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Bayesian Road Estimation Using Onboard Sensors
Ángel F. García-Fernández, Lars Hammarstrand, Maryam Fatemi, and Lennart Svensson

Abstract—This paper describes an algorithm for estimating the
road ahead of a host vehicle based on the measurements from
several onboard sensors: a camera, a radar, wheel speed sensors,
and an inertial measurement unit. We propose a novel road model
that is able to describe the road ahead with higher accuracy than
the usual polynomial model. We also develop a Bayesian fusion
system that uses the following information from the surround-
ings: lane marking measurements obtained by the camera and
leading vehicle and stationary object measurements obtained by
a radar–camera fusion system. The performance of our fusion
algorithm is evaluated in several drive tests. As expected, the more
information we use, the better the performance is.

Index Terms—Camera, information fusion, radar, road geome-
try, unscented Kalman filter (UKF).

I. INTRODUCTION

ACTIVE safety systems on vehicles are becoming more
and more advanced, and nowadays, they are able to assist

the driver in complicated scenarios [1]. These systems use
noisy observations from onboard sensors, such as radar and
camera, to perceive the current traffic situation. Based on this
description, the system detects dangerous situations and makes
decisions on how to assist by means of warnings or autonomous
interventions. While some older systems mainly focus on keep-
ing track of other vehicles [2], knowing the geometry of the
road has become important to handle more complex situations,
e.g., higher speeds and earlier interventions [3], [4].

Systems for estimating the geometry of the lane markings
in relation to the host vehicle using a camera sensor have
been around for a while [5]–[7]. However, extracting road
geometry information from a camera sensor, typically mounted
on the windscreen of the vehicle, will always suffer from poor
effective resolution of the lane markings at far distances due to
the projection of the roughly horizontal road onto the vertical
camera sensor. Accurate estimation of the road at long ranges
is of importance in highways due to the possible high speed
of the vehicles. Therefore, in order to be able to attain a high
enough accuracy at these distances, information coming from a
different kind of sensor must be used.
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Other systems estimate the road using a radar or a lidar sen-
sor. Radars and lidars can estimate object positions located at
close and long ranges with high precision. This information can
be used to estimate the shape of the road. For example, in [8]–
[10], the road is estimated using stationary object detections
from a radar and, in [11] and [12], from a lidar. In road safety
systems, radars are more commonly used than lidars due to
their longer range and better performance in bad weather [11].
However, in clear weather conditions, the camera can obtain
quite detailed information for close range that radars and lidars
cannot obtain, e.g., lane markings.

To overcome the drawbacks of camera and radar sensors,
camera–radar fusion systems have been developed [13]–[15].
In [13] and [14], measurements from the leading vehicles are
taken into account to estimate the road. However, the described
systems are not complete as they do not use radar measurements
from the stationary objects such as barriers. In [15], the system
uses lane marking measurements and measurements from the
barriers, but measurements from leading vehicles are not taken
into account.

In this paper, we present an algorithm for estimating the road
ahead of a host vehicle using the observations of the lane mark-
ings, leading vehicles, and barriers that the onboard camera
and radar sensors provide. To the authors’ knowledge, such an
integrated approach to estimate the road has not been proposed
in the existing literature. The algorithm uses the Bayesian
framework, in which the road is modeled as a random variable,
to fuse the information from all these measurements. In this
approach, the road estimate is obtained using an approximation
to the posterior probability density function (pdf), i.e., the pdf
of the road conditioned on all past measurements up to the cur-
rent time.

Other novelties of our paper are in the road model. When
fusing information from the leading vehicles, the road is usually
described by third-degree polynomial or constant curvature
models [13], [14]. These models, which are based on a clothoid
approximation, cannot estimate the road accurately at far dis-
tance in important cases, e.g., if a straight road is followed
by a sharp curve at a relatively far range [14]. Therefore, the
model itself prevents these systems from performing properly
in such cases. The model we propose in this paper is based
on sampling a continuous curve and describes the road using
the curvature at the sampled points. This model is capable of
describing any kind of road for a sufficiently small sampling
distance. In addition, the Bayesian framework requires some
prior knowledge about the road. In our case, we use the fact that,
in most roads, curvature does not change abruptly [16]. This can
be easily incorporated in our road model. Another contribution
of this paper in road modeling is that we use an extended road
model in which the barriers are also considered in the posterior
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TABLE I
RADAR SPECIFICATIONS

TABLE II
CAMERA SPECIFICATIONS

pdf. Apart from the intrinsic interest of active safety systems in
knowing the barriers, the extended road model makes it easier
for the fusion system to use the information from the stationary
object measurements to estimate the road.

In short, fusing the information coming from the lane mark-
ings, stationary objects, and leading vehicles, as well as using
a road model that can represent any kind of road, allows the
system we present in this paper to improve the performance of
other systems previously reported in the literature, particularly
at far distance.

The rest of this paper is organized as follows. We describe
our system and pose the road estimation problem in Section II.
The road model and the theoretical solution to the problem
are provided in Section III. The process and measurement
models we use are given in Section IV. Section V explains
how the theoretical solution to the problem is approximated. We
provide some experimental results showing the performance of
our algorithm in Section VI. Finally, conclusions are drawn in
Section VII.

II. PROBLEM FORMULATION AND SYSTEM DESCRIPTION

This paper is concerned with the problem of estimating the
geometry of the road ahead of a host vehicle equipped with
a set of sensors. In our case, the host vehicle is fitted with
a radar sensor in the grill and a camera sensor behind the
windscreen. Some specifications of these sensors provided by
the supplier are given in Tables I and II. The radar is able
to detect objects up to approximately 200 m, and the camera
information is typically able to describe the lane markings up
to 60 m. In addition, data from internal sensors, such as wheel
speed sensors and inertial measurement unit, are available. The
camera sensor is capable of detecting the left and right lane
markings and gives a description of their shape, whereas the
radar sensor detects and tracks other vehicles and stationary
objects on the side of the road, e.g., guard rails and barriers.

The objective is to accurately describe the geometry of the
road at the current time up to 200 m in front of the host vehicle
using all the relevant observations from the onboard sensor
system. The focus is put on describing highway-type roads
having relatively sharp curves. The work is limited to only one
road, i.e., exits or forks in the road are not included in the
models. Slopes are not explicitly considered either as is usually
the case [10], [13], [17], [18]; thus, the road is represented as a
plane curve. The reason why slopes are not taken into account

Fig. 1. Illustration of the coordinate systems and the geometry of the road.
Two Cartesian coordinate systems are shown: the fixed global one given
as (xg , yg) and the moving local one attached to the host vehicle denoted
by (xl

k, y
l
k). The so-called curved road coordinate system (lk, nk) is also

represented.

despite their importance in some scenarios is that the onboard
sensors of our vehicle do not provide information about slopes.
If we wanted to include slope information, we would need
sensors that provide this kind of information, e.g., a stereo
vision camera [19]. Furthermore, it is assumed that there exists
a basic fusion system like the one described in [20] to handle
asynchronous sensor data and estimate the host vehicle state.

We define needed notation in Section II-A. The observations
from the aforementioned sensors are described in more detail in
Section II-B. In Section II-C, we conclude by mathematically
defining the estimation problem that is to be solved.

A. Road Geometry Definition and Coordinate Systems

In order to describe the geometry of the road, we must first
define what we mean by road geometry. In this paper, we use
the following definition:

The geometry of the road is the shape of the middle of
the host vehicle lane.

As such, we assume that there is a parameterization of the
geometry of the road at time k given by road state vector
rk, which will be defined in Section III. Vector rk describes
the shape (geometry) of the middle of the host vehicle lane
in the local Cartesian coordinate system (xl

k, y
l
k). The local

coordinate system is attached to the middle of the rear axle of
the host vehicle with one axis parallel to this axle, as shown
in Fig. 1. Note that this local coordinate frame moves with the
host vehicle. We denote the position and orientation of the host
vehicle in a fixed global coordinate system (xg, yg) as [xh

k , y
h
k ]

T

and ψh
k , respectively, where T stands for transpose. In this

paper, we also use the so-called curved road coordinate system
(lk, nk) [17] in which a point is represented by its longitude lk
on the road and its normal distance nk to the road. Time index
k will be used throughout this paper to refer to a time instance
tk for which the kth measurement in total (from any of the
sensors) was made. As the sensors are asynchronous, the time
between two measurements Tk = tk − tk−1 is not constant but
known.
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Fig. 2. Measurements from the sensors: The host vehicle and its local coordi-
nate system are represented in black. The red and green lines represent the lane
marking (polynomial) measurements. The blue dots without an arrow represent
the stationary objects detected by the camera/radar. The blue dot with an arrow
represents a moving object with its heading detected by the camera/radar. The
blue line represents the true road. The lane markings are unable to estimate the
curve accurately, but we can use the information of the stationary and moving
objects to do it.

B. Observations

The observations of the road geometry come from two dif-
ferent types of sensors: a lane tracking camera sensor detecting
the lane markings on the road and a radar–camera fusion
system observing vehicles and stationary objects (guard rails
and barriers). Fig. 2 shows a typical set of measurements from
the radar and camera sensors. In the following sections, we
present these observations in more detail.

1) Lane Marking Measurement: The lane tracking camera
delivers lane marking measurements roughly every 100 ms.
After some preprocessing, our system receives the coefficients
zlk = [l0k, l

1
k, l

2
k, l

3
k]

T and zrk = [r0k, r
1
k, r

2
k, r

3
k]

T of two third-
order polynomials describing the shape of the lane markings
to the left and right of the host vehicle, respectively. The
polynomials are given in the local coordinate system (xl

k, y
l
k).

2) Object Measurements: The host vehicle is equipped with
a radar–camera fusion system that detects and tracks other ve-
hicles and stationary road side objects that reflect radar energy,
e.g., guard rails. The observations are delivered every 25 ms in
two vectors, one for vehicles and one for stationary unclassified
objects with a total maximum of 64 items. We denote these vec-
tors by zok and zsk, respectively. This segmentation is performed
based on the speed over ground and camera classification.

For each observed vehicle i, a measurement zo,ik =
[xi

k, y
i
k, φ

i
k, v

i
k]

T is reported by the sensor, where [xi
k, y

i
k]

T is
the position in the local coordinate frame, φi

k is the heading
angle relative to the heading of the host, and vik is the speed in
that direction. Similarly, for the stationary unclassified objects,
the sensor gives a measurement zs,ik = [xi

k, y
i
k]

T that is the
position of the stationary radar detection. It should be noted
that these observations are already filtered by the radar–camera
system, and we therefore do not include vehicle states in our
state vector.

C. Estimation Problem

The main objective of this paper is to estimate rk at time step
k given the measurements up to time step k. We pursue this aim
using the Bayesian approach, in which the variables of interest
are modeled as random variables. In this approach, inference is
done by recursively approximating the posterior pdf p(rk|z1:k)
of the road state rk given the sequence of measurements z1:k,
which denotes all the measurements from the lane tracker and
the radar–camera fusion system up to the current time k.

III. STATE PARAMETERIZATION AND

THEORETICAL SOLUTION

In Section III-A, we introduce the extended road model,
which includes the road geometry and the barriers. In
Section III-B, we indicate how the estimation problem indicated
in Section II-C is theoretically solved. Some assumptions about
our model and a brief discussion are given in Section III-C.

A. Road Model

Our model of the road ahead of the vehicle is illustrated in
Fig. 3. It consists of M samples of a continuous 2-D curve that
has been sampled with sampling distance Δ. The sampled curve
is parameterized in the local coordinate system and is described
at time step k by vector rk = [y1k, ϕk, c

2
k, c

3
k, . . . , c

M−1
k ]T ,

where y1k is the lateral offset between the host vehicle and the
road, ϕk is its initial heading, and cik is the sampled curvature,
which is a concept explained in the Appendix, at the ith point.
Given rk, we can obtain the position vector of the road pk =
[(p1

k)
T , (p2

k)
T , . . . , (pM

k )T ]T , where pi
k = [xi

k, y
i
k]

T is the po-
sition of the ith sampled point of the road at time k. It should
be noted that p1

k = [0, y1k]
T , p2

k = [Δcosϕk, y
1
k +Δsinϕk]

T ,
and

pi
k = gp

(
pi−2
k ,pi−1

k , ci−1
k

)
, for i ≥ 3 (1)

where gp(·) is given by (25) in the Appendix. The function
that relates pk and rk is denoted by pk = g(rk). It should be
noted that we can obtain rk given pk and that the length of the
road is (M − 1)Δ. We introduce this model based on curvature
because of the importance of curvature in road design. We will
use the prior knowledge we have about curvature in roads to
model the prediction step in Section IV-A.

In order to utilize stationary road side detections from the
radar to estimate rk, we propose to include a description of the
road side barriers, which is also illustrated in Fig. 3. In this
paper, we assume that, if a barrier exists, it is parallel to the
road. As a result, the barrier state at time k is parameterized by
vector bk = [elk, b

l
k, e

r
k, b

r
k]

T , where elk = 1 if the left barrier
exists and zero otherwise, and blk is the lateral offset (in the
local coordinate system) from the center of the host vehicle lane
to the left barrier and, equivalently, for erk and brk for the right
barrier.

B. Posterior pdf

Instead of approximating p (rk|z1:k) directly, we approxi-
mate the joint posterior pdf p (rk,bk|z1:k) of the extended road
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Fig. 3. Road model with left barrier and prediction step. The road is a curve sampled with distance Δ. The road is characterized by the initial offset y1k , the initial
heading ϕk , and the curvatures at the next points. It is represented as a gray line. The left barrier is assumed to be parallel to the road and characterized by the
initial offset blk . It is represented as a dashed gray line. The augmented road position vector pa

k is represented by circles. At time step k + 1, the local coordinate
system moves. In order to obtain the parameterization of the road required in rk+1, we have to do a change of coordinates and interpolate the road. The road
position vector pk+1 is represented by squares. Note that we have one point less in pk+1 than in pa

k as required.

model that accounts for the barriers. This makes it easier to take
into account the radar measurements from the barriers.

Every time we receive a measurement, the posterior pdf is
calculated in two steps: prediction and update [21]. The predic-
tion step uses the transition density p (rk+1,bk+1|rk,bk) and
the Chapman–Kolmogorov equation to calculate the predicted
pdf at the next time step, i.e.,

p (rk+1,bk+1|z1:k) =
∫

p (rk+1,bk+1|rk,bk)

× p (rk,bk|z1:k)drkdbk. (2)

The update step uses Bayes’ rule, the predicted pdf, and the
likelihood p (zk+1|rk+1,bk+1) to calculate the posterior

p (rk+1,bk+1|z1:k+1) ∝ p (zk+1|rk+1,bk+1)

× p (rk+1,bk+1|z1:k) (3)

where ∝ means “is proportional to.” Therefore, in order to solve
the problem, we need to model the transition density and the
likelihood for each kind of measurement. This is equivalent to
providing the process and measurement equations, which are
given in Section IV. In addition, we also need to approximate
(2) and (3) as they do not admit a closed-form expression in
general. This is explained in Section V.

C. Assumptions and Discussion

The first important assumption we make in this paper is
that we know the difference phl

k between the host vehicle pose
(position and heading) at time k + 1 and the host vehicle pose
at time k in the local coordinate system at time k as in [10]. This
is equivalent to saying that, given the host pose at time k and the
measurements of the internal sensors (wheel speed sensors and
inertial measurement unit), the uncertainty of the host pose at
time k + 1 is negligible in the sense that it does not make a big
difference in road estimation to consider phl

k a random variable
or a known parameter. This uncertainty is actually quite low
as the internal sensor measurements of the velocity, yaw rate,

and lateral acceleration produce a very accurate estimate of phl
k

[22]. Therefore, this assumption is reasonable.
It should be noted that lower errors could be achieved by

modeling ph
k as a random variable and including it in the state

vector. However, the computational burden of this approach is
considerably higher than the method explained in this paper.
This option is rather similar to simultaneous localization and
mapping (SLAM) [23]. However, SLAM aims to estimate the
global map (the global road for a static observer), which is not
our objective.

The second important assumption we make is that we con-
sider the inputs to our systems, i.e., lane marking observations
(zlk, zrk), moving object observations zok, and stationary object
observations zsk as independent measurements of a sequence of
underlying vectors rk, k = 0, . . . ,∞. That is, we do not take
into account that these observations are already the output of the
filtering algorithms carried out in the radar–camera sensor. As
we do not have access to the details of these filtering algorithms
(as this was done by the sensor provider), we treat them
as independent measurements. Despite the invalidity of this
assumption, road estimation is greatly improved with respect
to the lane marking measurements due to the fusion of all these
kinds of information. It should be noted, however, that higher
performance is expected if we design robust fusion schemes
that account for unknown correlations of the observations along
time, for example, following the ideas put forward in [24].
Nevertheless, this is beyond the scope of this paper.

IV. PROCESS AND MEASUREMENT MODELS

Here, we introduce the process and measurement equations
used in (2) and (3).

A. Process Equation

Most roads are built such that there are not abrupt changes
in their curvature [16], [25]. Therefore, given the curvature at
a certain point, the curvature at a nearby point is expected to
be close. How similar it is depends on the road type, i.e., roads
with higher speed limit have smoother changes in curvature.
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We use this prior knowledge in our Bayesian framework as it
can be easily modeled as a Markov random process character-
ized by

ci+1
k = cik + wc,i+1 (4)

where wc,i+1 is a sequence of independent zero-mean Gaussian
noises with variance σ2

c . It should be noted that σ2
c depends

on the type of road; thus, it should be chosen accordingly. The
model is valid to represent roads with sharp bends by making
σ2
c high enough.
The process equation, which is a characterization of the

transition density in (2), includes a transformation of the road
state vector rk and the barrier state vector bk due to the change
of the local coordinate system. We assume that the host vehicle
moves a distance lower than Δ from time step k to k + 1. First,
we add a component to the state vector rk with the curvature
of the next point (located at a distance Δ from the last point).
The augmented state vector is represented as rak = [rTk , c

M
k ]T =

[y1k, ϕk, c
2
k, c

3
k, . . . , c

M−1
k , cMk ]T . Note that the prior knowledge

we have about cMk given rk is modeled by (4).
In order to account for modeling errors, it is convenient to

add process noise to the transformation. Moreover, due to the
fact that different measurements are taken asynchronously, the
process noise covariance matrix is proportional to the time
difference between measurements. Thus, the process equation
for the road is modeled by

rk+1 = fk+1 (r
a
k) +wr

k+1 (5)

where fk+1(·) is a nonlinear transformation to be described
in the rest of the section, wr

k+1 is a sequence of indepen-
dent zero-mean Gaussian process noise with covariance matrix
Qr

k+1 = Tk+1Q̃
r, where Tk+1 is the time difference between

the measurement at time k + 1 and the measurement at time k,
and Q̃r is a reference covariance matrix.

We proceed to describe fk+1(·), which consists of the com-
position of several functions. The procedure is illustrated in
Fig. 3. The road position vector of the augmented road is pa

k =
ga(rak) = [(p1

k)
T , (p2

k)
T , . . . , (pM

k )T , (pM+1
k )T ]T . We denote

the augmented road position vector in the local coordinate
system at time k + 1 as pa

k+1|k = f̃k+1 (p
a
k), where function

f̃k+1 (·) represents the change of local coordinate systems from
time k to k + 1. Thus, function f̃k+1 (·) is a translation followed
by a rotation applied to each point of the road:

pa
k+1|k = f̃k+1 (p

a
k)

=
[
f̆Tk+1

(
p1
k

)
, . . . , f̆Tk+1

(
pM+1
k

)]T
(6)

where

f̆k+1

(
pi
k

)
= Θ

(
−ψh

k+1 + ψh
k

)
×
[
pi
k −

([
xh
k+1, y

h
k+1

]T −
[
xh
k , y

h
k

]T)]
(7)

where Θ(α) is a rotation matrix with angle α, and [xh
k , y

h
k , ψ

h
k ]

T

is the host state at time k.

To obtain the road position vector pk+1, we need to in-
terpolate pa

k+1|k because the first point in pk+1 must have a

coordinate of the form [0, y]T as required by our road model,
which is described in Section III-A. We use linear interpolation,
and the function is denoted by pk+1 = i(pa

k+1|k), which can be

transformed to the road state rk+1 using g−1(·). In short, the
prediction step for the road state is illustrated in Fig. 3 and can
be written as

rk+1 = g−1
(
i
(
f̃k+1 (g

a (rak))
))

+wr
k+1. (8)

If the left barrier exists, the process equation for the bar-
rier is

blk+1 = blk cos
(
ψh
k+1 − ψh

k

)
+ wb

k+1 (9)

where wb
k+1 is a sequence of independent zero-mean Gaussian

process noise with variance Qb
k+1 = Tk+1Q̃

b, where Q̃b is a
reference variance. The right barrier has an analogous process
equation.

B. Measurement Equations

Here, we introduce the measurement equation for the dif-
ferent types of observations, namely, lane markings, moving
objects, and stationary objects.

1) Lane Markings: The road state represents the middle of
the host vehicle lane. The middle of the lane at a given distance
is the average of the left and right lane markings at a given
distance. Therefore, the average of the measured polynomials
(left and right lane markings), whose coefficients are given
by (zlk+1 + zrk+1)/2, is a direct measurement of the road (see
Fig. 2).

We recall that the road state rk+1 can be transformed into
a road position vector pk+1, where the distance between con-
secutive points is Δ. There is only one third-order polynomial
that passes through four points. Therefore, if we sample four
points from the averaged lane marking polynomials, we keep
the information of the measurement. If these four points are
selected such that the distance between consecutive points is
Δ, represented in vector pl

k+1, then we are observing the first
four positions of pk+1 plus measurement noise. Therefore, we
assume that

pl
k+1 = g4(rk+1) + ηl

k+1 (10)

where g4(·) represents the function that takes the first four
points of function g(·), and ηl

k+1 is a zero-mean Gaussian
measurement noise with covariance matrix Rl.

2) Moving Objects: The assumption we make to get infor-
mation about the road from other vehicles’ measurements is the
following:

• M1: If a vehicle is not changing lane, its heading is roughly
parallel to the road.

This assumption was also made in [13]. Thus, if a moving
object measurement comes from a leading vehicle that is not
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changing lane with position [xi
k+1, y

i
k+1]

T and heading φi
k+1,

the measurement equation is modeled as

φi
k+1 = φr

k+1

(
xi
k+1, y

i
k+1, rk+1

)
+ ηmk+1 (11)

where ηmk+1 is the measurement noise, which is zero-mean
Gaussian with variance Rm, and φr

k+1(x
i
k+1, y

i
k+1, rk+1) is the

heading of the road in the road interval that is the closest to the
vehicle position.

We explain how φr
k+1(·) is calculated in the following. We

recall that the road can be represented as the position vector
pk+1. We calculate the two consecutive points of this vector
that are the closest to [xi

k+1, y
i
k+1]

T . Let [xj
k+1, y

j
k+1]

T and

[xj+1
k+1, y

j+1
k+1]

T denote these points, then

φr
k+1

(
xi
k+1, y

i
k+1, rk+1

)
= arctan

(
yj+1
k+1 − yjk+1

xj+1
k+1 − xj

k+1

)
. (12)

In practice, we have to determine whether a measurement
comes from a vehicle that meets Assumption M1, i.e., we have
to detect if a vehicle is likely to follow the road or not. The
measurements of the vehicles that are not deemed to follow the
road are discarded and, hence, not used in the estimation of
the road geometry. This is addressed in Section V-C.

3) Stationary Objects: If the ith stationary measurement
zs,ik+1 comes from the left barrier (the argument for the right

barrier is analogous), zs,ik+1 is an observation of the barrier at
the longitude lik+1 on the road of this observation, which is
assumed to be known, plus measurement noise.1 As the barrier
is modeled as parallel to the road, i.e., it is described in the so-
called road coordinate system, we think it is more convenient
to use a measurement noise that is described in this coordinate
system rather than the local coordinate system. Therefore, the
measurement equation is modeled as

zs,ik+1 = plb
k+1

(
lik+1, rk+1,bk+1

)
+B

(
lik+1, rk+1

)
ηb
k+1

(13)

where plb
k+1(l

i
k+1, rk+1,bk+1) is the position of the left barrier

at the longitude lik+1 along the road of the given measurement,
B(lik+1, rk+1) is a rotation matrix that performs a rotation
with an angle that is the heading of the road at longitude
lik+1, and ηb

k+1 is the measurement noise, which has a zero-
mean Gaussian pdf with covariance Rs. It should be noted that
B(lik+1, rk+1) is used as ηb

k+1 is the measurement noise in the
road coordinate system and the observation is given in the local
coordinate system. The transformation plb

k+1(l
i
k+1, rk+1,bk+1)

can be easily performed using linear interpolation in the road
intervals, and the angle of rotation of B(lik+1, rk+1) is found
with a similar equation as (12).

In practice, we have to determine whether a measurement
belongs to the right or the left barrier or is an outlier. This
practical issue among others is addressed in Section V-D.

1It should be noted that lik+1 depends on rk+1 and zs,i
k+1

, but we assume
that once it is calculated, it is a fixed parameter in the measurement equation
(13) for simplicity.

V. CALCULATION OF THE POSTERIOR

PDF APPROXIMATION

Once we have introduced the road model and the process
and measurement equations, we proceed to approximate the
posterior pdf, which is given by (2) and (3), in a recursive
fashion.

The posterior approximation of the extended road we pro-
pose is a Gaussian hierarchical model of the form

p (rk,bk|z1:k) ≈N
(
rk; rk|k,Σk|k

)
×
[
δ
(
elk − 1

)
plkN

(
blk; b

l
k|k,

(
σl
k|k

)2
)

+ δ
(
elk − 0

) (
1 − plk

) ]

×
[
δ (erk − 1) prkN

(
brk; b

r
k|k,

(
σr
k|k

)2
)

+ δ (erk − 0) (1 − prk)

]
(14)

where rk|k and Σk|k denote the mean and covariance matrices
of the road at time k conditioned on the current and past
measurements, respectively; δ(·) is the Kronecker delta; plk and
prk are the probabilities that the left and right barriers exist,

respectively; and b
l
k|k, σl

k|k and b
r
k|k, σr

k|k are the mean and
standard deviation of the pdf of the left and right barriers
conditioned on the current and past measurements, respectively.
For simplicity, we assume that if a barrier exists, its state is
independent of the road state and the other barrier state. In
addition, in the implementation, we assume that plk and prk can
only take values 0 and 1.

In the rest of the section, we assume that p(rk,bk|z1:k)
is given by (14) and provides an approximation to
p(rk+1,bk+1|z1:k+1) with the same Gaussian hierarchical
model. The prediction step, in which (2) is approximated,
is explained in Section V-A. The update step, in which (3)
is approximated, is explained in Section V-B for the lane
markings, in Section V-C for the moving object measurements,
and in Section V-D for the stationary object measurements.

A. Prediction Step

The posterior of rak, which is needed to perform the predic-
tion step as indicated by (8), can be obtained using the posterior
of rk [see (14)] and the road transition model, which is given
by (4), i.e.,

p (rak|z1:k) = N
(
rak;

[
rTk|k, c

M−1
k

]T
,

[
Σk|k ξk|k
ξTk|k ξlk|k + σ2

c

])
(15)

where cM−1
k represents the last component of rTk|k, ξk|k is the

last column of Σk|k, and ξlk|k is the last component of ξk|k.
In the implementation, we calculate a Gaussian approxima-

tion to the predicted density

p(rk+1|z1:k) ≈ N (rk+1|k; rk+1|k,Σk+1|k) (16)

where rk+1|k and Σk+1|k are obtained applying the unscented
transformation (UT) to the pdf (15) and the nonlinear function
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(8) [26]. The prediction step for the barriers can be analytically
done using (9).

B. Update Step: Lane Markings

Before addressing the update step itself, first, we indicate
how we detect lane changes of the host vehicle based on
lane marking measurements and how the filter takes them into
account.

1) Lane Change Detection: Lane marking measurements
allow us to detect lane changes of the host vehicle easily. Here,
we indicate how we detect lane changes and how this affects
our filter. Every time we receive a lane marking measurement,
before doing the update step, we follow these steps.

First, we estimate the width W of the lane by calculating
the difference between the zero-order coefficients of the poly-
nomials that represent the left and right lane markings (see
Section II-B1). We recall that the zero-order coefficient is an
accurate measurement of the lateral distance to the left and
right lane markings, respectively. Second, we estimate the y-
component of the middle of the current lane at time k + 1,
which is the average of the zero-order coefficients of the left and
right polynomials and is denoted by yl,1k+1. If the host vehicle
does not change lanes, the y-component y1k+1|k of the middle
of the predicted lane, which is the first component of rk+1|k, is

expected to be close to yl,1k+1. If the host vehicle changes lanes,

the difference between yl,1k+1 and y1k+1|k is roughly the width of
the lane. Therefore, we use the following detection rule:

yl,1k+1 − y1k+1|k > 0.8W → LC to the left

yl,1k+1 − y1k+1|k < − 0.8W → LC to the right

where LC stands for lane change, and the threshold is set to
0.8 times the width of the lane because it provides excellent
results in the test drives.

If we change lanes, we account for the lane change in the
predicted density by using rk+1|k ± [W, 0, 0, . . . , 0]T instead of

rk+1|k in (16) and b
l
k|k ∓W instead of b

l
k+1|k in the predicted

density of the left barrier, where b
l
k+1|k is the predicted left

barrier. The upper sign in ± and ∓ is used if we change to the
left, and the lower sign is used if we do it to the right. The same
procedure is performed for the right barrier.

2) Update: We use the unscented Kalman filter (UKF)
[26] to approximate the posterior using the measurement
equation (10).

It can also happen that we only get one lane marking mea-
surement. In this case, we use the last estimate of the lane width
W , which was obtained the last time we got both lane marking
measurements, to create a measurement equation of the form
(10). Now, the nonlinear measurement function must account
for a displacement of ±W/2, where the sign depends on the
lane marking we get, in the normal direction of the road.

C. Update Step: Moving Object Measurements

The moving object measurements mainly come from other
vehicles. However, we only consider those measurements that
come from vehicles that meet Assumption M1. Therefore, for

every moving object measurement, we include an outlier de-
tection step so that we only consider the useful measurements.
We recall from Section II-B2 that moving object measurements
have position, heading, and speed components.

First, we only consider the measurements whose speed is
higher than a threshold (we use 5 m/s). Otherwise, they are
likely to be outliers as we assume the host vehicle is on a
highway. Second, we perform gating [27]. Gating is a widely
used technique to detect outliers and works as follows. If
the Mahalanobis distance between the measurement and the
predicted measurement using the variance of the predicted mea-
surement, which are calculated using the UT and (11), is higher
than a threshold (we use 1.5), then the measurement is deemed
an outlier and is not considered in the update step. Finally, we
build a measurement equation stacking measurement equation
(11) for each measurement that meets Assumption M1. The
update is then carried out using a UKF.

D. Update Step: Stationary Object Measurements

Each stationary object measurement is a position vector zs,ik+1

that contains the coordinates of the ith stationary object in
the local coordinate system (see Section II-B2). In practice,
a large number of stationary object measurements come from
the barriers. Therefore, these measurements can be used to
update the extended road state, which includes the barrier states,
using the measurement equation (13). However, we should
decide which ones of these measurements were originated in
the barriers and which ones are outliers. Barrier measurements
have the following characteristics that are taken into account in
our filter.

• S1: They tend to appear around a line that is parallel to
the road (middle of our lane). This is due to the fact that
barriers are usually parallel to the road.

• S2: They do not appear isolated. That is, there are usually
several barrier measurements in close proximity. This
stems from the fact that the barrier is an extended object;
thus, several detections are expected.

Prior to explaining how we initialize and update the barrier
state, we perform the following steps to determine what mea-
surements are to the left of the road (candidates for updating the
left barrier) and which ones to the right. Every time we receive
stationary object measurements, we describe the position zs,ik+1

in the road coordinate system, i.e., using the longitude lk+1

on the road and the distance nk+1 to the road [17]. This is
represented by the transformation

zsr,ik+1 = m
(
zs,ik+1, rk+1

)
(17)

where zsr,ik+1 = [lik+1, n
i
k+1]

T , and m(·) is the function that
represents the transformation.2 It should be noted that rk+1

is a random variable with pdf given by (16). Therefore, zsr,ik+1

is another random variable whose pdf is approximated as a
Gaussian using the UT drawing sigma points from (16).

2The mapping of m(·) can be easily done using linear interpolation between
the points that represent the road.
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If ni
k+1 > 0, the stationary object is located to the left of the

road; otherwise, it is located to the right. Therefore, using the
Gaussian pdf of zsr,ik+1, we can easily calculate the probability
that the stationary object is to the left or the right of the road.
If one of these probabilities is higher than a threshold (we use
0.7 in the filter), then we consider that this point is a candidate
to initiate or update the right or the left barrier. Otherwise, we
discard it as it is not clearly on any side of the road.

1) Barrier Initialization: We recall from (14) that the barrier
state is the lateral offset from the middle of our lane to the
barrier and that the barrier is assumed to be parallel to the
road. The posterior pdf of the barrier state is approximated as
Gaussian with a certain mean and variance. If a barrier has not
been initiated (existence probability equal to zero), we check
the following conditions to initiate it.

1) We require at least four measurements on a given side of
the road. This is necessary to meet S2.

2) The variance of the component ni
k+1 of a given measure-

ment must be lower than a threshold (we use 0.32 m2).
This is necessary as we need to be sure about the distance
at which the measurements are located to meet S1. If
a measurement is not accurately located in the road
coordinate system, it is better not to consider it for the
initialization.

3) We remove the isolated measurements, i.e., those that do
not have another measurement at a distance lower than Δ.
We do this to meet S2.

4) We apply an outlier detection step to select the valid
measurements for initialization. That is, all the valid
measurements must be located within a distance around
the average distance to the road of all the valid mea-
surements. To do this, we take all the measurements and
calculate the mean distance to the road (using the mean
of ni

k+1). Then, we calculate the square error between the
mean distance d̄ and the distances for every measurement.
If the maximum of these errors is higher than a threshold
(we use 0.32 m2), we remove the corresponding measure-
ment. This procedure is repeated until the maximum is
not removed. This step is necessary to ensure that the
valid measurements meet S1.

5) Finally, if there are at least four valid measurements after
Step 4, we initiate the barrier. The barrier is initiated with
mean d̄ and variance σ2

ini = 0.12 m2.

2) Update: Among all the stationary object measurements,
we check if there are outliers, i.e., measurements that do not
come from one of the barriers. To this end, we use a two-
step procedure. First, we use gating [27] with measurement
equation (13). That is, if the Mahalanobis distance between the
measurement and the predicted measurement using the variance
of the predicted measurement, which are calculated using the
UT and (13), is higher than a threshold (we use 3), then the
measurement is an outlier. Second, among the measurements
that have passed the gating test, we discard those that appear
isolated to take S2 into account. More specifically, if there is
a measurement whose distance to its closest measurement is
higher than Δ, it is discarded. The remaining measurements are
the valid barrier measurements.

Finally, we build the measurement equation stacking mea-
surement equation (13) for each valid barrier measurement. The
update is then carried out using a UKF.

3) Barrier Removal: There are two reasons why we delete
a barrier, i.e., we set its existence probability to zero. The first
reason and the most usual one is that the barrier does not exist
in the current stretch of the road ahead of the host vehicle. What
we do in this case is to delete the barrier if the barrier has not
been updated for a certain time. In our implementation, we use
0.5 s, which corresponds to 20 stationary measurement updates
(see Section II-B2).

Another motive to delete a barrier is that there is a possibility
that the filter might not be tracking the barrier but another
extended object approximately parallel to the road. For exam-
ple, there are cases where a barrier has been initiated because
some stationary object measurements meet S1 and S2 but these
measurements do not correspond to a barrier but something
similar, e.g., a fence outside the road. A way to detect that
the filter is not working properly is to monitor the stationary
objects on the left- and right-hand sides of the road, i.e., the
objects between the middle of our lane and the left barrier and
the right barrier. We track the longitude on the road and the
normal distance to the road of these objects. If the number of
stationary objects that have appeared in the current stretch of
the road at roughly the same normal distance is higher than a
threshold (we use 3), it is an indication that the true barrier is
not what the barrier filter is indicating, and we should delete the
right or the left barrier depending on the side of the road this has
happened. At the next time step, the filter is expected to initiate
the barrier properly.

E. Filter Initialization

The filter is initialized when we get a lane marking mea-
surement with left and right lane markings for the first time.
Then, we use a Gaussian prior with mean r0|0 = 0 and co-
variance matrix Σ0|0 and perform the update as explained in
Section V-B2.

We also want to mention that, in practice, we should monitor
the performance of the filter to ensure that it does not diverge.
This can be done following the ideas in [28, Ch. 7]. Finally, a
summary of the filter steps is given in Table III.

VI. EXPERIMENTAL RESULTS

The objective of this section is to assess the performance
of our filter at estimating the road ahead at different distances
from the host vehicle in real driving conditions. That is, we
want to know the estimation error of the road position at
different distances ahead of our car: 20, 40, 60, and so on up
to 200 m. We also want to show how the error is affected
by using only the lane marking measurements or considering
stationary and moving objects as well. It will be demonstrated
that lane marking measurements provide accurate estimates
for close range. However, for long range and, in particular,
for windy roads, lane marking measurements do not provide
accurate estimates, and performance can be greatly improved
by accounting for stationary and moving object measurements.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GARCÍA-FERNÁNDEZ et al.: BAYESIAN ROAD ESTIMATION USING ONBOARD SENSORS 9

TABLE III
FILTER STEPS WHEN WE RECEIVE A MEASUREMENT

The main problem to calculate the road position error is that
the true road is not available, i.e., the coordinates of the middle
of our lane for the whole test drive. This is solved by the GTA
explained in Section VI-A.

A. GTA

Here, we explain the ground truth analysis (GTA) tool we
use. The GTA tool estimates the road the host vehicle has driven
on. Once the test drive has finished, per each time step, we can
calculate the error between our estimate of the road ahead of
the vehicle and the quite accurate estimate of the GTA, which
is regarded as the true road [28].

For a test drive, the GTA tool estimates the trajectory of
the host vehicle pose (host path) based on the internal sensor
measurements in the global coordinate system. This estimation
technique is known as dead reckoning. Then, it estimates the
road position offset y1k at distance 0 at time k based on the
lane marking measurements (see Section IV-B1). This estimate
of the road position is given in the local coordinate system at
time k. Using the host path estimate, the road position can be
estimated for the local coordinate system of any time step.3

The main drawback of this technique is that the error of the
dead reckoning estimate of the host path unboundedly increases
with time. As a result, the estimated host path of the whole
test drive is not accurate and neither is the road estimate.
Nevertheless, the GTA estimate can be regarded as the true road
to estimate 200 m of the road ahead of the host vehicle under
the following assumptions.

• G1: The road position offset estimate y1k based on the
lane marking measurements is considered as the true road
position in the local coordinate system at time k.

• G2: The estimate of the host vehicle pose using dead
reckoning is accurate if the host vehicle has moved less
than 200 m.

Assumption G1 is reasonable as measurement tests indicate
that the estimation error in the road position offset y1k is around
5 cm, which can be considered negligible for our application.

3Equation (7) indicates how to perform a change of coordinate systems
between time steps k and k + 1.

Assumption G2 is met for modern internal sensors as the dead
reckoning error is negligible up to 200 m for normal driving
conditions [22].

B. Results

We analyze and compare the performances of four different
versions of our filter. The first version only takes into account
the lane markings; the second takes into account the lane
markings and the barriers; the third takes into account the
lane markings and other vehicles; and the fourth takes into
account the lane markings, the barriers, and other vehicles
altogether. It is clear that, if more information from the sensors
is used, performance is expected to improve. In Section VI-B1,
we analyze one interesting drive test thoroughly, whereas in
Section VI-B2, we analyze the averaged results over several
drive tests.

It should be noted that the widely used polynomial model,
which is based on the approximation of a clothoid, is reasonably
accurate up to 60 m for usual road curves [14]. However, it
cannot model reasonably sharp curves for distances longer than
60 m or situations in which the road is straight but followed
by a sharp bend. In addition, as indicated in [29], it is a poor
parameter space due to large sensitivity to coefficient errors,
and consequently, it is not adequate for multisensor fusion. As
the aim of our paper is to estimate the road ahead of the host
vehicle up to 200 m using a multisensor fusion algorithm, the
polynomial model is not suitable for our purpose, and thus, we
have not implemented it.

Nevertheless, we want to recall that neither of the state-of-
the-art road geometry algorithms mentioned in the introduction
fuse information from the lane markings, barriers, and leading
vehicles. The way we use the lane markings and leading vehi-
cles is based on the same ideas as the algorithm in [13], i.e., lane
marking measurements are given by a third-degree polynomial,
and the heading of the vehicles is roughly parallel to the road.
Therefore, the version of our algorithm that does not consider
the barriers can be seen as an adaptation of [13] to our fusion
system, which works under the assumptions mentioned in
Section III-C and the road model based on sampled curvatures.
It is demonstrated in the rest of this section that using the barrier
information can lower the estimation error remarkably. This
certainly underscores the importance of our work.

We use the following filter parameters.

• Model parameters: Δ = 20 m, M = 11.
• Process equation parameters: σ2

c = 4 · 10−8Δ m−2; Q̃r is
a diagonal matrix with variance 0.12 m2/s for the offset
element, (0.5π/180)2 rad2/s for the heading element, and
10−5 m−2/s for the curvature elements.

• Measurement equation parameters: Rm=(3π/180)2 rad2;
Rs = diag([(1.2)2, (1.2)2]T )(m2); and Rl = diag([σ2

x,
σ2
y, σ

2
x, 2σ2

y, σ
2
x, 4σ2

y, σ
2
x, 8σ2

y]
T ), where σ2

x = 10−6 m2,
σ2
y = 0.052 m2, and diag(a) represents a diagonal matrix

with diagonal entries given by a.
• Initialization parameters: We use the prior mean r0|0 = 0.

The covariance matrix Σ0|0 is obtained using a variance
0.12 m2 for the offset element, (0.5π/180)2 rad2 for
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Fig. 4. True road in the global coordinate system as estimated by the GTA
tool. The red dots denote the position on the road of the host vehicle every 20 s.

the angle element, and 10−8 m−2 for the first curvature
element. The rest of the components of Σ0|0, which cor-
respond to curvature elements, are obtained using (4). The
offset and angle elements are independent of the curvature
elements.

The process equation parameters have been adjusted such
that they approximately describe the kind of roads we consider
in the drive tests. This can be done with the GTA tool by
analyzing how the curvature changes with distance. The lane
marking measurement covariance matrix has been selected such
that it corresponds to the error estimated by the GTA tool in
several drive tests. Parameters Δ and M have been selected
to cover 200 m with a reasonable computational complexity.
The lower Δ selected is, the higher M should be to cover
the same distance. This increases the model accuracy and the
computational burden. The rest of the parameters have been
tuned to obtain a reasonably good performance.

1) Single Drive Test: The drive test we use to show the
performance of our filter is 200 s long. The road is a highway
with relatively sharp bends, and its GTA estimate is shown in
Fig. 4.

First, we show the error (Euclidean norm) of the road posi-
tion at a distance of 200 m along time for the first 100 s of test
in Fig. 5(a). In this figure, when the error is zero, it means that
the host vehicle performed a lane change in the next 200 m,
and therefore, there is no ground truth at 200 m for that time
instant, and the error cannot be calculated. We also show the
road curvature and the host vehicle speed in Fig. 5(b) and (c),
respectively. In general, the algorithm that accounts for lane
markings, barriers, and vehicles has the lowest error; and the
one that only uses information from the lane markings has the
highest error. We can divide the road into two time intervals ac-
cording to Figs. 4 and 5(b): curvy interval from time 0 s to time
80 s and straight interval from time 80 s to 100 s. In the curvy in-
terval, accounting for barriers and vehicles implies a significant
improvement in performance with respect to only using the lane
markings. This is due to the fact that lane markings can only
estimate the road accurately in close range if the road is turning,

Fig. 5. (a) Error of the road position at 200 m, (b) curvature of the road, and
(c) speed against time for the first 100 s of the test drive. The time instants
when the error is zero mean that there is no ground truth available, and the error
cannot be computed.

particularly because they use polynomial approximations and
it is difficult to project horizontal shapes (lane markings) on a
vertical plane (the camera). In the straight interval, there is not a
substantial difference among the filters. As shown in Fig. 5(c),
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Fig. 6. Example of the filtering process. (a) Representation of the filter output
at around time 40 s. (b) Camera view at that time. The blue solid line represents
the true road. The big blue dot represents the host vehicle position. The blue
dots represent the stationary object measurements. The blue dots with an arrow
indicate the leading vehicles’ positions and headings. The red dashed line
represents the estimate of the filter accounting for lane markings, barriers,
and leading vehicles. The red ellipses, which could be confused by lines, are
the 9 − σ ellipses [30] of the covariance matrix of the road position elements
(which are located every Δ = 20 m). The green line represents the state of the
barriers. The red solid line represents the lane marking measurement (average
of left and right polynomial) taken at that time. The black dashed line and black
ellipses represent the estimate of the filter only accounting for lane markings.
Accounting for barriers and leading vehicles allows us to estimate the road
accurately if the host vehicle is entering a sharp bend.

the host vehicle slows down as it enters the first curve, and after
then, it speeds up to reach roughly 80 km/h.

We analyze more thoroughly the effect of taking into account
the barriers and leading vehicles on performance. The output of
the filter and the camera view at around time 40 s are shown in
Fig. 6(a) and (b), respectively. The lane marking measurements
fail to provide an accurate estimate of the road. Nevertheless,
if we use the measurements from the barriers and the leading
vehicles as explained in this paper, the filter is able to estimate
the road accurately in this difficult situation.

Now, we study the performance of the filters averaged over
time. To this end, we show the root-mean-square error of
the road position against distance averaged over time for the
different information fusion strategies in Fig. 7. Lowest error

Fig. 7. Root-mean-square error of the road position against the distance
averaged over time for the drive test in Fig. 4. Accounting for lane markings,
barriers, and leading vehicles leads to a high improvement in performance at
far distances.

TABLE IV
CHANGE IN PERCENTAGE OF THE POSITION ERROR AVERAGED OVER

TIME FOR DIFFERENT FILTER PARAMETERS

is achieved if we use the lane markings, barriers, and leading
vehicles. The algorithm that only uses lane markings roughly
provides the same results as the others up to distances of
80 m. However, at far distances (from 100 to 200 m), the
improvement of using other types of information is meaningful
as the averaged error of our filter is much lower than the error
of the filter that only uses the lane markings.

Our implementation, in which the code is not optimized for
maximum speed, has been done in MATLAB. We used a laptop
with an Intel Core i5 processor at 2.67 GHz to obtain the
computation times. The average running times of the different
parts of the fusion algorithm are broken down as follows:
prediction (7 ms), update with lane marking measurements
(4 ms), update with stationary object measurements (60 ms),
and update with moving object measurements (7 ms). It is
clearly the update with stationary objects the part of the algo-
rithm with highest computational burden.

Finally, in Table IV, we show the change in the position error
for different filter parameters. As shown in the first column in
Table IV, we increase and decrease the process and measure-
ment noise parameters by 10%. This implies a change in the
position error, which is indicated by an interval. The error can
decrease, and this is indicated by a minus sign. The changes in
the short range are basically negligible as they are always lower
than 2%. The changes in the long range are more important,
particularly if we change the stationary object measurement
covariance matrix (14%). On the whole, the filter behaves quite
well when we change its parameters in a reasonable range.
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Fig. 8. Root-mean-square error of the road position against the distance
averaged over time for roads of type 1 (without sharp bends). Taking into
account lane markings, barriers, and vehicles slightly increases the performance
with respect to the lane markings.

2) Average Results on Multiple Drive Tests: Here, we show
the performance of our algorithm averaged over time in dif-
ferent drive tests. The drive tests are sorted into two groups:
roads without sharp curves and roads with sharp curves. In
our tests, roads of type 1 have curves with curvatures lower
than 9 · 10−4 m−1, whereas roads of type 2 have curves with
curvatures in the range (1.25 · 10−3 m−1, 1.5 · 10−3 m−1). As
indicated in this paper, our algorithm is expected to significantly
improve the estimation of the lane markings, particularly if the
road has sharps curves. Nevertheless, we want to show that
performance also increases for roads that do not have these
kinds of curves. The results for roads of type 1 are obtained
in six drive tests in which we have removed parts of the roads
where there were exits as our filter does not take them into
account. Each of the drive tests lasts around 200 s, and the
average speed of the host vehicle is 111 km/h. The root-mean-
square error of the road position against distance averaged over
time is shown in Fig. 8. The more information we take into
account, the lower the error is. However, the improvement in
performance is minor.

The results for roads of type 2 are obtained in three drive
tests. Each of them lasts around 200 s, and the average speed of
the host vehicle is 107 km/h. Although roads of type 2 have
sharper bends, the average speed of the host vehicle is just
slightly lower than on roads of type 1. The root-mean-square
error of the road position against distance averaged over time is
shown in Fig. 9. In this case, taking into account lane markings,
barriers, and vehicles implies an important decrease in the error
at far distances. This shows the benefits of our fusion algorithm
for this kind of road.

VII. CONCLUSION

We have developed a road model that is able to describe
any kind of road and is therefore not limited as the polynomial
model. Our model also captures the prior knowledge we have

Fig. 9. Root-mean-square error of the road position against the distance
averaged over time for roads of type 2 (with sharp bends). Taking into account
lane markings, barriers, and vehicles considerably increases the performance
with respect to the lane markings for far distance.

about roads in a simple fashion. Based on this model, we have
developed a Bayesian filter that is used to fuse the information
coming from different objects (lane markings, leading vehicles,
and barriers) to estimate the road ahead of the vehicle accu-
rately. We are able to estimate the road ahead of the vehicle
more precisely than traditional methods based on lane marking
estimation using a camera. This is evident at far distance in
highways with relatively sharp bends.

The future lines of work are manifold. It is of interest to
develop a model that accounts for exits and other kinds of
roads. If Global Positioning System measurements and maps
are available, we would like to make use of this knowledge to
improve the estimate of the road.

Another important improvement can be made if our system
used the camera to obtain information from the barriers as in
[31]. This would help us detect barriers with higher accuracy.
As a result, the overall performance of the filter could be highly
improved, particularly in cases where barrier detection from
radar measurements is difficult.

We also aim to develop a filtering algorithm that takes into
account that the sensor outputs are already filtered, as discussed
in Section III-C.

APPENDIX

Here, we provide some notions about curvature and sampled
curves. Let us assume that a curve is parameterized by C :=
[x(t), y(t)]T , t > 0, where t is the arc length. The signed
curvature at a given point is defined as [32]

c(t) =
x′(t)y′′(t)− y′(t)x′′(t)(
(x′(t))2 + (y′(t))2

)3/2
(18)

where x′(t) is the derivative of x(t), and x′′(t) is the second
derivative of x(t).
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If we sample this curve using a sampling distance Δ, the
sampled curve is CΔ := [xi, yi]

T , i ∈ N ∪ {0}, where

xi =x(iΔ)

yi = y(iΔ).

The curvature of the sampled curve can be approximated using
finite differences to approximate the derivatives. The approxi-
mations of the derivatives are

h′
x,i =

xi − xi−1

Δ
(19)

h′
y,i =

yi − yi−1

Δ
(20)

h′′
x,i =

xi−1 − 2xi + xi+1

Δ2
(21)

h′′
y,i =

yi−1 − 2yi + yi+1

Δ2
(22)

where h′
x,i ≈ x′(iΔ), h′

y,i ≈ y′(iΔ), h′′
x,i ≈ x′′(iΔ), and

h′′
y,i ≈ y′′(iΔ). Therefore, the sampled curvature is

ci =
h′
x,ih

′′
y,i − h′

y,ih
′′
x,i((

h′
x,i

)2
+
(
h′
y,i

)2)3/2
. (23)

It should be noted that curve CΔ can be also defined by
the first two points [x0, y0]

T and [x1, y1]
T and the sampled

curvatures ci, i = 1, 2, 3, 4, . . . at the following points. Given
the points [xi−1, yi−1]

T and [xi, yi]
T and the curvature ci,

[xi+1, yi+1]
T can be calculated using (19)–(23) and the fact that

the distance between consecutive points is Δ. i.e.,

(xi+1 − xi)
2 + (yi+1 − yi)

2 = Δ2. (24)

Then

[xi+1, yi+1]
T = gp

(
[xi−1, yi−1]

T , [xi, yi]
T , ci

)
(25)

where function gp(·) is defined by

xi+1 =xi +

−aih
′
y,i ±

√
a2i

(
h′
y,i

)2 − bi

(
a2i −

(
h′
x,i

)2
Δ2

)
bi

(26)

yi+1 = yi +
h′
y,i(xi+1 − xi) + ai

h′
x,i

(27)

ai =Δ2cib
3/2
i (28)

bi =
(
h′
x,i

)2
+
(
h′
y,i

)2
. (29)

There are two solutions for [xi+1, yi+1]
T using (26) and (27).

The right solution is the one that makes the scalar product of
[xi+1 − xi, yi+1 − yi]

T and [xi − xi−1, yi − yi−1]
T positive.
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