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Four-dimensional Rotations in Coherent Optical
Communications

Magnus Karlsson, Senior Member, IEEE, Fellow, OSA

Abstract—To model electromagnetic wave propagation for co-
herent communications without polarization dependent losses, the
unitary 2 × 2 Jones transfer matrix formalism is typically used.
In this study, we propose an alternative formalism to describe such
transformations based on rotations in four-dimensional (4d) Eu-
clidean space. This formalism is usually more attractive from a
communication theoretical perspective, since decisions and sym-
bol errors can be related to geometric concepts such as Euclidean
distances between points and decision boundaries. Since 4d rota-
tions is a richer description than the conventional Jones calculus,
having six rather than four degrees of freedom (DOF), we pro-
pose an extension of the Jones calculus to handle all six DOF. In
addition, we show that the two extra DOF in the 4d description rep-
resents transformations that are nonphysical for propagating pho-
tons, since they does not obey the fundamental quantum mechani-
cal boson commutation relations. Finally, we exemplify on how the
nonphysical rotations can change the polarization-phase degener-
acy of well-known constellations such as single-polarization QPSK,
polarization-multiplexed (PM-)QPSK and polarization-switched
(PS-) QPSK. For example, we show how PM-QPSK, which is well
known to consist of four polarization states each having four-fold
phase degeneracy, can be represented as eight states of polariza-
tions, each with binary phase degeneracy.

Index Terms—Coherent optical transmission, four-dimensional
modulation, optical polarization.

I. INTRODUCTION

W ITH coherent receivers being increasingly common
in optical communications it is important to connect

classical optics concepts such as Jones transfer matrices
with more communications-relevant topics such as minimum
distances, signal constellations, and Voronoi regions. The latter
typically require description of the signals in an n-dimensional
real Euclidean space, known as signal space, with additive
noise perturbing the signal independently in the n orthogonal
components.

The use of matrix methods to calculate the polarization evolu-
tion for electromagnetic waves was, given the earlier discoveries
within optics, a relatively late invention, originally proposed by
Jones in a series of papers [1]–[8] and Mueller [9], [10] in the
1940s. The reason was probably that before this time relatively
few polarization-dependent devices were available, and there
was no demand for what we now refer to as “Jones calculus”
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and “Stokes–Mueller calculus.” There are important differences
between the two approaches; the Jones formalism is linear in the
electromagnetic field, whereas the Mueller matrices model the
transformation of Stokes vectors, that originate from optically
observable intensities [11], which are proportional to the field
squared. Since Stokes vectors are not linear in the field ampli-
tude, and thus not uniform and Gaussian in the description of
the additive noise, the formalism is less useful for making sym-
bol decisions in coherent detection. However, a Stokes/Mueller
approach may still be useful in the development of synchro-
nization algorithms as, e.g., in [12], as well as for visualizing
polarization states and constellations. For practical reasons it is
important to distinguish between states of polarization (SOPs)
and constellation points, since SOPs generally drift at a much
slower rate (millliseconds) than absolute phases (microseconds)
in coherent receivers. It is thus less demanding to track SOPs
than absolute phases and constellation points.

The main purpose of this paper is to bridge the gap be-
tween the polarization calculii of classical optics and the four-
dimensional (4d) signal space of communication theory. At
first this might seem like a trivial reformulation of the Jones
calculus—merely separating the real and imaginary parts of the
complex (Jones-) field components into four real vector com-
ponents. However, as will be shown, and which is somewhat
surprising, this leads to a more general description than the
classical Jones formalism.

In the simplified case of no polarization dependent losses
(which this article deals with) the Jones transfer matrix is uni-
tary, and the real 4 × 4 Mueller transfer matrix can be reduced
to an orthogonal 3 × 3 matrix [13], [14].

The description of a polarized electromagnetic wave in terms
of its four real quadrature components was pioneered by Betti
et al. [15], [16] and Cusani et al. [17]. The signal is then de-
scribed by a real fou-component vector, with a length squared
proportional to the signal power. Lossless propagation of such a
signal vector can then be described by the f4d real analog to the
complex Jones matrix (see, e.g., Eq. (9) in [17]), which has four
independent parameters, or equivalently, degrees of freedom
(DOF). Obviously, such a 4 × 4 transfer matrix is a 4d rotation,
since it will not change the length (or power) of the state vector.
However, 4d rotations form a six-parameter group [18], imply-
ing that the 4 DOF Jones matrices do not represent the full set
of possible transformations in real 4d space [19]. The question
then emerges: these extra two DOF in the 4d rotations, what
kind of transformations do they correspond to in Jones space?
This paper will address that question.

As we will see the answer is very interesting, both from a
mathematical and physical point of view. There is also a real
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practical relevance from the application of matrix methods to
fiber optic transmission. We will show that the two extra DOFs
of the 4d rotations correspond to nonphysical optical transfor-
mations, i.e. polarization transformations that can be mathemat-
ically described by extensions of the Jones calculus, but which
do not have any physical realization in electromagnetic wave
propagation. Nevertheless, they are of interest for at least three
reasons:

Extension: They enable us to extend the existing Jones cal-
culus to cover a richer set of transformations.

Commutation: The nonphysical transformations commute
with the allowed (conventional) ones. This is a unique prop-
erty for these transformations that may simplify their practical
implementation.

Synthesis: Even if the nonphysical transformations do not ex-
ist in wave propagation, they can be artificially created in digital
signal processing or waveform generation, and can as such be
valuable in e.g. novel kinds of coherent optical transmitters and
receivers.

This article is organized as follows: In Sections II and III,
we will for reference review the well-known Jones and Stokes-
Mueller calculii for unitary media. In Section IV, we will de-
scribe the corresponding 4d rotational description. In Section V,
we describe the general (6 DOF) set of 4d rotations including
the nonphysical and allowed transformations, and their parame-
terization. Then in Section VI, we will connect back to the Jones
calculus, and see how it can be extended to deal with the whole 6
DOF set of 4d rotations. We will also explicitly prove that the ex-
tra two DOF are nonphysical, in the sense that they do not (con-
trary to the other four DOF) satisfy the fundamental boson com-
mutation relations. In Section VII, we will, as an example show
how the nonphysical transformations can affect known constel-
lations. Finally in Section VIII, we conclude and put the full 6
DOF description into the context of rotations and fiber trans-
mission. A number of appendices provide supporting material,
definitions and details not necessary for the main understanding.
Parts of this paper, and some more details on the Stokes/Mueller
modeling can be found in a related arXiv paper [20].

We employ the following notation conventions: Complex
2-vectors are denoted by boldface lowercase letters, as, e.g.,
e. Real 3-vectors (e.g. Stokes vectors or rotation vectors) are
denoted with lowercase vector-arrow notation as �e. Unit vectors
have a hat, as ê. Real four vectors are denoted with uppercase
vector-arrow notation as �E. Matrices are usually uppercase, and
their dimension should be clear from the context. For example
the unity matrix is denoted I independent of dimensionality. A
few specific matrices are denoted by lower case greek letters
as, e.g., the Pauli matrices σj and the left-(right-) isoclinic gen-
erators ρj (λj ), and sometimes three constant matrices forms
a three vector as, e.g., �σ = (σ1 , σ2 , σ3). A scalar product like
�h · �σ should then be interpreted as a linear combination of the
three matrices σ1 , σ2 , σ3 .

II. JONES DESCRIPTION

The transverse electric field components of a plane electro-
magnetic wave, propagating in the z−direction, has only two

components, and can thus be described as the column vector

e =
(

ex

ey

)
. (1)

We refer to this vector as the complex Jones vector. Often the
Jones vector is given in the frequency domain, so we will allow
it to be frequency dependent, although in this paper this depen-
dence is not important, so we will not write it out explicitly. The
complex vector elements describe the x− and y− components
of the electric field, and their phase relative to some phase ref-
erence. For most purposes, e.g. in coherent optical signaling, it
suffices to describe how the Jones vector is transformed when
propagating in the system. A linear transmission medium can
then be described by its complex transfer function, and for elec-
tromagnetic waves this generalizes to a complex 2 × 2 Jones
matrix T , that relates the input and output Jones vectors via

e(z) = T (z)e(0) (2)

where e(0) denotes the input (z = 0) Jones vector to the system
and z is an arbitrary output position. The transfer matrix T can
be an arbitrary 2 × 2 matrix with complex coefficients, but in
this analysis we will restrict ourselves to systems without any
polarization-dependent loss (such as transmission fibers) where
the signal power P = e∗te = e†e must be independent of the
polarization state. This leads to T−1 = T † so that T will be a uni-
tary transformation matrix, belonging to the unitary group U(2).
The subgroup of unitary 2 × 2 matrices with determinant=+1
is called the special unitary group, or SU(2).

Since our purpose is to relate the transfer matrix between dif-
ferent descriptions of the signal vector, we need to parametrize
the unitary transformation, and to do that will find it useful to
describe the evolution of the signal within the medium by the
differential equation

i
de

dz
= He (3)

where H is a matrix describing the transmission medium proper-
ties. Again, for lossless transmission we must have d(e†e)/dz =
ie†(H† − H)e = 0 which implies that the matrix H = H†, i.e.,
it is Hermitian. A useful parameterization of Hermitian matri-
ces is via the Pauli spin matrices σj (see definition, notation and
general properties in Appendix A). This means that H can be
written as a linear combination of the four Pauli spin matrices:

H = h0σ0 + h1σ1 + h2σ2 + h3σ3 = h0I + �h · �σ (4)

or explicitly

H =
(

h0 + h1 h2 − ih3

h2 + ih3 h0 − h1

)
. (5)

Here, hk are four real coefficients describing the medium, which
may be formed into a scalar h0 and a real three vector �h =
(h1 , h2 , h3). Assuming H to be constant enables the differential
equation (3) to be solved using the matrix exponential as

e(z) = exp[−iHz]e(0) = Te(0). (6)
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The matrix exponential can be expanded in a Taylor series to
prove that

T = exp[−iHz] = exp(−ih0z)U(z�h) (7)

where

U(�α) = exp(−i�α · �σ) = [I cos(α) − i
�α

α
· �σ sin(α)] (8)

denotes the generic special unitary transformation, or SU(2)
group member, parameterized by the real three-component vec-
tor �α, the modulus of which is the scalar α = |�α|.

III. STOKES–MUELLER DESCRIPTION

The four-component Stokes vector corresponding to the Jones
vector e is defined with four real components given by the
scalar P = e†σ0e = e†e (which is simply the optical power),
and the real three vector�e = e†�σe . However, for fully polarized
light and in the absence of polarization-dependent losses, it is
sufficient to consider the evolution of the vector �e only.1 As a
consequence the transformation (Mueller) matrix will be a 3 × 3
rotation matrix. Explicitly, we can express �e in the complex field
components as

�e =
[
|ex |2 − |ey |2 , 2Re(exe∗y ),−2Im(exe∗y )

]t
(9)

from which we note that any common—or absolute—phase of
ex and ey will not be modeled by the Stokes vector �e. The vector
�e is often described as a point on a sphere, called the Poincaré
sphere, and polarization transformations can be described as
rotations of this sphere. We can obtain the evolution equation
for�e by using the above definitions and Eqs. (3) and (4) to obtain

d�e

dz
= e†i(H†�σ − �σH)e = 2�h × �e (10)

where �h× denotes the cross product operator

�h× =

⎛
⎜⎝

0 −h3 h2

h3 0 −h1

−h2 h1 0

⎞
⎟⎠ . (11)

The evolution equation (10) has the well-known geometrical
interpretation of describing a vector �e rotating around an axis
directed along �h. If �h is independent of z, (10) can be solved,
again using the matrix exponential, with the result

�e(z) = exp(z2�h×)�e(0) = M(z2�h)�e(0) (12)

where M denotes the Mueller matrix, which relates the in-
put and output Stokes vectors. In this case when we have no
polarization-dependent losses, the Mueller matrix is a rotation
matrix, generally expressed as

M(�α) = exp[�α×] =

I + sin(α)
�α×
α

+
1 − cos(α)

α2 (�α×)2 =

I cos(α) + sin(α)(α̂×) + (1 − cos(α))α̂(α̂·) (13)

1We define the Stokes vectors to be instantaneous, in direct correspondence
with the Jones vectors, without any temporal averaging.

which describes a rotation an angle α = |�α| around the unit
vector α̂ = �α/α. The notation α̂(α̂·) is the projection operator,
i.e., the matrix

α̂(α̂·) =
1
α2

⎛
⎜⎝

α2
1 α1α2 α1α3

α1α2 α2
2 α2α3

α1α3 α2α3 α2
3

⎞
⎟⎠ . (14)

Therefore the Mueller matrix M is often described geometri-
cally with the Poincaré sphere rotating around the birefringence
vector �h. The set of real 3 × 3 matrices M preserving a real 3d
vector length must fulfill M−1 = Mt , and forms the orthogonal
group O3 . The subset of O3 with determinant = +1 forms the
O+

3 group.
By comparing the Jones transfer matrix (8) with the Mueller

matrix (13) we have a 3 DOF mapping between the two for-
malisms that illustrates the isomorphism between the O+

3 ma-
trices R(�α) and the SU(2) matrices U(�α). However the Jones
description (although not the SU(2) group) is richer in that it
may also contain the absolute phase change on the wave from
the medium (the h0 coefficient in Eq. (7)), which is absent from
the Stokes–Mueller approach. On the other hand, the Stokes–
Mueller approach facilitates the geometrically pleasing, and also
intuitive, interpretation of rotating polarization vectors on the
Poincaré sphere.

So far we have done nothing new, but the preceding relations
between the Jones and Stokes–Mueller descriptions are well
known, and can be found in numerous books and articles on
the topic, e.g., [21]–[23]. We provide them for reference and to
enable easy connections with a third and less known description,
based on the 4d Euclidean space that will be introduced in the
next section.

IV. FOUR-DIMENSIONAL SIGNAL SPACE DESCRIPTION

Within communication theory, signals are analyzed in a sig-
naling space that is an n-dimensional (nd) vector space contain-
ing the set of transmitted signals (the signaling constellation),
as a set of discrete points in nd. The received signals belong to
this set, possibly perturbed by distortions, rotations, and noise.
The geometric signal-space description is valuable, because the
Euclidean distances between the constellation points will di-
rectly be a measure of the constellation’s robustness to additive
noise [24]. For coherent optical communications the signaling
space is four-dimensional (4d), so a real 4d description of the
electric field is in many cases preferred over the Jones or Stokes-
Mueller formalisms in this context [16], [17], [24].

The Jones description can be taken to an equivalent 4d de-
scription by expressing the complex Jones vector e as the real
4-vector

�E(z) =

⎛
⎜⎜⎜⎝

Re(ex)
Im(ex)
Re(ey )
Im(ey )

⎞
⎟⎟⎟⎠ . (15)

A Jones transformation such as (6) can now be written as

�E(z) = N(z) �E(0) (16)
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where N(z) is a real 4d transformation matrix. As we noted for
the Jones and Stokes descriptions, the absence of polarization-
dependent loss or gain restricts the power P = �Et �E to be con-
served and thus NtN = I , so the N is a 4d orthogonal matrix,
belonging to the O4 group. In order to identify the elements of
N with those of the Jones matrix T in (6) we study the evolution
equation for the vector �E, i.e.

d �E

dz
= −K �E (17)

for some matrix K describing the medium. Since P must be
constant with respect to z, we can show that K should satisfy
Kt = −K, i.e., K should be skew-symmetric. This means that
only the 12 off-diagonal elements of K are non-zero. By sepa-
rating (3) in real and imaginary parts, and using (4) we find that
the matrix K equals

K =

⎛
⎜⎜⎜⎝

0 −(h0 + h1) h3 −h2

h0 + h1 0 h2 h3

−h3 −h2 0 −(h0 − h1)
h2 −h3 h0 − h1 0

⎞
⎟⎟⎟⎠ .

(18)
In analogy with the previous sections, we can integrate (17) if
the hk coefficients are constant, and describe the 4d rotation
using the matrix exponential as

�E(z) = exp(−zK) �E(0). (19)

This description can be further simplified, but for that we need
to describe the general properties of 4d rotation matrices, which
will be done in the next section.

V. PARAMETRIZATION OF 4D ROTATIONS

The argument in the preceding section, that a rotation should
preserve the vector length, can be generalized to show that an nd
rotation matrix R can be expressed as the exponential of a skew-
symmetric n × n matrix S. Such a matrix must satisfy St = −S
which forces the diagonal elements to vanish, and the n(n −
1)/2 elements above the diagonal is enough to describe all
degrees of freedom. In the special case of 4d we have 6 degrees of
freedom, i.e., we need six parameters to describe an arbitrary 4d
rotation. In Appendix B, we present a complementary discussion
of 4d rotations and their nomenclature. Here, we will introduce
the following six matrices as the 4d rotation basis (the notation
will be motivated later):

ρ1 =

⎛
⎜⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎟⎠ (20)

ρ2 =

⎛
⎜⎜⎜⎝

0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎟⎠ (21)

ρ3 =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

⎞
⎟⎟⎟⎠ (22)

which forms the vector �ρ = (ρ1 , ρ2 , ρ3) and

λ1 =

⎛
⎜⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎞
⎟⎟⎟⎠ (23)

λ2 =

⎛
⎜⎜⎜⎝

0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎟⎠ (24)

λ3 =

⎛
⎜⎜⎜⎝

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎠ (25)

which forms the vector�λ = (λ1 , λ2 , λ3). An arbitrary real skew-
symmetric 4d matrix L can thus be written as a linear combi-
nation of these matrices, and an arbitrary 4d rotation matrix
is

R(�α, �β) = exp(L) = exp(−�α · �ρ − �β ·�λ) (26)

where �α, �β are two arbitrary, real, three-vectors parameterizing
the 4d rotations 6 DOF. We can thus call the six matrices �ρ,�λ
the generating matrices for 4d rotations, and they satisfy the
following identities:

ρ2
k = λ2

k = −I,∀k,

ρ1ρ2ρ3 = −ρ2ρ1ρ3 = I,

λ1λ2λ3 = −λ2λ1λ3 = I (27)

where I is the 4d unity matrix. These multiplication rules can
be used to show that matrices formed by a linear combination of
the ρk and the unity matrix form a multiplicative subgroup of the
group of all real 4d skew-symmetric matrices. The same holds
for the group of matrices formed by a linear combination of λk

and the unity matrix. Quite surprisingly these two subgroubs
commute, since

ρkλj = λj ρk (28)

for all j and k. Note that multiplications within each subgroup
is non-commuting, according to (27). The commuting property
means that we can write the matrix exponential as the matrix
product

R = RRRL = RLRR (29)

where

RR (�α) = exp(−�α · �ρ), (30)

RL (�β) = exp(−�β ·�λ). (31)



1250 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 32, NO. 6, MARCH 15, 2014

TABLE I
RELATION BETWEEN THE CONVENTIONAL JONES, STOKES–MUELLER AND 4D VECTOR DESCRIPTIONS OF ELECTROMAGNETIC TRANSFORMATIONS

This implies that we can decompose an arbitrary 4d rotation
into two commuting subgroups, which are often denoted right-
isoclinic, RR , and left-isoclinic, RL , rotations, respectively [18].
An isoclinic rotation rotates all vectors the same angle. In Ap-
pendix B, we discuss isoclinic rotations further. Thus any 4d
rotation can be written as one right-isoclinic rotation followed
by a left-isoclinic rotation, or vice versa. The isoclinic rota-
tions can be written in an explicit form by expanding the matrix
exponential in a Taylor series and using

(�α · �ρ)2 = −Iα2 (32)

to obtain

RR = exp[−�α · �ρ] = exp[−αα̂ · �ρ] =
∞∑

k=0

(−αα̂ · �ρ)k

k!
= I − (α̂ · �ρ)α − I

α2

2
+ (α̂ · �ρ)

α3

6
+ . . .

= I cos(α) − (α̂ · �ρ) sin(α). (33)

Analogously, we find for the left-isoclinic rotations

RL = I cos(β) − (β̂ ·�λ) sin(β). (34)

Eqs. (29), (34), and (33) provides a full, 6 DOF parameteri-
zation of the 4d rotations that is straightforward to connect to
the Jones and Mueller transformations. The order and sign of
the generating matrices (20)–(25) are selected to comply with
conventional definitions in Stokes and Jones calculus [20].

We can now return to Section IV and identify the elements
h0 ,�h from the matrix K in (18) with the general 4d exponent
L. This gives �α = z�h and �β = z(h0 , 0, 0). We can thus express
the 4d signal (19) in terms of 4d rotations as

�E(z) = exp(−z�h · �ρ) exp(−z(h0 , 0, 0) ·�λ) �E(0). (35)

This completes the description of polarization transformations
in terms of 4d rotations, and the result is that we now have three
alternative descriptions of polarization transformations. These
are the complex Jones calculus in Eq. (2), the real Stokes–
Mueller description in Eq. (12) and the real 4d rotation descrip-
tion from Eq. (35). Those have, for reference. been summarized
in Table I.

The above concludes a relatively straightforward extension
of the Jones calculus to 4d, that in itself might be useful in, e.g.,
fiber communication analysis [17], [19], but it provides nothing
really physically novel. However, the remainder of this paper
will be devoted to the 4d rotations described by the left-isoclinic
matrices λ2 and λ3 , which seem to have no correspondence in

the classical Jones- or Stokes-vector descriptions. As we saw
above, only the right-isoclinic rotations (33) of the 4d E-field
vector have a physical realization in terms of the corresponding
Jones and Mueller matrices. Obviously the λ1-component gives
a constant phase shift of the field vector, so that has a clear
physical interpretation. However, the λ2- and λ3-components
describe transformations that are not used within the classical
Jones- or Stokes-Mueller calculus, and the reason is simply that
they cannot be realized as physical transformations of the elec-
tromagnetic field. In fact, a propagating photon cannot undergo
such a change, irrespective of the physical realization. The proof
of this statement lies in that those state changes will not satisfy
the bosonic commutation relations, as will be motivated in the
next section and Appendix C. We will therefore refer to those
transformations as nonphysical rotations. We should emphasize
that the existence of the nonphysical rotations is not a short-
coming of the known polarization calculi. It is merely a richer
property of the 4d real space that is not needed for the descrip-
tion of propagating waves, but which can be taken advantage of
if we understand it.

A first clue to an understanding of the nonphysical rotations
will be to go back to the Jones formalism, and attempt to express
these transformations there.

VI. THE NONPHYSICAL ROTATIONS IN JONES SPACE

The left-isoclinic transformation acting on the 4d vector

�A =

⎛
⎜⎜⎜⎝

Re(ax)
Im(ax)
Re(ay )
Im(ay )

⎞
⎟⎟⎟⎠ (36)

with the corresponding Jones vector a = (ax ay )t is

�Aout = exp(−�β ·�λ) �Ain (37)

where the subscripts denote input/output states. If we write this
in complex form, by collecting the proper real and imaginary
parts, it can be expressed as(

ax

a∗
y

)
out

= U ∗(�β)
(

ax

a∗
y

)
in

(38)

where U ∗ is the unitary transformation defined in (8) with con-
jugated elements. This is still a unitary transformation but now
acting on the vector (ax a∗

y )t , i.e. the Jones vector with the y-
component conjugated. Such transformation vectors (with one
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TABLE II
EXTENSION OF THE CONVENTIONAL JONES CALCULUS TO ACCOUNT FOR THE FULL 4D ROTATIONS

element conjugated) arise, e.g., in the context of parametric
amplifiers [25], but for that case the transformation matrices
are not unitary. In fact, in Appendix C we show that the trans-
formation (38) is only consistent with the quantum mechanical
formulation of polarization operators if the second and third
components vanish, i.e., �β = (β1 , 0, 0). In that special case,
(38) reduces to(

ax

a∗
y

)
out

=
(

exp(−iβ1) 0
0 exp(iβ1)

)(
ax

a∗
y

)
in

(39)

which is the same phase shift applied to both field components,
i.e., an absolute phase change. This rotation is not unphysical,
but rather the most rapidly changing degree of freedom of all in
coherent systems. On the other hand, the changes described by
the λ2 and λ3 rotation generators does not obey the boson com-
mutation relations, as shown in Appendix C, and we conclude
that they are indeed nonphysical for propagating photons, and
we will refer to them as such. The only exception occurs for the
special cases where the isoclinic rotation angle is a multiple of
π, for which the rotation matrix is plus or minus the unity matrix,
irrespective of the rotation generator, cf. (33) and (34). How-
ever, this does not preclude a mathematical description of the
nonphysical rotations, nor the fact that they can be synthesized
artificially, e.g. by DSP. In the following discussion we will re-
fer to the right (left) isoclinic rotations with the dimensionless
parameters �α (�β).

As we saw above, the transformation (38) is unitary, but with a
redefined Jones state vector. This suggests the following unified
description of left- and right isoclinic rotations in Jones space.
We replace the Jones vector with a Jones state matrix defined as

E =
(

ex e∗y
ey −e∗x

)
. (40)

With this definition a right-isoclinic (i.e. the conventional) trans-
formation is performed by applying a unitary transformation to
the two column vectors. Similarly, a left-isoclinic (comprising
the phase and nonphysical) transformation is realized by apply-
ing a unitary transformation to the row vectors. The first column
vector is the conventional Jones vector and the second is the
corresponding orthogonal state of polarization, and obviously
these two must transform with the same unitary matrix, so the
transformation UE with U unitary, is just a trivial extension of
the standard Jones analysis. However, the left-isoclinic rotation
(38) can now be expressed as U ∗Et = (EU †)t , i.e., as a multi-
plication from the right with the conjugate transposed unitary
matrix U †. To summarize, the full input–output relation for the

general, 6-DOF, 4d rotation

�Eout = R(�α, �β) �Ein (41)

where R is given by (26), can thus be compactly expressed by
the Jones state matrix as

Eout = U(�α)EinU †(�β) (42)

where again U denotes the unitary matrix as defined in (8). In
this way, we can recover the full six-parameter rotation family
by left and right multiplying the Jones state matrix with unitary
matrices.

It is noteworthy that the Jones state matrix is of unitary form,
but with determinant −P , which means that its unitary structure
(40) is preserved by the transformation (42), as expected. The
commutation between right- and left-isoclinic rotations is also
consistent with (42), due to the associativity of matrix products.
This ”generalized” Jones calculus is summarized in Table II.

Finally we should state, for completeness, that a similar gen-
eralization of Jones calculus as given by (42) is possible also for
the Stokes–Mueller calculus. In that case, the Stokes vector is
generalized to a Stokes state matrix, which can be related to the
Jones state matrix (40), cf. [20, eq. (F5)]. The right- and left-
isoclinic transformations are also there described by rightwards
and leftwards matrix multiplications. In [20] we also show that
there is a strong connection with the Stokes state matrix and the
”paddled-Stokes vector” introduced by Frigo et al. [26] and re-
cently used for system analysis in [27]. In fact Frigo’s ”paddle”
emerges as a column vector of said Stokes state matrix.

VII. EXAMPLES: QPSK, PS-QPSK, AND PM-QPSK

We have thus derived a useful representation of 4d rotations as
R(�α, �β) where the 3-vector α models the polarization changes,
the first component, β1 , of �β models the absolute phase shift,
and the remaining two parameters, β2,3 are nonphysical. It is
instructive to give a few examples on how the nonphysical trans-
formations affect the constellations of some well-known modu-
lation formats in 4d coherent communications. We will consider
three examples. The presented constellations are intended more
as examples than propositions for new, promising formats. The
latter would require more careful evaluation, and could be an
promising topic for future research.

A. QPSK

The simplest non-trivial example of an nonphysical rota-
tion acting on a constellation is probably single-polarization
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QPSK, which can be represented as the 4d constellation (or
point set) CQPSK1 = {(±1,±1, 0, 0)t}/

√
2, taken with all four

sign combinations. If we, as an example, apply the nonphysical
4d rotation given by �α = (0, 0, 0) and �β = (0, 0, π/4) we obtain
the constellation CQPSK2 = ±{(−1, 1, 1, 1)t , (1, 1,−1, 1)t}/2,
which occupies two orthogonal polarization states (left- and
right-hand circular) with binary PSK modulation in each. The
QPSK1 constellation points ±(1, 1, 0, 0)t moves to the right-
hand circular SOP, whereas the ±(1,−1, 0, 0)t constellation
points moves to the left-hand circular SOP. Such a transforma-
tion cannot be realized within conventional passive optics, but
is possible to realize in the electronic domain using DSP. We
emphasize that this is merely a rotation, so the CQPSK2 con-
stellation has the same properties (e.g. sensitivity and spectral
efficiency) as standard QPSK, but it has one important prac-
tical benefit: The local oscillator (LO) phase noise resilience
will be improved since we have, after appropriate polarization
demux, two orthogonally polarized BPSK streams rather than
one single-polarization QPSK stream. The prize paid is that one
occupies two polarization states rather than one. This also shows
that single-polarization QPSK can be geometrically equivalent
to dual-polarization BPSK, which may not be widely known.

B. PS-QPSK

The polarization-switched (PS)-QPSK format is interesting
since its asymptotic power efficiency is the best among all un-
coded 4d formats (1.76 dB better than QPSK) [28], but with
a reduced spectral efficiency relative to QPSK. It has led to a
number of theoretical [24] and experimental [29], [30] inves-
tigations. The constellation for PS-QPSK has in the literature
been described by three different representations:

1) the 4d cross-polytope

C1 = {(±1, 0, 0, 0)t , (0,±1, 0, 0)t ,

(0, 0,±1, 0)t , (0, 0, 0,±1)t}; (43)

2) QPSK in either the x- or y-polarization, which consists of
all sign selections of

C2 =
1√
2
{(±1,±1, 0, 0)t , (0, 0,±1,±1)t}; (44)

3) the hypercube subset with even parity,

C3 =
1
2
{±(1, 1, 1, 1)t ,±(1, 1,−1,−1)t .

± (1,−1, 1,−1)t ,±(1,−1,−1, 1)t}. (45)

These constellations can be transformed to each other by
simple physical rotations; for example C1 is taken to C2 by
a 45◦ phase rotation (�α = (0, 0, 0), �β = (π/4, 0, 0)). Similarly
C3 is obtained from C2 by a 45◦ polarization rotation (�α =
(0, 0, π/4), �β = (0, 0, 0)).

All these representations have in common that they describe
PS-QPSK as two polarization states that each has a fourfold
absolute phase degeneracy. However, this degeneracy can be
broken by applying a nonphysical rotation. As an example, apply
the 4d rotation �α = (0, 0, 0), �β = (0, 0, β3) to C1 to obtain the

Fig. 1. Stokes vectors and constellations for PS-QPSK in configuration C1 (tri-
angles) and C4 (circles), which is obtained from C1 by applying the nonphysical
rotation R = exp(−�λ · (0, 0, π/8)). The points are color coded to show corre-
spondence between Stokes space and constellation diagrams. Magenta triangles
denotes coinciding blue and red points, and dito for green-yellow-ish triangles.

constellation

C4 = {±(c, 0, s, 0)t ,±(0, c, 0,−s)t ,

± (−s, 0, c, 0)t ,±(0, s, 0, c)t} (46)

where c = cos(β3) and s = sin(β3). This PS-QPSK represen-
tation is unique in that it can have four polarization states,
each of which has twofold phase degeneracy. In the special
case β3 = π/8 they are symmetric and separated by 90◦ on the
Poincaré sphere as illustrated in Fig. 1. The four subsets in (43)
are color coded, red, blue, yellow and green, respectively. We
emphasize that C4 is only a 4d-rotated version of the conven-
tional PS-QPSK constellation C1 , so both representations has
the same sensitivity and spectral efficiency. However, C4 might
potentially be easier to detect in a coherent receiver, since it puts
more (fourfold) degeneracy in the polarization DOFs which re-
quires slower tracking in the receiver, and less (twofold) degen-
eracy in the absolute phase DOF. In other words, representations
C1 , C2 and C3 consists of two polarization states with four ab-
solute phases each, in contrast with C4 which consists of four
polarization states with two phases each. The corresponding
phase tracking DSP for C4 needs to deal with only a binary
rather than quaternary phase modulation, which is known to
have less strict linewidth requirements. A drawback is that the
polarization tracking algorithm will be more complex, and the
conventional constant modulus algorithm will likely not work
without modifications. Also the ambiguities in polarization and
phase of these new representations would require further in-
vestigation, as well as how well such algorithms can deal with
nonlinear distortions.

To suggest a detailed realization for such a coherent receiver
is beyond the scope of this article, but the main point is that
the nonphysical rotations can be used to move degeneracies
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Fig. 2. Stokes vectors and constellations for PM-QPSK in configuration C5
(triangles), and C5 after the nonphysical rotation R = exp (−�λ · (0, π/20, 0))
(circles). The points are color coded to show correspondence between Stokes
space and constellation diagrams. Black triangles denotes coinciding blue, red,
green and yellow points.

between the polarization and the phase degree of freedoms of
coherent modulation formats in a hitherto unknown way.

C. PM-QPSK

The standard PM-QPSK is a 16-ary format with the points
located on the vertices of the 4D hypercube:

C4cube =
1
2
{(±1,±1,±1,±1)t} (47)

taken with all sign combinations. In Stokes space these 16 levels
lie on 4 different polarization states (±45◦, right- and left-hand
circular), each with a fourfold absolute-phase degeneracy. The
constellation and Stokes representation is shown as triangles in
Fig. 2. The 16 points are color coded in the four subsets given by
the 4 polarization states of C4cube . To apply any of the physical
rotations (�α) would correspond to rotating the constellation in
Stokes space around the vector �α, an angle 2|�α|. An absolute
phase rotation β1 would not affect the Stokes representation, but
it would rotate the constellation diagrams in the x- and y-pol.
The nonphysical rotations are not so easy to interpret, however.
An example with �β = (0, π/20, 0) is shown as the circles in
Fig 2. This corresponds to a 20◦ movement on the Poincaré
sphere, but the rotation axis depend on the absolute phase of the
constellation point. As a result, we can see (circles in Fig 2) the
four-fold phase degeneracy of each polarization state in C4cube
to be broken into two polarization states, each with two-fold
phase degeneracy. This reflects the sign which is ambiguous for
Stokes vectors, just as in the previous examples for QPSK and
PS-QPSK. The constellation points (shown in Fig 2(b)) are seen
to split in 4 points each, which should be interpreted so that
every point in the x-pol constellation diagram has one (and only
one) partner in the y-pol diagram. Again, this representation of
PM-QPSK might be more robust to e.g. local oscillator phase

noise as it has only a 2-fold phase degeneracy, but to detect
it and benefit from it would require a novel coherent receiver
structure and DSP.

VIII. DISCUSSION AND CONCLUSION

In this paper we have presented the 6 DOF four-dimensional
rotation group, and for the first time related and classified these
rotations in terms of the more well-known Jones calculus used
in polarization optics. The two extra DOFs that have no counter-
part in classical Jones analysis were shown to be nonphysical,
i.e. not arising for propagating photons. The parametrization of
4d rotations in terms of well-known optical transformations is
summarized in Table III.

These findings are relevant for optical communications,
where a multidimensional real formalism in 4d space is of-
ten preferred over the complex analysis. The fact that we can
extend the Jones analysis to model also the nonphysical rota-
tions may be of value in applications where such non-physical
rotations are synthesized, e.g. by using DSP. In Table III we
list the isoclinic rotations and their mathematical (and physical)
interpretations. Two commuting classes of rotations, left- and
right-isoclinic, are interpreted schematically and physically, and
the typical drift times in coherent fiber links are given. These
drift times will naturally vary depending on the specific link
realization. However, the polarization (right-isoclinic) drifts are
usually in the millisecond regime or longer, originating from
physical movements or temperature changes along the fiber ca-
ble. The absolute phase (left-isoclinic, β1) drift times depend on
the signal and local oscillator linewidths, and are are typically
around microseconds. The entries in the ”schematic” column
and the underlying axis change between each entry in this col-
umn are further explained in Appendix B.

The indicated drift times are the tracking times that coher-
ent receivers need to satisfy, and clearly it is more favorable to
modulate data in the polarization (right-isoclininc) degrees of
freedom which are less demanding to track. The non-physical
rotations cannot arise during propagation of light, but can be
synthesized in DSP. A potential use of the such rotations (left-
isoclininc with β2 �= 0 and/or β3 �= 0) are to move modulation
format degrees of freedom between polarization and absolute
phase. We gave a few examples of this; the simplest being QPSK
that can be transmitted either as single-polarization QPSK or
dual-polarization BPSK after applying an nonphysical rotation.
Similarly, PM-QPSK which is often seen as QPSK in 4 dif-
ferent polarization states, can after applying an nonphysical
rotation actually be transmitted as BPSK in 8 different polar-
ization states. The idea of moving signaling degrees of freedom
from absolute phase to polarization will likely be even more
attractive for multi-level QAM formats such as e.g. 16-QAM,
since those are often limited by phase noise. This will however
require development of novel DSP algorithms, but there may
well be a potential use of the nonphysical rotations in receiver
synchronization algorithms, although to give specific examples
of such receiver implementations are beyond the scope of this
paper.
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TABLE III
CLASSIFICATION OF THE 6 DOF 4D ROTATIONS, AND THEIR SCHEMATIC AND TYPICAL DRIFT TIMES IN COHERENT TRANSMISSION SYSTEMS

To summarize, we have presented an extension of the conven-
tional polarization analysis to cover the full degrees of freedom
of real four-dimensional rotations. We have identified physical
as well as nonphysical degrees of freedom in the process. Future
work on this theory could be to extend it to a full polarization
calculus, accounting also for polarizing elements with polariza-
tion dependent loss or gain, as well as looking in to applications
for the nonphysical transformations.

APPENDIX A

THE PAULI MATRICES

As is common in polarization work [21], [23] we define the
Pauli matrices in, for physics literature, nonstandard order (cf.
[31, Ch. 4.5]), which complies with the Stokes vector definition
used in the classic optical texts as e.g. [32]. Thus the Pauli spin
matrices are defined by

σ0 =
(

1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
,

σ2 =
(

0 1
1 0

)
, σ3 =

(
0 −i

i 0

)
(48)

which can be formed into a 3-vector with 2 × 2 matrices as
elements �σ = (σ1 , σ2 , σ3), as suggested by Fano [33]. The Pauli
matrices are Hermitian and have zero trace (except for Tr(σ0) =
2). They satisfy the multiplication rules

σ0 = σ2
1 = σ2

2 = σ2
3

σ1σ2 = −σ2σ1 = iσ3 (49)

where the last equation allow for cyclic permutation of indices.
This also shows that each Pauli matrix (excluding σ0) anticom-
mutes with the other 2 Pauli matrices, and commutes with itself
and σ0 . The Pauli matrices are linearly independent and can be
used as a basis for all complex 2 × 2 matrices. In other words,
an arbitrary complex 2 × 2 matrix C can be written as

C =
3∑

k=0

ckσk (50)

where ck are complex coefficients given by

ck = Tr(Cσk )/2. (51)
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If we now take C to be the coherency matrix

C = ee† =
(

exe∗x exe∗y
e∗xey ey e∗y

)
(52)

the coefficients ck are given by

ck = Tr(ee†σk )/2 = (e†σke)/2 (53)

where the last expression for k = 1, 2, 3 are the components of
the Stokes vector �e. Thus we obtain the useful relation between
Jones and Stokes vectors

ee† =
P + �e · �σ

2
(54)

as originally pointed out in [33], [34].

APPENDIX B

THE 4D ROTATIONS

Much of the material in this appendix can be found in the
Wikipedia article [18], but it is given here for reference and as
an introduction.

To classify the 4d rotations we start by defining the simple
rotations, that rotate only two coordinate axes while leaving the
plane spanned by the other two invariant. For example a simple
rotation in the 1,2-plane is

T12(φ) =

⎛
⎜⎜⎜⎝

cos(φ) sin(φ) 0 0
− sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎠ (55)

which leaves the 3-4-plane invariant. Another one is

T24(φ) =

⎛
⎜⎜⎜⎝

1 0 0
0 cos(φ) 0 sin(φ)
0 0 1 0
0 − sin(φ) 0 cos(φ)

⎞
⎟⎟⎟⎠ (56)

which leaves the 1,3-plane invariant. In this way we can define
six simple rotations T12 , T13 , T14 , T23 , T24 , T34 that span the
full 6-DOF space of 4d rotations.

The most general rotation in 4d is the double rotation, which
leaves only the origin invariant. For example we can realize a
double rotation as the product of two simple rotations as

Da(φ1 , φ2) = T12(φ1)T34(φ2)

=

⎛
⎜⎜⎜⎝

cos(φ1) sin(φ1) 0 0
− sin(φ1) cos(φ1) 0 0

0 0 cos(φ2) sin(φ2)
0 0 − sin(φ2) cos(φ2)

⎞
⎟⎟⎟⎠

And we may similarly define Db(φ1 , φ2) and Dc(φ1 , φ2) in an
analogous way as

Db(φ1 , φ2) = T14(φ1)T23(φ2)

=

⎛
⎜⎜⎜⎝

cos(φ1) 0 0 − sin(φ1)
0 cos(φ2) − sin(φ2) 0
0 sin(φ2) cos(φ2) 0

sin(φ1) 0 0 cos(φ1)

⎞
⎟⎟⎟⎠

and

Dc(φ1 , φ2) = T13(φ1)T24(φ2)

=

⎛
⎜⎜⎜⎝

cos(φ1) 0 − sin(φ1) 0
0 cos(φ2) 0 sin(φ2)

sin(φ1) 0 cos(φ1) 0
0 − sin(φ2) 0 cos(φ2)

⎞
⎟⎟⎟⎠

to get a set of 3 double rotations that span all six DOF.
A double rotation for which the two rotation angles are equal

is called isoclinic, and will rotate any vector the same angle.
We will distinguish between the left-isoclinic, which have the
two double rotations going in the same direction, and right-
isoclinic where the rotation angles are in opposite directions.
Thus Da,b,c(φ, φ) are the left- and Da,b,c(φ,−φ) are the right-
isoclinic rotations. It is noteworthy that the relative ”direc-
tions” of two single rotations depends on the chosen order-
ing of the 4 basis axes, e.g. 1234. If two neighboring axis are
swapped, e.g. to the system 2134, the right-isoclinic rotations
becomes left-isoclinic and vice versa. It follows that the iso-
clinicity is unaffected by two such swappings, which includes
a cyclic permutations of any chosen triplet of the coordinate
axes. The coordinate axes shown in the ”schematic” column of
Table III runs through such triple-cyclic permutations that leaves
the Re(x)-axis (and the isoclinicity) unaffected as we go down
the column.

Any simple rotation can then be described as the product of
a right- and a left-isoclinic rotation with the same angles.

The left- and right-isoclinic rotations form two 3-DOF sub-
groups, i.e. any sequence of left-isoclinic rotations will always
remain left-isoclinic, and vice versa. The really interesting prop-
erty of the isoclinic parameterization, however, is that any left-
isoclinic rotation commutes with any right-isoclinic. Rotations
within each subgroup do not commute, however. This enables
any 4d rotation to be expressed as a (commuting) product of one
right- and one left-isoclinic rotation. The underlying group theo-
retical reason for this is that the 4d rotation group, SO(4) is iso-
morphic with the product of two 3d rotation groups O+

3 × O+
3 .

APPENDIX C

LEFT-ISOCLINIC PHOTON TRANSFORMATIONS ARE

(MOSTLY) NONPHYSICAL

Dr. Colin McKinstrie suggested the derivation in this ap-
pendix to me.

We make the customary extension (similarly to e.g. in [35],
[36]) to quantum mechanics where the electromagnetic field
amplitudes ex and ey correspond to the quantum mechanical
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creation operators ψ̂x and ψ̂y , and annihilation operators ψ̂†
x

and ψ̂†
y for the respective polarization components. Examples

on use and for these operators in a polarization context can be
found in e.g. [35], [37]. As postulated by quantum mechanics
(e.g. [38, Ch. 10.3]) these operators obey the boson commutation
relations [

ψ̂j , ψ̂
†
k

]
= ψ̂j ψ̂

†
k − ψ†

k ψ̂j =δjk (57)

for j, k ∈ {x, y}. We will now study input-output transforma-
tions for these operators, and the requirements the commutation
relations put on the transformation matrices. We consider left-
and right-isoclinic transformations separately.

Right-isoclinic transformations: This is the conventional
input-output unitary transformation(

ψ̂xo

ψ̂yo

)
=

(
γ η

−η∗ γ∗

)(
ψ̂xi

ψ̂y i

)
(58)

where subscripts i, o correspond to input, output, and where we
know from the unitary property that the coefficients γ and η
satisfy

|γ|2 + |η|2 = 1. (59)

If we now apply the commutator relations (57) to the output
operators, we find e.g. for the x−component[

ψ̂xo , ψ̂
†
xo

]
=

(
γψ̂xi + ηψ̂yi

)(
γ∗ψ̂†

xi + η∗ψ̂†
y i

)
−

(
γ∗ψ̂†

xi + η∗ψ̂†
y i

)(
γψ̂xi + ηψ̂yi

)
(60)

and by using (57) we can reduce this to

1 =
[
ψ̂xo , ψ̂

†
xo

]
= |γ|2

[
ψ̂xi , ψ̂

†
xi

]
+ |η|2

[
ψ̂y i , ψ̂

†
y i

]
=

= |γ|2 + |η|2 (61)

which equals the unitarity condition. The same can be for the
y-component. This shows that the commutator relations are sat-
isfied for all right-isoclinic transformations of the polarization
operators.

Left-isoclinic transformations: This transformation is(
ψ̂xo

ψ̂†
yo

)
=

(
γ η

−η∗ γ∗

)(
ψ̂xi

ψ̂†
y i

)
(62)

where again unitarity requires (59), but the lower-row vector
components are conjugated, in contrast with the reight-isoclinic
counterpart. If we now apply the commutator relations (57) to
the output operators of (62), we find for the x−component[

ψ̂xo , ψ̂
†
xo

]
=

(
γψ̂xi + ηψ̂†

y i

)(
γ∗ψ̂†

xi + η∗ψ̂y i

)
−

(
γ∗ψ̂†

xi + η∗ψ̂y i

)(
γψ̂xi + ηψ̂†

y i

)
(63)

and by using [ψ̂xo , ψ̂yo ] = [ψ̂†
xo , ψ̂

†
yo ] = 0, this reduces to

1 =
[
ψ̂xo , ψ̂

†
xo

]
= |γ|2

[
ψ̂xi , ψ̂

†
xi

]
− |η|2

[
ψ̂y i , ψ̂

†
y i

]
=

= |γ|2 − |η|2 . (64)

The same expression is obtained from the y−component. To-
gether with (59) this leads to

|γ| = 1 (65)

|η| = 0. (66)

This means that the left-isoclinic transformation is only phys-
ically possible if η = 0. Since, from (38) and (8) we identify
η = (iβ2 − β3) sin(β)/β, we can see that the condition implies
either β2 = β3 = 0 or sin(β) = 0. The latter are degenerate spe-
cial cases when the transformation equals the unity matrix or
the negative unity matrix.

We can thus conclude the only left-isoclinic rotations that are
possible for propagating photons are those where β2 = β3 = 0,
i.e., the left-isoclinic transformations are ”mostly” (for two out
of three DOF) nonphysical.
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