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Malic acid production by Aspergillus oryzae 

Christoph Knuf 

Department of Chemical and Biological Engineering 
Chalmers University of Technology 

 

Abstract 

Malic acid is a C4 dicarboxylic acid which is used as an acidulant in food and beverages. It is 

also considered as a bio-building block to replace petrochemically derived compounds in the 

post oil era. This organic acid can be biotechnologically derived from fermentation using 

renewable feedstocks as carbon source. Aspergilli are among the best producers of organic 

acid and A. flavus/oryzae is the best natural producer of malic acid.  

The mechanism of malic acid production in A. oryzae was first assessed by transcriptome 

analysis. A nitrogen starvation response, probably regulated by a transcription factor related 

to the S. cerevisiae Msn2/4 transcriptional activator of stress related genes, was found to 

result in high malic acid production. Furthermore the pyruvate carboxylase reaction was 

identified as a metabolic engineering target. This gene, together with the malate 

dehydrogenase and a malic acid exporter was overexpressed in the strain 2103a-68, which 

was characterized in a second project. The overexpression led to an 80% increase in yield 

during the starvation phase (1.49 mol (mol gluc)-1) and a triplication of the specific 

production rate. The increase in citric acid production in the engineered strain and its 

evaluation through model simulations led to the curation of the A. oryzae GEM. The existing 

model was curated with special emphasis on the mitochondrial transport reactions and let to 

a more defined network around the production of organic acids. Furthermore, the 

performance of the strain 2103a-68 on xylose as carbon source was evaluated as well and 

the good results led to the final project of manipulating the carbon source utilization by 

deleting the carbon catabolite repressor CreA. 

This work contributed to the understanding of the regulation of malic acid production. This 

knowledge was used for the development of A. oryzae as an organic acid producer through 

metabolic engineering. Furthermore, the evaluation of xylose as an alternative carbon 

source paved the way towards the use of lignucellulosic feedstocks and showed the 

suitability of A. oryzae for the biorefinery of the future. 

 

Keywords: systems biology, Aspergillus oryzae, malic acid, metabolic engineering, 

fermentation, C4 dicarboxylic acids  
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1 Introduction 

This thesis is combining the findings and methods that emerged and are still under 

development in the fields of metabolic engineering and systems biology. The term metabolic 

engineering was shaped in the visionary papers of Bailey [8] and Stephanopoulos and 

Valliano [140]. Bailey defined metabolic engineering as follows:  

“Metabolic engineering is the improvement of cellular activities by manipulation of 

enzymatic, transport, and regulatory functions of the cell with the use of recombinant DNA 

technology.” [8] 

This definition did not change much in the last two decades. Furthermore Bailey explained 

the usual procedure of metabolic engineering, called the metabolic engineering cycle. This 

cycle consists of “a genetic change, an analysis of the consequences and a design of a further 

change”, as depicted in the center of Figure 1. The shown metabolic engineering cycle was 

extended by the action of systems biology. Systems biology describes the approach of 

integrating different omics data in order to describe or predict the behavior of a biological 

system. The function of systems biology in the metabolic engineering cycle is to allow a 

faster and broader analysis of the system under investigation and through integration of the 

obtained data predict the outcome of the genetic modification, thereby saving time and 

money in the wet lab.  

 

Figure 1: The metabolic engineering cycle (after Nielsen 2001 [96]), extended by the actions of 
systems biology, which integrates data from –omics studies and thereby facilitate the analysis and 
design part of the cycle. EFM, elementary flux mode; FBA, flux balance analysis; MOMA, minimization 
of metabolic adjustments; ROOM, regulatory on –off minimization 

The aim of the cycle is an industrial production strain, which matches the industry’s goals 

concerning yields, rates and titers. This strain can then be used in a biorefinery, which is in 

analogy to the petroleum refinery producing fuels, power and chemicals, just that the 
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biorefinery is not using crude oil as substrate, but fermentable sugars derived from biomass. 

As the metabolic engineering approach relies on the genetic modification of microorganisms, 

this field was initially applied using model organisms like E. coli and S. cerevisiae [97], which 

also made them the platform organisms for the first biotechnological production processes 

made possible through metabolic engineering. The same organisms were as well first used 

during the initial phase of systems biology, with the first genome scale metabolic models 

developed for these organisms in the early 2000s (E. coli [35]; S. cerevisiae [42]). With the 

availability of the genome sequences of several biotechnologically interesting Aspergilli (A. 

nidulans [43], A. niger [112], A. oryzae [83]), applying systems biology approaches in the field 

of filamentous fungi became possible. In case of Aspergillus oryzae, the first genome scale 

metabolic model was published in 2008 [153] and a microarray allowing for transcriptome 

analysis became available in the same year. Over the years, the molecular biology toolbox 

for Aspergilli was filled up with optimized transformation protocols and expression/deletion 

cassettes, so that rational metabolic engineering based on a detailed analysis through 

systems biology became possible.  
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1.1 Aspergilli: Industrial workhorses 

Aspergilli have long been harnessed by mankind for human interests. A. oryzae for example, 

the subject of this study, has been used in the production of Japanese fermentation foods 

like Miso (soybean paste), Sake (rice wine) and Shoyu (soy sauce) for centuries. A patent on 

one of the first industrial enzymes produced by Aspergilllus oryzae was issued in 1895 to 

Jokichi Takamine who is known as the father of American biotechnology. This diastatic 

enzyme called Taka-Diastase (US Patent 525,823) was one of the first enzymes marketed in 

the United States of America. Since then the product range originating from Aspergilli largely 

expanded. There is the big field of organic acid production with the most dominant example 

of citric acid, which is naturally produced by Aspergillus niger and mainly used as an 

acidulant in food and beverages. Another major product area comprises of heterologous 

enzymes like e.g. lipases for the detergent industry produced by A. niger and A. oryzae. 

These two fields demand high volume production, especially citric acid with an estimated 

market capacity of about 1,600,000 t per year [132]. On the other hand Aspergilli have the 

ability to produce a wide variety of secondary metabolites, of which some are used in the 

pharmaceutical industry e.g. the cholesterol lowering polyketide lovastatin that was isolated 

from A. terreus [14], but others are extremely carcinogenic, like aflatoxin, which is produced 

by A. flavus [53]. Though there are some Aspergilli that can be potentially harmful for 

humans, the industrially relevant ones, A. niger and A. oryzae, are in general considered as 

safe, as both have a long history of safe use in the fermentation industry [9, 136]. In the case 

of A. niger, some strains have the potential to produce ochratoxin and therefore it is needed 

to check strains for their ochratoxin production potential before further developing new 

isolates to production strains [136].  

Another advantage of Aspergilli is the fact that they are able to utilize a broad substrate 

range. In nature Aspergilli live a saprophytic livestyle, meaning that they are able to thrive on 

dead biomass. In order to have greatest flexibility Aspergilli are able to efficiently metabolize 

the monosaccharides abundant in this environment, like glucose, ribose, arabinose, xylose, 

rhamnose, mannose, galactose and fructose [36, 111]. This is already a big advantage over 

the model organisms E. coli and S. cerevisiae, which have to be engineered and evolved in 

the laboratory to be able to utilize all these sugars. These monosaccharides are not readily 

available in e.g. plant cell walls, but are incorporated in polymers like cellulose (glucose), 

starch (glucose) and hemicellulose (xylose, arabinose). For the hydrolysis of those polymers, 

the Aspergilli possess a big toolbox that enables them to find the right enzyme for breaking 

most bonds in the biomass. Among these enzymes are glucanases and xylanases, which are 

mainly responsible for the degradation of the most abundant polymers, cellulose and 

hemicellulose, repectively.  

The availability of systems biology tools, the possibility of metabolic engineering, the current 

knowledge on large scale fermentation technology, the generally recognized as safe (GRAS) 
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status of many applications of Aspergilli, their ability to utilize and degrade a great variety of 

carbon sources and the natural ability of producing acids and enzymes makes them the 

perfect organism for the biorefinery of the future. 

1.1.1 A. niger and citric acid production 

Citric acid is a well-known organic acid that is extensively used in the food and beverage 

industry as it combines a pleasant taste with low toxicity and palatability. It serves several 

functions in the food formulation, like sterilization, flavor fixation and enhancement, 

bacterial stabilization, and standardization of acid levels. Furthermore it can be used as a 

chelating agent as it efficiently complexes metal ions. As the acid was initially extracted from 

Italian citrus fruits, the market became an Italian monopoly. At around 1880 the firm Charles 

Pfizer developed a chemical synthesis route. In the early 20th century, surface culture 

methods using Aspergillus niger were implemented and in the middle of the century further 

developed towards a submerged process. The approximate yearly production in 2007 was 

1.6 million tons. The majority of this is produced via fermentation using A. niger [60], but 

processes with Yarrowia lypolytica are reported as well [107].  

The foundation for submerged cultures for citric acid production with A. niger were laid in 

1948 [138], when the media composition promoting citrate accumulation was published. 

During the years the process was more and more defined and certain conditions for 

promoting citric acid accumulation were found. Firstly the carbon source should be provided 

in high initial concentration, as a direct correlation between the carbon source concentration 

and the specific production rate of citric acid was found [106]. Another important factor is 

the nitrogen source, which in industrial settings is usually provided through molasses that 

are used as carbon sources. For most studies in lab scale the medium is containing 

ammonium salts, like ammonium nitrate or ammonium sulfate [85]. In case of pH an 

optimum of around pH 2 or lower was found in vivo and in silico [6]. The aeration has an 

impact as well, as high aeration is lowering the CO2 partial pressure in the medium. This 

leads to a reduction of available substrate for the carboxylation reaction of pyruvate to 

oxaloacetic acid, which is needed to replenish the carbon in the TCA cycle for high citric acid 

production. Though a certain amount of CO2 is needed, sparging with CO2 in the initial phase 

of citric acid fermentations has a negative influence on citric acid production [87]. Besides 

the hitherto discussed influences, trace-metals have to be present only in limiting conditions. 

Among those are manganese [64], zinc and iron [138]. Besides those external factors, it was 

reported that the cell morphology has an influence as well. Concerning the question 

whether pellet or filamentous growth promotes citric acid production the results are 

contradictory and probably strain specific. It was shown, that high concentrations of spores 

used for inoculation most likely yield in the dispersed morphology [105]. Common 

characteristics of the micro-morphology are short, swollen branches with swollen tips [104]. 

Through high shear forces the number of metabolically active tips can be increased, as 
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filaments that consist of old, vacuolated and metabolically inactive cells are more likely to 

break [106]. 

Though generations of researchers have investigated the interesting phenomenon of citric 

acid accumulation, Karaffa and co-authors came in 2003 to the conclusion that “only pieces 

of the puzzle are understood”[60]. The biochemical reactions that are leading towards citric 

acid accumulation were discovered in the 1950s. It was shown that the carbon is passing 

through the glycolysis, resulting in 2 moles pyruvate per mole glucose. One mole of pyruvate 

enters the mitochondrion and acetyl-CoA is formed in the pyruvate dehydrogenase reaction, 

releasing one CO2. In order to reach a molar yield of citric acid per glucose of above 66%, this 

CO2 has to be recovered. That reaction takes place in the cytosol, where one mole of 

pyruvate is carboxylated to oxaloacetic acid, which subsequently is reduced to malic acid. 

The cytosolic malic acid can then be exchanged for a mitochondrial citric acid molecule that 

is hereby transported across the mitochondrial membrane. Once the malate is in the 

mitochondrion it is used to fuel the TCA cycle. It is oxidized to oxaloacetate, which 

condensates with the acetyl CoA to form citrate. During growth part of the citrate has to be 

used to generate cytosolic acetyl-CoA for lipid biosynthesis, but during non-growth 

conditions the molar yield of citric acid on glucose can be one (Figure 2).  

By using this route, which recycles the lost CO2 from the pyruvate dehydrogenase reaction 

from the mitochondrion in the cytosol, the whole process seems more like a bioconversion 

of glucose to citrate with maximum yields of about 95%. The above described pathway 

shows the origin of pyruvate as a direct result of glycolysis. But it was shown that 

considerable amounts of citric acid must have been formed from previously accumulated 

glycerol and erythritol, which most likely were a result of carbon overflow during the initial 

phase of citric acid fermentation [111]. To obtain high yields of citrate on glucose there is a 

net production of NADH which can be oxidized in the respiratory system. However, this 

results in ATP production and alternative oxidation of NADH is therefore important for 

obtaining high citrate yields on glucose [7, 120]. 
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Figure 2: Central carbon metabolism and biochemical reactions leading to citric acid (after [60]). 

 

A modelling approach identified the export of citrate from the mitochondrion as important 

factor for citric acid production in A. niger [44]. It is generally believed that this transport is 

based on the tricarboxylate transporter (TCT), which in yeast and mammalian cells 

exchanges cytosolic malate for mitochondrial citrate [38]. Therefore the malic acid 

accumulation that was measured prior to citrate accumulation in A. niger [129] might be a 

stimulus for the TCT to be more active. As the Km for malic acid (Km = 0.25mM) is 10 times 

higher than for internal citrate (Km = 0.027 mM) [103], quite high cytosolic malate 

concentrations are needed for efficient export of citrate. Once this transporter is active, it 

competes favorably with aconitase whose Km for citrate (3.2 mM) is significantly higher than 

the one of the TCT [48], thereby pulling the citrate out of the TCA cycle without any further 

constraints needed downstream in the TCA cycle to force citrate accumulation.  

This phenomenon was observed for S. cerevisiae, where it was shown, that increased titers 

of dicarboxlyc acids in the cytosol positively influence the export of citrate from the 

mitochondrion [131]. Furthermore, the overexpression of malate dehydrogenase in S. 

cerevisiae increased not only the final malic acid titers significantly, but also increased the 

citrate titer by 33% [118]. 3D-structural predictions showed that there were similarities 

especially in the cytosol facing part between the S. cerevisiae and the A. niger putative TCT 

[34]. In order to utilize this mechanism for increased citrate production in A. niger, de Jongh 

et al. overexpressed heterologous genes of the reductive TCA branch in the cytosol in order 

to increase the cytosolic flux towards dicarboxylic acids. It was shown that the insertion of 

cytosolic malate dehydrogenase improved the production of citric acid and the glycolytic flux 
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[34]. Through the overexpression of Frds1 and fumRs, the yield could be improved to reach 

0.9 g Citrate (g glucose)-1 in the later stage of the cultivation and even the abundance of 

Mn2+ ions did not prevent the accumulation of citrate.  

As the pH of the environment is an important factor for citric acid production, the influence 

of pH changes was investigated using model predictions and transcriptional analysis. The 

first studies on modelling the citrate production were conducted in the 1990s when Torres 

used a model of the carbohydrate metabolism of A. niger for the prediction of citric acid 

production [144, 145]. Over the years the modelling approach was optimized with the first 

genome scale metabolic model of A. niger as an important milestone [7]. Using the genome 

scale modelling approach and combining it with the proton production capability, the 

production of organic acids was investigated. It was successfully shown that the secreted 

acids at certain pH values were the most effective for A. niger [6]. Furthermore by using 

transcriptional analysis, it was shown that 109 genes were directly corresponding to pH and 

candidate orthologues of the Pal/PacC pH controlling pathway known from A. nidulans were 

identified. The findings led to the conclusion, that the aggressive acidification of the 

microenvironment in combination with the storage of gluconic acid was an evolved strategy 

among Aspergilli in order to outcompete rival microorganisms [6].  

1.1.2 C4 dicarboxylic acids 

The group of C4 dicarboxylic acids comprises of malate, fumarate and succinate (Figure 3). 

These acids, known as intermediates of the TCA cycle, are structurally very similar and can 

easily be interconverted chemically [151]. 

 

Figure 3: The group of C4 dicarboxylic acids, L-malic acid, Fumaric acid and Succinic acid, including 
their chemical properties. 

The current way of producing C4 dicarboxylic acids consists mainly of chemical conversion of 

petrochemically derived maleic acid or its acid anhydride, maleic anhydride. Succinic acid is 

derived by catalytic hydrogenation of maleic anhydride to succinic anhydride and 
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subsequent hydration to succinic acid [73]. In the case of fumaric acid, maleic acid is 

converted using catalytic isomerization. This fumaric acid can then be converted by 

hydration to malic acid. The same conversion method can be directly applied to maleic acid 

to derive malic acid. The drawback of the synthetic method towards malic acid is the 

production of a racemic mixture, which is not desired for food purposes and it causes 

problems in further polymerization processes. Therefore a biological production of L-malic 

acid is preferred. In order to achieve this a common method is the enzymatic hydration using 

Brevibacteria species which are able to convert petrochemically derived fumarate using the 

fumarase reaction to L-malate and secrete this back into the medium [47]. Another way of 

producing L-malic acid is fermentation of sugars, which can be used to produce bio succinic 

and fumaric acid as well and which will be discussed in the next section. 

The C4 dicarboxylic acids have broad application possibilities and overlapping application 

fields, as they are easily interconvertible. Succinic acid or derivatives thereof are used for 

example in dairy products and fermented beverages, but can also be applied as specialty 

chemicals in polymers, food, pharmaceuticals, and cosmetics. Through catalytic processes it 

is possible to transform succinic acid into 1,4 butanediol, tetrahydrofuran or γ-

butyrolactone, which are nowadays mainly derived from fossil resources. Furthermore 

succinate can be esterified to dimethyl succinate, which is known as an environmentally 

friendly solvent. Fumaric acid can be used in chemical synthesis, for polyester and other 

synthetic polymers and resins, as well for production of biodegradable polymers. Specialized 

applications are in the treatment of the skin condition psoriasis [4] and in cattle feed, where 

the addition of fumaric acid has achieved a decrease of methane emissions of up to 70% 

[86]. Malic acid can be used in biodegradable polymers as well, but the biggest market is 

currently the food industry where it is used as an acidulant and flavor enhancer. Malic acid 

produced through chemical synthesis is a racemic mixture, but for the flavor enhancement 

as well as for the polymerization application it is important to have an isomeric 

homogeneous product, preferably the L- isomer as this is the natural occurring form which 

can be obtained through fermentation. In a review from 2008 [132], the annual production 

of C4 dicarboxylic acids was estimated to range between 10 000 t in case of malic acid, 

12 000 t for fumaric and 16 000 t for succinic acid, all produced from petrochemicals. In the 

same study the annual market volume, if low cost biobased production could be established, 

was projected to be higher than 200 000 t for fumaric and malic acid and more than 

270 000 t in case of succinic acid. 

The possibility of microbial production of organic acids, especially the C4 dicarboxylic acids, 

has been proven. The general argument that oil is getting scarce and a future society will 

need alternatives for petrochemical based materials is a generally accepted prophecy and 

therefore a good reason for funding agencies to sponsor public research in this field. But if 

scientists want to see their processes emerging in an industrial setting, it has to become 

interesting for the biotech companies, which means making profit, in order to invest in a 

process. This profitable efficiency has to happen in the next 20 years, which is the run time 



9 
 

of a patent. Therefore the important point concerning large scale production of bulk 

chemicals from renewable resources is the short term economic feasibility. The fabrication 

of a product from renewable chemicals in which the production process even binds CO2, 

which is generally demonized as the climate killer, is without a doubt desirable for our 

environment and climate and can be achieved through C4 dicarboxylic acid production. 

Nevertheless the companies will only be able to sell hundreds of thousands of tons of a bio-

based chemical if the price is comparable with the petrochemically derived product.  

Many factors play a role in order to reach the bio-based/petrochemical prize equilibrium. On 

the one hand is the prize for crude-oil which has been rising over the last years. The bio-

based equivalent of crude oil is glucose or other carbon sources, as it is usually used as the 

carbon source for a fermentative process. Therefore the prize of the carbon source is the 

first position to keep in mind for the cost calculation of a fermentative process. The refining 

of crude oil towards chemicals is a long optimized and established process and therefore the 

cost is more or less constant on that side. In case of the renewable building blocks this is the 

part the scientists have to optimize. There are numerous points to consider, some being the 

choice of organism, the mode of operation, the down-stream processing or the use of 

carbon sources. 

In an attempt to calculate the feasibility of fumaric acid production, the authors of a study 

from 1990 came to the conclusion that the process will be viable in case the oil price reaches 

beyond 61 US$ bbl-1. They assumed a productivity of 1.2 g L-1 h-1 and a yield of 0.74 g (g 

glucose)-1). The 2012 average oil prices for WTI (~94.05$ bbl-1) and Brent oil (111.67$ bbl-1) 

(http://www.eia.gov/todayinenergy/detail.cfm?id=9530) were both far beyond that 

threshold. Furthermore, current technology led to better fermentation performance, which 

should give an even better advantage for the bio-based production. 

A more recent attempt of a techno-economic analysis of white biotechnology products from 

2008 by Hermann and Patel [54] came to the conclusion that succinic acid among other bulk 

chemicals like 1,3 propanediol, polytrimethylene therephtalate (PPT) and ethanol would be 

economically viable for a crude oil price of 25$ bbl-1. They also calculated a production costs 

plus profits (PCPP) ratio of the biological process over the petrochemical process of about 

100% at a glucose price of 135€ t-1 and a crude oil price of 25$ bbl-1. That means at those oil 

and glucose prices the biological and petrochemical way are even at former technology 

stage. Unfortunately the glucose price elevated to a value in the range of 250.20 to 327.02 

US$ t-1 (Last 52 weeks, from 15.01.2014 backwards, US sugar #11, 

http://www.investing.com/commodities/us-sugar-no11, 1$=0.736€), meaning that it 

doubled. But luckily for the white biotechnology, the current oil price is 4 times higher than 

the value that was considered in the study. Nevertheless, a thorough calculation taking 

current state of the art and raw material prices into account is needed for a proper analysis 

of the opportunities for white biotechnology products like the C4 dicarboxylic acids. 
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1.1.2.1 Microbial C4 dicarboxylic acid production 

A wide range of microorganisms naturally produces the C4 dicarboxylic acids (Table 1) and 

the development of fermentative production processes dates back several decades. Initially 

researchers looked for natural producers and optimized the cultivation methods for these. 

During the development of metabolic engineering and molecular biology, the standard 

model organisms like E. coli, C. glutamicum and S. cerevisiae were targets of metabolic 

engineering. Heterologous gene expression and blocking of pathways by gene knock-out 

enabled those organisms to accumulate C4 dicarboxylic acids. In parallel molecular biology 

tools were developed for the natural producers and the existing metabolic networks were 

optimized for organic acid production. 

The best natural producers for succinic acid, [Actinobacillus] succinogenes [49], Mannheimia 

succiniciproducens [74] and Basfia succiniciproducens [70], were all isolated from bovine 

rumen, but the species affiliation is still questionable for [Actinobacillus] succinogenes and 

Mannheimia succiniciproducens. The gram negative, coccoidal, non-motile bacteria B. 

succiniciproducens was taxonomically classified as belonging to the family of Pasteurellaceae 

[70]. For B. succiniciproducens, a glycerol based fed-batch process has been developed which 

allows succinate production at a steady state rate of 0.094 g L-1 h-1 and a yield of 1.02g (g 

glycerol)-1 for more than 80 days [135]. In wild-type B. succiniciproducens acetate and 

formate were identified as significant carbon sinks and therefore the pathway towards their 

formation was blocked by deleting the pyruvate formate lyase (pflD). This strategy worked 

out, but the flux was not completely directed towards succinate, but to a higher degree to 

lactate. This by-product was decreased by deleting lactate dehydrogenase as well. The 

double deletion strain showed a 45% increase in the molar yield of succinate on glucose 

(1.08 mol mol-1) [12].  

As mentioned above, not only natural producers were used for succinate production, but 

model organisms were extensively engineered in order to secrete organic acids as well. The 

hitherto most engineered organism for succinate production is a C. glutamicum strain that 

carries 4 deletions and 6 over-expressions. The deletions were aiming at diminishing the 

secretion of by-products like acetate (Δpqo, pyruvate:menaquinone oxidoreductase; Δcat, 

Acetyl-CoA:-CoA transferase; ΔackA, acetate kinase) and lactate (ΔldhA, L-lactate 

dehydrogenase). In order to enhance the production of succinic acid, the oxaloacetate pool 

(↑pyc, pyruvate carboxylase; ↑ppc, phosphoenolpyruvate carboxylase) was increased, the 

glyoxylate pathway reconstructed (↑aceA, isocitrate lyase (ICL); aceB, malate synthase 

(MS)), the initial reaction of the TCA cycle (↑gltA, citrate synthase) enhanced and the export 

of succinate from the cell (↑sucE, putative exporter) optimized [166]. All these 

modifications, together with a dual phase fermentation, characterized by an initial aerobic 

cultivation in shake-flasks and production in an anaerobic fed batch process, led to a final 

titer of 109 g L-1, a volumetric production rate of 1.11 g L-1 h-1 and an average yield of 1.32 

mol (mol glucose)-1.  
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Table 1: Overview of natural C4 dicarboxylic acid producers and their production performance 
regarding final yields, final titers, specific and volumetric production rates and the substrate used for 
the respective studies 

Acid Organism Yield 
[g g

-1
] 

Titer 
[g L

-1
] 

rp 
[g (g DW)

-1
 h

-1
] 

rp 
[g L

-1
 h

-1
] 

C-source comments 

Succinate Mannheimia 
succiniciproducens 
LPK7 

0.86 15.4 - - Glucose Batch, MBEL55E delta: 
ldhA, pflB, and pta-ackA 
[98] 

 Mannheimia 
succiniciproducens 
MBEL55E 

0.69 - - 3.9 Whey Continuous culture[75] 

 Basfia 
sicciniciproducens 
DD1 

1.02 5.21 0.375 0.094 glycerol Continuous culture 
[135] 

 Anaerobiospirillum 
succiniciproducens 

0.99 32   glucose Non-ruminal, CO2 sparging 
[95] 

 Basfia 
sicciniciproducens 
DD1 engineered 

0.708 - 1.027 - glucose Batch  
ΔldhA ΔpflD [12] 

 E. coli  
SBS550MG 

1.14 - - 1.21 glucose/ 
fructose 

ΔldhA, ΔadhE, ΔiclR, Δack-
pta, ↑PYC L. lactis [148] 

 E. coli 
AFP111-pyc 

1.1 99.2 - 1.3 glucose ΔldhA, Δpfl, ΔptsG, 
[149] 

 C. glutamicum 
 

0.87 109 - 1.11 glucose 4 deletions, 6 over-
expressions [166] 

Fumarate Rhizopus oryzae 0.78 ~25 - - glucose ↑PEPC [164] 

 S. cerevisiae 
FMME-001 

 3.18 - - glucose ↑PYC2, ↑RoMDH 
[154] 

 E. coli 
CWF812 

0.389 28.2 - 0.448 glucose Fed batch, 8 deletions + 
↑ppc [139] 

 R. oryzae ATCC 
20344, 

0.85 92 - 4.25 glucose Immobilized cells 
[21] 

 Rhizopus arrhizus 
NRRL2582 

0.65  - - glucose 20 L tank 
[125] 

 Rhizopus arrhizus 
NRRL1526 

0.8 97 - - glucose [62] 

Malate A. flavus 
ATCC13697 

0.938 113 - 0.59 glucose [10] 

 A. oryzae 
SaMF2103a-68 

1.027 154 - 0.94 glucose ↑C4T318, ↑pyc, ↑mdh 
[17] 

 Rhizopus arrhizius 
and Paecilomyces 
varioti 

0.603 48 - 0.34 glucose [142] 

 Monascus araneosus 0.372 28 - 0.23 glucose [81] 

 Schizophyllum 
commune 

0.357 18 - 0.16 glucose [61] 

 Zygosaccharomyces. 
rouxii 

0.387 75 - 0.54 glucose [141] 

 Saccharomyces 
cerevisiae 

0.313 59 - 0.19 glucose ↑mae1, ↑pyc, ↑mdh3 
[161] 

 E. coli  
XZ658 

1.057 34 - 0.47 glucose 11 deletions, Two stage 
fermentation [165] 

 Toluopsis glabrata 
T.G-PMS 

0.19 8.5  0.18 glucose ↑RoPYC, ↑RoMDH, 
↑SpMAE1 [26] 
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The first fermentation processes for the production of fumaric acid were established in the 

1940 in the US, but they were soon after replaced by chemical synthesis [126]. But as the oil 

prizes increase significantly and rising environmental awareness called for sustainable 

production processes, the interest in fermentation processes for fumarate were revived [46]. 

Rhizopus species are known to be the best natural producers for fumaric acid, with Rhizopus 

oryzae being the best reported producer so far [21]. Metabolic engineering approaches 

helped to increase the production of fumaric acid in comparison to the wild-type strain, 

overexpression of pepc in Rhizopus oryzae improved the fumaric acid yield (0.76 g g-1 vs. 

0.62 g g-1 WT), whereas pyc overexpression hampered cell growth and decreased fumarate 

yield. Instead the malate yield in the latter strain was increased 3 fold. And of course the 

model organisms E. coli and S. cerevisiae were metabolically engineered for fumarate 

production [139, 154].  

1.1.2.2 A. flavus / oryzae and malic acid production 

Malic acid was first isolated in 1785 by carl Wilhelm Scheele [88] from unripe apples, hence 

the name malic from the latin word for apple, malum. Since then it was found in many living 

cells, as it is an important intermediate in cellular metabolism and a constituent of the TCA 

cycle. Four major metabolic routes exist towards malic acid (Figure 4). The first one involves 

the carboxylation of pyruvate to oxaloacetate and subsequent reduction to malate, which 

leads to the highest theoretical yield of 2 moles per mole glucose. The second route involves 

the classic TCA cycle. As two carbon dioxide molecules are cleaved off the six-carbon 

backbone of citrate during its course through the oxidative TCA cycle, the theoretical yield 

drops to only 1 mole per mole glucose. The third possible pathway utilizes the reactions of 

the glyoxylate shunt. This can either be cyclic in case the oxaloacetate is replenished by 

malate and result in a yield of 1 mol mol-1 glucose or non-cyclic, which leads to a maximum 

yield of 1.33 mol mol-1, through replenishing the oxaloacetate by pyruvate carboxylation. 
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Figure 4: Possible pathways towards malic acid from glucose, the reductive branch of the TCA cycle, 
the oxidative TCA cycle and two versions of the glyoxylate cycle, cyclic and non-cyclic. Ac-CoA: Acetyl-
CoA; YSP: maximal malic acid yield per substrate 

Probably the first mentioning of malic acid as a product of microbial fermentation dates back 

to the year 1924 (Figure 5) when Dakin noticed malic acid as a by-product during ethanol 

fermentation [31] and also gave a hint towards the conditions for malic acid accumulation in 

microorganisms: “Some degree of nitrogen starvation seems to favor the production of malic 

acid.” In the following years malic acid was mainly mentioned in physiological studies of cell 

metabolism, which led to the conclusion that malic acid is an important constituent of the 

TCA cycle [67]. In the early 1960s industrial interest increased and a patent was filed on 

microbial malic acid production [1]. Several Aspergilli were screened and Aspergillus flavus 

was found to be the best producer in an initial screening. Furthermore, the limitation of 

nitrogen was applied as well, with (NH4)2SO4 at a concentration of 0.2% as the best 

ammonium salt, yielding in malic acid concentrations of 30.4 g L-1 after 7 days and up to 38.2 

g L-1 after 9 days of cultivation. The highest reported production rate was 3.28 mmol L-1 h-1, 

which was achieved with A. parasiticus after media optimization and a subsequent feed of 

CaCO3 [1]. A lot of research involving A. flavus was conducted in the late 1980s. This not only 

continued with further process optimization, but also elucidated the pathways leading to 

malic acid in A. flavus during intensive physiological studies. The first publication in the series 

from the Goldberg lab dealt with the biochemical aspects of acid biosynthesis.  
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Figure 5: Historical timeline of research activities related to microbial malic acid production. A: [31]; 
B: [1]; C: [10, 13, 113, 114, 115, 117]; DoE: [151]; D: [160, 161, 162, 163]  

In fermenters an overall molar yield of all C4 dicarboxylic acids of 0.68 mol mol-1 glucose was 

obtained. In addition, it was shown that malate dehydrogenase (Mdh) activity increased up 

to 10 fold and that this increase is due to de novo protein synthesis [117]. This led to the 

conclusion that malic acid production in A. flavus is a result of significant changes in the 

metabolic network due to nitrogen starvation and that the reductive cytosolic branch of the 

TCA cycle is carrying the main flux towards malic acid. This result was further confirmed by 
13C NMR measurements, which confirmed that the labeling of [1-13C] glucose was mainly 

incorporated in the third position of malate. This result proved, that malate originated 

directly from oxaloacetate and did not take the route through the TCA cycle [113]. Another 

indication for that was given after further process optimization, which resulted in overall C4 

dicarboxylic acid yields of 1.55 mol mol-1 glucose (malate yield of 1.28 mol mol-1 glucose), 

which is beyond the 1.33 mol mol-1 that could be achieved through the non-cyclic glyoxylate 

route. Along with the increased yield, the production rate was increased to reach 0.59 g L-1 h-

1 (4.4 mmol L-1 h-1). The main factors that increased the yield and titer of C4 dicarboxylic acids 

were an increased agitation and Fe2+ ion concentration [10]. During fermentations yielding in 

high concentrations of C4 dicarboxylic acids it was also observed that crystals were forming 

during the fermentation process, which consist of calcium salts of the secreted acids [114]. 

This fact shows the importance of the excess calcium carbonate. Through the formation of 

calcium acid salts, the product is constantly removed from the solution. This facilitates the 

transport of the acids out of the cells, as they do not have to pump the acid against a 

concentration gradient.  

In order to better understand the metabolic network around the C4 dicarboxylic acids the 

localization of enzymes was evaluated as well. In the case of A. nidulans pyruvate 
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carboxylase was found to be localized in the cytosol. Malate dehydrogenase and fumarase 

on the other hand showed unique isoenzymes in the cytosol and mitochondria. The 

presence of pyruvate carboxylase and malate dehydrogenase in the cytosol led to the 

postulation of the reductive cytosolic pathway to malic acid [101]. But the investigated A. 

nidulans strain did not produce malic acid under the given conditions. Later the presence of 

unique isoenzymes for malate dehydrogenase and fumarase were also confirmed in the 

malic acid producing A. flavus strain Kyowa A-114 (ATCC 13697) [113]. The presence of 

pyruvate carboxylase in A. flavus was investigated in a study with several Aspergilli. For the 

majority of the tested Aspergillus species, among them A. flavus, pyruvate carboxylase 

activity was only found in the cytosol fraction. For A. oryzae activity was detected in both, 

the cytosol and mitochondria [13]. The difference in localization of pyruvate carboxylase in 

A. flavus and A. oryzae is puzzling, as genome sequencing of both species indicate an 

extremely close relation between these two and it is even suggested, that the two are 

ecotypes of which one was selected by mankind (A. oryzae) to produce foodstuffs because of 

its inability to produce the carcinogen aflatoxin [109].  

After metabolic engineering [8, 140] took off during the 1990s, pathways towards malic acid 

were first manipulated in model organisms like S. erevisiae and E. coli. The first modification 

in S. cerevisiae was the overexpression of the FUM1 gene under the control of the strong 

inducible GAL10 promoter [116], which enabled S. cerevisiae to efficiently convert fumarate 

into malate. In order to produce malate from glucose the cytosolic malate dehydrogenase 

(MDH2) was overexpressed [118]. The expression of MDH under the control of the GAL10 or 

the PGK promoter led to a 6 to 16 fold increase in cytosolic MDH activity and a 3.7 fold 

increase of malic acid accumulation in production medium. This relatively simple engineered 

strain was able to accumulate up to 11.8 g L-1. A modern highly engineered S. cerevisiae 

strain overexpressing pyruvate carboxylase, malate dehydrogenase and a malate exporter in 

a pyruvate decarboxylase deletion background produced 59 g L-1 with a malate yield of 0.42 

mol mol-1 glucose and a productivity of 0.19 g L-1 h-1 [161]. These values were obtained in 

CaCO3 buffered shake-flasks. While scaling up the process, the culture pH and CO2/O2 

concentrations were identified as key process parameters. An optimization of these 

parameters led to a 19% improvement of the malate yield on glucose [160]. In the case of E. 

coli metabolic engineering for malic acid production got a kick start by adding modifications 

on a strain that was already engineered for the production of succinic acid. The final malic 

acid production strain was able to accumulate malate to a final titer of 32 g L-1,in a two stage 

fermentation process, which is significantly lower than the titer obtained with S. cerevisiae, 

but the yield (1.42 mol mol-1) was more than three times as high and the productivity (0.47 g 

L-1 h-1) twice as high [165]. Another E. coli strain was engineered in a way as to generate ATP 

during the production process by overexpressing the Mannheimia succiniciproducens PEP 

carboxykinase [94], which enable this strain to produce malic acid to a final titer of 9.25 g L-1 

after 12h of aerobic cultivation. Concerning the yield (0.75 mol mol-1), this strain could not 

compare with the previously mentioned E. coli strain, but the increase in production rate 

(0.74 g L-1 h-1) was a significant improvement.   
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1.1.2.3 Downstream processing 

The downstream processing in which a biotechnological product is recovered from the 

fermentation broth is roughly estimated to account for 50% to 70% [11] of the total 

production cost and therefore has a high impact on the economic feasibility of the whole 

process. In order to obtain C4 dicarboxylic acids in high purity from fermentation broth, three 

main steps are undertaken. In the first step the biomass is separated mainly by membrane 

filtration or centrifugation. The second step comprises the removal of impurities and primary 

separation. The last step finally purifies the acid by vacuum evaporation and crystallization. 

The main approaches for the separation of C4 dicarboxylic acids are from the fermentation 

broth include direct crystallization, precipitation, membrane separation, solvent extraction, 

chromatography, and in situ separation [27], these are briefly discussed below using succinic 

acid as an example.  

Direct crystallization aims at directly purifying the acid of choice from fermentation broths. 

When using different temperatures, 60°C for by-product removal through vacuum 

distillation and 4°C for the actual crystallization of succinic acid, a yield of 75% and a purity of 

97% was obtained when using a simulated broth. Applying this method to real fermentation 

broths, the yield and purity dropped to 45% and 28%, respectively [78, 82]. Another 

approach used the different dissociation states of the organic acids in the fermentation 

broth and reached a yield of 70% and a purity of 90% [77]. This method is probably the 

oldest and a fairly efficient process, but the purity will have to be improved if the product is 

to be used for polymerization.  

The Precipitation method uses different ions, mainly calcium, but also ammonium, in order 

to precipitate the acid from the fermentation broth. This method has been applied 

successfully in the purification of citric acid and lactic acid. During the process the acid is first 

precipitated by the addition of Ca(OH)2, CaO or ammonium and then the salt is separated by 

filtration. The filtrate reacts with sulfuric acid and the free organic acid is obtained. The 

drawback of using calcium ions is the production of gypsum in equal molar amounts to the 

organic acid [32]. An advantage is the already existing infrastructure and knowledge on this 

process. The use of ammonium has the advantage that it can be partly recovered after the 

process, though the recovery by pyrolysis uses a lot of energy. The recovery yield with 

ammonium is reported to be 93.3% [156].  

Another approach is membrane separation, including membrane filtration, like 

microfiltration, ultrafiltration and nano-filtration, or electro-dialysis. Yao et al. were able to 

obtain a purity of >99.5% with a yield of 75% in a process that applied micro-centrifugation, 

ultrafiltration and active charcoal adsorption, followed by further purification and final 

crystallization [155]. Using two stages of electro-dialysis, Zeikus et al. achieved a yield of 60% 

[159]. Nevertheless, the drawback of this method is the cost of the device and a relatively 

low yield.  
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The development of a simple solvent extraction method turned out not to be satisfactory 

[63]. Nevertheless a reactive extraction method in which the product is first converted into a 

compound without carboxylic groups and then recovered was developed and the use of 

aliphatic amines yielded in 95% recovery for a simulated solution and 78%-85% using E. coli 

fermentation broth [72]. By using acidification and esterification, recovery yields of 95% 

were obtained for both model solutions and actual fermentation broth [100]. 

Ion exchange resin, alumina, silica, and zeolite molecular sieve adsorption are some of the 

methods used for chromatography and recovery yields of >95% were reported for e.g. the 

resin XUS 40285 and when applying a method involving alkaline-type anion exchange resins 

the yield was 99% [27]. The challenge in method development here lies in the evaluation of 

the ideal sorbent that shows a high capacity, a complete and stable regenerability and 

specificity for the desired acid. 

A method that would be desirable to apply in case the product inhibits the growth of the 

production host is in situ product recovery (ISPR). A successful implementation of this 

strategy, using the anion exchange resin NERCB 09, was reported for an E. coli process. The 

production process was extended from 48h (fed-batch process) to 126h. Though the yield 

and rate was slightly lower for the integrated fermentation system, 1.3 g L-1 h-1 and 0.52 g g-1 

compared to 1.54 g L-1 h-1 and 0.57 g g-1 in the fed batch case, stable production could be 

achieved over a longer period, leading to the overall production of 145.2 g L-1 [76]. 

Though the above mentioned results all refer to succinic acid as the target product, the same 

methods can be applied to fumaric and malic acid as well. For the fermentation broth 

containing mainly malic acid obtained after cultivation of A. oryzae a procedure was 

patented that uses concentrating electro-dialysis in a first step and bipolar electro-dialysis in 

order to convert the acid salt into the free acid [57]. 
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1.2 Aspergilli and molecular biology 

In order to improve the production performance of a microbial host strain through 

metabolic engineering one needs molecular biology tools for directed modifications. 

Whereas the molecular biology studies and the resulting possibilities for the standard 

microbial hosts like E. coli and S. cerevisiae are numerous and easy to apply, the 

development of molecular biology tools for Aspergilli is lagging behind. Nevertheless, some 

strategies were inferred from other organisms and optimized for an Aspergillus host. 

Important aspects for efficient strain construction are the use of the transformation 

strategy, marker genes, plasmid availability and promoters and terminators. In order to 

introduce genetic material into the cell, different transformation strategies are available, 

among these are Agrobacterium mediated transformation [91], electroporation [25], biolistic 

methods [41] and probably mostly used protoplast mediated transformation [50].  

In order to select for positive transformants selection markers are needed. Those markers 

can be divided into dominant and auxotrophic selection markers. Frequently used dominant 

markers are the prokaryotic markers conferring resistance against hygromycin B (hph, E. coli) 

[121] and phleomycin (ble, Streptoalloteichus hindustanus). Another dominant nutritional 

marker which can be used to select not only for the existance of a marker, but also for the 

frequency of integration is acetamidase (amdS, A. nidulans) [29]. Among the auxotrophic 

markers, orotidine-5’-phosphate decarboxylase (pyrG, A. niger/oryzae) [52, 84] and 

orotidine-phosphoribosyl transferase (pyrE, A. niger) [150] are well known and resemble the 

URA3 auxotrophic marker from S. cerevisiae [15]. Both enzymes are part of the pyrimidine 

biosynthesis pathway and thereby involved in the de novo UMP biosynthesis and de novo 

pyrimidine base biosynthesis, which makes mutants auxotroph for uracil or uridine. 

Transformants can be selected on uracil-lacking minimal medium. Another advantage of 

using pyrG or pyrE markers is that they can be counter-selected for by 5-FOA (5-fluoroorotic 

acid). 5-FOA will be converted to the toxic compound fluorouracil through the pyrimidine 

pathway, thereby allowing only cells to survive which lack the pyrG or pyrE gene. The 

positive and negative selection makes it also possible to rescue the marker and thereby 

allows recycling of it. In order to do so, there are two strategies available. In the first case 

about 300 bp of direct repeat are flanking the marker gene. This sequence is a target for 

spontaneous recombination, which leaves only one copy of the flanking sequence in the 

genome [68]. In the second approach, the marker gene is flanked by loxP sites (34bp) [40], 

which recombine after recognition and action of the Cre recombinase. Other than the fairly 

easy approach of looping out the marker gene through direct repeats, the loxP/Cre system 

requires additional expression of the Cre recombinase. Though advanced transformation 

cassettes have been developed [93], it takes additional work and time until the next round 

of modification can take place. Other markers providing both positive and negative selection 

are niaD (selecting for growth without nitrate, negative selection using chlorate toxicity) [20] 

and sC (selecting for growth without sulfate, negative selection using selenite toxicity) [19].  



19 
 

In order to facilitate the cloning process, a range of plasmids was developed as well, which 

are mainly integrative plasmids, designed for integration into the genome. The drawback of 

Aspergilli concerning strain construction is their low frequency of homologous 

recombination. The random integrations of the DNA fragments into the genome make 

targeted gene deletion and specific integration of overexpression fragments into highly 

transcribed sequences troublesome. In some strains regularly used for strain construction 

components of the non-homologous end joining (NHEJ) process were deleted, which led to 

significantly increased homologous recombination in Neurospora crassa and was also 

adapted for A. oryzae [92]. Another obstacle for integration of DNA fragments is the fact that 

Aspergilli are multinucleate. Staining of conidia of the A. oryzae/flavus group showed that 

they are multinucleate [158]. The appearance of multinuclear cells and the high frequency of 

random integrations call for an additional confirmation of correct integration of the desired 

fragment into all nuclei by Southern blot analysis, even after confirmation of the integration 

of the deletion cassette at the desired locus by analytical PCR. An interesting and fast cloning 

method was developed and applied in A. nidulans. The method is based on USER cloning and 

allows for expression in a combined targeting-expression cassette. The vector set is designed 

for defined integration into the genome and expression of the GOI, either under the 

constitutive gpdA or the inducible alcA promoter [51]. 

 

For the overexpression of a gene or a whole pathway it would therefore be desirable to use 

episomal plasmids. Unfortunately episomal vectors do not naturally occur in Aspegilli, 

furthermore it was speculated that Aspergilli do not even possess the enzymatic machinery 

for handling small circular DNAs [3]. Nevertheless it was shown for A. nidulans, that genes 

could be expressed from episomal plasmids that contain an AMA1 sequence, which 

represents an inverted repeat of mobile Aspergillus transformation enhancers (MATEs) [2, 

45]. Those plasmids are structurally stable and do not recombine with the chromosome. 

While comparing the transformation efficiencies of these plasmids with integrative plasmids, 

a 1000 times higher transformation efficiency was reported for the episomal plasmids 

(50.000 colonies (ng DNA)-1 against 70 colonies (ng DNA)-1). It was also shown, that there are 

about 10 copies of the plasmid per nucleus [3], nevertheless, long term stability could not be 

proven for these vectors, which makes them less useful for an industrial application in which 

the productivity is supposed to last for many generations [39].  

In order to control the expression values, the choice of promoter is important as well. A 

great variety of promoters has been evaluated and used for protein expression in Aspergilli. 

On the one hand inducible promoters like PglaA and PalcA are used in case the expression 

of the desired protein has to happen at a certain stage of the cultivation. The expression of 

glaA is repressed on xylose, but highly induced when cultivated on maltose or starch. A 

CCAAT box has been identified which led to a gradual increase in transcriptional activity 

when multiple copies were added in the promoter region [79]. The alcA gene expression is 
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induced by various substrates like e. g. ethanol or threonine and strongly repressed by the 

presence of glucose. Expression of the alcA gene is highly depending on the activator AlcR 

[71]and a co-inducer. The performance of the alcA promoter for high level protein 

expression was enhanced by expression of AlcR under control of a constitutive promoter and 

multiple integrations of the alcR gene in the expression strain. Furthermore, the inhibition 

mediated through CreA was reduced through binding site modifications in the promoter 

[39]. Other inducible promoters are PalcC which controls the A. nidulans alcohol 

dehydrogenase gene, PexlA from A. awamori which is xylose inducible, A. oryzae’s thiamine 

dependent thiaA promoter [102] or the promoter controlling A. niger’s sucA, which is inulin 

or sucrose inducible. An interesting artificial promoter system is the Tet-On system which is 

based on the E. coli tetracycline resistance operon. It was evaluated in A. nidulans and has 

shown tight regulation, fast response within minutes after addition of the inducer and the 

ability of being fine-tuned depending on the inducer concentration [90]. On the other hand, 

constitutive promoters allow a stable expression of the gene of interest during the 

cultivation. Examples for constitutive promoters are the A. nidulans PgpdA (glyceraldehyde-

3-phosphate), PadhA controlling expressing of aldehyde dehydrogenase and the mid-level 

expression promoter of the tpiA gene encoding triosephosphate isomerase. Furthermore A. 

niger’s pkiA (protein kinase A), the glutamate dehydrogenase A promoter (PgdhA) from A. 

awamori and the mitochondrial promoters of oliC (ATP synthase) from A. nidulans and A. 

oryzae’s Ptef1 (translation elongation factor Ia) are known to be constitutive promoters. 

Promoters that have been successfully used in A. oryzae for high protein expression are 

PamyA (taka) [143], PglaA [146], PsodM [56] and Ptef1 [65]. A constitutive promoter used 

for metabolic engineering of A. oryzae is Ppgk (phosphoglycerate kinase) [17, 130]. It 

showed stable and high expression during a 150 h cultivation for malic acid production in a 

wild type strain and was therefore used for the overexpression of the reductive TCA pathway 

towards malic acid [17]. 
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2 Malic acid production 

The first questions posed during my thesis work was IF A. oryzae is producing malic acid to 

same high amounts as A. flavus under nitrogen starvation and if it does WHY is it doing so. 

The project was therefore kicked off with a detailed study on the physiological response of 

A. oryzae under nitrogen starvation conditions, which were as well suggested for fumaric 

acid production using Rhizopus nigricans [127]. In order to study this, the wild-type strain 

NRRL3488 was cultivated in batch mode, supplied with a limited amount of either peptone 

or ammonium sulfate as nitrogen source and glucose in excess. The reason for choosing 

these two nitrogen sources was that peptone as a complex carbon source is closer to the 

natural environment of Aspergilli. They grow on decaying biomass, which supplies nitrogen 

in the form of polypeptides which have to be hydrolyzed by the cells in order to be usable 

for peptide synthesis. Peptone is available in varying qualities from different sources and is a 

relatively expensive nitrogen source, which is a disadvantage for the use in industrial large 

scale fermentations. Ammonium sulfate on the other hand is a defined and cheap nitrogen 

source.  

2.1 Physiology 

The use of nitrogen as the limiting substrate leads to a fermentation profile which in theory 

is divided into two stages, an initial stage of biomass formation, until the nitrogen source is 

depleted in the medium, and a second phase in which the existing biomass is converting the 

remaining glucose into malic acid and a small fraction into energy for maintenance of the 

cellular functions. With this setup, the overall malic acid yield is supposed to be increased, as 

carbon is not “wasted” for the synthesis of cell constituents and the associated increased 

energy demand. The expected fermentation profile can be seen in Figure 6. This figure also 

includes the concentration of ammonia measured over the time course of a representative 

cultivation to show the nitrogen limitation during the second phase (stationary/starvation 

phase) of the cultivation.  

The question if A. oryzae is producing malic acid in the same conditions than shown before 

for A. flavus was investigated by cultivating two different wild-type strains in shake-flasks 

with peptone as nitrogen source and 50 g L-1 glucose. Both strains were accumulating malic 

acid in the fermentation broth, whereas NRRL3488 was secreting malic acid at a volumetric 

rate almost double of NRL3485 with values of 0.563 ± 0.020 g L-1 h-1 and 0.299 ± 0.011 g L-1 h-

1, respectively. The higher volumetric production rate was also reflected in the final titers of 

38.86 ± 2.8 g L-1 for NRRL3488 and 23.12 ± 0 g L-1 for NRRL3485. 
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Figure 6: Theoretical fermentation profile for malic acid production and measured Ammonia 
concentrations of a representative fermentation. I: exponential phase; II: stationary phase 

The better producing strain NRRL3488 was chosen for further investigation of the malic acid 

production mechanisms in A. oryzae and therefore cultivated in fermenters with either 

ammonium sulfate or peptone as nitrogen source and 50 g L-1 glucose as carbon source. The 

initial concentrations of the nitrogen source were adjusted in order to obtain a similar 

exponential growth phase, which led to initial concentrations of 6 g L-1 peptone and 1.4 g L-1 

ammonium sulfate. The fermentation profiles of the quadruplicate cultivations of each 

condition can be seen in Figure 7. From the steeper slope of the glucose graph in the 

peptone fermentation one can see that the glucose uptake rate is significantly higher than in 

the ammonium sulfate condition (exact data can be seen in Table 2).  
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Figure 7: Profiles of malic acid production cultivations of NRRL3488 in MAF medium. The shown 
extracellular metabolite profiles are averages and standard deviations of 4 reactors each. The upper 
part shows the fermentation results on peptone (A) and ammonium sulfate (B). Mal, malate; Cit, 
citrate; Suc, succinate; Gluc, glucose and DW, dry weight. 

Malate was detected in significant amounts in both fermentations. The volumetric 

production rate of malic acid was lower in the ammonium sulfate condition. But it showed 

the same trend in both fermentations, the volumetric malic acid production rate during the 

stationary phase is increased in comparison to the exponential phase. When it comes to the 

molar yields on a glucose basis, the values are almost the same for both nitrogen sources. In 

both conditions the yield increased from about 0.33 mol mol-1 to around 1 mol mol-1. The 

second most abundant acid in the fermentation broth was succinic acid, which is following 

the same trend than malic acid, but in much lower concentrations. As a result of the 

increased volumetric glucose uptake and malic acid secretion rate, the final titers of malic 

acid in the fermentation broth were significantly higher for the peptone condition, 

30.27±1.05 g L-1, in comparison to the ammonium sulfate cultivations, 22.27±0.46 g L-1. 
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Table 2: Physiological data for NRRL3488 grown on MAF medium supplemented with either peptone 
or ammonium sulfate as nitrogen source. 

Nitrogen final titer of 
malate 

  Phasea   µ
max

b             rmalate
c   rs

d   Yields on glucose (mol mol
-1

) 

source (g L
-1

)       h
-1

   
(mmol 

 L
-1

 h
-1

) 
  

(mmol 

 L
-1

 h
-1

 
  Citrate   Malate   Succinate   Pyruvate 

peptone 
30.27±1.05 

  exp.   0.23±0.01   4.22±0.25   8.10±0.81 
 

n.d.e 

 
0.33±0.05   n.d.   n.d. 

  
stat.   --   6.61±0.57   6.13±0.34   0.03±0.01   0.98±0.13   0.14±0.03   0.02±0.01 

ammonium 
 22.27±0.46 

 exp. 
 

0.21±0.05 
 

1.59±0.15 
 

3.71±0.44 
 

0.01±0.01 
 

0.34±0.06 
 

0.07±0.02 
 

n.d. 

    stat.   --   4.36±0.14   3.92±0.10   0.07±0.01   1.09±0.05   0.20±0.01   0.03±0.00 

The numbers stated are means of four individual bioreactors ± standard errors. 
a) exp.: exponential growth phase; stat.: stationary phase 
b) µmax: maximum specific growth rate 
c) rmalate: specific malate production rate 
d rs: substrate consumption rate 
e) n.d.: not determined 
 

In comparison to A. flavus, the results concerning the ammonium fermentation are 

comparable in case of the volumetric rates (0.59 g L-1 h-1, A. oryzae; 0.58 g L-1 h-1, A. flavus), 

whereas the yield is significantly lower in A. oryzae (1.09 mol mol-1, A. oryzae; 1.26 mol mol-

1, A. flavus). Yield and titer are both higher than for an engineered S. cerevisiae strain [161] 

and concerning E. coli strains either higher in yield compared to WGS-10 [94] or higher in the 

production rate compared to XZ658 [165].  

2.2 Transcriptome analysis 

After verifying A. oryzae’s ability to secrete high amounts of malic acid into the fermentation 

medium, especially under nitrogen starvation conditions, the further underlying mechanisms 

were investigated that lead to the optimization of the metabolism towards malic acid 

production. Therefore the transcriptional state of the cells was analyzed using Aspergillus tri-

species Affymetrix microarrays.  

The first approach to assess the transcriptional state of the cell was the use of the reporter 

feature algorithm of the Biomet toolbox concerning reporter metabolites and biological 

process GO-term analysis Figure 8. The reporter metabolites analysis revealed 59 

metabolites with significant transcriptional changes around them (distinct directional P-

value <0.001). Among the up-regulated reporter metabolites, intra- and extracellular 

ammonia, end-products of purine metabolism, allantoate and urate, and three metabolites 

of the glutathione metabolism were found. The 51 metabolites connected to down-

regulation contained for example metabolites from the amino acid synthesis, TCA cycle 

metabolites and energy or reduction equivalents.  
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Figure 8: Heat maps of overrepresented GO-terms concerning biological processes (bp)(A) and 
reporter metabolites (B) depicting changes in transcription from the growth phase to starvation 
phase. The p-values of the shown GO-terms and reporter metabolites are smaller than 0.005 in 
either of the conditions (ammonium or peptone). SSU, small subunit; CoA, coenzyme A; SRP, signal 
recognition particle; Golgi, Golgi apparatus; ER, endoplasmic reticulum; acp, acyl carrier protein 

The analysis concerning biological process GO terms revealed 15 GO terms that show a 

positive distinct directional p-value of less than 0.001 under at least one of the two 

conditions. Among the GO terms that are characterized by general up-regulation of the 

corresponding genes under nitrogen starvation are piecemeal microautophagy of the 

nucleus, purine base catabolic process, protein ubiquitination, or conidium formation. On 

the down-regulated side, amino acid synthesis related GO terms, as well as protein 

synthesis, translation/translational elongation, protein folding and intracellular protein 

transport, are found. As the largest sink of energy was removed through the stop of cellular 

growth, energy supplying processes like aerobic respiration, mitochondrial electron 

transport, or ATP synthesis coupled proton transport were correlated with transcriptional 

down-regulation.  
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Taken together, both, the reporter metabolite and GO term analysis, indicate that the cells 

are degrading cellular components and nitrogen containing compounds in order to recycle 

the nitrogen, furthermore the incorporation of nitrogen was reduced by general down-

regulation of the protein production machinery. The up-regulation of the conidium 

formation and autophagy of the nucleus GO term lead to the assumption that the cells are in 

a severely stressed condition in which they struggle to survive. In this context it is even more 

intriguing that they continue taking up glucose from the medium and convert it to malic acid 

with a yield of about 1 mol mol-1. Though the pathway to malic acid must be extremely 

active during nitrogen starvation conditions, no indication could be found using the initially 

discussed methods of transcriptome analysis.  

Therefore a more targeted approach was chosen and the P-values and directions of 

transcriptional changes were plotted onto the central carbon metabolism network depicted 

in Figure 9. Following the color code (red & up-arrow, up regulated; green & down-arrow, 

down regulated), it becomes obvious, that on a transcriptional level the glycolysis is up-

regulated. On the other hand, the TCA cycle seems to be down-regulated, which is in 

accordance with the results of the GO-term analysis. The connection of transcriptional 

regulation and malic acid production can be established by looking at the values for the 

pyruvate carboxylase and malate dehydrogenase reaction, which form the cytosolic 

reductive TCA branch from pyruvate via oxaloacetate to malic acid. The genes encoding for 

the reductive TCA branch are as well up-regulated, which forms a generally up-regulated 

direct connection between glucose and malic acid. In order to understand the regulation 

mechanism behind this, the promoter sequences of the up-regulated genes were searched 

for conserved sequences.  
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Figure 9: Schematic drawing of the central carbon metabolism of A. oryzae and reactions related to 
the production of malic acid. Transcriptional changes of the genes encoding for enzymes catalyzing 
the depicted reactions are shown in the boxes next to the reaction. The darker the color, the more 
significant is the transcriptional change between the stationary and the exponential phase of the 
cultivation. The direction of changes is indicated in the color and the direction of the arrow in the 
boxes. Red and up arrow: transcriptionally up-regulated in stationary phase; green and down arrow: 
transcriptionally down-regulated in the stationary phase. Asterisks, the shown data is taken from the 
most significantly changed genes of an enzyme complex.  

One pattern that came out of the analysis was the motif CCCTC, which showed an 

occurrence P-value of 6.6E-06. This motif is the recognition site of the S. cerevisiae 

transcription factor Msn2/4. This transcription factor is known to be a transcriptional 

activator of the multi-stress response [134] and concluding from the results obtained here, is 
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likely to be responsible for the switch between ATP generation under unlimited growth and 

malic acid production under nitrogen starvation in A. oryzae. This direct conversion of 

glucose to malic acid makes sense from an ecological and evolutionary point of view, as (i) 

the glucose availability can be reduced, as glucose consumption via the NADH and ATP 

neutral reductive pathway can continue even without growing. (ii) A. oryzae shows optimal 

growth over a wide range of pH (pH 3-7) [23] and can therefore outgrow competing 

mircoorganisms, whose growth is oppressed by low pH. (iii) It has been shown by sequence 

analysis, that A. oryzae shows the largest extension for hydrolytic enzymes, working at low 

pH, in comparison to A. nidulans and A. fumigatus [83]. 

Having established an explanation of the regulatory mechanism leading to malic acid 

production above, the transcription data was also used for the identification of metabolic 

engineering targets to further enhance the production capacity. Therefore the 

transcriptional changes were linked to changes in reaction rates, which were calculated 

through a random sampling approach, using physiological data from the ammonium 

fermentation as constraints. One of the reactions identified was the carboxylation of 

pyruvate to oxaloacetate. In order to further check the feasibility of the overexpression of 

the pyc gene, the enzyme activities of pyruvate carboxylase and malate dehydrogenase (the 

two enzymes in the reductive TCA branch) were investigated in cells harvested from shake-

flask cultivations during the exponential growth phase and the starvation phase. The activity 

of pyruvate carboxylase increased from 0.024 ± 0.004 units mg-1 total protein to 0.033 ± 

0.007 units mg-1 total protein. Malate dehydrogenase activity decreased from 4.848 ± 0.828 

units mg-1 total protein to 4.304 ± 0.358 units mg-1 total protein. As the increase of pyruvate 

carboxylase activity was expected to be higher, the possibility of increased protein 

degradation of pyruvate carboxylase was investigated. As seen in the GO term analysis, the 

protein ubiquitination was subject to transcriptional up-regulation, therefore the UbPred 

programme [122] was used to predict the ubiquitination sites of pyc, mdh and mae3. Two 

sites were predicted with high confidence for pyc, whereas none was predicted for mdh or 

mae3. As the enzyme activity of Pyc is significantly lower than for Mdh, this step is 

considered to be the flux controlling step of the reductive TCA branch. Furthermore, the 

maximum flux that can be achieved with the above mentioned enzyme activity during the 

stationary phase was calculated to be 1.01 mmol (g DW)-1 h-1. This correlated well with the 

calculated malic acid production rate during that phase and supports the theory of Pyc being 

the flux controlling step in the pathway towards malic acid and therefore makes 

overexpression of pyc a promising target.   
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3 Engineering of the reductive TCA branch 

After the natural ability to secrete high amounts of malic acid has been proven in the 

previous section, the engineered A. oryzae strain 2103a-68 was further investigated, which 

carries, among the overexpression of malate dehydrogenase and the malate exporter, the 

suggested strategy of overexpressing the cytosolic pyruvate carboxylase. The effect of 

overexpressing the reductive TCA branch and the malate exporter was investigated using 

glucose as carbon source. As a first step to using lignocellulosic material as carbon source for 

renewable chemical production, the engineered strain was then further analyzed on xylose 

containing medium and a mixture of glucose and xylose as carbon source.  

The wild-type strain NRRL3488 and the engineered strain 2103a-68 were first compared 

concerning the expression of the additionally expressed genes and the enzyme activity of 

pyruvate carboxylase and malate dehydrogenase.  

The strain 2103a-68 was created by transformation with DNA fragments containing the 

genes of interest under control of the phosphoglycerate kinase (pgk) promoter [130] and the 

glaA terminator. After transformants grew on selective plates, they were screened for the 

fastest acidification of the medium and 2103a-68 was the best performing transformant. The 

integration of all three fragments was confirmed by PCR, but the integration events were not 

quantified. Therefore a first approach to compare the engineered to the wild-type strain was 

the quantification of transcripts of each gene of interest and also the enzyme activity of 

pyruvate carboxylase and malate dehydrogenase.  

As the focus is now on the production stage, the relative transcription of the GOIs was 

determined during the stationary phase (48h). Though all genes were under the control of 

the same promoter, the transcription level varied in relation to the wild-type strain. In case 

of pyc, the transcriptional level was 3.6 time higher in the engineered strain, mdh 

transcription was increased 9.6 times and the malate exporter was transcribed 7 times more 

frequent than in the wild-type. Though the transcription relies to a great extent on the 

location on the genome, one could speculate, that the pyc fragment was integrated once, 

the transporter fragment twice and the mdh fragment three times, as the relative 

transcription increases in increments of about 3.5.  

In order to check if the increased transcription of the GOI translates into enzyme activity, 

pyruvate carboxylase and malate dehydrogenase activities were evaluated during 

exponential growth and starvation phase in both, the wild-type and engineered strain, from 

shake-flask cultures. Whereas the enzyme activities were not differing significantly during 

the exponential growth phase, the activity increased significantly in the starvation phase 

samples. The pyruvate carboxylase activity was twice as high in 2103a-68 compared to the 

wild-type and the malate dehydrogenase activity increased even four times, which is 

consistent with the trend of the relative transcription shown in Figure 10.  
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Figure 10: Enzyme activities (A) of pyruvate carboxylase (upper part) and malate dehydrogenase 
(lower part) and relative expression levels (B) of pyc, mdh and mae after 48h. 

In the previous study it was already determined, that the enzyme activity of pyruvate 

carboxylase is two orders of magnitude lower than for malate dehydrogenase, this ratio is 

still unchanged and got even slightly worse. Therefore the pyruvate reaction is still 

considered to be the flux controlling step. And again, the overall specific production rate that 

was calculated using the enzyme activity (NRRL3488, 0.842 mmol (g DW)-1 h-1; 2103a-68, 

1.709 mmol (g DW)-1 h-1) correlated well with the physiological data obtained during lab-

scale cultivations Table 3. Though it was argued before, that the resulting variation of 

integration events and the subsequent selection of the best acidifying strain results in the 

optimal expression ratio of the GOIs [17], the pyruvate carboxylase step still seems to be the 

flux controlling step, and it would be worthwhile to consider additional integration of pyc 

expression fragments. 

As the increased activity of the reductive TCA branch and over-expression of the malate 

transporter were proven by transcription analysis and enzyme assays, the final proof of the 

engineering strategy followed in lab-scale fermenters. The engineered strain and the wild-

type were cultivated in MAF medium containing 100 g L-1 glucose as carbon source and 

ammonium sulfate as nitrogen source. As can be seen in Figure 11, the glucose uptake rate is 

increased in the engineered strain and the most significant difference is the steep slope of 

the malic acid graph. The wild-type and the engineered strain produced malate to final 

concentrations of 26.77 ± 0.197 g L-1 and 66.3 ± 2.36 g L-1, respectively.  
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Figure 11: Fermentation profiles of NRRL3488 and 2103a-68 in MAF medium containing glucose from 
triplicate cultivations. Dry weight and carbon source concentration (A) and extracellular metabolite 
concentrations (B). Gluc, glucose; DW, dry weight; Cit, citrate; Mal, malate; Suc, succinate; NRRL, 
NRRL3488; Triple, 2103a-68. 

The significantly higher final concentration in 2103a-68 was a result of a 70% increased 

glucose uptake rate and an 80 % increased malate yield of the engineered strain of 1.49 mol 

(mol glucose)-1. These factors led to a malic acid production rate of 1.87 mmol (g DW)-1 h-1 in 

the engineered strain, which is tripled compared to the parental strain. The malic acid 

production performance of the engineered strain exceeds all values obtained with other 

organisms and even beats most strains when comparing the 2103a-68 malic acid values with 

succinic acid production performance. The only strains performing better are the 

Mannheimia and Basfia succiniciproducens wild-type and engineered strains.  

As the results obtained with glucose as carbon source were so promising, the performance 

of the engineered strain using xylose and a glucose/xylose mixture was investigated as well 

(Figure 12). In the xylose only case, the condition were exactly as mentioned above, just that 

100 g L-1 xylose were used instead of glucose. The malic acid production rates in this setting 

cannot reach the high values obtained on glucose, but are still higher than for the wild-type 

strain cultivated on glucose. The cultivation on the glucose/xylose mixture was a first 

attempt to move towards a process for second generation biochemical production using 

lignocellulosic feedstocks, which contain glucose and xylose as main sugars. In the 

fermentation profile in Figure 12 it can be seen that glucose is the preferred carbon source, 

as it was first taken up and xylose consumption followed. The rates and yields were 

calculated for the two carbon sources separately. Though the values are not as divergent as 

shown before for the single carbon source cultivations, the values represent the same trend, 

the strain performs better on glucose. During the glucose phase (16-35h), the engineered 

strain showed lower values compared to the single carbon source, but still produces malic 

acid at a rate of 1.46 mmol (g DW)-1 h-1. The values for the xylose phase (43-66h) on the 

other hand are slightly increased compared to the xylose only cultivation and reached a 

malate production rate of 1.08 mmol (g DW)-1 h-1. The interesting part is the carbon uptake 

rate, which stayed almost constant for the glucose, xylose and glucose/xylose mixture 

cultivations. 
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This is an important trait for the development of new strains for second generation chemical 

production, which is often limited by low carbon uptake rates. In this connection it is 

important that A. oryzae is not only able to metabolize xylose efficiently, but also to take it 

up from the medium with the same rate as glucose. Therefore A. oryzae does not need to be 

extensively engineered just to be able to utilize this pentose sugar, as the usual platform 

organisms like E. coli, S. cerevisiae and C. glutamicum needed to be [18, 80, 137].  

 

Figure 12: Fermentation profiles of 2103a-68 in MAF medium containing xylose (A) or a 
glucose/xylose mixture. DW, dry weight; Cit, citrate; Mal, malate; Suc, succinate. 

In order to further characterize the engineered strain 13C flux analysis was used, in which the 

intracellular fluxes are fitted towards the measured external metabolites and the labeling 

pattern of amino-acids, which was determined by GC-MS. As this method is limited to 

measuring de-novo synthesized amino-acids, intracellular fluxes could only be determined 

during the exponential growth phase. In order to obtain labeled samples from exponentially 

grown cells, shake-flask cultivations were performed and samples were taken after 7.5h of 

cultivation. In order to be able to fit the fluxes with special respect to organic acids, a 

compartmentalized flux model needed to be constructed. As the existing A. oryzae flux 

model [133] was not compartmentalized, an A. niger model [89] was extended by the 

reductive TCA branch in the cytosol. The so calculated fluxes show an increase of carbon 

flow through the rTCA branch in the cytosol and an increased flux of malate and 

oxaloacetate into the mitochondrion, in order to fuel the TCA cycle (Figure 13). These results 

show that the overexpression of the rTCA branch already has an impact on the malate 

production during the exponential growth phase and allows increased malate production 

compared to the wild-type during cellular growth. Though the efficiency of this strain is not 

optimal during the growth phase, the parallel growth and increased production allows for 

use of the engineered strain even in a continuous process. Thereby carbon containing waste 

streams could be used for the production of renewable chemicals.  

Taken together, this strain allows for high level production of malic acid from both, glucose 

and xylose. Therefore it is very well suited for the biorefinery of the future. Though it already 

performs very well concerning malic acid production, it might still be optimized through 
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metabolic engineering. One example might be the engineering of the pyruvate carboxylase 

step, which still seems to be a flux controlling step. 

 

Figure 13: Central carbon metabolism of A.oryzae including the intracellular fluxes of NRRL3488 
(upper values) and 2103a-68 (lower values). The samples were taken in mid exponential phase (7.5h) 
from shake-flask cultivations with MAF medium containing 25 g L-1 glucose (slightly modified after 
Knuf et al. [66]).  
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4 A. oryzae GEM update 

Genome scale metabolic models (GEMs) are used for a great variety of systems biology 

applications. They can be used for data generation as well as interpretation. For 

transcription data for example, the metabolites that participate in certain reactions are 

linked through a GEM to the genes that encode for the reaction. Thereby the transcriptional 

changes around a certain metabolite can be determined and metabolic hot spots can be 

identified in the network [99, 108]. GEMs are available for the most important Aspergillli, A. 

niger [7], A. nidulans [33] and A. oryzae [153].  

After the publication of the genome sequence of A. oryzae [83] in 2005 work on a GEM could 

start. As the annotation of only about 50% of the identified genes was too poor, this was 

improved by sequencing an expressed sequence tag (EST) library. After that it was possible 

to assemble a GEM. This first genome scale A. oryzae model iWV1314 was published by 

Vongsangnak et al. in 2008. The GEM was validated by comparing the model predictions for 

maximum specific growth rate (µmax; h-1) in batch cultivations and biomass yield (YSX; g DW 

(mmol Substrate)-1) during chemostat cultivations with experimental data. The model was 

able to accurately predict the growth rates for given carbon source uptake rates in batch 

cultivations using glucose, maltose, glycerol and xylose as carbon sources with an average 

accuracy of 98%. The biomass yields during chemostat cultivations could be calculated 

successfully as well. The model was used in a protein production project where it aided the 

investigation of amino acid requirements of an α-amylase overexpression strain [152]. As the 

requirements for tyrosine, aspartate cysteine and threonine significantly increased, the 

pathways leading to increased amounts of these amino acids were identified as possible 

targets for improving α-amylase production in an industrial setting. For this kind of 

simulation the model was well suited, as the reactions that are important for the amino acid 

and protein production are well annotated. On the other hand, information about 

transporters, especially the annotation of mitochondrial transport reactions is poor in almost 

any GEM. This is the same case in this model, as out of the 161 unique transport reactions 

only 53 are annotated, leaving the existence of 108 mitochondrial transport reactions open 

for speculation. Furthermore, most genes are annotated according to their degree of 

homology to A. niger, A. fumigatus or S. cerevsiae genes, which means, that the transport 

characteristics might vary as well.  

In order to further elucidate the organic acid production potential and to find further 

engineering targets, an accurate model for this purpose is needed. The malic acid secretion 

is very much dependent on transport reactions, especially the exchange of metabolites 

between the mitochondrion and the cytosol. As mentioned above, one model that explains 

the high malic acid secretion obtained with A. niger is based on the assumption, that malic 

acid production in the cytosol is preceding citric acid production [69]. The malic acid titers in 

the cytosol act as a trigger for the tricarboxylate transporter [129]. 
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During cultivations of the high malic acid producing strain 2103a-68 citric acid accumulation 

was detected along with an increased malic and succinic acid production. Assuming this 

mechanism to be active in A. oryzae as well, the knock-out of the TCT encoding gene in A. 

oryzae might diminish secretion of the by-product citric acid and thereby positively influence 

the yield of the desired C4 dicarboxylic acids. The TCT reaction is one of the few 

mitochondrial membrane transport proteins that are annotated. According to the model the 

gene AO090020000012 encodes for the anti-port of malic acid and citric acid. In order to 

verify this strategy, knock out simulations were performed, in which the experimental 

external fluxes of malate, succinate and citrate were used as constraints. These calculations 

always resulted in a possible solution, indicating that the network around the organic acid 

transport between mitochondrion and cytosol offers too much flexibility. When looking at 

the mitochondrial membrane exchange possibilities in the model, it almost seemed as if 

there was no border for organic acids.  

 

Figure 14: Detail of the graphical representation of the mitochondrial transport reactions of 
iWV1314.  

As this would not be feasible in nature, the model was curated with special emphasis on the 

mitochondrial transporters. Through BLAST comparison of A. oryzae genes with other 

Aspergilli and S. cerevisiae, using KEGG [58], Uniprot [28], Cello [157] and NCBI BLAST [5], the 

latest annotations were taken into account for improved annotation of the A. oryzae model. 
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The resulting model iLC1407 contains net 18 additional reactions compared to the available 

model from the Sysbio Toolbox [30], which is an update in which some bugs of iWV1314 

were fixed. Furthermore 38 gene annotations were added and 46 relocated. 28 of the 

transport reactions were removed, as no homolog genes were found in A. oryzae (Table 4).  

Table 4: Model properties of iWV1314, the update available on Sysbio.se and the latest update 
iLC1407 

Characteristics iWV1314 Vongsangnak; 
Ågren Updates 

iLC1407 

Reactions 1846 2328 2346 (+18) 

Metabolites 1073 1264 1265 (+1) 

Genes 1314 1369 
1407 (+38  

46 relocated) 

Transport 
reactions 

281 457 429 (-28) 

Compartments 4 4 4 

 

Predictions of biomass yields on different carbon sources were made using iLC1407 and very 

good fits were obtained using pure and mixed carbon sources (Figure 15). Then the 

metabolic functions of A. oryzae and A. niger were analyzed in order to investigate the 

differences of both species that diverge the metabolism for the production of malic acid and 

citric acid under similar culture conditions. Through the analysis of gene orthologs, it has 

been observed that both organisms possess almost the same metabolic machinery including 

proton transport and electron transport chain. Hence the in-silico production of TCA 

intermediates of both GEMs showed no differences. These results suggest that regulatory 

functions or varying enzyme transport capabilities are related to the production of malic acid 

in A. oryzae and citric acid in A. niger.  
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Figure 15: Venn diagram of homolog genes in A. niger, A. oryzae, A. fumigatus and S. cerevisiae (A) 
and comparison of predicted biomass yields (YSX) using the updated model iLC1407 and experimental 
data on different carbon sources [22, 110, 123] 

Furthermore different knock out scenarios were calculated using the random sampling 

algorithm [16] and experimental data from malic acid fermentations that were used as 

external fluxes. In silico the TCT (citrate/malate antiporter), the aspartate/malate shuttle, 

the oxaloacetate/alpha keto glutarate transporter and combinations of these were knocked 

out. Other than expected, all in silico mutants were able to grow and fulfill the constraints. 

The growth ability should have been hampered significantly by the TCT deletion, as the 

cytosolic acetyl-CoA supply was supposed to be hampered. Cytosolic acetyl-CoA is needed 

for fatty acid and sterol synthesis and protein acetylation [55]. There are two main pathways 

considered for the supply of cytosolic acetyl-CoA. The first route is mainly used by e.g. S. 

cerevisiae or Candida albicans, which converts acetate that originates from pyruvate via 

acetyl-CoA synthetase to acetyl-CoA. The second route utilizes ATP-citrate lyase which 

converts cytosolic citrate to acetyl-CoA and oxaloacetic acid. As shown for A. nidulans, the 

deletion of the ATP-citrate-lyase, which converts citrate to acetyl-CoA, is greatly diminishing 

growth on carbon sources that do not result in cytosolic acetyl-CoA [55], indicating that the 

acetyl-CoA synthetase is not able to supply acetyl-CoA in e.g. glucose containing medium.  

As the main transporter for citrate out of the mitochondrion into the cytosol was removed, 

there should be no possibility to generate cytosolic acetyl CoA in our calculations. But 

instead the model used the pyruvate decarboxylase route, as the enzymes needed for that 

route are present in A. oryzae. This result shows the limitations of FBA and stoichiometric 

models, they do not consider regulation, but give you the best solution possible with the set 

of reactions/genes the model/organism contains. On the one hand this could be assessed as 

a flaw, as it is not accurately reflecting the natural behavior. On the other hand it opens the 

possibility to speculate about evolutionary engineering a strain that is not able to generate 

acetyl-CoA as the citrate route is blocked to relief repression on the acetyl-CoA synthetase 
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route, thereby generating a strain that is not producing citrate, but increased malate and can 

still grow on glucose as sole carbon source.  

The above mentioned tricarboxylate transporter is not described for Aspergilli, but the S. 

cerevisiae proteins Yhm2p and Ctp1p were shown to have citrate transport abilities [37]. 

Yhm2p is supposed to be a component of the citrate-oxoglutarate NADPH redox shuttle 

without malate transport capabilities and to play a role in replication and segregation of the 

mitochondrial genome [24]. For Ctp1p citrate and malate transport abilities have been 

proven, whereas the Km is significantly higher than reported for mammalian systems [59]. A 

BLAST search of Cpt1p against the A. oryzae RIB40 genome returned several positive genes. 

Out of these, two genes, AO090020000012 and AO090102000454 showed a significant up-

regulation comparing starvation against the growth phase (Data obtained in the first study, 

Table 5). As AO090020000012 was among the genes most probably encoding for a 

transporter with citrate-malate antiport function, this gene was deleted in the A. oryzae 

strain NRRL3488. But in initial shakeflask cultivations, the deletion strain did not show a 

significant difference in the profile of secreted organic acids. 

Table 5: Comparison of transcriptional changes of A. oryzae genes, which show a certain degree of 
homology to the S. cerevisiae Ctp1p, a tricarboxylate transporter gene. Transcriptional comparison of 
expression levels between the starvation and the growth phase. 

Gene Sequence identity to 
S. cerevisiae Ctp1p 

adj,P,Val logFC 

AO090020000012 49.8% 0.000317967  0.501386012 

AO090023000454 49.0% 1.27854E-05  0.454117181 

AO090005000048 39.1% 0.159778469 -0.061435612 

AO090102000125 32.4% 0.436944134 -0.076882676 

 

Another question that arose from the project on the engineered strain was the question of 

the origin of the detected succinate. 2103a-68 was not only producing increased levels of 

malate, but also increased amounts of succinate. This led to the speculation, that there is a 

direct continuation of the reductive TCA branch from malate via fumarate to succinate in the 

cytosol. This question was addressed by measuring the summed fractional labelling of the 

secreted malic acid and succinic acid by GC-MS. Furthermore the summed fractional 

labelling for cytosolic and mitochondrial derived malate and succinate were simulated 

(Figure 16).  
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Figure 16: Pattern of the summed fractional labelling. Upper part, simulated pattern for cytosolic and 
mitochondrial derived malic acdi. Lower part, fitting of simulated and experimentally derived SFLs for 
malate and succinate. Dark bars, fitted SFLs; bright bars, measured SFLs. 

The pattern of summed fractional labelling of malate resembled the one of the cytosolic 

route to a large extend, with minor contributions from the TCA cycle. The labelling pattern of 

the succinic acid mainly resembled the simulated pattern of the TCA cycle derived succinic 

acid. Therefore, the idea of a functional pathway from malic acid to succinic acid was 

dropped and the model structure concerning the reductive cytosolic TCA branch was kept as 

in iWV1314. 

A simpler flux model with the summed fractional labelling of malate and succinate and the 

external fluxes for malate, succinate, citrate and glucose as input was used to calculate 

internal fluxes Figure 17. These indicate that 22% of the secreted malate originated from the 

mitochondrion. 

In summary, the model curation led to a “cleaner” picture of the current knowledge on 

mitochondrial exchange reactions, it is important to stress the current knowledge part, as 

the knowledge about mitochondrial transport reactions in general and in A. oryzae in 

particular are not that well studied. Based on the current model, it was shown that 

metabolic possibilities of A. oryzae and A. niger, extrapolated from the data obtained from 

the corresponding GEMs, are not that different, which leads to the conclusion, that 

regulatory mechanisms or enzyme properties make the difference between malic acid and 

citric acid secretion. 
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Figure 17: Central carbon metabolism of A. oryzae and internal fluxes calculated according to 
external fluxes determined for NRRL3488 and 2103a-68 during the stationary phase of a bioreactor 
cultivation and the summed fractional labelling of malate and succinate from the final sample of a 
shakeflask cultivation. 

This allows for speculations about turning A. niger, which can grow at even lower pHs than 

A. oryzae, into an efficient malic acid producer. The deletion of the gene AO090020000012, 

which was identified to possibly encode for a TCT in A. oryzae , did not lead to significant 

changes in the organic acid production and will require future investigation. The additional 

deletion of AO090102000454, which might be another gene encoding for a TCT, could be an 

additional task for the future.  
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5 Manipulating the carbon source utilization 

Most microorganisms prefer to metabolize glucose over any other carbon source [128] and 

so does A. oryzae, as shown in the section 3. Enzymes which are needed for the catabolism 

of less preferred carbon sources are usually transcriptionally inhibited. This inhibition also 

contains enzymes participating in the degradation of sugar polymers, like cellulose, 

hemicellulose and pectin. In Aspergilli, the transcriptional inhibitor CreA is known to be a 

major player in the complex regulation mechanisms [128]. CreA has been studied intensively 

in A. nidulans. Like S. cerevisiae’s Mig1, it contains zinc fingers of the Cys2His2 type, which 

probably bind to the 5’-SYGGRG-3’ consensus sequence. When deleting CreA in A. nidulans, 

Prathumpai et al. [119] reported previously that the subsequently metabolized sugars 

glucose and xylose were consumed in parallel. Furthermore, culture supernatant of the 

mutant strain showed elevated xylanase activity, which would be beneficial for a 

simultaneous saccharification and fermentation process. This would also cut down costs, as 

the expenses for enzyme mixes for hydrolysis would be omitted. 

As shown above, A. oryzae is able to consume xylose at high rates and efficiently converts 

this pentose to malate. Lignocellulosic feedstocks, which would be the preferred carbon 

source for a truly sustainable production of chemicals through a biorefinery, contain both 

glucose and xylose. In a batch-cultivation setup the subsequent utilization does not cause 

problems, but in a continuous cultivation setup, only the glucose fraction would be used for 

the conversion and the carbon from xylose will not be metabolized. This is of course a major 

drawback and a parallel utilization, as shown for the A. niger CreA mutant, would be 

desirable. Therefore the CreA gene was deleted in a uracil auxotrophic descendent of 

NRRL3488.  

This pyrG deleted NRRL3488 mutant was transformed with the deletion cassette. This 

cassette contained the A. niger pyrG gene flanked by 1kb DNA fragments which are 

homologous to the upstream and downstream region of the creA gene. Prototrophic 

mutants were selected on minimal medium and colonies were subsequently purified on 

minimal medium. DNA from purified colonies was isolated and PCR was performed using the 

DNA as template. Primers were constructed to bind upstream and downstream of the 

integration cassette (Figure 18) and inside the pyrG sequence, running towards the ends. 

The two primer pairs for upstream and downstream verification amplified a 1.5 kb and 2 kb 

fragment, respectively. All but one of the in Figure 18 displayed mutants showed the 

expected bands. As Aspergilli are known to integrate DNA fragments in an ectopic manner, 

the correct single integration of the deletion fragment was furthermore verified by Southern 

blotting. As only mutant AOMCK01.09 showed a clear single band, this transformant was 

used for further analysis of the effect of the creA deletion in A. oryzae. 
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Figure 18: PCR (A) and southern blotting (B) confirmation of the integration of the deletion fragment. 
M: GeneRulerTM 1 kb Plus Ladder; WT: NRRL3488 

The resulting creA deletion strain showed reduced mycelial growth compared to the wild-

type. The mycelium is very dense in the center of the colony and an uncoordinated network 

of hyphae is growing outwards, whereas the wild-type spreads evenly in straight radial 

hyphae Figure 19. Furthermore the mycelium is growing upwards as well in case of 

NRRL3488, whereas the mutant hyphae are flat on top of the agar. Concerning sporulation, 

AOMCK01.9 takes much longer time to sporulate and the spores are concentrated more 

towards the center, whereas in the case of the wild-type, sporulation occurs more evenly 

after around 4 days. 

 

Figure 19: Growth comparison of NRRL3488 and AOMCK01.9 on spore propagation plates.  

The first thing to check on the mutant strain was the effect of the creA deletion on the 

carbon source uptake. Therefore the wild-type and mutant strain were cultivated in MAF 
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medium containing increased nitrogen source, in order to exclude the effect of nitrogen 

starvation. Both strains consumed the glucose first (Figure 20), until a glucose concentration 

of about 2 g L-1 was reached. This happened at about 10h of cultivation, thereafter glucose 

and xylose were consumed in parallel and after 13h, when the glucose was completely 

exhausted, xylose consumption went on until about 25h of cultivation. This result is in 

disagreement with the results obtained in A. nidulans. 

 

Figure 20: Fermentation profiles of NRRL3488 and AOMCK01.09 during batch cultivations in MAF 
medium containing 6.4 g L-1 ammonium sulfate and 5g of each carbon source. Carbon source 
concentration (A), malate concentration and xylanase activity (B).  

Another trait previously found for an A. nidulans creA deletion mutant was the positive 

influence on the secretion of xylanases. In order to check for the same effect, the same 

fermentation conditions as above were applied and the xylanase activity of the supernatant 

was measured. For NRRL3488, no activity could be detected in the first samples, in the 

sample at 17h, the activity reached 0.045 Units mL-1. In the following samples the activity 

kept rising to finally reach 0.090 Units mL-1. For the mutant strain on the other hand, 

xylanase activity could already be detected after 13 h. From there on the activity increased 

constantly from 0.510 Units mL-1 to finally reach 6.668 Units mL-1. This final activity is 74 

times higher than measured for the wild-type cultivations. Though the deletion obviously 

affected the secretion of xylanases positively, the effect of glucose repression either on the 

xylanase secretion or on the xylose metabolism could not be confirmed.  

The initial aim was to construct a strain that could be used in a continuous consolidated 

bioprocess. As the strain NRRL3488 was previously shown to be able to produce malic acid, 

the creA deleted strain was supposed to be used in a process to produce this C4 dicarboxylic 

acid. Therefore the ability of AOMCK01.9 to produce malic acid was evaluated as well. As can 

be seen in Figure 20, there was hardly any malate detected in the supernatant of the mutant 

cultivation, whereas about 3 g L-1 were accumulated in the NRRL3488 cultivation. The initial 

characterization was performed using high amounts of nitrogen in the fermentation broth. 

In order to simulate the production medium and investigate the malic acid production 

potential further, the wild-type and the mutant strain were cultivated in MAF medium 
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containing the usual 1.4 g L-1 of ammonium sulfate. The carbon source composition was also 

varied. In the first case a glucose/xylose mixture, in the second pure glucose and in the third 

case pure xylose were used at initial concentrations of 30 g L-1, each. The final 

concentrations of malate are shown in Figure 21. Though the final concentration of malate 

increased significantly and also the ratio towards the wild-type is not as disproportionate as 

in the initial comparison, the final malic acid concentration in the mutant broth is less than 

half of the wild-type.  

 

Figure 21: Final malate concentrations of NRRL3488 and AOMCK01.9 after cultivation in three 
different carbon source compositions. Glu/Xyl, glucose and xylose mixture; Glu, glucose only; Xyl, 
xylose only; intial concentration of wach carbon source was 30 g L-1. 

Taken together, the deletion of creA did not lead to the expected effect of creating a strain 

that can produce malic acid from parallel metabolized glucose and xylose. The strain 

AOMCK01.9 was producing less than half of the final titer of malate than the wild-type 

NRRL3488 and consumed glucose before xylose. But the strain showed significantly elevated 

xylanase activity in the fermentation broth. As the reduced malate production indicates an 

important role of the deleted gene AO090026000464 in the regulation of the central carbon 

metabolism, further investigation through for example transcriptome analysis of this strain, 

would be an interesting follow up project. 
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6 Conclusion 

The objective of the work was to investigate the malic acid production potential of the 

filamentous fungus A. oryzae. Therefore the ability of the wild-type strain NRRL3488 

concerning malic acid production was evaluated on different nitrogen sources and the 

transcriptional changes between the exponential growth phase and the malic acid 

production phase, which is characterized by nitrogen starvation, was evaluated (Paper I). 

Subsequently an engineered A. oryzae strain (2103a-68) was characterized in lab scale 

fermenters (Paper II). This strain also produced significant amounts of citrate as a by-

product. In order to perform in-silico knock out evaluations the existing model needed to be 

updated and was refined concerning reactions connected to organic acid production. During 

the characterization of 2103a-68, the performance of this strain was not only evaluated on 

the commonly used carbon source glucose, but also on xylose. As the positive results for 

both carbon sources paved the way towards the use of A. oryzae as a platform organism for 

the production of renewable chemicals in the biorefinery of the future, the carbon source 

utilization was sought to be de-regulated by the deletion of AO090026000464, which is 

supposed to encode for the carbon repressor creA (Paper III).  

From the first study we learned that A. oryzae wild-type strains have a natural ability to 

produce significant amounts of malic acid and that they convert glucose to malic acid with 

half of the maximum theoretical yield, when nitrogen becomes limiting. This is an important 

trait in order to reach high yields, as the carbon is not incorporated into biomass, but into 

the product, in this case malic acid. The regulation of this mechanism was investigated 

through transcriptome analysis, which revealed a general up-regulation of genes involved in 

the glycolysis, a synchronistic down-regulation of TCA genes and an up-regulation of the 

rTCA genes in the starvation phase compared to the growth phase. Binding sites for the S. 

cerevisiae transcriptional activator Msn2/4 were found when analyzing the up-stream 

sequences of the up-regulated genes of the glycolysis and rTCA. This suggests that A. oryzae 

uses malic acid production as a stress response towards nitrogen starvation. The metabolic 

changes evoked by the nitrogen starvation stress, leading to continued conversion of glucose 

to malate also opens possibilities to utilize this mechanism to produce other products. One 

could for example speculate about developing metabolic engineering strategies that divert 

the flux away from malic acid at the various branch-points on the way towards malic acid. 

The most important hub is the cytosolic pyruvate pool. A product easily derived from 

pyruvate with only one enzymatic reaction is lactate, for which the flux would just have to be 

diverted through the lactate dehydrogenase reaction. Another product with increased 

interest is 3 hydroxypropionic acid. There are several theoretical pathways from pyruvate to 

3HP [147], for most of them the enzymes that would be needed were not reported to occur 

in nature, yet. One of the working pathways has been reconstructed in E. coli and goes in 

three steps from Pyruvate via Acetyl-CoA and Malonyl-CoA to 3HP [124]. A very interesting 

but so far only theoretical pathway employs a hitherto unknown malate decarboxylase. 

Once such an enzyme is found or engineered, it would allow production of 3HP in a single 
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step from malic acid and in this case the A. oryzae NRRL3488 strain would be the perfect 

production platform. 

An even better strain to build on would be the engineered A. oryzae strain 2103a-68, which 

was further characterized in paper 2 and shown to be an even better malic acid producer 

than the wild-type. The overexpression of the cytosolic TCA branch and the malic acid 

transporter let to production rates, yields and final titers that are among the highest ever 

reported for a microbial system. Nevertheless, the pyruvate carboxylase reaction might still 

be the controlling step in this pathway. In order to overcome this problem, inserting more 

copies of the pyc expression cassette and resulting higher expression, or enzyme engineering 

might be helpful in this respect. Another observation was the increased citric acid 

production, which might be a result of the increased activity of the tri-carboxylate 

transporter, which is supposed to be triggered by high cytosolic malic acid concentrations. A 

deletion of the corresponding gene in A. oryzae could lead to diminishing the citric acid 

production and to higher yields of malate. During this second project, the performance of 

the engineered strain was furthermore evaluated on xylose and glucose/xylose mixtures and 

the positive results confirmed the suitability of this strain to be used in a biorefinery, using 

e.g. lingo-cellulosic biomass, which mainly consists of those two sugars, as carbon source. 

Pretreated renewable feedstocks usually contain additional inhibitors and Aspergilli are 

generally known to be more resistant than other organisms, nevertheless follow-up studies 

would have to confirm the positive results concerning malic acid production on pretreated 

biomass.  

The issue of alternative carbon source utilization was also addressed in this thesis. As seen 

from the cultivations with the glucose/xylose mixture, the engineered strain prefers to 

consume glucose over xylose. For A. niger it was shown that the deletion of creA, a carbon 

catabolite repressor, let to simultaneous consumption of both sugars and increased 

secretion of hydrolytic enzymes. This effect could not be fully confirmed for the deletion of 

the gene AO090026000464, which is supposed to encode for CreA. The knock-out led to 

increased xylanase activity, but the carbon sources were still consumed subsequently and 

the malic acid production was also negatively affected. These results indicate that the 

regulation of the central carbon metabolism is affected in a way, as well as the carbon 

repression of secretion of hydrolytic enzymes. In order to further investigate the role of 

AO090026000464, transcription and metabolite analysis would be interesting.  

The initial A. oryzae model was constructed with respect to protein production. In order to 

be able to confidently predict the metabolism of organic acid production, the transport 

reactions between the mitochondrion and the cytosol were of special interest. As these and 

other reactions connected to organic acid production were poorly annotated, the annotation 

and localization of reactions in the A. oryzae GEM were revised. This curation led to the 

deletion of 28 transport reactions for which no annotation could be found, annotation of 38 

reactions and re-localization of 46 reactions. The resulting model was able to accurately 
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predict previously reported results and could be used as a scaffold for further development 

of metabolic engineering targets for not only protein production, but also organic acid 

production. 

Nevertheless, the GEMs of the Aspergilli and the one of A. oryzae in particular are not as 

concise as the one of the model organisms like S. cerevisiae or E. coli. This is mainly due to 

bad annotation or annotation entirely based on homology to other organisms. Bad gene 

ontology definitions are a result of the incomplete or inaccurate gene annotation and this 

hampers high throughput analysis of transcription data. In order to bring systems biology in 

Aspergillli to a level seen in e.g. S. cerevisiae, the community has to make an effort in order 

to reach more reliable gene annotation and localization in the future. 

Taken together, the presented work shows the great opportunities that A. oryzae offers for 

biotechnological applications. The work on malic acid production in this organism extended 

the possible use not only for the production of enzymes, but also bulk chemicals like organic 

acids. A. oryzae combines several advantages. It has been used safely for several centuries in 

the food industry. Furthermore large scale production processes have been established for 

the production of enzymes and the experience can be applied for the production of organic 

acids as well. In addition it is able to secrete large amounts of hydrolytic enzymes, which can 

help making the carbon from renewable feedstock accessible for conversion to the desired 

product. All these advantages make A. oryzae the organism of choice for the future 

biorefinery, which will aid in making the world a more sustainable place. People might think 

that A. oryzae is not as “sexy” as E. coli or S. cerevisiae and projects might take longer time, 

but A. oryzae has a great potential for the sustainable production of chemicals. After the era 

of “proof of principle” metabolic engineering in model organisms I hope that A. oryzae will 

be attended to as production host in order to achieve the required yields, titers and rates 

needed for the economic feasibility of industrial production processes. 
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