Pb (µsoil, Pb) and 

Hg (µsoil, Hg) in the soil will be the same when the soil is deposited in the river, µsed, Pb and µsed, Hg 

respectively. The probability that the mean concentration is exceeding the CISQG guideline value is 

estimated by performing a one-sided hypothesis test. Here, the Chen test (US EPA, 2006) was used as 

data was found to be very skew and could be assumed to follow a lognormal distribution. The null-

hypothesis was formulated as H0: µsed ≤ CISQG, and the corresponding p-values for Pb and Hg were 
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7×10
-11

 and 2×10
-9

, respectively. From this it was concluded that P[µsed > CISQG] is essentially 1 for 

both Pb and Hg. Summary statistics of the sample data for Pb and Hg can be found in Table 3.  

 

4.3.3 Calculation of P[µw > ANAWQC] 

The advection-dispersion equation (ADE) could be employed to calculate a mean concentration in the 

water from the landslide (see Göransson et al., 2012), but as the transport and mixing are quite 

complicated during this phase, the ADE was not considered appropriate to use at the site for the event. 

Instead a simple calculation approach was taken and the concentrations of Pb and Hg in the water, 

from the landslide runout deposits, were estimated by dividing the amount of contaminant times an 

estimated proportion of contaminated soil material in suspension (not all contaminants are released 

into the water column instantaneously) with the volume of water:  

 

𝜇𝑤 =
(𝜇𝑠𝑜𝑖𝑙  ×  𝜌 ×  𝐴𝐿  ×  𝑑 ×  𝑆)

𝐿𝐿  ×  𝐴𝐸
 

 (5) 

 

where µsoil is the mean concentration of Pb or Hg in the soil,  is the soil density, AL is the landslide 

area, d is the depth of the contaminated soil, S is the ratio of the contaminated soil that is estimated to 

be released into the water column as a result of the landslide, LL is the landslide length along the 

riverbank, and AE is the river cross-sectional area at the site for the event. 

 

4.3.4 Calculation of P[cw > EDWD] 

Sediment released from land into a river will be transported downstream by the mean flow 

(advection), simultaneously as the material is subject to mixing in the water column through 

dispersion and to deposition at the bed due to the gravitational forces. Here an analytical approach is 
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taken by using the ADE to describe the concentration variation in the river after the sediment release. 

As mentioned, there are limitations to analytical solutions but it is considered a good approximation 

for the present case; see also Göransson et al. (2012).  

In impact zone IIb, the one-dimensional ADE was therefore applied in order to calculate and estimate 

the probability of failure. The ADE is written with sediment settling as a sink term (sediment 

deposition, which is settlement of contaminants bound to particles) for the transport (see Appendix B): 

 

𝜕𝑐

𝜕𝑡
+ 𝑈

𝜕𝑐

𝜕𝑥
= 𝐷

𝜕2𝑐

𝜕𝑥2
−
𝑤𝑐

ℎ
 

 (6) 

 

where c is the mean concentration (mass per unit volume), U the mean velocity in the river, D the 

dispersion coefficient, w the settling velocity, h the water depth, x the spatial coordinate along the 

river, and t the time. The equation describes how sediment is transported downstream with the mean 

velocity (advection), at the same time being subject to mixing (dispersion) and settling at the bottom. 

The solution to Eq. 6 for the instantaneous release of a contaminant mass MSusp (kg) at x = 0 and t = 0 

is: 

 

𝑐𝑤 =
𝑀𝑆𝑢𝑠𝑝

𝐴�4𝜋𝐷𝑡
𝑒𝑥𝑝  −

 𝑥 − 𝑈𝑡 2

4𝐷𝑡
−
𝑤𝑡

ℎ
  

 (7) 

 

where A is the mean cross-sectional area of the river. In order to obtain the concentration at the intake 

(cw) at any given time, x = xw in Eq. 7, where xw is the distance to the water intake from the location of 

the slide. This equation represents a concentration distribution that follows a Gaussian shape in space 

at any given time, where the centreline of the distribution moves downstream with the velocity U. The 
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dispersion coefficient D is a parameter which is difficult to estimate. It could have been chosen as a 

stochastic variable, but for this case, D is computed with the formula described in Appendix B. 

 

4.3.5 Calculation of Prw 

The freshwater intake is closed approximately 100 days per year for the reasons described in section 

4.2. The probability that the water intake is open (Prw) is calculated as 265/365 = 0.726. There is a 

possibility that the water supply plant will be informed about the slide in time to close the intake. This 

possibility will however depend on how close the slide is to the water intake, if the landslide occurs 

during day or night time, if it is large enough to be noticed by the neighbouring people, or if it is 

closed for other reasons. In the present case, for simplicity, Prw is treated as a random variable. 

 

4.3.6 Calculation of P[W > αWbg] 

In impact zone III it is of interest to estimate how much of the released sediment that is deposited 

upstream a certain location or, equivalently, the amount of material that is transported past the 

location.  

Particles and particle bound contaminants settle as the river mouth widens and fresh water meets 

marine water, which causes the particles to form aggregates. The contaminants will most likely be 

distributed over large areas and the uncertainties where these contaminants will settle and the possible 

consequences they may pose are hence large. To simplify, we continue to use the one-dimensional 

ADE (Eq. 7) to calculate the amount of Pb and Hg passing a certain point, here chosen to be the water 

intake.  

The material passing the intake can be obtained as the difference between the total amount of material 

released (Msusp) and the material deposited upstream (QBU). Based on the analytical solution, the 

relationship between these two parameters is given by (see Appendix B for the derivation): 
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𝑄𝐵𝑈
𝑀𝑆𝑢𝑠𝑝

= 1 −
2𝜆

1 + 4𝜆 − �1 + 4𝜆
exp  −

1

2
𝜂 �1 + 4𝜆 − 1   

 (8) 

 

where λ is a non-dimensional quantity calculated as wD/U
2
h, and η is a non-dimensional quantity 

calculated as xU/D. The ratio of the released material passing the point (SM) is calculated as 1- 

QBU/MSusp, and finally, the amount (W) deposited downstream the point is determined from MSusp × SM. 

 

4.4 Setting parameter uncertainties (step 4) 

In order to model the uncertainties, each parameter in the equations is assigned a probability 

distribution. The probability distributions are based either on measurements or a best estimate from 

data and the literature. The chosen probability distributions and associated motivations are given in 

Table 3.  

 

4.5 Computing probabilities of failure (step 5) 

The probabilities to exceed EQS in the different impact zones were obtained by Monte Carlo-

simulations (50,000 runs) using Crystal Ball (Oracle, 2012). The simulations were also tested for 

10,000 runs, which showed a marginal difference (0-0.6%) in the results. No correlations between 

input parameters were assumed. The slope failure probability (PL) and the probability of the water 

intake being open (Prw) were also treated as point estimates. The final results are presented in Table 4 

which shows the probabilities to exceed the EQS, and the resulting probabilities of failure for Pb and 

Hg, i.e., the quantitative risk estimates.  
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4.6 Performing sensitivity analysis (step 6) 

The most influential parameter for the probabilities of failure is the estimated probability for a 

landslide to occur. The sensitivity analysis from the Monte Carlo simulations shows that there are 

primarily three parameters which have the largest influence on the result of the simulations. These 

parameters are: (1) the mean concentration of the contaminant (µsoil), (2) the proportion of 

contaminants in the soil that is instantaneously released to the water (R), and (3) the settling velocity 

(w) (the effective settling velocity if data for such calculations are available (Hamm et al., 2011)), 

which is the sink term in the ADE. For example, approximately 65% of the variation in the results of 

the calculated mean water concentration close to the runout (i.e., x = 0 m) is due to the variation in 

µsoil. The contributions from the different parameters are shown in Table 5 for each type of simulation. 

These three parameters are also the ones which are most uncertain. The uncertainty in the estimation 

of µsoil and the settling velocity (w) can be decreased by collecting additional data on contaminant 

concentrations and on soil particle distributions. The proportion of contaminants in the soil that is 

instantaneously released to the water (R) is a parameter which must be estimated. This estimation 

could be improved by investigating data from previous landslides that are of similar character as the 

possible landslide studied. However, the first step to improve the risk estimation would be to update 

the calculations of the probability for the landslide, which would require further field studies and 

collection of data. 

 

5. Discussion 

5.1 Case study: Surte 

In the calculations, the probability of a landslide (PL) will have a large influence on the probability of 

failure (Pf). Here, PL is chosen as the highest probability estimated for the area around Surte 2:38. It is 

thus likely that PL (and correspondingly Pf) is lower than 0.3%. The calculated probabilities of failure 

based on this estimate of PL vary from 0.3% down to 0.09% (see Table A.2 in Appendix A) for a time 
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period of 50 years, considering erosion. If erosion is not considered, the probability lies around 0.15% 

(Fig. 4).  

However, given that the landslide occurs, it can be concluded that the landslide deposit (impact zone I) 

will contain a mean concentration of Pb and Hg above EQS for sediments, which was shown to be in 

the range of 190 and 230 times the EQS values, respectively. The probability to exceed the guideline 

values for contaminated sediments is therefore essentially 100% given that the landslide occurs, which 

also means that the landslide deposit will act as a contaminant hotspot. If the landslide deposit in the 

river is not remediated immediately (i.e., using dredging), contaminants will slowly be released into 

the water column as soon as diffusion and erosion start. For the river Göta Älv, the landslide deposit in 

the river will most certainly be dredged in order to clear the fairway for vessels. The contaminants will 

however be available for exposure before dredging is carried out and the instantaneous impacts are 

therefore still relevant to study.  

The contaminants that are released from the landslide deposit are assumed to be transported as a pulse 

(as opposed to a continuous injection). Thus, the concentration in the water close to the slide area will 

initially be high, but as a result of advection and dispersion the peak concentration decreases along the 

pathway and the pulse is increasingly dispersed in time. Given the landslide, the probability that a 

concentration in the water will exceed acute toxicity (ANAWQC) is essentially 100% at the location 

of the landslide (impact zone IIa). In this investigation, the impact of exposure time on toxicity is not 

analysed but there are studies that emphasise the relationship between toxicity and exposure time. 

Acute toxicity may occur also at very short exposure times, depending on the organism and compound 

tested (Parsons and Surgeoner, 1991; Preston et al., 2000). Studies have also shown that a sudden 

release of contaminants does have effects on the fish in an estuary (Sturve et al., 2005, 2006). There is 

thus a potential that a landslide of contaminated soil also may have such an impact. However, further 

studies are needed to analyse the time dependency and this is recommended as future work.  

The probability of a concentration of Pb above drinking water standards at the water intake 8.4 km 

downstream the slide area (impact zone IIb) given that the landslide occurs is about 65%, whereas the 
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corresponding probability for Hg is about 9.5%. Taking into account that the water intake might be 

closed, the probability for failure decreases to 47%, respectively 6.9%, which most likely is an 

overestimation considering the possibility of warnings. 

Based on the ADE it was found that a Pb concentration above the drinking water standards (EDWD) 

at the raw water intake may last as long as 11 hours while the pulse passes the water intake (about 3 

hours for Hg). In the case of the river Göta Älv, the water management has a warning system 

consisting of on-line turbidity measurements and continuous e-coli analysis. However, the intake does 

not close until the turbidity reaches a specific level and after a certain time. This means that it is 

possible that the intake will not close in time to prevent contaminants from getting into the water 

supply plant. Possible consequences for the water supply plant, if harmful substances enters, have not 

been considered in this study but was partly done by Lindhe et al. (2011, 2009).   

The probability that the landslide could cause an additional load of Pb and Hg to the accumulation 

areas (zone III) above 1, 10 and 50% of the annual load (i.e., the background load) was also assessed. 

The case study shows that if the primary landslide area slides into the river, a significant additional 

load of contaminants to the system is possible. With a probability of 80% and 82% the additional load 

corresponds to more than 1% of the annual Pb and Hg load, respectively. With a probability of 32% 

and 36% the additional load corresponds to more than 10% of the annual Pb and Hg load, respectively. 

Finally, with a probability of 9% and 10% the additional load corresponds to more than 50% of the 

annual Pb and Hg load, respectively. These probabilities are relatively high; thus the contaminant 

contribution from a landslide in Surte 2:38 should not be neglected. The contribution to the chronic 

toxicity of the organisms in the accumulation areas is however not investigated in this study but is 

recommended as future work.  

The probabilities for failure in the different impact zones are estimated to range between 0.3% and 

0.002%. To judge whether these constitute unacceptable probabilities of failure is not easy since there 

are no established criteria to compare with. Given that a landslide actually will take place in Surte 2:38 

involving the contaminated masses, the probabilities are instead ranging from 9% to essentially 100%. 
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It is however difficult to argue that the risk to the fresh water supply is high considering a probability 

of failure of 0.1% with regard to Pb. Also, because there is a warning system, the high concentrations 

will only remain for a short period of time, and there is a possibility to take water from a reservoir 

during the shut-down of the intake. The risk for negative consequences in the river is estimated to be 

more serious with regard to the aquatic life in the form of acute toxicity and the overall load to the 

estuary.  

Surte 2:38 is at present subject to remediation that will be finalised in 2013. Until then, about 70 000 

tons of contaminated soil will be excavated and transported to a disposal site. Before this excavation 

could be carried out, pressure banks along the river were laid out to prevent the land from sliding into 

the river. The total cost for the remediation is estimated to approximately 12.4 million € (109 million 

SEK) and is funded up to 95% by the Swedish EPA. This cost includes remediation of a larger area 

than what is studied here as well as the stabilising actions in this area. Thus, in the case of Surte 2:38, 

the risk will be reduced both by means of lowering the contaminant concentrations in the masses and 

by lowering the landslide probability.  

SWECO VIAK (2007) carried out the human health and environmental risk assessment at Surte 2:38. 

The overall conclusion from the assessment was that two main risks are related to transport of 

contaminants from the site. First, the risk of negative consequences to the drinking water supply 

system due to a landslide involving contaminated masses was assessed to be the most serious risk, 

where the negative consequences are due to loss of trust rather than health or environmental aspects. 

Second, continuous leakage of methylated mercury from the site into the river Göta Älv was assessed 

to possibly be significant. Consequences to the aquatic life are mentioned but not assessed.  

This study shows that the probabilities of exceeding EQS (CISQG, ANAWQC) are high if a landslide 

occurs and that a landslide with a high probability contributes to a significant increase in the 

contaminant load to the estuary, even if the consequences of this are not assessed. However, to 

motivate full soil remediation of the site solely based on this may be questionable. Instead, stabilising 

measures are likely to cost-effectively lower the probabilities for a slide and thus the negative 
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consequences related to that event. A rough estimate of the costs for decreasing the landslide 

probability for Surte 2:38 with two orders of magnitude to a PL approximately 10
-5

 lies in the range 

of 2.9-5.1 million € (25-45 million SEK) (Hultén, C., Swedish Geotechnical Institute, personal 

communication). Increasing the slope stability does not necessarily hinder continuous leakage of 

methylated mercury from the site, but a full excavation of the contaminated soil and subsequent 

transport to landfills should be motivated by other unacceptable risks (e.g., human health, risks to soil 

ecosystem) than those brought forward in the report by SWECO VIAK (2007). In addition to the 

financial costs for remediation, e.g., the environmental costs of transports and landfilling, the 

increased risks due to transport and emissions during the remediation activities may be significant.  

In Sweden, the Swedish EPA does not finance stabilising measures; instead these can be financed by 

the Swedish Civil Contingencies Agency and the Swedish Transport Administration. From the 

Swedish Civil Contingencies Agency’s point of view, the consequences of a possible landslide at 

Surte 2:38 are not enough to motivate the need for increased stability as they only consider 

consequences to existing buildings, constructions, and important societal services. The Swedish 

Transport Administration handles consequences to infrastructure. Thus, there is a need for 

intersectoral solutions and management of contaminated sites with stability problems, which is a 

reality along many rivers.  

 

5.2 The suggested approach 

The suggested approach is not meant to replace either ERA or LRA, but to complement them. By 

adding this type of result to an ERA or an LRA, the suggested approach can act as a basis for 

communication and discussion in order to identify cost-effective intersectoral management solutions 

for those sites. The suggested approach shows that it is possible to make better assessments of possible 

risks than pure speculation, even though the assessment is based on sparse data and contains large 

uncertainties. The approach can also be used in river basin management when estimating sediment and 

water quality and contaminant load, although the case study in this paper does not illustrate this.  
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In this study, the environmental consequences are described from the point of view of exceeding 

environmental quality standards (EQS). Although the ecological consequences are not described and 

valued here, the approach is not limited only to the use of EQS. Instead, the approach can be 

complemented with studies on environmental or health consequences, and possibly value these in 

monetary terms. However, this may be complicated as the consequences typically are dependent on 

the concentration, thus, the probabilities must be simulated for different levels and then integrated to 

yield a total risk. Nevertheless, examples of consequences that would be relevant to study are loss of 

benthic organisms, loss of fish species, and loss of bathing areas. Estimations in monetary terms have 

the advantage of being clear about values. The difficulties, on the other hand, are that environmental 

consequences are in general difficult to value economically.  

There are typically large uncertainties in data and knowledge, but the proposed methodology offers a 

framework for managing this rather typical situation. Parameter uncertainty is explicitly treated, 

whereas model uncertainty is not treated in this case study. There are for example limitations to the 

application of an analytical advection-dispersion solution that are not considered in this case study. 

The general approach however allows for including model uncertainties. The input data to the ADE 

model are estimated both based on available data and expert judgment, and the sensitivity analysis 

provides information about where the largest parameter uncertainties lay and can direct further data 

collection. The approach to estimate the landslide probability (Appendix A) is assumed to be suitable 

for the site-specific conditions in the river Göta Älv. However, in other settings different models may 

be more suitable. Other examples of such calculations can be found in, e.g., Corominas and Moya 

(2008), Fannin and Wise (2001), Malkawi et al. (2001), and Roslee et al. (2012). The landslide 

probability was calculated to be 0.003 and this may be seen as low. However, in comparison with 

acceptable probabilities of fatal disasters with regard to buildings and other facilities, which typically 

is in the order of 5×10
-5

 (Gulvanessian et al., 2002), the estimated probability of a landslide may be 

regarded as relatively high. In an LRA, however, not only the landslide probability is included, but the 

risk constitutes the combination of the probability and the consequences associated with a landslide.  
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The analysis of this case study represents a rather typical situation in these types of probabilistic risk 

assessments. Several different, more or less complex, site-specific and general models and 

assumptions are used and the input data are a mix of site-specific data, general data, and expert 

judgment. An advantage of the suggested general approach is that when new data and knowledge 

become available, all calculations and models can be updated. 

 

6. Conclusions 

The general conclusions from this study are that the suggested approach: 

- provides a quantitative analysis of the risks associated with landslides in contaminated area,  

- makes the problem with slope instability in contaminated sites visible; and 

- acts as a basis for communication and discussion thereby contributing to intersectoral 

management solutions. 

Specific conclusions from the case study Surte 2:38 are that: 

- the probabilities for failure are low, but given a landslide, the probabilities of exceeding EQSs 

are high, 

- given a landslide, the probabilities that the slide would contribute to a significant increase in 

contaminant load is high; and 

- stabilising measures are likely to cost-effectively lower the probabilities for negative 

environmental consequences sufficiently.  
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Appendix A: Analysis of Landslide Probability (PL) 

The analysis is made in two steps. In the first step an analytical solution for the probability of a 

landslide is developed. This solution is based upon a traditional model for slope stability analysis, 

incorporating parameter uncertainty (Alén, 1996, 1998). In the second step, time aspects are 

considered. By specifying parameters with variability in time based upon annual outcomes the annual 

probability for a landslide is estimated. The probability for a longer time period is then obtained by 

modelling the slope as a series system with each year as a component. A concise description of the 

methodology is given below. A more detailed description is provided in Berggren et al. (2011). 

 

A.1 Basic model 

The basic model for analysing slope stability is an equilibrium between stabilising actions, R, and 

disturbing ones, E, for a potential sliding soil mass; see Fig. 3a. The traditional safety concept is the 

global factor of safety: 

𝐹 =
𝑅

𝐸
 

 (A.1) 

Thus, 𝐹 > 1 gives a stable state. Equation A.1 can be modified to (Alén, 1998; Janbu, 1954): 

𝐹 = 𝑁
𝑐

𝑃𝑑
 

 (A.2) 

where N is a unit less stability number accounting for the shape of the slope and slip surface, c the 

average shear strength of the soil along the slip surface, and Pd an unbalanced stress between driving 

forces of the weight of the soil, external loading and resisting forces, e.g., external water pressure at 

the toe of the slope. Since F is given as product/ratio a reasonable assumption is that F belongs to a 

lognormal distribution. Furthermore, the formulation opens up for considering three different types of 

uncertainty, 1) uncertainty of geometry through the stability number, 2) uncertainty of material 
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properties through the shear strength and 3) uncertainty of different action effects through the 

unbalanced stress. This separation in uncertainties is basically the same that applies for any structure 

in civil engineering (EN1990, 2002). For F to be lognormal these three different variables also have to 

belong to lognormal distributions. The computation of the probability of land sliding (PL) is done by 

using Eq. A.2 rewritten as: 

 

𝑙𝑛𝐹 = 𝑙𝑛𝑁 + 𝑙𝑛𝑐 − 𝑙𝑛𝑃𝑑 

 (A.3) 

The probability of land sliding (PL)  is then calculated as: 
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where µ denotes a mean value and ( ) denotes a standardised normal probability distribution. This 

equally applies for a coefficient of variation of moderate size, say less than 25%. Furthermore, the 

same approximation yields the total uncertainty in the safety factor given as the coefficient of variation 

from: 

2222

PdcNF VVVV   (A.5) 

where the three different sub-coefficients of variations are assessed from estimated uncertainties, see 

Table A.1 and A.2, by an algorithm given in Berggren et al. (2011). As an alternative to PL a reliability 

index β can be defined as (EN1990, 2002): 

)(1

LP    i.e., the reliability for a year is )(R  (A.6) 

From Equation A.4 follows that the reliability index can be estimated as: 

F
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  (A.7) 
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The described computation follows a methodology known as FORM (First order reliability method), 

see Thoft-Christensen and Baker (1982). Apart from the reliability index, FORM also gives as a result 

the so-called sensitivity factors (ai) for the different input parameters, which serve as indicators of the 

parameter influence on the calculated probability of failure. The computation becomes particularly 

simple in this case with the actual formulation of the failure criteria, i.e. lnF < 0: 

F

N
N

V
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 , 

F

c
c

V

V
 , and 

F

Pd
Pd

V

V
  (A.8) 

and with the relationship between the sensitivity factors: 

12 
i

i  (A.9) 

The sign of the factors in Eq. A.8 indicates whether the parameter describes a disturbing or stabilising 

effect. 

 

A.2 Time aspects 

The probability of a landslide varies with time. In risk assessment this has to be accounted for with 

regard to two different aspects (Berggren et al., 2011). The first aspect is a continuous monotonic 

change in the prerequisites for a landslide over time. This might be due to natural geomorphological 

processes, as stated above in the introduction, but also a result of the transition into an anthropogenic 

system, e.g., by river erosion from ship traffic. Such a monotonic change will normally result in an 

increasing probability of failure over time, which can be modelled by a corresponding monotonic 

change in the relevant input parameters. The other time aspect to consider is the natural variability of 

the input parameters with time. This variability will normally be, if not the cause of a landslide, at 

least the triggering factor. The time aspects are closely related to the type of uncertainty involved, i.e., 

the natural variability can be seen as a genuine uncertainty, whereas other uncertainties which are 

permanent is more related to lack of knowledge. These latter ones also include the monotonic changes. 
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The starting point for treating time aspects is an annual probability of a landslide (pL1). The basic 

model given above serves this purpose, if uncertainties of triggering factors are based upon statistics 

for annual outcomes. Such an approach is convenient since statistics frequently is assembled on an 

annual base. For the two extreme cases with either pure natural variability or pure lack of knowledge, 

the failure probability for other time periods can then be found. The reliability index β is defined as: 

 

)( 1

1

1 LP    i.e. the reliability for one year is   )( 11 R  (A.10) 

and the reliability index can be estimated as: 

F

F

V

F 


lnln
1


  (A.11) 

For the case with only natural variability the landslide probability is independent between years. Thus 

for a reference time T (years) we have the reliability: 

T

T )()( 1    or, 

T

LTP )(1 1  (A.12) 

whereas for the case with only lack of knowledge no change in probability takes place over time: 

1 T    or, 

)(1 11  LLT PP  (A.13) 

 

For a normal slope neither of the two extreme cases apply, which makes the computation more 

complex. Instead a mix of the two types of uncertainty has to be considered. The case can be treated if 

the slope is seen as a series system, where each year is a component in the system. The mixed 

uncertainty of the system is then modelled by the correlation (ρ) between the years. For such a system 
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with the components given by normal distributions, i.e., by lnF, the system reliability (RT) is given by 

Thoft-Christensen and Baker (1982): 
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Finally, for the general case with mixed uncertainties and monotonic changes an analytical solution is 

not easily obtained. Instead Monte Carlo simulation can be performed. The factor of safety for a single 

year i can for this purpose be rewritten as: 

iFiindepidepiF    (A.15) 

where dep,i is a factor considering the uncertainty from lack of knowledge, whereas indep,i is a similar 

factor for natural variability between years. Both those factors can then be assumed to be lognormal 

with actual mean equal to one (or log mean zero). The uncertainty is given by the coefficient of 

variations Vdep,i and Vindep,i, which are also approximately equal to the log deviation, c.f. Eq. A.4. The 

third factor is a deterministic one equal to the mean value of the factor of safety and the actual year. 

An iteration j in the Monte Carlo simulation j then gives:  

)(exp( 1

, jdepdepjidep pV
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i.e., the same simulated probability each year for the dependent factor, but a unique simulated 

probability any year for the independent factor.  

Hence, the Monte Carlo simulation results in a value of the safety factor Fi,j for each year i and each 

iteration j. The minimum value for any of the years of a single iteration governs whether that iteration 
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will cause a landslide. The probability for a landslide within an arbitrarily chosen time period i is then 

obtained by summation of such outcomes over all iterations: 


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j sim
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1

, ))min(1(H
 (A.17) 

where H( ) is Heaviside’s step function. 

Monotonic changes in time are, as discussed above, modelled as monotonic changes of relevant input 

parameters. In general, any year can be modelled in this way. In the actual case it is the river erosion 

that is considered as monotonic. However, the description of this erosion over a long time is quite 

uncertain. Basically very few observations of the erosion exist and only for short time periods. To 

incorporate the uncertainty explicitly in the model might then overshadow other uncertainties. Hence, 

in the decision model this monotonic change is given as a scenario, see Fig. 3b in the paper. The 

simplest way to do this is through a linear trend for the time period considered. The probability 

computed is then a conditional probability given the trend. 

In summary, the methodology used implies that the first and last year for a time period are analysed 

with the basic model described above, see Table A.1 and A.2 for the parameter values. Uncertainties 

of embankment geometry and soil properties are given as parameter uncertainties, which are constant 

over time. Variability in low water level, which is here the triggering factor for a potential landslide, is 

chosen from annual statistics, and finally the monotonic change in geometry caused by erosion is 

given as a time scenario. 
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Appendix B: Sedimentation in a River in Connection with an Instantaneous Release of 

Material at a Point 

 

B.1 Theoretical Model 

Suspended sediment transport in a river is often modelled using the ADE, especially if the sediment is 

fine and settles at a low rate: 

2

2

c c c wc
U D

t x x h

  
  

    (B.1)
 

where c is the concentration (mass per unit volume), U the mean velocity in the river, D the dispersion 

coefficient, w the settling velocity, and h the water depth. The model describes how sediment is 

transported downstream with the mean velocity, at the same time being subject to dispersion and 

settling at the bottom (the last term on the right-hand-side acts as a sink for sediment). The solution to 

the above equation for the case of a release of a mass M (kg) instantaneously at x = 0 and t = 0 is: 
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where A is the cross-sectional area of the river. 

 

The dispersion coefficient can be calculated with the formula by Kashefipour and Falconer (2002): 

𝐷 =  7.428 + 1.774 ×  
𝑊

ℎ
 

0.620

×  
𝑈𝑥
𝑈
 

0.527

 × ℎ × 𝑈 ×  
𝑈

𝑈𝑥
  

 (B.3) 

where W is the river width and Ux the shear velocity, computed as: 

𝑈𝑥 = �
𝜏𝑏

𝜌
     and    𝜏𝑏 = 𝜌 × 𝑔

𝑛2

𝑅
1
3

× 𝑈2 

 (B.4) 

where τb is the bottom shear stress,  is the water density, ɡ the gravity, n the Manning’s roughness 

coefficient for channels and R the hydraulic radius. 
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B.2 Sediment Deposition at the Bed 

The rate at which the sediment is deposited at the bed at a certain location is given by wcB (unit 

kg/m/s, that is, mass per unit time and length of river), where B is the width of the river (assumed to 

have an approximately rectangular shape; A = Bh). Over a specific time period (to), the amount 

sediment deposited at the bed (qB; unit kg/m) is given by: 

0

ot

Bq wcBdt 
 (B.5)

 

If the analytical expression for c is entered in the integral, then: 
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This integral can be solved, after some manipulations, to yield: 
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where erf denotes the error function and: 
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If the total amount of sediment deposited during the event (qB,tot) is of interest, implying ot  , the 

above equation may be simplified to: 
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 (B.9) 
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This equation gives the total amount of material deposited at x (per unit length); however, often it may 

be more interesting to obtain the amount deposited along a certain river stretch, which is obtained by 

integration in space. For example, the total amount of material deposited between x1 and x2 is given 

by: 

2 2

1 1

, exp 2
22

x x

B B tot

x x

Mw xU
Q q dx ab dx

DDha

 
   

 
   

 (B.10) 

Because the coefficient b contains the absolute value of x, some care has to be taken in the integration. 

Here the result is presented for the case when all material deposited upstream (QBU) a certain location 

(xo) is of interest. Thus, letting 1x 
 
and 2 ox x , the result is: 
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where it is assumed that xo > 0, and the following non-dimensional quantities were introduced: 
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 (B.12) 

If the material passing a point xo (QBD) is of interest, it can be obtained as the difference between the 

total amounts of material released (M) and QBU, i.e., BD BUQ M Q  . 

 

B.3 Sample Calculation 

Figure B1 below shows a typical sample plot of the total amount of material deposited upstream a 

specific location in non-dimensional form.  
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Tables and Figures 

 

Table 1. Summary of the three impact zones and associated release and exposure mechanisms (for 

description of A – E, see the text).  

Impact Zone I) Near field II) Along pathway III) Far field acc. area 

Description 

Refers to the site for the 

event and the landslide 

deposits in the river 

Refers to the river stretch 

from the site to the 

accumulation area 

Refers to the river outflow 

into an estuary, bay or lake 

Exposure and release 

mechanisms 
A and E B and C, possibly also E D and F 

 

Table 2. Failure criterion in respective impact zone defined from the environmental quality standards 

(EQS) used in the case study (see www.rais.ornl.gov) and the additional load with respect to annual 

load (background).  

Impact zone I II III 

  a b  

Distance (x) x = 0 m x = 0 m x = 8400 m x > 8400 m 

EQS CISQG ANAWQC EDWD Load 

Failure Pb µsed > 35 mg/kg µw > 0.065 mg/l cw > 0.01 mg/l 
W > 1, 10 or 50% × 1735 

kg/yr 

Failure Hg µsed > 0.17 mg/kg µw > 0.0014 mg/l cw > 0.001 mg/l W > 1, 10 or 50% × 8 kg/yr 
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Table 3. Chosen probability distributions for the uncertainty parameters for impact zones I-III. 

Parameter  Unit Distribution Mode Min Max Comments 

Landslide area AL M
2 

Triangular 10 000 9 000 11 000 
Measured on landslide risk analysis maps and refers to 

uncertainty in the readings. 

Soil density  kg/m
3 

Triangular 1 800 1 700 1 900 Soil density of the contaminated soil. 

Landslide length along riverbank LL m Triangular 300 290 310 
Measured on landslide risk analysis maps and refers to 

uncertainty in the readings. 

Soil depth (contaminated soil depth) d m Uniform  - 2.2 2.3 

Estimated mean depth of soil contamination (filling material), 

based on results reported in Sweco Viak, 2007 (consultant 

report). 

River cross section area at the site AE m
2
 Uniform  - 510 723 Based on two cross sections at the site. 

Parameter  Unit Distribution Mean Std. Dev.  Comments 

Average river cross section area A m
2
 Normal 614 69.03  Based on 10 cross sections. 

Average river water depth h m Normal 5.7 0.67  Based on 10 cross sections. 

Wetted perimeter P m Normal 148.5 21.18  Based on 10 cross sections. 

River width B m Normal 140.8 21.65  Based on 10 cross sections. 

Mean river flow Q m
3
/s Lognormal 161.20 28.57  

Based on daily mean, year 2002-2009. It is not possible to 

tell whether the river flow will be low, high or at mean level 
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during the landslide. High flow yields increased velocity that 

has impact on erosion; however, a high flow (high water 

level) functions as a resisting force on the river slope. Low 

flow decreases the resisting forces and combined with high 

pore water pressure in the soil, the driving forces will be 

strong. A mean flow is also possible, depending on what 

triggers the slide (vessel induced erosion, additional loading 

from constructions etc.).  

Parameter  Unit Distribution Mean 
95% 

percentile. 
Location Comments 

Mean concentration of Pb in soil µsoil, Pb mg/kg ds Lognormal 6 580 17 710 771 

The distribution of the mean concentration was assumed to 

be lognormal, defined as: mean (the maximum likelihood 

estimate of the mean assuming a lognormal distribution), the 

95
th
 percentile (the UCLM95 value calculated with the 

Chebyshev method as implemented in ProUCL 4.0 (ProUCL, 

2012) assuming a lognormal distribution), and the location 

which was assumed to be equal to the median of the 

sample. Summary statistics of the Pb sample: n = 37, mean 

= 3026, median = 771, SD = 5623.  

Mean concentration of Hg in soil µsoil, Hg mg/kg ds Lognormal 39.21 105.8 4.0 
For explanation, see above. Summary statistics of the Hg 

sample: n = 36, mean = 17.59, median = 4.00, SD = 44.96.  
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Parameter  Unit Distribution 1% percentile 99% percentile Comments 

Ratio landslide soil in suspension S  Lognormal 0.01 0.1 Estimated and based on the Agnesberg landslide 

Settling velocity w m/s Lognormal 0.0002 0.002 Clay, fine silt (contaminants are bound to the fine particles). 
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Table 4. Resulting probabilities of failure for each case. The vertical bar denote the term “given” in 

probability theory (example: Pf,I│L means the probability of failure in impact zone I given a 

landslide). 

Impact zone Failure definition 

Probability of failure 

Pb Hg 

I Pf,I│L P[µsed > CISQG] 1 1 

 Pf,I P[µsed > CISQG] × PL 3.0 E -03 3.0 E -03 

II a Pf,IIa│L P[µw > ANAWQC] 1 1 

 Pf,IIa P[µw > ANAWQC] × PL 3.0 E -03 3.0 E -03 

II b Pf,IIb│L P[crw > EDWD] 0.654 0.095 

 Pf,IIb P[crw > EDWD] × Prw × PL 1.4 E -03 0.21 E -03 

III Pf,III│L P[W > 1%Wbg] 0.795 0.818 

 Pf,III P[W > 1%Wbg] × PL 2.4 E -03 2.5 E -03 

 Pf,III│L P[W > 10%Wbg] 0.321 0.359 

 Pf,III P[W > 10%Wbg] × PL 0.96 E -03 1.1 E -03 

 Pf,III│L P[W > 50%Wbg] 0.087 0.101 

 Pf,III P[W > 50%Wbg] × PL 0.26 E -03 0.30 E -03 

 

Table 5. The results of the sensitivity analysis of the transport model simulations, where µw = mean 

concentration in the water, cw = concentration in the water and W is the additional load. 

Criteria Most influential parameters Pb Hg 

µw 
Mean concentration in soil (µsoil) 

Proportion in suspension (S) 

65% 

33% 

68% 

31% 

cw 

Settling velocity (w) 

Mean concentration in soil (µsoil) 

-54% 

25% 

-53% 

27% 
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Proportion in suspension (S) 9% 8% 

W (1%, 10%, 50%) 

Settling velocity (w) 

Mean concentration in soil (µsoil) 

Proportion in suspension (S) 

-560% 

24% 

8% 

-55% 

26% 

8% 
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Table A1. Slope stability analysis: probability distributions for uncertain parameters. 

Parameter  Unit Distribution Mean Std. Dev. Coeff. Var. Comments 

Slope height H m - 8 
√0.42 + 0.42 

= 0.57 

 

Std. dev. refers to the combined uncertainty for the toe and 

the crest of the slope  

Slope length B m - 77 
√0.82 + 0.82 

= 1.13 

 

Water depth Hw m - 5.5 0.2  Annual low water. Std dev refers to surface level of water 

Soil density ρclay kg/m
3 

- 1550  2% River and embankment clay 

Shear strength cu kPa Lognormal 11  10% Average shear strength along potential slip surface 

Vertical erosion z m - 1 - - 

Scenario for T [years] – No explicit uncertainty 

Horisontal erosion x m - 3 - - 

Derived parameters  Unit Distribution Mean Std. Dev. Coeff. Va.r Comments 

Stability number excl. erosion N1  Lognormal 10.4  3.9% 

First year without any erosion 

Unbalanced stress Pd1  Lognormal 69  10.6% 
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Factor of safety F1  Lognornal 1.66  15.1% 

Stability number incl. erosion NT  Lognormal 9.6  3.5% 

After T [years] of erosion] Unbalanced stress  PdT  Lognormal 71.8  10.3% 

Factor of safety FT  Lognormal 1.50  14.7% 
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Table A2. Result of probabilistic slope stability analysis: analytical solution for first and last (100
th
) year 

Parameter First year without any erosion Last year after T [years] of erosion] Comments 

Reliability index ß1 3.4  ßT 2.6   

Sensitivity factor of independency αindep1 0.192  αindepT 0.189  Reflects uncertainty of low water level 

Sensitivity factor of dependency αdep1 0.981  αdepT 0.982  Reflects uncertainty of soil properties and geometry 

Probability of landslide PL1 3.9 x10
-4 

 PLT 4.2 x10
-3 

 Annual probability 

 



  

55 
 

 

Figure 1. Illustration of the impact zones I – III. The upward pointing arrows illustrate the release of 

contaminants from the runout deposit, the longitudinal arrows the transport of contaminants along the 

travel pathway, and the downward pointing arrows the sedimentation (settlement) of contaminants in 

accumulation areas. 

 

Figure 2. Study site Göta Älv and Surte 2:38. The river Göta Älv runs from the Lake Vänern to the 

harbour of Gothenburg. Case site Surte 2:38 and the water intake are marked on the map.  

 

Figure 3a. Schematic model for slope stability analysis. Hw = water depth, B = horizontal slope length, 

and H = vertical slope hight.  

 

Figure 3b. Schematic model for erosion in river. z = bottom erosion, z = bank erosion. 

 

Figure 4. Landslide probability for Surte 2:38 as a function of a chosen reference time, where PL in the 

y-axis is the landslide probability within a reference time T given in years. In the time considerations 

are on-going river erosion and varying water levels in the river due to the flow in the river and the sea 

level incorporated. The solid line shows the case with on-going erosion (PL = 0.3% for a time period 

of 50 years) and the dashed line shows the case with no erosion (PL = 0.15% for a time period of 50 

years). 

 

Figure B1. Sample plot in non-dimensional form of the total amount of material deposited upstream a 

specific location. 



  

56 
 

 


