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PÄIVI YLITERVO 
 
School of Engineering, University of Borås 
Department of Chemical and Biological Engineering, Division of Life Sciences ―        
Industrial Biotechnology, Chalmers University of Technology 
 
ABSTRACT 
Lignocellulosic biomass is a potential feedstock for production of sugars, which can be 
fermented into ethanol. The work presented in this thesis proposes some solutions to 
overcome problems with suboptimal process performance due to elevated cultivation 
temperatures and inhibitors present during ethanol production from lignocellulosic materials. 
In particular, continuous processes operated at high dilution rates with high sugar utilisation 
are attractive for ethanol fermentation, as this can result in higher ethanol productivity. Both 
encapsulation and membrane bioreactors were studied and developed to achieve rapid 
fermentation at high yeast cell density. 
 

My studies showed that encapsulated yeast is more thermotolerant than suspended yeast. The 
encapsulated yeast could successfully ferment all glucose during five consecutive batches,    
12 h each at 42 °C. In contrast, freely suspended yeast was inactivated already in the second 
or third batch. One problem with encapsulation is, however, the mechanical robustness of the 
capsule membrane. If the capsules are exposed to e.g. high shear forces, the capsule 
membrane may break. Therefore, a method was developed to produce more robust capsules 
by treating alginate-chitosan-alginate (ACA) capsules with 3-aminopropyltriethoxysilane 
(APTES) to get polysiloxane-ACA capsules. Of the ACA-capsules treated with 1.5% APTES, 
only 0–2% of the capsules broke, while 25% of the untreated capsules ruptured within 6 h in a 
shear test.  
 

In this thesis membrane bioreactors (MBR), using either a cross-flow or a submerged 
membrane, could successfully be applied to retain the yeast inside the reactor. The cross-flow 
membrane was operated at a dilution rate of 0.5 h-1 whereas the submerged membrane was 
tested at several dilution rates, from 0.2 up to 0.8 h-1. Cultivations at high cell densities 
demonstrated an efficient in situ detoxification of very high furfural levels of up to 17 g L-1 in 
the feed medium when using a MBR. The maximum yeast density achieved in the MBR was 
more than 200 g L-1. Additionally, ethanol fermentation of nondetoxified spruce hydrolysate 
was possible at a high feeding rate of 0.8 h-1 by applying a submerged membrane bioreactor, 
resulting in ethanol productivities of up to 8 g L-1 h-1.   
 

In conclusion, this study suggests methods for rapid continuous ethanol production even at 
stressful elevated cultivation temperatures or inhibitory conditions by using encapsulation or 
membrane bioreactors and high cell density cultivations.  
 

Keywords: Encapsulated yeast, Biofuel, S. Cerevisiae, Membrane bioreactors, 
Thermotolerance, Furfural, Acetic acid 
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CHAPTER 1 
 

INTRODUCTION 

1.1 Scope and outline 

At present, we are consuming around 90 million barrels of oil each day [1]. Our transport 

sector is unfortunately heavily dependent on oil as raw material, and we know that we face a 

progressive depletion of oil and traditional fossil fuels. Environmental concerns due to 

greenhouse gas emissions from fossil fuel consumption has increased the interested in 

renewable alternatives. Usage of lignocellulosic materials has the potential to provide a large 

source of clean, low carbon and secure energy [2]. Nevertheless, there is still no large 

production of any substitute fuel. Today, most of the easily accessible oil has already been 

used, and the world’s demand for more fuel has resulted in oil prospecting in deep waters and 

sensitive areas. Exploitation of oil sands for oil production has also been developed and 

started [3].  

 

In the future, we probably can not only rely on one single substitute for replacing the fossil 

fuels used for transportation. There are several suggested substitutes for fossil fuels, such as 

dimethyl ether, biomethane, biodiesel, bioethanol or hydrogen [4]. Ethanol, which is the focus 

of my thesis work, can be produced by fermenting sugars derived from sugar-rich, starch-rich 

or lignocellulosic materials. Lignocellulosic materials are cheap and abundant materials, 

which make them attractive as feedstock for ethanol production. However, lignocellulosic 

materials are recalcitrant and its hydrolysis not only produces fermentable sugars but also 

toxic compounds, such as weak acids, furan aldehydes and phenolics [5]. Unfortunately, 

inhibitors or other stress factors such as elevated cultivation temperatures can lead to reduced 

capacity or complete failure of the yeast to ferment the sugars into ethanol. Ethanol is a low-

value bulk chemical. It is, therefore, crucial that its production is relatively simple, robust and 

efficient. Suitable fermentation conditions are therefore needed to make the yeast be able to 

utilise the lignocellulose derived substrate, sometimes containing high concentrations of 

inhibitors.  
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The overall aim of my thesis research was to develop rapid ethanol fermentation, even at 

inhibiting conditions, with the aim of fermenting toxic media or lignocellulosic hydrolysates 

prepared from spruce. Two potential methods – yeast encapsulation and fermentation in 

membrane bioreactors (MBR) – were applied throughout the thesis research to gain high cell 

concentrations inside the bioreactor. The overall hypothesis was that a high local yeast cell 

density in a capsule or in the entire bioreactor would be beneficial for rapid fermentation at 

stressful conditions like elevated temperatures or in toxic media or wood hydrolysate. The 

physiological responses, such as ethanol and glycerol production, sugar consumption, 

viability and vitality, were used to evaluate the performance of the yeast. This thesis 

investigates the limitations of rapid yeast ethanol fermentation by using encapsulated yeast or 

MBR at increased stress conditions at elevated cultivation temperatures or high inhibitor 

levels, such as high furfural concentration, high acetic acid concentrations and high 

hydrolysate dilution rates. Additionally, the capsule robustness and MBR technology were 

developed further for ethanol production.  

 

This thesis is divided into five main chapters: 

• Chapter 1 introduces the thesis and explains the motivation and purpose of the present 

work, together with a description of the complex connection between our economical 

system and our immense usage of transportation fuels.  

 
• In Chapter 2, both first- and second-generation ethanol production is reviewed in 

general and utilisation of lignocellulosic materials in more detail. A short discussion 

on different cultivation modes is also included. 

 
• Chapter 3 presents a detailed description of, the two methods, encapsulation and 

membrane bioreactors, used throughout the entire thesis, together with descriptions of 

experimental methodologies (Papers I–V). 

 

• Chapter 4 describes the complexity of lignocellulosic hydrolysate fermentation. 

Problems and solutions are discussed in relation to results from the research in Papers 

I–V.     

 
• Chapter 5 discusses rapid ethanol production from toxic lignocellulosic media by 

using membrane bioreactors. Results from Papers III–V are included in this chapter.    
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1.3 Economical growth and fuel consumption  

In many ways, society is based on a continual expansion of economical and material needs, 

which in reality is unsustainable. Prosperity is generally calculated in economical terms by the 

gross domestic product (GDP) per capita, and the general belief is that an increasing GDP per 

capita will result in an equivalent increase in prosperity. As a result, GDP growth has been 

encouraged. A common belief among economists is that economical growth can and will 

continue forever, and our modern economy is by its structure deeply dependent on growth for 

its stability [7]. Today, there is a general pursuit for economical growth, driving the need to 

sell more goods and stimulate an ever-increasing consumer demand. The question is, 

however, how can a continuously growing economical system be integrated within a finite 

ecological system?  

 
After the immense financial turbulence in 2008, when the investment bank Lehman Brothers 

declared its bankruptcy, several bailouts were put together to stabilise failing banks, to 

motivate increased consumption and a continued economical growth. By the end of October 

2008, governments around the world had allocated an incredible 7 trillion US dollars of public 

funds for the bailouts. Economical growth nevertheless has vast consequences on both 

resource utilisation and environment. A conventional belief is that the dilemma with growth 

can be solved by decoupling, that is, by making the economy less dependent on material 

utilisation and making things more efficient. However, increased production efficiency can 

not restrain growing resource utilisation [7]. There are, for example, limitations on how 

efficient a process can be as well as the availability of raw materials.    

 

One example is the increased fuel usage for transportation. Fuel consumption in EU for road 

transportation has increased by 5% from 2001 to 2011 (Figure 2). However, the fastest growth 

in fuel consumption in the transportation sector has occurred in air transportations, which has 

increased by 16%. Biofuels accounted for 4% of the consumed fuels in 2011 [9]. The target 

for the EU transport sector is that 10% of the fuel in 2020 should have a renewable origin, 

according to the Renewable Energy Directive [10].     
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The need to reduce the transport sectors dependence on fossil fuels and the large emissions of 

greenhouse gases motivates profound studies concerning renewable biofuels. Bioethanol, 

which is the focus in this thesis, is one of the probable substitutes for fossil fuels in the land-

based transport sector.  

 

   

  

Figure 2 Energy consumption in Mtoe by the transportation sector in EU-28 and the utilised 

amounts of fuels. Reprinted with permissions [9].  
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CHAPTER 2 
 

ETHANOL PRODUCTION 

Today, first generation biofuels such as ethanol is produced in large scale at economical 

levels. However, it is obvious that the amounts of starch- and sugar-based material, in 

particular, required to substitute a major fraction of the fossil fuels in the transport sector are 

insufficient. As reviewed by Brennan and Owende [11], it is not possible since presently 1% 

or 14 million hectares of arable land is used to produce biofuels, which corresponds to 1% of 

the total consumption of transportation fuels. It is therefore not probable that the production of 

first generation biofuels can be increased anywhere close to 100%. This chapter will review 

the common ethanol fermenting yeast Saccharomyces cerevisiae (S. cerevisiae) and first and 

second generation ethanol production together with different fermentation modes. 

2.1 Saccharomyces cerevisiae  

Several different microorganisms are being used for the fermentative production of ethanol. 

However, the yeast Saccharomyces cerevisiae, also known as baker´s yeast, is still the 

dominating organism for industrial ethanol production. It has received the most attention, for 

example, because of its GRAS status, long traditional use in both baking and alcoholic 

beverage production, high rate of fermentation of hexoses, high tolerance to ethanol, 

inhibitors, acidity and other process conditions; it has also been well researched. The long 

tradition of using       S. cerevisiae has put selective pressure on certain useful properties such 

as ethanol tolerance, acid tolerance and osmotolerance [12, 13]. The wild-type S. cerevisiae is 

able to utilise sugars such as maltose, sucrose, glucose, mannose, fructose and galactose, but it 

is unable to utilise xylose and arabinose [14]. Glucose is the preferred carbon and energy 

source. Several other microorganisms have also been tested as possible ethanol producers. 

Among these are, for example, Escherichia coli, Zymomonas mobilis, Scheffersomyces 

stipitis, Klyveromyces marxianus and Mucor indicus [15]. 

 

S. cerevisiae belongs to the category of facultative anaerobes, which are able to grow both in 

the presence and absence of oxygen. However, at strictly anaerobic conditions it is unable to 

produce ergosterol and unsaturated fatty acids, which must be supplemented to enable 

anaerobic growth [16]. S. cerevisiae produces ethanol even in the presence of oxygen; it is 
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therefore a Crabtree-positive yeast. This mixed respiro-fermentative metabolism occurs when 

the glucose concentration is above a critical threshold concentration [17].    

 

The main metabolic pathway involved in S. cerevisiae for ethanol fermentation is glycolysis, 

(synonymous to Embden-Meyerhof-Parnas or EMP pathway). During glycolysis, one glucose 

molecule is metabolised and generates two pyruvate molecules. In this reaction sequence, 

liberated free energy is used to form a net two ATP molecules, and two NAD+ are converted 

into two NADH. Under anaerobic conditions, the two pyruvates are metabolised into two 

acetaldehyde molecules together with the release of two CO2. In order to redox-balance the 

reaction, the two acetaldehydes are converted together with H+ ions and NADH to produce 

ethanol, and thereby regenerate NAD+ again. The theoretical yield on a mass basis on 

metabolised glucose is 0.511g g-1 for ethanol and 0.489 g g-1 for CO2 [18]. Many yeast strains 

produce glycerol as a by-product during ethanol fermentation, and the glycerol concentration 

is generally between 2.5–3.6wt% of the produced ethanol [19]. Under anaerobic conditions, 

the formation of glycerol occurs because of the need to re-oxidise NADH, which is produced 

during biomass and acetic acid formation [20-22].    

 

The main drawback of S. cerevisiae is its inability to ferment pentose sugars such as xylose 

and arabinose. Vast efforts have been made to construct S. cerevisiae strains by metabolic 

engineering to enable xylose fermentation as reviewed by [14, 23, 24]. In this work, pentose 

fermentation was not addressed, and the yeast strain S. cerevisiae CBS8066 was used in all 

studies.    

 

2.2 Ethanol production from starch or sugar   

At present, the prime raw materials for ethanol production by fermentation are starch- or 

sugar-rich crops. In USA, ethanol is mainly produced from corn, whereas in Europe sugar 

beets, cereals and wine alcohol are used [25]. In contrast, Brazil produces ethanol from 

sugarcane, where the sugar-rich extract from sugarcane can be utilised directly for ethanol 

fermentation. Starchy raw materials, on the other hand, need to be hydrolysed before they can 

be fermented, as they consist of two types of polymers: amylose and amylopectin. Both 

polymers consist of glucose units. In amylose, which is unbranched, the glucose units are 

connected by α-1,4 links, whereas amylopectin is a branched polymer with a main amylose-

chain that is linked by α-1,6 bonds to short saccharide chains. The main procedure by which 

fermentable sugars are produced from starch is by first liquefying the starch at an elevated 
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temperature by adding  α-amylase. To produce glucose a second enzyme named glucoamylase 

has to be supplemented [26].         

 

However, the use of edible crops for ethanol production is controversial since it generates 

competition for the raw material, to either use it as food or for ethanol production. The 

cultivation of crops also takes agricultural land in possession [27]. Other limitations and 

uncertainties with using crops for generation of ethanol are its environmental impact because 

of the usage of fossil fuel for their production and their need for fertilizers and water for 

irrigation [28]. When ethanol is produced from sugar- or starch-rich feedstocks, about 40–

70% of the production cost is attributed to the cost of the raw material [27].    

                 

2.3 Ethanol production from lignocelluloses 

2.3.1 The raw material  

Because lignocellulosic materials are abundant and cheap, they have attracted a great deal of 

interest as feed-stock for ethanol production. Unlike starch- and sugar-rich materials, which 

can be fermented into ethanol rather easily, lignocellulosic residues have a very complex and 

recalcitrant structure where the carbohydrates are tightly associated with lignin, as shown in 

Figure 3. Consequently, harsh treatment is needed to release fermentable sugars from the 

lignocellulose.       

 
 
Figure 3 Illustration of the schematic structure of lignocellulose. Cellulose, hemicellulose and 

lignin are the three major components in lignocellulosic materials, forming a highly 

recalcitrant structure where the cellulose is tightly surrounded by both hemicellulose and 

lignin. Reprinted with permissions [29].  
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Lignocellulose is present in plant material and is constructed of three main components, 

namely, cellulose, hemicellulose and lignin. Up to 70% of the lignocellulosic plant residues 

consist of the carbohydrates cellulose and hemicellulose [30]. Generally, softwood and 

hardwood is composed of about 40–50% cellulose, 20–30% hemicelluloses and 15–30% 

lignin and other components. Herbaceous plants usually contain less lignin than wood [31, 

32], see Table 1.  

 

The cell wall of living plant cells is mainly composed of cellulose, having the main purpose to 

provide physical strength to the cell. Cellulose is a linear polymer of glucose molecules linked 

together by β-1,4 bonds, where the repeating unit is the disaccharide cellobiose [33]. The 

cellulose chain length is generally 2,000 to 20,000 glucose units, and the linear structure of 

the cellulose chains makes them able to connect strongly to each other by hydrogen bonding. 

The cellulose chains therefore form so-called microfibrils, which mainly have a crystalline 

structure [34]. The hemicellulose polymers, in contrast, have a more complex structure than 

cellulose and have a lower molecular weight. Hemicellulose consists of many different 

monosaccharides, such as arabinose, galactose, glucose, mannose and xylose. Softwood 

hemicellulose mainly consists of galactoglucomannan, whereas hemicellulose consists mainly 

of O-acetyl-4-O-methyl-glucuronoxylan in hardwood and of arabinoxylan in grass. In 

addition to a main hemicellulose, each lignocellulosic raw material also contains several 

different sorts of other hemicelluloses, for example, arabinoglucuronoxylan, arabinogalactan 

and glucomannan [32, 33]. 

 

Table 1 Composition of lignocellulosic materials (% of dry material). 

Lignocellulosic material 
Components  

Cellulose Hemicellulose Lignin Extracts Ash References 

Straw Wheat straw 33.0 33.0 20.0 na na [35] 

 Corn stover 34.4 29.0 17.2 na na [36] 

 Sugarcane leafs 40.8 30.8 25.8 na 2.6 [37] 

Softwood Scots pine       
(Stem wood) 

40.7 26.9 27.0 5.0 na [38] 

 Norway spruce 
(Stem wood) 

42.0 27.3 27.4 2.0 na [38] 

Hardwood Silver/Downy 
birch (Stem wood) 

43.9 28.9 20.2 3.8 na [38] 

na = not analysed     
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The hydrolysis of hemicellulose will, therefore, result in very different sugar composition 

depending on the origin of the raw material used. In softwood, the main sugar building blocks 

are glucose and mannose, whereas the amount of xylose is rather low, compared to the 

amounts in hardwood and straw [33]. The composition of the plant material can also vary 

significantly depending on growth conditions. Hemicellulose is also acetylated to a different 

degree. Usually, hardwood hemicellulose is more acetylated than softwood hemicellulose 

[39].        

    

Different wood materials generally have similar cellulose content [30], but softwood 

commonly contains a larger portion of lignin and less hemicellulose than hardwood. In 

softwood, around 25–30% of the wood’s dry weight is lignin, while in hardwood the lignin 

content is around 20–25% [40]. Lignin has a very amorphous structure where the lignin 

attaches to both cellulose and hemicellulose polymers by covalent or hydrogen bonding. The 

lignin part in the biomass consists of a three-dimensional polyphenolic polymer consisting of 

p-hydroxyphenyl-propanoid units bound together. The lignin monomers are derivatives of    

p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol. How these momomers build up the 

plant and at what ratios they occur depends on the plant [30]. The complex structure of lignin 

makes it very resistant to both enzymatic and chemical degradation [41-43].  

 

Plant material also contains a portion of extractives or secondary metabolites such as resins, 

terpenes, phenols, quinines and tannins together with non-extractives, which are mainly 

inorganic ash components e.g. silica and alkali, but also pectin, proteins and starch [30]. 

Several different treatment methods have been tested in order to pre-treat or hydrolyse 

lignocelluloses prior to ethanol fermentation. To write a complete overview of all these 

methods is outside of the scope of this thesis. Instead, only two hydrolysis methods are 

reviewed briefly. These are acid hydrolysis and enzymatic hydrolysis. 

 

2.3.2 Hydrolysis 

In order to utilise the carbohydrates in lignocellulosic material, they need to be degraded to 

fermentable sugars. There are several principal methods for degrading cellulose and 

hemicellulose to monosaccharides and fermenting them into ethanol as illustrated in Figure 4. 
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Figure 4 Illustration of the different concepts and steps involved in lignocellulosic hydrolysis 

and conversion into ethanol: enzymatic hydrolysis (1), dilute-acid hydrolysis (2) and 

concentrated acid hydrolysis (3). SHF: separate hydrolysis and fermentation, SSF: 

simultaneous saccharification and fermentation, CBP: consolidated bioprocessing.     

 

2.3.2.1 Enzymatic hydrolysis 

In enzymatic hydrolysis, cellulolytic and hemicellulolytic enzymes are added to a pretreated 

lignocellulosic material in order to hydrolyse the carbohydrates. The pretreatment is necessary 

to break up the recalcitrant structure of the lignocellulosic material and make it more 

accessible for the hydrolysing enzymes [44]. There are three principally different enzymatic 

hydrolysis concepts by which lignocellulosic materials are hydrolysed and fermented: 

separate hydrolysis and fermentation (SHF), simultaneous saccharification and fermentation 

(SSF) and consolidated bioprocessing (CBP), as illustrated in Figure 4. In the SHF process, 

enzymatic hydrolysis and fermentation of the released sugars are preformed in separate 

vessels, while the SSF is conducted in the same reactor. The sugars produced in the SSF 

process can thereby be consumed directly by the present microorganism, which hinders 

product inhibition of the enzymes. However, since both fermentation and hydrolysis occur in 

the same reactor, operating conditions need to be suitable for both enzymes and cells. Both 
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the SHF and SSF process require addition of enzymes whereas no enzyme addition is needed 

in the CBP since in this case, the fermenting microorganism can produce hydrolysing 

enzymes [45, 46]. 

 

The advantage of enzymatic hydrolysis is that it can be conducted at mild conditions, e.g. at 

pH 4.8 and a temperature of 45–50 °C. The utility cost and corrosion problems are therefore 

low compared to treatments with acid or alkaline [47]. The current interest in enzymatic 

hydrolysis has been high since it can give high saccharide recovery and a low inhibitor 

formation compared to acid hydrolysis. Additionally, the hydrolysis can be performed at 

moderate temperatures. However, to get a successful enzymatic hydrolysis, it is necessary that 

the material be first pretreated properly in order for the enzymes to get access to the 

carbohydrates. Without any pretreatment, cellulose hydrolysis will be extremely slow, since 

the enzymes will have difficulty gaining access to the cellulose polymer chains due to the 

crystalline structure of the lignocellulose [45].  

 

In nature there are several organisms which produce enzymes capable of degrading cellulose 

and hemicellulose [48]. Many of these are filamentous fungi, such as Aspergillus, Penicillium, 

Sporotrichum and Trichoderma [49]. Filamentous fungi are able to produce and secrete large 

amounts of proteins. Industrially, as high titres as 100 g L-1 can be reached. The mould 

Trichoderma reesei (syn. Hypocrea jecorina) is the species mostly used for commercial 

production of cellulases, since it produces relatively large amounts of potent cellulose 

degrading enzymes, which are released into the substrate. The produced enzyme cocktail 

consists mainly of cellobiohydrolases, which cleave off cellobiose molecules from the ends of 

cellulose fibres, and of endoglucanases, which act preferably on amorphous cellulose by 

cleaving β-1,4-glycosidic bonds randomly in cellulose chains. Additionally, the enzyme 

cocktail contains β-glucosidase, which hydrolyses oligosaccharides and cellobiose into 

glucose [47, 48].  

 

Unfortunately, when pretreated lignocellulosic material is hydrolysed enzymatically the 

hydrolysis is often inhibited. Inhibition occurs via product inhibition by e.g. glucose or 

cellobiose [49]. Product inhibition leads to reduced degradation of the carbohydrates, unless 

the formed products are further hydrolysed or consumed by a microorganism during, for 

example, SSF. However, new enzymes less sensitive to product inhibition have been 

developed. The major disadvantages of enzymatic hydrolysis are the moderate reaction rates 
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of the enzymes and the high cost of the enzymes. Enzymes costs have been reduced 30 fold 

[50], but further reductions in enzyme cost are necessary to make the process economically 

viable. Another difficulty is that enzymes may adsorb to lignin present in the substrate, 

thereby rendering the enzyme unproductive [51].  

 

SSF is a commonly used way to degrade lignocellulosic material with enzymes, since product 

inhibition can be avoided when both fermentation and the hydrolysis is occurring in the same 

vessel [52]. A dilemma is that the optimal temperature is 45–50 °C for enzymatic hydrolysis 

and around 30 °C for fermentation, with conventional strains of S. cerevisiae. Consequently, 

SSF is operated at around 35–37 °C as a compromise [27]. It would be very attractive for the 

fuel ethanol industry if yeast strains, which are more thermally tolerant could be used. The 

thermal tolerance of yeast will be discussed in section 4.4.      

 

Another problem with the SSF process is that fresh cells are required when starting a new 

SSF, because separation of the cells and particulate material is difficult [53]. It is, however, 

possible to reuse cells in a SSF, but then the process design has to be altered. Ishola et al. [54] 

demonstrated a SSFF (simultaneous saccharification, filtration and fermentation) process 

where sugar-rich liquid is removed from the slurry containing pretreated lignocellulosic 

material and hydrolysing enzymes. The liquid part containing dissolved sugars is added to a 

bioreactor containing high levels of cells where fermentation occurs. After fermentation, the 

liquid is transported back to the hydrolysis container. This configuration makes it possible to 

reuse the yeast in several SSF batches, and it is possible to operate the two reactors at 

different conditions e.g. different temperature and pH [54].    

 

2.3.2.2 Acid hydrolysis 

The original method to hydrolyse cellulose was by acid, either with concentrated or dilute 

acids. In the beginning, hydrolysis with concentrated acid was mostly used. Prior to or during 

Second World War, a total of twenty alcohol plants using lignocellulosic materials as raw 

material were operated in Europe, Russia, China, Korea and US. The plants used either the 

Scholler dilute sulphuric acid process, where the acid concentration was between 0.2–1% or 

the Bergius process which used 40–45% hydrochloric acid to hydrolyse the wood [55]. 

Processes based on concentrated acid hydrolysis generally have a high hydrolysis yield 
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(≥90% of the theoretical glucose yield), but they result in problematic corrosion and require 

costly acid recovery. Since processes using concentrated acid require high investment and 

maintenance costs, the interest in the process has mostly been low [56].  

 

Using dilute acid hydrolysis can reduce the consumption of acid considerably, and among the 

chemical hydrolysis methods, it is the most commonly applied. The method can be used either 

as a pretreatment method, followed by enzymatic hydrolysis of the carbohydrates, or as the 

actual hydrolysis method to produce fermentable sugars. The Scholler process was probably 

the first established dilute-acid hydrolysis process for wood. The process was run batch wise, 

where the wood was kept in 0.5% sulphuric acid at 11–12 bar for about 45 min. Today, when 

dilute acid hydrolysis is performed it is carried out in batch mode but with a hydrolysis time 

of only a few minutes [56].  

 

The main drawbacks of dilute acid hydrolysis, especially those performed in batch processes, 

are sugar degradation during hydrolysis, low overall sugar yield and the formation of several 

by-products which inhibit the fermenting microorganism [57]. The high hydrolysis 

temperature also causes corrosion problems even at low acid concentration and accelerates the 

sugar degradation. One way to reduce the sugar degradation is to perform a two-stage dilute 

acid hydrolysis. Here, mainly hemicellulose is hydrolysed at relatively mild conditions during 

an initial step and afterwards, the cellulose is hydrolysed in a second stage at more harsh 

conditions at a higher temperature [58]. Between the two stages the liquid phase is removed 

so the formed sugars are not further degraded into inhibitors. A two-stage dilute acid 

hydrolysis is generally preferred over a one stage hydrolysis, since e.g. sugar degradation is 

reduced and less inhibitors are produced [56, 58]. Table 2 summarises the advantages and 

disadvantages of dilute acid and enzymatic hydrolysis of lignocellulosic materials.  

 
Table 2 Summary of advantages and disadvantages of dilute-acid and enzymatic hydrolysis.  

 Dilute-acid hydrolysis Enzymatic hydrolysis 

Hydrolysis time Rapid Slow 

Hydrolysis condition Harsh Mild 

Inhibitor production High Low 

Product inhibition   
during hydrolysis No Yes 

Sugar yield Low High 

Catalyst cost Low High 
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2.4 Modes of fermentation – batch, continuous and fedbatch 

Ethanol production with yeast is highly dependent on which substrate is utilised. However, it 

is also largely affected by the cultivation mode. This section tries to visualise the advantages 

and disadvantages of the traditional cultivation methods when inhibitory media are used.  

    

2.4.1 Batch cultivations 

Batch technology has been preferred in the past since batch cultivation plants are fairly simple 

and inexpensive to construct and get running. Alcoholic beverages are therefore often 

produced in batch mode. One major disadvantage of batch systems is that it is time 

consuming and labour intensive since time is spent on cleaning, sterilisation, filling, lag 

phase, cell growth and harvesting in each batch. The overall productivity of the process is 

therefore low. One way to improve the process productivity is to reuse the produced cells by 

separating the cells from the media by centrifugation or sedimentation and then recycle the 

cells to the next batch [59]. In Papers I and II, the yeast could easily be separated from the 

medium and reused several times in consecutive batch cultivations since the cells were 

encapsulated. 

 

Batch cultivation in dilute acid hydrolysate is usually not appropriate since the cells are 

exposed directly to a high concentration of inhibitors [60]. Depending on the inhibitor 

concentration in the used hydrolyzate, the fermentation can either be prolonged while some 

inhibitors are detoxified by the yeast cells, or fail completely as the cells are completely 

inactivated in the toxic environment [61, 62]. To improve the fermentability, the hydrolysate 

can be detoxified, a more inhibitor tolerant yeast can be used, or the yeast inoculum size can 

be increased to improve the microorganism’s own in situ detoxification. From an economical 

point of view, in situ detoxification is more advantageous than a more expensive 

detoxification step.  

 

2.4.2 Continuous cultivations 

During continuous cultivations, fresh media is continuously added into the bioreactor at the 

same rate as cultivation broth is removed. This results in a constant liquid volume inside the 

reactor. In traditional continuous cultivations, yeast cells are constantly drained from the 

cultivation as fermentation broth is removed. The yeast therefore needs to grow at the same 
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rate as the dilution rate in order to avoid washout of the cells. Consequently, inhibiting 

medium that affects the specific growth rate will reduce the maximum possible dilution rate, 

which directly affects productivity. A major problem if the hydrolysate is very inhibiting and 

significantly reduces the specific growth rate, is that cell washout may take place unless a 

very low dilution rate is used, resulting in reduced productivity and economic utilisation of 

the system [63]. Another well-known weakness of continuous cultivations is the risk of 

contamination. One solution is to use flocculating yeast, which can be kept inside the 

bioreactor whereas the contaminating bacteria are washed out with the fermentation broth 

[64].       

 

During continuous cultivation, the concentration of convertible inhibitors can be kept low 

throughout the cultivation, if the dilution rate is appropriate. Yeast possesses the capability to 

detoxify some inhibitors present in the added hydrolysate as long as the feed-rate is not 

increased beyond the yeast’s maximum detoxification rate. The detoxification rate and 

productivity can be improved by having a higher yeast biomass concentration inside the 

reactor. Approaches to retain the yeast cells in the system are by immobilisation [65-67] or 

different yeast recirculation methods [68]. By retaining the yeast cells, the reactor can be 

operated at much higher dilution rates since the dilution rate is no longer restricted by the 

specific growth rate of the yeast. The maximum specific growth rate of S. cerevisiae CBS 

8066 is 0.46 h-1 when batch cultivations are performed with non-inhibiting medium at 

anaerobic conditions [69]. However, in the presence of inhibitors the specific growth rate can 

be much lower. For example, when 4 g L-1 of furfural was pulse injected into batch 

cultivations containing S. cerevisiae CBS 8066, the specific growth rate fell from 0.4 to 0.03 

h-1 until the furfural was completely consumed [70].     

 

Most of the cultivations performed in this thesis (Papers I and III–V) were conducted in 

continuous mode, commonly at rapid dilution rates of up to 0.8 h-1 (Paper V). In Paper I, 

where the thermal tolerance of encapsulated yeast was investigated, the dilution rate was 

rather low at only 0.2 h-1. Continuous cultivations were chosen because of the goal of 

achieving a rapid ethanol production with high productivity, and because convertible inhibitor 

concentrations can be kept low by in situ detoxification.        

 
In Paper I, when encapsulated yeast was grown inside the bioreactor, the liquid level inside 

the bioreactor was kept constant by placing a sieve at the appropriate liquid level and 
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withdrawing consumed fermentation broth with a peristaltic pump. Thereafter, feed medium 

was added into the bioreactor using a peristaltic pump to gain the appropriate dilution rate. In 

Papers III–V in which membrane bioreactors were applied, a level probe was used instead to 

regulate the liquid level inside the bioreactor. By connecting the level probe to a pump 

coupled to the permeate side of the membrane module, fermentation broth could be removed 

when needed.  

 

2.4.3 Fedbatch cultivations 

In fed-batch cultivations, the system is operated in a semi-open mode with a variable volume. 

During fed-batch cultivations the yeast inoculum is first added to a small amount of media. 

After a batch process, fresh medium is added continuously or periodically to the cultivation, 

without removing any culture fluid [71].  

 

The fed-batch process was originally developed in the 1910s to produce bakers´ yeast [72]. It 

can result in a considerably higher biomass yield compared to batch processes because 

glucose repression and overflow metabolism can be avoided [73]. Fed-batch cultivations 

combined with cell recycling is the mostly used mode for bioethanol production due to the 

high volumetric productivity of the process [71]. For example Souza et al. [74] reported a 

volumetric ethanol productivity of up to 25.4 g L-1 h-1 in a fed-batch process using medium 

containing 150 g L-1 of sucrose.   

 
One reason for operating in fed-batch mode is to minimise inhibition effects, caused by the 

carbon source or inhibiting compounds present in the medium [75]. Fed-batch cultivations are 

therefore very appropriate for fermentation of dilute-acid hydrolysate, because high 

concentrations of convertible inhibitors can be avoided [76]. In fed-batch cultivations some 

advantages of batch and continuous cultivations are combined, e.g. no washout of cells can 

occur, and inhibitor levels can be kept low by adjusting the fed rate.  
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CHAPTER 3 
 

CELL RETENTION BY ENCAPSULATION AND 
MEMBRANE BIOREACTORS  

Cell immobilization has attracted much interest. One reason is that it can provide a high cell 

concentration in the bioreactor. For example, Webb et al. [77] have shown that the cell 

biomass level in immobilised systems can be considerably higher than in free cell systems. 

High cell concentrations can likewise confer higher ethanol production rates. Immobilisation 

can additionally provide an easy separation of the microorganism from the fermentation broth 

and thereby reduce downstream processing [78].    

 

The disadvantages of immobilised cell systems include: the additional cost for 

immobilisation, the mass transfer resistance in the immobilised matrix, and that the robustness 

of the immobilisation matrix may be insufficient for extended use. The utilisation of 

immobilised cells has usually been motivated by the higher ethanol productivity [79] and 

higher ethanol yield which can be achieved [80]. The higher ethanol yield is attributed to 

reduced biomass and acetic acid formation in the immobilised system, which also results in a 

reduced glycerol yield. A larger part of the available sugars can therefore be used for ethanol 

production, which improves the ethanol yield. Several different immobilisation methods exist, 

namely adsorption, covalent bonding, cross-linking, entrapment and encapsulation. These 

methods are illustrated in Figure 5.  

 
3.1 Encapsulation – capsule formation  

One strategy to immobilise the cells is to use encapsulation. In the encapsulation process the 

cells are enclosed by a polymer membrane that is permeable to small substrate molecules and 

metabolites [81], see Figure 5. The capsule membrane will retain all cells inside the capsule as 

long as the membrane is intact. If the cells instead are immobilised in compact gel beads 

(entrapped in a matrix), cells can escape from the bead surface into the nearby medium, and 

cells will mainly grow close to the bead surface [82]. 
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Encapsulation also has the advantage that a higher cell density can be reached inside the 

capsule, in the liquid core. Moreover, encapsulated yeast cells have been shown to perform 

better in toxic media with e.g. high levels of limonene [83] or furfural [84] or at elevated 

cultivation temperatures (Paper I) compared to freely suspended yeast.  

 

3.1.1 Capsule materials  

A multitude of different materials have been used 

to construct the capsule membrane. Natural 

polymers such as e.g. cellulose [85], chitosan [66], 

carrageenan [86], agar, alginate [84], collagen and 

albumin have been used. Additionally synthetic 

polymers such as polystyrene, nylon [87], 

polyacrylamide, polyamides [88], polyether-

sulphone (PES) and polyvinylidene fluoride [89] 

have also been tested. Furthermore, some inorganic 

materials such as silica have been used [90], or 

hybrid materials prepared by combining organic 

and inorganic materials (Paper II).   

 

Obviously, the selected material and the applied 

encapsulation technique will affect the capsules’ 

characteristics, such as rigidity, permeability, 

hydrophilicity and chemical and mechanical 

stability. The performance and stability of the 

encapsulated system will be determined by e.g. the 

materials pore size, swelling behaviour, mechanical 

strength and compression properties. However, it is 

important that the encapsulation is performed at 

mild enough conditions in order not to impair  the 

viability of the cells too much [90].  

       Figure 5 Common immobilisation 

       methods used for microbial cells. 

- Adsorption to a surface 

- Covalent binding 

- Entrapment  

- Cross-linking 

- Encapsulation
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Different natural organic polyelectrolytes have been the most common materials used for 

encapsulating cells. Polyelectrolytes can easily form hydrogels when they are mixed with 

polyions of the opposite charge. The biopolymer alginate is a particularly popular material, 

because the encapsulation process is easy and can be conducted at mild conditions at neutral 

pH and room temperature. In both Papers I and II, alginate was the main building block for 

the capsule membrane. To ionically cross-link the alginate polymers, both Ca2+ ions and 

chitosan, which is a positively charged biopolymer, were used. It is the guluronic acid 

residues in the alginate polymer that can be ionically cross-linked by divalent cations such as 

Ca2+ or other polycations e.g. chitosan [91]. By using chitosan, the capsules can be made 

more robust.  

 

Synthetic encapsulation materials usually have the advantage of being very mechanically 

stable. However, their production commonly demands high processing temperatures, reactive 

chemicals and organic solvents, which are all hazardous for living cells. Therefore, cells 

encapsulated in synthetic membranes are generally introduced after capsule formation [92]. It 

is furthermore important that the synthetic material used in the encapsulation is hydrophilic 

enough to allow dissolved nutrients to penetrate through the membrane.  

 

Capsules prepared of e.g. silica or metal oxide can be made by different sol-gel methods 

where precursors of organometallic compounds are hydrolysed and then condensed to form a 

porous material. Unlike organic polymers, inorganic silicate materials are chemically inert, 

hard and have low swelling [93, 94]. The use of reactive precursors, acidic or basic catalysts 

and the formation of alcohols can, however, affect the viability of the cells and thereby restrict 

its use for cell encapsulation [93].    

 

3.1.2 Encapsulation methods 

There are several different methods by which encapsulated cells can be produced: liquid 

droplet formation (also called the one-step method), pregel dissolution (also called the two-

step method), interfacial polymerisation, and coacervation.  

 

In the liquid droplet formation method, capsules can be formed by just one step. Cells can be 

encapsulated with this method by dropwise addition of a solution of cell-containing hardening 

agent, such as Ca2+, into a polymer solution of e.g. alginate. A capsule forms instantaneously 

around the droplet, placing the cells in the capsules inner liquid phase [95]. 
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As the name indicates, the pregel dissolving method begins by first preparing a porous gel of 

e.g. calcium alginate by dripping a sodium alginate solution into a solution with calcium ions. 

Afterward, the prepared beads are, for example, treated with polycations such as chitosan or 

other polyions to create a membrane on the bead surface. A liquid core capsule can then be 

prepared by dissolving the inner core of e.g. calcium alginate with sodium citrate or other 

chelating agents [94, 95].   

 

Encapsulation with the interfacial polymerization method is conducted by mixing a reactive 

water soluble monomer into the aqueous phase of an emulsion containing an organic phase. 

By stirring the emulsion steadily, the aqueous phase will form drops in the organic phase. 

When an appropriate monomer is dissolved in the organic phase, a polymeric membrane 

forms instantly at the interface between the organic and aqueous phase [88, 95].                 

 

The term coacervation is derived from the latin word coacervare, meaning “to assemble 

together or cluster” [96]. Coacervation is performed under continuous agitation by dispersing 

the core liquid in a solution of the coating polymer. The coating polymer is then induced to 

separate from the solution by e.g. changing the pH, temperature or addition of salt or 

nonsolvent. The core liquid is then coated by the deposition of the coating polymer on the 

droplets. Formed microcapsules are thereafter stabilised by, for example, cross-linking. [97].  

 

3.2 Encapsulation procedures and robustness 

Encapsulating the cells requires an extra investment, which increases the cost of the system. It 

is therefore important that the produced capsules are stable for long periods to make the 

method attractive at industrial scale. Capsule robustness is a major issue for the technique, 

and the membranes stability is a common problem especially in stirred reactors with high 

shear stress [98]. Several methods to improve the capsules have been investigated such as 

usage of cross-linking agents to introduce covalent bonds to bind together the polymers in the 

capsule membrane. Unfortunately, cross-linking agents are generally toxic for the cells. High 

molecular weight cross-linking agents, e.g. dextran dialdehyde, are usually less hazardous to 

the cells compared to low molecular weight agents, e.g. glutaraldehyde or carbodiimide [99].       
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In Papers I and II, the liquid droplet method was employed to produce Ca-alginate capsules 

containing yeast cells. The methodology has previously been used for encapsulation of 

Saccharomyces cerevisiae by e.g. Talebnia et al. [81]. Calcium-alginate was used as the main 

capsule membrane material.  

 

The stability of the formed capsules membrane is unfortunately strongly dependent on the 

presence of excess Ca2+ in the surrounding liquid. Otherwise, the weakly bound Ca2+ can 

slowly leak from the gel, which makes the membrane swell and finally rupture. Therefore, 

Ca2+ ions need to be added to the media, or the alginate capsules require some additional 

treatment to make the capsules more robust. In Papers I and II, the formed capsules were 

conjugated with low molecular weight chitosan to make the capsules more robust and avoid 

adding Ca2+ to the media, which is costly and may lead to solid salt formation. In Paper II, 

additional treatment was investigated.    

 

Several different encapsulation methods were investigated during this thesis wor: cross-

linking the alginate chitosan capsule matrix with glutaraldehyde and genipin or treating the 

capsules with sodium silicate solution or 3-aminopropyltrietoxysilane (APTES). However, 

only glutaraldehyde and APTES treated capsules were investigated in more detail. The 

encapsulation methodology and some results will be described in the following sections.  

 

3.2.1 Chitosan alginate capsule production 

In the first steps before encapsulation, the yeast cells were collected by centrifugation and 

thereafter re-suspended in a solution containing 1.3% (w/v) CaCl2 and 1.3% (w/v) 

carboxymethylcellulose (CMC) with an average molecular weight of 250 kDa and degree of 

substitution 0.9. The addition of CMC increases the viscosity of the solution and makes it 

easier to form spherical capsules. The viscous yeast suspension containing CaCl2 was then 

added dropwise to a 0.6% (w/v) sodium alginate solution containing 0.1% (v/v) Tween 20 to 

improve the permeability of the capsule membrane. The capsule membrane is formed when 

Ca2+ in the yeast suspension comes in contact with the alginate polymers, cross-linking and 

gelling them (see Figure 6). Capsules were produced for 5 min and were then left to gel for 

another 5 min, after which they were removed and washed with plenty of water. To harden 

the capsules, they were placed in a 1.3% (w/v) CaCl2 solution for at least 20 min. 
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Figure 6 Schematic procedure for encapsulation of yeast cells in Ca-alginate capsules. The 

scale bar in the picture is 1000 μm.   

 

One important factor to be considered when preparing spherical capsules is how the drops of 

yeast and CaCl2 suspension fall into the alginate solution from the needles. If the drops fall in 

the vortex of the mixed sodium alginate solution, they become elongated creating capsules 

with a “tail”. It is therefore important to make sure that the drops enter the alginate solution 

outside the vortex. 
 

The ionic cross-link between alginate and Ca2+ is relatively weak. Thus, this will result in the 

loss of Ca2+ from the alginate matrix when the capsules are placed in media containing 

insufficient amounts of Ca2+, or when the solution contains phosphate or citrate ions. When 

Ca2+ disappears, the membrane will lose its integrity and finally rupture. Adding Ca2+ to the 

medium can solve the problem, but this was not an alternative in this thesis work as it is both 

expensive and results in undesired salt precipitates.  

  

To improve the robustness of the Ca-alginate capsule membrane, the formed capsules were 

treated in a 0.040 M acetate buffer solution of pH 4.5 containing 0.2% (w/v) low molecular 

weight chitosan and 300 mM CaCl2. To incorporate the chitosan into the Ca-alginate matrix 

of the membranes, the capsules were treated at a 1:5 volume fraction of capsules to chitosan 

solution for 24 h at 30 °C at 140 rpm. After treatment the capsules were rinsed with NaCl and 
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water to remove any unbound chitosan before beginning any cultivation with the capsules. 

Since chitosan is a positively charged polyelectrolyte polymer, it can replace Ca2+ and 

crosslink the alginate matrix, thereby stabilising the membrane, as chitosan polymers are not 

removed as easily from the matrix as Ca2+. The formed alginate-chitosan (AC) capsules were 

therefore much more robust than Ca-alginate capsules. The appearance of AC capsules both 

before and after cultivation is illustrated in Figure 7.  

 

Figure 7 Pictures of AC capsules: Before cultivation (left), after cultivation with yeast pellet 

(middle) and after continuous cultivations in Paper I (right). The capsules size was 3-4 mm.  

 

3.2.2 Glutaraldehyde treated chitosan alginate capsules 

To improve the mechanical properties of gel capsules, different cross-linking agents can be 

used to covalently crosslink the gel polymers. Chemical cross-linking can be performed using 

the well known bifunctional reagent glutaraldehyde (GA) [100]. However, cross-linking the 

AC capsule with glutaraldehyde was found to be very detrimental to the yeast cells, even after 

first accumulating the yeast biomass in defined glucose medium with 50 g L-1 glucose for 30 

h and then 14 h in new medium before treating the capsules in 1% GA. The thought was that 

by having a high level of yeast biomass inside the capsules not all the yeast cells would die 

because of the treatment. However, after treatment, none of the treated AC capsules managed 

to ferment any of the glucose in the medium, see Figure 8.   

 

The failure to ferment the glucose did not depend on the permeability of the capsules.  

Diffusion tests of the treated and untreated capsules showed that the diffusion of glucose, 

glycerol and ethanol into GA treated capsules was only a little slower into the treated capsules 

compared with untreated (results not shown). However, equilibrium was reached for all 

compounds within 25 min.  
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Figure 8 Glucose concentrations during cultivations with untreated and GA treated capsules. 

AC capsules were treated in 1% GA solution for: 5, 15, 30, 45 and 1 min five times. Data are 

averages of two cultivations with standard deviation bars.   

 

The toxicity of GA was investigated by adding GA to cultivations in defined glucose medium 

to which 5 ml of yeast inoculum had been added. In none of the cultivations, to which GA 

was added, did the yeast survive not even when only 0.0025% GA was added, see Figure 9.   

 

Figure 9 Glucose concentrations in suspended yeast cultivations containing different    

concentrations of GA. Data are averages of two cultivations with standard deviation bars.   
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In order to try to keep the cell viable, a shorter exposure time for GA was tested where the 

capsules were only dipped for 5 sec in the 1% GA solution after which they were immersed 

into a buffer solution of 0.05 M acetate buffer with pH 4.5. The treatment was repeated 

several times with some of the capsules, see Figure 10. As shown in Figure 10, the 

encapsulated yeast from all four tested treatments successfully fermented all the glucose 

within 48 h. However, the rate of glucose consumption was reduced the more times the 

capsules were treated. Because of the high toxicity of GA and no major improvement in 

capsule robustness after treatment, no further experiments were performed with the 

glutaraldehyde AC capsules.  

 

Figure 10 Glucose concentrations in yeast cultivations performed with 1% GA treated 

capsules. Several different treatments were tested where the ACA capsules were immersed 

in the GA solution for 5 sec and then placed in buffer solution. This procedure was repeated 

for some capsules up to 10 times.  

 

3.2.3 PolysiloxaneACA capsules 

It is crucial that the produced capsules are robust enough to withstand chemical effects of the 

media and the shear forces occurring during stirring for prolonged periods. During the long 
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3.2.4 Capsule robustness 

The mechanical shear tests performed in Paper II to evaluate the PS-ACA capsules 

robustness revealed that the treated capsules were much more robust than untreated capsules, 

see Figure 12. Of the PS-ACA capsules produced by treatment with 1.5% or 3.0% hAPTES at 

the most 2% of the capsules were broken after a shear test of 6 h. Twenty-five per cent of the 

untreated capsules ruptured after the same treatment. However, fermentation tests were 

negative for PS-ACA capsules treated with 3.0% hAPTES since no ethanol was produced nor 

sugars consumed. The PS-ACA capsules treated with 1.5% hAPTES showed an almost equal 

fermentation profile as untreated capsules in the fifth consecutive batch fermentation in wood 

hydrolysate. The increased mechanical robustness of the PS-ACA capsules should make it 

possible to use the capsules for hydrolysate fermentation for much longer periods compared to 

untreated capsules. A longer capsule’s lifetime would make encapsulation more economically 

attractive.          

      

  

Figure 12 Results of the robustness of untreated and PS-ACA capsules, showing the 

percentage of broken capsules after 6 h at high shear stress. The concentrations in the figure 

denote the concentration of the hAPTES solution with which the capsules were treated. Data 

are averages of two cultivations with standard deviation bars.   
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3.3 Membrane bioreactors (MBRs) 

Presently there is an emerging industrial usage of membrane technology for wastewater 

treatment. There are today numerous large companies such as GE Healthcare, Kubota, Merck-

Millipore, Pall and Sartorius, which sell membranes for different applications. The purpose of 

the membrane is to separate compounds or cells, by allowing some components to pass the 

membrane but not others. Separation is driven by using pressure, vacuum or diffusion. The 

selectivity of the membrane is mainly determined by its pore size, although other membrane 

characteristics such as charge and hydrophilicity can also have an effect [102]. 

 

In MBRs, the purpose of the membrane can be to either retain cells inside the fermentor, or 

remove inhibitors or products from the broth. In Papers III–V, the bioreactor was combined 

with either of two different membrane modules to retain the cells in order to gain a very high 

yeast density inside the bioreactor. In Papers III and IV, a cross-flow module containing 

tubular ultrafiltration membranes was utilised whereas in Paper V, a MBR containing three 

flat membrane panels was operated, submerged in an external container outside the 

bioreactor.    

 

Membranes can be manufactured using ceramic, metallic or polymeric materials; nowadays, 

many different configurations are available. All the membranes utilised in Papers III–V were 

polymer based since these are generally much cheaper.  

 

3.3.1 Configuration  

There are two different MBR designs, in which separation is induced by either pressure or 

vacuum [103]. When using direct pressure the membrane is placed externally to the bioreactor 

and the fermentation broth is circulated to the membrane under pressure to push liquid 

through the membrane. The external cross-flow MBRs (Figure 13A) are operated in a manner 

where the liquid to be filtered flows with a high velocity parallel to the membrane surface. 

This configuration prevents cake formation on the membrane surface and therefore reduces 

fouling. Fouling has been designated as one of the main hurdles when applying membranes; 

however, an external cross-flow MBR module applied in Papers III and IV showed only very 

minor problems with fouling and the membrane could be cleaned easily. No major fouling 

was observed even at very high yeast concentrations of approx. 180 g L-1 (Paper III) or     

200 g L-1 (Paper IV).  
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The other MBR configuration is called submerged or immersed MBR. Here, the membrane, 

as implied by the name, is placed directly in the liquid (Figure 13B). The membrane is 

operated at vacuum or pressures below atmospheric to pull permeate through the membrane. 

Generally, submerged MBRs need less energy to operate compared to external cross-flow 

MBRs [102, 104]. Submerged MBRs, nevertheless, have the disadvantage of being 

problematic to operate at high particle or cell concentration because of fouling. Consequently, 

submerged MBRs generally require a larger surface area than cross-flow MBRs. Fouling can, 

however, be reduced by purging gas vigorously on the submerged membrane surface [102]. 

 

The submerged MBRs can be operated in two different configurations, either by immersing  

the membrane directly in the liquid in the bioreactor or in an external chamber as shown in 

Figure 13C. By having the submerged membranes in an external container, the membrane can 

be cleaned easier, but this design requires circulation of the liquid to and from the membrane 

container. In this thesis, two of the MBR configurations in Figure 13 (A and C) were used, in 

Papers III–IV the external cross-flow membrane bioreactor, and in Paper V the external 

submerged membrane bioreactor.  
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Figure 13 MBR configurations: A) external cross-flow membrane, B) internal submerged 

membrane and C) external submerged membrane. 
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3.3.2 Membrane fouling      

Fouling is one of the main problems hampering the usage of membranes for separation 

purposes [105]. Fouling occurs during operation when compounds, particles or cells, which 

cannot pass through the membrane, accumulate on the membrane surface or inside of the 

membrane. This will affect the membrane performance. There are several methods which 

have been tested in order to reduce fouling and cake formation, e.g. purging gas on the 

membrane surface (Paper V), turbulence promoters [106], periodical inversion of flow [107], 

ultrasound [108] and gas injection [109]. The majority of these methods increase the 

turbulence close to the membrane surface. The turbulence reduces accumulation of e.g. 

particles and consequently improves the membrane performance.      

 

No major fouling occurred in the cross-flow module used in both Papers III and IV. The 

operations of the submerged membrane panels were more problematic at high cell 

concentrations and high dilution rate. Consequently, the investigation in Paper V was 

conducted at a lower yeast cell concentration. Table 3 shows some studies made in MBRs 

together with the yeast density used.    

 

Table 3 Summary of yeast cell density during some MBR cultivations.  

Substrate MBR DWa L-1  References 

Glucose Cross-flow 150  [109] 

Glucose Cross-flow 300  [110] 

Glucose Submerged 157  [111] 

Tapioca hydrolysate Submerged 42  [112] 

Wood hydrolysate Cross-flow 12  [68] 

Wood hydrolysate Submerged 60  Paper V 

Sucrose Cross-flow 200  Paper IV 

Sucrose Cross-flow 180  Paper III 
a DW: Cell dry weight  
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3.4 Membrane bioreactors for ethanol production 

3.4.1 Crossflow membrane bioreactor  

The cross-flow membrane module used in Papers III and IV was placed externally to the 

bioreactor, and the yeast suspension was circulated with a peristaltic pump through the 

module. Consumed fermentation broth could be removed by another peristaltic pump 

connected to the top part (permeate side) of the module, see Figure 14.  

 

The used laboratory tubular cross-flow membrane module 

dizzer® LAB 1.5 MB 0.1 was purchased from inge Gmbh 

(Greifenberg, Germany). The module has been designed to 

treat drinking water, process water, sea water and waste 

water. According to the company, the module has a 

membrane surface area of 0.1 m2, with a pore size of      

~0.02 μm. The ultrafiltration membrane was manufactured 

of modified polyethersulfone. To get a satisfactory filtration 

through the module and to avoid fouling, the yeast 

suspension was continuously circulated with a flow of 0.5   

L min-1 through the membrane module.  

 

Since the membrane module could not be autoclaved, it was 

disinfected instead with sodium hypochlorite solution 

containing 100 mg L-1 of active chlorine for at least 30 min 

and rinsed with sterile water afterwards. Hydrogen peroxide 

(500 mg L-1) was used between cultivations to clean the 

membrane unit in order to avoid fouling. The cross-flow 

MBR was operated in a continuous mode by adding medium 

at a certain dilution rate into the bioreactor and having a 

harvesting pump connected to the membrane modules’ 

permeate outflow and a level probe inside the fermentor 

linked to the harvesting pump.       

Figure 14 Cross-flow membrane 

module used in Papers III and IV. 
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3.4.2 Submerged membrane bioreactor   

In Paper V, a submerged MBR was used, where three flat membrane panels were immersed 

in the yeast fermentation liquid in an external container. The external container was connected 

to a bioreactor in which the temperature, volume and pH was regulated. From the bioreactor, 

the fermentation liquid was continually circulated to the external container and back again. 

The membrane panels were manufactured and developed by the Flemish Institute for 

Technological Research (Vito NV, Belgium), see Figure 15. Every membrane panel had a 

total surface area of 0.0252 m2.     

 

To avoid fouling, the submerged MBR was operated at lower yeast concentrations below       

60 g L-1 unlike the cross-flow membrane, which could be operated at a very high cell 

concentration of up to 200 g L-1. A gas pump was also used to sparge large amounts of gas 

around the membrane panels to increase the liquid turbulence near the membrane surface. In 

order to get anaerobic conditions, the gas used to purge the membrane surface was collected 

and reused again. Membrane cleaning and disinfection was performed with 2% NaOH, 1% 

phosphoric acid and sodium hypochlorite solution with 100 mg L-1 active chloride.    

 

The membrane panels consist of dual-layer 

membranes with a spacer fabric holding the 

membranes together [113]. Interposed to the 

two membranes is the internal permeate 

channel through which consumed 

fermentation broth can be removed. The 

membrane panel construction makes the 

membranes very robust; furthermore, it is able 

to withstand high pressure changes during 

filtration and backwashing.       

 

 

Figure 15 Flat membrane panel used in the submerged membrane bioreactor in Paper V.  
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CHAPTER 4 
 

INHIBITORS AND STRESS CONDITIONS   

Lignocellulosic hydrolysates are difficult to ferment because they contain several compounds, 

formed during pretreatment or dilute acid hydrolysis, which inhibit both yeast growth and 

fermentation. In this thesis, dilute acid hydrolysates from spruce were used in Papers II and 

V. Defined media containing furfural or acetic acid were used in Papers III and IV. In the 

following sections, inhibitors and inhibiting mechanisms during ethanol fermentation are 

summarised together with some results from the mentioned papers.     

 

4.1  Common inhibitors during ethanol production 

Even the fermentation product ethanol is inhibitory for ethanol producing microorganisms. 

Ethanol’s toxicity obviously depends on its concentration. The main reason for ethanol’s 

inhibitory effect is believed to be caused by the reduced water activity. Ethanol can negatively 

affect hydrated cell components such as lipid bilayers, membrane-associated proteins and 

glycolytic enzymes [114]. Ethanol can easily diffuse past the cell membrane, where it reduces 

e.g. the glucose metabolism by lowering the activity [115]; in addition, ethanol has even been 

identified to denature glycolytic enzymes in vitro [116]. A high ethanol tolerance is crucial for 

the used ethanol producing strain. Generally, at concentrations of less than 2%, the ethanol’s 

inhibitory effect is insignificant [117], but it can increase significantly at higher 

concentrations [118].  

 

In processes using lignocelluloses as raw material, the ethanol concentration might be at 

levels of 4–5% [119]. The ethanol concentration did not reach over 60 g L-1 in any of the 

performed cultivations in Papers I–V. In most experiments the ethanol levels were well 

below this, except for Paper III where the ethanol concentration reached almost 60 g L-1. The 

microbial inhibition due to ethanol probably exerts a minor effect on its own in Papers I, II, 

IV and V, since the ethanol level was generally below 15 g L-1. Ethanol may nevertheless, act 

synergistically when combined together with other toxic compounds.       

 

Additionally, ethanol productivity and yield can be negatively influenced by high sugar levels 

in the fermentation broth. High sugar levels will affect the fermentation by inactivating the 
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enzymes present in the fermentation pathway as reviewed by [120]. It is therefore important 

to keep the sugar levels low in the reactor, by e.g. maintaining a high biomass concentration 

like in Paper III where the sugar concentration was successfully kept low even at a high 

dilution rate of 0.5 h-1 and an inflow of 100 g L-1 sucrose.     

     

Fermentation can also be inhibited by high salt concentration. Many substrates such as 

lignocellulosic hydrolysates and molasses contain high levels of alkali and heavy metal salts. 

High salt concentration results in osmotic stress, which can negatively influence the ethanol 

fermentation. In order to reduce the negative effect of the osmotic stress, S. cerevisiae can 

produce e.g. glycerol as a compatible solute [19, 121]. Upon increased osmolarity in the 

medium, S. cerevisiae enhances its glycerol production and accumulates glycerol 

intracellularly. Glycerol production has been identified as essential for yeast growth during 

reduced water availability. The key enzyme of glycerol synthesis during osmotic stress is the 

NADH dependent cytosolic glycerol-3-phospate dehydrogenase (GPD1) [21, 122].        

 

In addition to ethanol, salt and substrate inhibition, extremely high yeast cell density 

cultivations have been reported as inhibitory. Toxic compounds, e.g. proteins or salts, can be 

produced by the growing biomass and may accumulate inside the reactor [123]. Very high 

biomass concentrations are possible by cell immobilisation or by membrane filtration [111, 

124]. For example, Lee and Chang [125] used a membrane unit to retain the yeast cells in the 

reactor, in order to operate the system with 100-150 g L-1 yeast. They investigated the effect 

of cell concentration on specific growth rate and specific ethanol production rate and found 

that both the cell growth and ethanol production rates decreased when the cell concentration 

increased. By extrapolation, they found that cell growth and ethanol production would stop at 

cell concentrations of 255 and 640 g L-1, respectively [125]. However, the maximum cell 

concentration that can be achieved probably lies around 300 g L-1 because the yeast forms an 

almost tissue like structure at this high yeast concentration [125, 126]. The main part of the 

liquid is then bound inside the cells making the cells form a solid structure.     

 

Operating fermentations at extremely high cell concentrations is also problematic from the 

system management point of view because of the increased viscosity. This was especially 

observed during cultivations in Papers III and IV where the yeast concentration reached 

approx. 180 g L-1 and 200 g L-1. However, the results illustrated in Papers I–V show that it is 
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possible to perform fermentation of either spruce hydrolysate (dilute acid) or sucrose 

containing medium for prolonged periods even at very high yeast concentrations.  

 

4.2 Inhibitors in lignocellulosic hydrolysates 

When lignocellulosic biomass is pretreated and hydrolysed, several compounds that can 

severely influence the following fermentation step are formed in addition to fermentable 

sugars, see Figure 16. Figure 17 illustrates the molecular structure of the most common 

organic acids and other inhibitory compounds present in the hydrolysate. The concentration of 

inhibitors in the final hydrolysate will depend on the selected pretreatment and hydrolysis 

strategy. Inhibitory compounds are formed when hemicellulose, wood extractives, phenolic 

derivatives and sugars are hydrolysed and degraded [42, 127]. The resulting inhibitors can be 

divided into three main groups: furan aldehydes, carboxylic acids and phenolic compounds.   

 

Inhibitors present in lignocellulosic hydrolysate can further be divided into two additional 

types:  

 

1. Inhibitors not consumed or transformed by S. cerevisiae 

The concentration of these inhibitors will be identical inside the reactor and in the feed 

medium, independent of the dilution rate and yeast concentration. Acetic acid is an 

example of this kind of inhibitor (Paper IV), however, only under anaerobic 

conditions. 

   

2. Inhibitors consumed or transformed by S. cerevisiae 

These inhibitors can be biotransformed in situ by the cells, and the concentration of 

inhibitors can therefore be reduced, resulting in a less toxic medium. Inhibitors that 

can be detoxified in situ are e.g. furan aldehydes (Paper III) and some phenolic 

compounds. The concentration of these inhibitors can thereby be altered by changing 

the cell concentration and dilution rate.      
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Figure 16 Compounds formed and released during hydrolysis of lignocellulosic materials. 

The resulting hydrolysate will contain monomeric sugars (green boxes) in addition to 

inhibitory compounds (red boxes).  
 

4.2.1 Organic acids  

The carboxylic acid present at highest levels in lignocellulosic hydrolysates is acetic acid, 

which is formed when hemicellulose and to some extent lignin is deacetylated. Two 

additional organic acids occurring most often in hydrolysates are levulinic and formic acid, 

both of which are produced when furan aldehydes are degraded. Both acids are formed 

particularly at high temperatures and acidic conditions. Unlike formic acid, which can be 

produced both from lignin, furfural and 5-hydroxymethylfurfural (HMF) degradation, 

levulinic acid is only formed from breakdown of HMF [30, 120]. Several different fatty acids 

originating from wood extractives and branched short-chain organic acids are also present at 

low concentrations [128].  
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Figure 17 Molecular structure of some toxic compounds found in lignocellulosic 

hydrolysates.                                                                                                                                                 

 

Organic acids are harmful for the yeast cells and inhibit cell growth. Weak organic acids have 

therefore long since been used as food preservatives [129]. It is the undissociated acids that 

cause the inhibition since they are soluble in lipids and can diffuse through the plasma 

membrane. Due to the concentration gradient of undissociated acid over the cell membrane a 

constant diffusion of undissociated acid into the cell occurs. In the cytosol where the pH is 

usually around 7, the undissociated acid can dissociate and release a hydrogen ion and thereby 

lower the intracellular pH. To avoid a drop in the intracellular pH, the hydrogen ions and the 
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anions need to be pumped out from the cell by ATP dependent transporters. The process 

requires ATP, which is why the cell’s energy consumption increases. High acid 

concentrations therefore have an immense negative effect on the biomass and ethanol 

production. A low acid concentration, on the other hand, has been shown to stimulate ethanol 

production under anaerobic conditions because of reduced biomass generation and the 

increased ATP requirement [130].  

 

The toxicity of carboxylic acids is very pH dependent since the pH of the medium and the pKa 

value of the acids determine the concentration of undissociated acid. Lignocellulosic 

hydrolysates usually contain higher levels of acetic acid than formic and levulinic acid [5]. 

Formic acid has a higher toxicity compared to levulinic acid, and acetic acid shows the lowest 

toxicity among the three. The higher toxicity of formic acid is explained by its small 

molecular size and lower pKa. Levulinic acid is probably more inhibiting than acetic acid 

because of it higher lipophilicity, which enables it to diffuse more easily into the cell [5, 62].  

 

Even though acetic acid can severely harm the yeast cells, the investigation performed in 

Paper IV demonstrates that continuous cultivation at high dilution rates can be performed 

even at as high levels of acetic acid as 15 g L-1 in the feed medium when a MBR was used. 

Using 15 g L-1 acetic acid, which corresponds to 5.3 g L-1 undissociated acetic acid at pH 5.0, 

ethanol production and sugar utilisation remained high.  

      

4.2.2  Furan aldehydes 

Two different types of furan aldehydes are present in relatively large amounts in 

lignocellulosic derived hydrolysates, namely furfural and HMF. Furfural is a degradation 

product of pentose sugars. Furfural can also generate formic acid if it is further degraded. In 

contrast, degradation of hexose sugars generates HMF, which may be further degraded to 

produce formic and levulinic acid [131]. In dilute acid spruce hydrolysate, HMF 

concentrations generally vary from 2.0–5.9 g L-1 depending on the treatment conditions. 

Furfural levels are generally lower than for HMF, often around 1 g L-1; however, but this is 

still enough to be inhibitory for the cells [5] in some situations.  

 

In batch cultivations, furfural has been confirmed to have strong inhibiting effect on                

S. cerevisiae. Furfural will severely inhibit metabolism in the yeast, extend the lag-phase, and 

reduce the ethanol yield, productivity and specific growth rate [5, 70, 132]. The severity of the 
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inhibition depends on the applied strain and the furfural concentration. Both HMF and 

furfural can be converted in to less inhibitory compounds by the yeast, referred to as in situ 

detoxification; however, the ratio of inhibitor to cells has to be kept low [43].  

 

Under anaerobic conditions, less inhibitory alcohol compounds are formed from the furan 

aldehydes, like in the case of furfural which is converted into the less toxic furfuryl alcohol 

[70, 133], as shown in Figure 18. Both furfural and HMF can act as electron acceptors. It is 

generally believed that the cells’ in situ reduction of furan aldehydes to alcohols is performed 

by NAD(P)H dependent alcohol dehydrogenases [134]. When yeast is exposed to low levels 

of furfural (around 6 mM), it has been observed that the cofactor for furfural reduction is 

NADH [63, 135]. The yeast therefore ceases its glycerol production as a first means to free 

NADH-coupled reducing capacity. If this reducing capacity is exhausted, the cell can deliver 

more reducing power by formation of NADPH as a second alternative [136]. 
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Figure 18 Microbial conversion of HMF and furfural by the action of alcohol dehydrogenase 

to furfuryl alcohol and 2,5-bis-hydroxymethylfuran, which are less toxic.  

 

HMF can be bio-transformed to 2,5-bis-hydroxymethylfuran [137]. The HMF is generally 

considered to be less inhibitory than furfural [138]; its conversion rate is yet much slower. 

Both HMF and furfural will negatively influence the activity of catabolic enzymes such as 

pyruvate dehydrogenase, acetaldehyde dehydrogenase, alcohol dehydrogenase and 

triosephosphate dehydrogenase [134]. 
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The yeasts’ limits of furfural conversion were evaluated in Paper III where furfural was 

added to a continuous MBR cultivation containing up to 180 g L-1 yeast cells. Pulse injections 

of up to 21.8 g L-1 furfural resulted in a high specific conversion rate of 0.35 g g-1 h-1. Very 

high levels of furfural of 17 g L-1 could be added to the feed medium without permanent 

negative effects on the ethanol production. Since the ratio of furfural to yeast biomass can be 

maintained at a low level in the MBR, very high furfural amounts can be added without any 

major effects on the ethanol fermentation. By in situ detoxification, the large biomass amount 

in the reactor can keep the furfural concentration very low. No wood hydrolysate has been 

reported to contain the tested furfural levels used in Paper III. It is, however, interesting to 

illustrate that the limit of high cell density cultivations against convertible inhibitors is very 

high. This can be advantageous when using more inhibiting wood hydrolyzates, as also 

indicated in Paper V.   

 

4.2.3 Phenolic compounds 

Phenolic compounds in wood hydrolysates present a very heterogeneous group, which is 

difficult to characterize. The soluble phenolic compounds in treated lignocelluloses originate 

from breakdown of lignin and alkaline extractives [139]. The most common phenolic 

compounds found in treated lignocellulosic material are 4-hydroxybenzaldehyde,                    

4-hydroxybenzoic acid, vanillin, dihydroconiferyl alcohol, coniferyl aldehyde, syringaldehyde 

and syringic acid [30]. These compounds are inhibitory for yeast even at low concentrations. 

Some of the phenolic compounds can be converted by the microorganism. It has been shown 

that S. cerevisiae is able to detoxify and transform phenolic compounds by e.g. aldehyde 

reduction, quinine reduction and double bond saturation [140]. For example, the enzyme 

phenylacrylic acid decarboxylase, which is an aromatic acid carboxylase, is able to transform 

cinnamic, p-cumaric and ferulic acids [141, 142] known to be fermentation inhibitors for S. 

cerevisiae [140].    

 

The level and type of phenolic compounds generated during hydrolysis depends largely on the 

lignocellulosic biomass used because the lignin matrix in various raw materials has different 

degrees of methoxylation, internal bonding and bonds to hemicellulose and cellulose [136, 

143, 144]. Delgenes et al. [145] found over 60 different phenolic derivatives in spruce 

hydrolysate [5, 145]. Usually, phenolic compounds which are less heavily substituted are 

more toxic [146].  
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Lignocellulosic hydrolysates have a very complex composition due to the presence of several 

lignocellulose-derived inhibitors, making it a difficult substrate for ethanol production. No 

single compound can be defined as the lone inhibitor responsible for the difficult 

fermentability. Martín and co-workers tried to mimic lignocellulosic hydrolysates by making 

cocktails containing defined amounts of inhibitors [147] but did not acquire the same toxicity 

as in a real hydrolysate. This indicates that some inhibitors present in the hydrolysate at low 

concentrations can largely impact the fermentability of the hydrolysate. Another possibility is 

that some compounds create synergetic inhibitory effects. The toxicity of hydrolysates can 

also be very different depending on the method used to prepare them. It is therefore 

problematic to compare results from different investigations. Additionally, the inhibitor 

tolerance between different microorganisms and even between yeast strains within the same 

species can differ to a large extent [148].       

     

4.3 Strategies to manage inhibition  

Section 4.1–4.2 described several problems that occur when utilising lignocellulosic materials 

as substrate for ethanol fermentation. One of the major problems is the inhibitory effect of the 

degradation products formed when lignocellulosic material is hydrolysed. In order to reduce 

the negative effect on the microbial fermentation, various alternative measures can be used 

(Table 4). In the work performed in this thesis, methods A (fermentation mode = continuous) 

and F (high yeast cell density) and a short-term microbial adaptation (B) were used to cope 

with the inhibitors.    

 
Table 4 Strategies to manage inhibition. 

Method    Effect 
A. Altering fermentation mode – fed-batch or 

continuous  
Lower concentration of inhibitors during the 
cultivation if the cells can detoxify the inhibitors. 

B. Strain adaptation  Adapt the cells to increasing amounts of  inhibitors. 

C. Isolated or selected inhibitor tolerant 
strains  

The strain is already tolerant of the inhibitors. 

D. Metabolic engineering  
  

The strain is engineered by over-expressing genes 
or introducing new genes to make the strain more 
inhibitor tolerant. 

E. Hydrolysate detoxification  
   

The hydrolysate is treated to lower the 
concentration of inhibitor. 

F. Increased yeast cell density 
  

More cells result in higher volumetric reaction rates 
which result in higher detoxification rate of 
convertible inhibitors. The toxic effect of the 
inhibitors can thereby be reduced or eliminated.  
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4.3.1 Altering the fermentation process 

The fermentation process can be modified in several ways to ease or solve the inhibition 

problems. If the cultivation is performed in a fed-batch or continuous mode, the level of 

incoming inhibitors can be controlled and kept at low levels. Accordingly, the yeast’s innate 

ability to convert some of the inhibitors present in the hydrolysate to less toxic ones can be 

exploited. One example is the microbial conversion of phenolic compounds [140] or 

conversion of furfural into the less toxic furfuryl alcohol [60, 61, 136].  

 
By controlling the addition of hydrolysate during either a fed-batch or continuous cultivation, 

the level of inhibitors can be kept low thanks to the simultaneous detoxification. Therefore, 

toxic levels of inhibitors can be avoided in the cultivation. In Paper III, the detoxification 

capacity of the yeast was put to its limit when furfural containing media was added to 

continuous MBR cultivations at high yeast density. The concentration of furfural in the inlet 

media could be increased to as much as 17.0 g L-1 without any major changes in the ethanol 

production. The high furfural conversion and tolerance would not have been possible if the 

cells were not retained in the MBR.    

 

4.3.2 Cell adaptation 

An increased inhibitor tolerance in S. cerevisiae has also been successfully achieved by 

adapting the yeast to either particular inhibitors or complete lignocellulosic hydrolysate [149]. 

Yeast strains that are exposed to high inhibitor concentrations over a prolonged period of time 

are known to increase their inhibitor tolerance [150]. Adapting the yeast exploits its innate 

ability to improve its capability to either resist or degrade toxic compounds present in the 

hydrolysate. The mode of preparing the yeast has a significant impact on the performance of 

the yeast, and just a short cultivation period in hydrolysate can drastically improve the yeast’s 

fermentation ability [151]. Adaptation, or directed evolution, can be performed by transferring 

the yeast stepwise to medium containing higher and higher levels of hydrolysate [150]. 

Another way is to perform repeated batch cultivations for prolonged periods by using an 

inhibitor cocktail or real wood hydrolysate to generate strains that are evolved for the 

particular inhibitory environment [152]. Not only has the inhibitor tolerance been improved 

by direct evolution, but also the xylose consumption rate [153]. Most of cultivations in 

Papers I and III–V were run in continuous mode. When either inhibitors or complete 

hydrolysate is added into a continuous culture, there is a short period of low but increasing 
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levels of inhibitors. The yeast has therefore a shorter period to adapt and change its 

metabolism to cope with the more toxic environment. 

 

4.3.3 Isolated or selected inhibitor tolerant yeast strains 

When choosing the specific microorganism and strain, it is crucial to not only search for high 

sugar utilisation, high ethanol tolerance and production, but also to observe its robustness and 

inhibitor tolerance. Several investigations have compared the robustness and inhibitor 

tolerance of yeast strains in inhibitor containing medium [147, 154]. They confirm that the 

inhibitor tolerance is very strain dependent. Additionally, some strains can have a high 

resistance for particular inhibitors but be more susceptible to other inhibitors [147]. One 

problem with adapted strains is, however, how to maintain their improved stability for the 

inhibitors. More inhibitor tolerant strains can also be isolated; one example the is S. cerevisiae 

TMB3000 isolated from a spent sulphite liquor plant [155]. In the case of S. cerevisiae 

TMB3000, the yeast strain had been put under a long-term selection pressure for maybe 

several years in the sulphite liquor plant. This had altered the yeast, thus, making it better at 

coping with the particular environment at the plant.  

 

4.3.4 Metabolic engineering 

The growing understanding of microbial metabolism has paved the way to use metabolic 

engineering to conduct targeted strain improvements. It is today possible to genetically 

modify a strain to make it more inhibitor tolerant by either introducing new genes or 

increasing the expression of strain specific genes. One strategy to increase the strain 

robustness is to improve the inhibitor conversion to less inhibitory compounds e.g. by 

increasing the production of inhibitor converting enzymes such as the HMF converting 

alcohol dehydrogenase 6 (ADH6) [156] or the aromatic inhibitor degrading enzyme 

phenylacryl acid carboxylase (Pad1p) [140]. Other ways are to improve the cells ability to 

transport and excrete inhibitors out from the cell or to engineer the S. cerevisiae strain to e.g. 

overproduce metabolites with a protective nature, such as glutathione [157]. 

 

4.3.5 Hydrolysate detoxification 

Detoxifying the hydrolysate (i.e. removal of inhibitors) by methods such as alkaline treatment 

using Ca(OH)2, NaOH or NH3 at elevated temperatures, evaporation, ozone, ion-exchange or 



48 

 

enzymatic treatment can remarkably improve the fermentability of inhibitory hydrolysates 

[158, 159]. The detoxification is, however, costly [160] and results in loss of fermentable 

sugars [161] and formation of additional waste products.    

 
4.3.6 Increased yeast cell density 

The cell performance can be enhanced by increasing the cell density when performing 

cultivations in inhibitory hydrolysate for example, because it gives a more rapid volumetric 

detoxification of convertible inhibitors [42] (Paper III). Instead of starting with a high 

inoculum size [162], cell retention by either immobilisation or cell recirculation has been 

tested in order to increase the cell density during the cultivation. Several approaches have 

been used to accomplish a high cell concentration such as cell flocculation [163], 

sedimentation [163], surface adsorption [164], cross-linking the cells [165], entrapment in a 

matrix [166], encapsulation [84, 167] (Papers I–II) and membrane bioreactors [166] (Papers 

III–V). Cell retention can be utilised if it is simple and the cost of recirculation and reuse is 

low enough. However, problems arise if the microorganism and cultivation broth include 

large amounts of solids, making the separation of the cells problematic. This is especially true 

in SSF processes, where cell recycling in principal is impossible if the process is run in the 

traditional way.  

 
Most of the cultivations conducted in this thesis work were performed at high yeast cell 

density, achieved by either encapsulating the yeast (Papers I and II) or using MBRs (Papers 

III–V). Table 5 shows the maximum yeast cell concentrations during cultivations performed 

in Papers I–V.  

 
Table 5 Yeast cell concentrations during cultivations in Papers I–V, with standard deviations. 

 Cultivation: Yeast density (g L-1) Yeast density        
L capsules-1 

Paper I Consecutive batch 
Continuous 40 °C 

5.2 ± 0.1 
19.7 ± 2.0 

46.6 ± 2.9 
118.1 ± 9.2 

Paper II At the end of consecutive batch 
cultivations (APTES treatment); 
0.0% 
0.75% 
1.5% 
3.0% 

 
 

6.3 ± 0.3 
5.6 ± 0.1 
4.1 ± 0.7 
0.4 ± 0.0 

 
 

48.6 ± 2.6 
42.9 ± 0.4 
31.6 ± 5.2 
2.9 ± 0.2 

Paper III Continuous 180 (max)  

Paper IV Continuous 210 (max)  

Paper V Continuous 60 (max)  
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4.4 Thermal stress during cultivations 

Yeast, in general, grows at relatively low temperatures compared to many prokaryotes, and 

even thermotolerant and thermophilic yeast have an upper temperature limit of 42 °C and 45 

°C [168]. More thermally tolerant yeast would offer many advantages in industrial 

fermentation processes. Elevated temperatures can seriously alter alcohol production during 

fermentation. If fermentation processes could be operated at elevated temperatures, significant 

savings could be made on cooling costs, especially in warm countries. Additional advantages 

are the reduced risk for contamination and faster ethanol recovery [169].  

 

When cells are exposed to temperatures that are above a critical level, the cells are damaged 

in several ways, the most serious being membrane disruption, protein denaturation and 

aggregation [170]. At higher temperatures, the inhibitory effect of ethanol has also been 

shown to increase, thus, resulting in a lower ethanol production [171]. Screens of mutant         

S. cerevisiae which are able to efficiently produce ethanol at higher temperatures show that 

only a modest increase in temperature has been obtained, to 40 °C as maximum [172, 173]. It 

has been suggested that there is a low fermentation efficiency of S. cerevisiae at elevated 

temperatures because of increased membrane fluidity, which changes the composition of fatty 

acids in the membrane [169]. At elevated temperatures, the cells also start to synthesise heat 

shock proteins (Hsps). These proteins have an important role in protecting the cell during 

thermal stress [174].   

 

Enzymatic hydrolysis can only be performed rapidly at temperatures above 45 °C because 

cellulose enzymes have their highest activity at temperatures of up to 50 °C. However, SSF 

processes cannot be operated at these high temperatures because of inactivation of the yeast. 

The SSF therefore needs to be operated at a lower than optimal temperature, which leads to a 

slower enzymatic hydrolysis. If the SSF could be performed at higher temperature, it could 

enhance the saccharification rate vastly [169]. Yeast strains capable of producing ethanol 

above 40 °C have therefore been sought by screening of yeast strains. Sometimes, 

temperature adaptation has also been tested as a way to increase the thermal tolerance of 

promising strains [175]. Kluyveromyces marxianus is one thermotolerant yeast, which has 

been reported to produce alcohol at temperatures above 40 °C and is capable of growth at 

temperatures up to 52 °C [175].      
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Cell immobilisation has been proven to improve the tolerance towards stress and toxic 

lignocellulosic hydrolysates [83, 84, 148]. When cells are immobilised and grown in a limited 

space, they alter their metabolism and growth pattern [81, 176]. Paper I describes several 

experiments performed with encapsulated yeast, which show that encapsulation can increase 

the yeast’s temperature tolerance when compared with normally grown suspended yeast. The 

used yeast S. cerevisiae CBS8066 is not a thermally tolerant strain. The consecutive batch 

experiments showed that the yeast was able to consume all the glucose during the first 5 batch 

cultivations at 42 °C, Figure 19. Moreover, the ethanol yield stayed high. However, the rate at 

which they consumed glucose decreased after each batch. In contrast, the suspended yeast 

completely failed to consume any glucose already in the second or third batch cultivation. 

 

Figure 19 Glucose consumption during consecutive batch cultivations at 42 °C with free cells 

(left) and encapsulated cells (right). The number and error bar denote the batch number and 

standard deviation.    

  

If the cellular response upon encapsulation, which allows for the increased tolerance, could be 

understood in more detail, a more thermally tolerant yeast strain may also be constructed or 

induced in suspended yeast. Some work has already been done to reveal e.g. the proteomic 

response of encapsulated compared with suspended yeast. It was shown that three proteins 

involved in the heat shock response, Glc7p, Hsp12p, and Gre3p, were up-regulated in 

encapsulated yeast even under normal non-inhibitory conditions [177]. The combination of 

up-regulated heat response proteins and the increased levels of intracellular trehalose in 

encapsulated cells [176, 177] can be some of the factors which result in an increased thermal 

tolerance compared to suspended yeast.        
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CHAPTER 5 
 

RAPID ETHANOL PRODUCTION 

What decides whether a developed ethanol process will be employed in the end is the final 

price of the produced ethanol. And “time is money” as Benjamin Franklin phrased. For this 

reason, continuous cultivation has been the main focus throughout this thesis, as this mode 

has the potential to increase the volumetric productivity and reduce the overall investment 

cost. Several of the investigations have been performed at a dilution rate of 0.5 h-1 and above 

(Papers III–V). Batch cultivations are not suitable for fermentation of lignocellulosic 

hydrolysates because the yeast is exposed directly to high levels of inhibitors, which results in 

a long lag phase, a slow rate or a complete failure of the yeast to ferment the hydrolysate. This 

problem can, however, be solved by using encapsulated cells, which can provide rapid 

fermentation of hydrolysates even during e.g. consecutive batch cultivations [84], Paper II.   

 

The main obstacles for rapid ethanol production from lignocellulosic hydrolysates have been 

the presence of inhibitors, low ethanol yields and productivity, and incomplete sugar 

utilisation. This chapter discusses how high cell density cultivations in MBRs were used in 

this thesis to tackle some of these problems, specifically to use the yeast’s own capability to 

withstand inhibitors and perform in situ detoxification at high dilution rates.          

  

5.1 In situ furfural detoxification by Saccharomyces cerevisiae  

Saccharomyces cerevisiae is able to perform in situ detoxification by converting inhibitors 

such as furfural and HMF present in hydrolysates into less toxic compounds [5]. In Paper III 

furfural was either pulse injected or added to the feed medium at stepwise increasing levels to 

continuous cultivations (dilution rate of 0.5 h-1) at high yeast density, performed in a MBR. 

When studying the levels of furfural during pulse injections, it was observed that the yeast 

was able to convert the furfural very rapidly by in situ detoxification, even at a pulse injection 

of 21.8 g L-1 furfural. The ethanol production was affected negatively at the highest pulse 

injections but recovered quickly when the furfural was depleted, as the yeast converted the 

compound, as shown in Figure 20. The yeast viability was also stable at approximately         

1.5 × 109 CFU ml-1.  
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Figure 20 Ethanol and furfural concentrations during furfural pulse injections in continuous 

MBR cultivations (cultivation A, Paper III).  

 

During cultivations with furfural addition to the feed media, ethanol production was stable up 

to a furfural concentration of 17.0 g L-1, see Figure 21. When the level of furfural was 

increased to either 18.6 or 20.6 g L-1, the yeast failed to maintain its ethanol production 

because the furfural reached a critical level inside the fermentor, (Paper III).  

 

In a lignocellulosic hydrolyzate, the furfural never reaches such high levels. However, this 

work illustrates the potential of using the yeast’s own detoxification capacity to be able to 

perform rapid fermentation of a highly toxic medium in continuous mode.  
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Figure 21 Resulting ethanol concentrations in the permeate and furfural concentration in the 

feed medium during continuous MBR cultivations (cultivation A, Paper III).  

 

5.2 Cultivations at high acetic acid concentration 

The negative effects of acetic acid on ethanol production have been thoroughly investigated 

[130, 178]. However, few investigations have been made in continuous mode, especially at 

high dilution rates, because acetic acid is known to severely reduce the growth of the yeast. 

This is problematic in a traditional continuous culture since the cells will be washed out from 

the bioreactor. Paper IV describes how cultivations in a MBR could be performed both at 

high and low yeast density, even at a high dilution rate of 0.5 h-1 and at an increasing level of 

acetic acid at pH 5.0. The acetic acid concentration was increased from 2.5 up to 20 g L-1 in 

the inlet, and an external cross-flow MBR was used to retain the yeast cell completely inside 

the bioreactor. The study revealed that the yeast in the MBR was able to withstand acetic acid 

concentrations up to levels of 15–16 g L-1 without any reduction in ethanol production. At 

acetic acid levels of 17.5 and 20 g L-1, the ethanol production started to decrease (Paper IV), 

as shown in Figure 22.    
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The volumetric ethanol productivity remained high throughout most of the cultivations and 

stayed close to 10 g L-1 h-1 up to a level of 16 g L-1 of acetic acid in the cultivations at high 

yeast concentration. The acetic acid concentration in lignocellulosic hydrolysates seldom 

reaches such high levels.    

 

Figure 22 Concentration of ethanol and acetic acid during MBR cultivations at high yeast cell 

density. Cultivation A is denoted by closed symbols and B by open symbols (Paper IV).   

 

5.3 Wood hydrolysate cultivations at high dilution rates 

During the final period of the studies presented in this thesis (Paper V) a submerged MBR 

containing a relatively high yeast concentration was constructed and used to ferment an 

undetoxified wood hydrolysate at different dilution rates. The results illustrate that the yeast 

in the MBR could efficiently ferment the hydrolysate to ethanol even at the highest tested 

dilution rate 0.8 h-1. Sugar conversion (mannose and glucose) decreased when the dilution rate 

was increased. However, it remained at 87% even at a dilution rate of 0.8 h-1 (Table 6). The 
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high sugar utilisation can probably be attributed to the high yeast biomass concentration of 

about 60 g L-1 in the cultivation. When cultivations were performed at a low yeast density of 

12.1 ± 1.2 g L-1 and a dilution rate of 0.2 h-1, the yeast failed to ferment the hydrolysate.   

    

One problem with the usage of MBR systems is its inherent weakness for particles present in 

the liquid medium since they can foul the membrane. A possible solution to avoid fouling is 

to use e.g. cross-flow filtration with small pore size to remove particles in the medium before 

adding the filtered medium to the MBR. The advantage of this procedure is that the media can 

be disinfected at the same time by removal of any contaminating bacteria, if a membrane with 

appropriate pore size is used (≤ 0.22 µm). Another way to reduce fouling due to particles is to 

have a bleed stream from the bioreactor by which a small amount of fermentation liquid is 

removed from the bioreactor. Thereby, the concentration of fouling agents can be maintained 

at controllable levels.       

 

Table 6 Ethanol yield and productivity and conversion of sugars, HMF and furfural during 

anaerobic MBR fermentation of undetoxified wood hydrolysate (Paper V).  

Conversion (%) 

Da 
(h-1) 

YEthanol/s
b

  
(g g-1) 

Qp
c        

(g L-1 h-1) Hexosesd 
Mannose and 

glucose Furfural HMF 

0.2 0.42 ± 0.03 2.16 ± 0.15 85.2 ± 0.7 97.8 ± 0.6 98.3 ± 1.0 89.0 ± 5.9 

0.4 0.44 ± 0.01 4.47 ± 0.07 83.5 ± 0.7 96.6 ± 1.4 98.0 ± 1.0 82.2 ± 7.1 

0.6 0.45 ± 0.01 6.66 ± 0.16 80.2 ± 0.7 93.7 ± 2.3 98.0 ± 0.9 78.2 ± 7.0 

0.8 0.44 ± 0.01 7.94 ± 0.10 74.2 ± 0.4 86.8 ± 1.0 97.4 ± 1.1 70.0 ± 0.3 

aAll results are based on values after 5 retention volumes at the specific dilution rate. 
bYields are based on consumed hexoses i.e. glucose, mannose and glucose. 
cVolumetric ethanol productivity. 
dSugar conversion in % of hexoses i.e. glucose, mannose and galactose.  
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CHAPTER 6 
 

CONCLUDING REMARKS 

The main objective of this thesis work was to investigate and develop high cell density yeast 

cultivations by applying the technologies encapsulation and membrane bioreactors under 

stressful conditions, for fermentation of lignocellulosic hydrolysates or toxic media. High 

yeast cell density in the cultivations was shown to be a possible strategy to overcome stress 

such as elevated temperatures and to manage high levels of inhibitors present in 

lignocellulosic hydrolysates.   

 

The major outcomes of the projects performed in this thesis can be concluded as follows: 

• Both encapsulation and MBRs can be used to retain the yeast cells inside the 

fermentor and to achieve very high cell concentrations for prolonged periods of about 

200 h. A major problem with encapsulations is the robustness of the capsules. One 

method to make the capsules more robust for long-term use is to treat the capsule 

membranes with organofunctional silanes to produce polysiloxane ACA capsules.   

 
• The results showed that dilute acid hydrolysed lignocellulosic material can be 

efficiently fermented, without prior detoxification, in continuous mode by high yeast 

cell density cultivation, using encapsulation or MBRs. However, at low yeast 

concentrations of about 12 g L-1 and a dilution rate of 0.2 h-1, the yeast in the MBR 

failed to ferment the dilute acid wood hydrolysate. Further investigations at industrial 

conditions are, nevertheless, required to investigate how appropriate especially MBRs 

are at e.g. low nutrient addition and long periods of cultivation.    

 

• Cell retention and high yeast cell density during continuous MBR cultivations in dilute 

acid wood hydrolysate can result in almost complete sugar utilisation and an efficient 

in situ detoxification of inhibitors such as furfural. At the dilution rate of 0.8 h-1, this 

resulted in an ethanol productivity of almost 8 g L-1 h-1.      

 

• MBRs are beneficial even for fermentation of media containing non-convertible 

inhibitors, such as acetic acid. In the MBRs, the yeast can be kept inside the fermentor 
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even if the cells are not growing or if the specific growth rate is low, even at the high 

dilution rate 0.5 h-1. Yeast can continue to produce ethanol as long as it is 

metabolically active and the acetic acid concentration does not reach a critically toxic 

level.   

 

• It was observed that by maintaining a low enough ratio of convertible inhibitors (such 

as furfural) to yeast biomass, the yeast cells could perform rapid in situ detoxification 

without any larger negative effects on the ethanol production. The high yeast cell 

density cultivations in the MBR contained up to 180 g L-1 yeast and could withstand 

very high furfural additions of up to 17 g L-1 when furfural was added to the feed 

media. The yeast rapidly detoxified the furfural so the level of furfural inside the 

bioreactor was only a fraction of the concentration in the feed media.   
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CHAPTER 7 
 

FUTURE DIRECTIONS  

My thesis work contributes to the struggle to find a smart process, by which we hopefully can 

solve our future transportation fuel problems. Although some industrial plants producing 

lignocellulosic derived ethanol have already been constructed, it is not on a large commercial 

scale yet, and process improvements are still needed. The continuation of this work is crucial 

if we are to make ethanol production from lignocellulosic material possible. Based on the 

results and knowledge from my work, a few suggestions are made on where to lay the coming 

efforts in the future:  

 

• Many people have identified that we need to think in a wider concept and not only 

focus on a single final product such as ethanol, and I agree. We need to think about a 

biorefinery, where we convert biomass into several products, both fuel, chemicals and 

power, in order to improve the value of the process. One possible manner is to utilise 

the liquid fraction from the wood hydrolysis to ferment it in a MBR whereas the solid 

fraction is used for e.g. biogas or energy production.         

 

• The results from this thesis work are very interesting when it comes to usage of high 

yeast density cultivations of lignocellulosic hydrolysates by MBR fermentation. 

However, the system needs to be tested at more industrial like conditions, for example, 

during long-termcontinuous cultivations to investigate the stability of the system and 

the membrane module, and by using “real industrial medium” without 

supplementation of extra nutrients e.g. yeast extract in order to lower the cost of the 

used medium without altering the performance of the yeast.  

 

• The potential of submerged membrane bioreactors for fermentation of wood 

hydrolysates has been shown in this thesis. Submerged membrane bioreactors usually 

require a lower input of energy compared with externally placed cross-flow MBRs. 

However, cross-flow membranes are less sensitive to fouling at high particulate and 

cell concentrations. It might therefore be interesting to test the externally placed cross-

flow MBRs by running it in fed-batch mode. Consecutive fed-batch cultivations can 
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then be performed and the membrane module can be operated between each fed-batch 

to remove the ethanol and consumed broth. No liquid pumping is then required in the 

membrane module during most of the cultivation, which reduces the energy input. 

 

• Membrane technology can also be used instead of heat treatment to sterilise a liquid 

substrate stream as long as the substrate does not contain high levels of particles. This 

can reduce the amount of energy required to kill any present microorganisms in the 

medium before fermentation.  

   

• Continuous cultivations of wood hydrolysates at dilution rates up to 0.8 h were shown 

to be possible in MBRs in this thesis. However, dilute acid hydrolysed lignocellulosic 

materials usually result in liquid media containing low sugar levels. To make 

distillation economical, the ethanol level needs to be over 4% ethanol in the final 

effluent. The sugar levels need, therefore, to be higher in the used hydrolysate to reach 

these values. One possible way to increase the sugar content in wood hydrolysates is 

to increase the dry weight content of lignocellulosic material during the hydrolysis 

step since the sugar concentration in the final liquid depends on how much steam is 

added during the treatment. Even if higher levels of inhibitors are generally produced 

during this process, the results in this thesis show that MBR cultivation has the 

potential to handle even more toxic medium. It would therefore be interesting to 

investigate if it is possible to ferment the liquid fraction from dilute acid hydrolysed 

spruce prepared at high wood dry weight in a MBR to observe if it is possible to reach 

4% ethanol in the final fermentation broth.  

 

• Large investment costs are often required to build an ethanol production plant. If a 

cheaper construction of e.g. the bioreactor could be used, the motivation to build or 

test a new system on a larger scale would be more attractive and not as economically 

risky.    
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NOMENCLATURE  

ACA  Alginate-chitosan-alginate 

AC  Alginate-chitosan 

APTES  3-aminopropyltriethoxysilane 

CBP  Consolidated bioprocessing 

CFU  Colony forming units  

CMC  Carboxymethylcellulose 

Furfural  2-furaldehyde 

hAPTES  Hydrolysed 3-aminopropyltriethoxysilane 

HMF  5-hydroxymethyl-2-furaldehyde 

GDP   Gross domestic product 

MBR  Membrane bioreactor 

NAD/NADH  Nicotinamide adenine dinucleotide 

NADP/NADPH Nicotinamide adenine dinucleotide phosphate 

PS  Polysiloxane  

SSF  Simultaneous saccharification and fermentation 

SSFF   Simultaneous saccharification filtration and fermentation 
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