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A Real-time MHE and NMPC Scheme for Wind Turbine Control

Sébastien Gros, Milan Vukov, Moritz Diehl

Abstract— Model Predictive Control (MPC) is a strong
candidate for the control of large Multi-Mega Watt Wind
Turbine Generators (WTG). Several MPC and some Nonlinear
MPC schemes have been proposed in the literature, formulating
the problem of balancing the power generation against the
structural and actuator fatigue through a reference-tracking
scheme. While the resulting schemes offer very promising
results in term of load reduction, especially when reliable
LIDAR systems are available, no NMPC scheme fast enough
to achieve a real-time implementation has yet been proposed.
This paper presents such a real-time NMPC scheme. Moreover,
the proposed scheme maximizes directly the power generation,
as opposed to tracking the optimal wind-dependent WTG
steady-state.

Keywords : real-time NMPC and MHE, wind turbine
control.

I. I NTRODUCTION

With the size of wind turbine generators (WTG) steadily
increasing, there has been a growing interest in alleviat-
ing structural fatigue through better control [4]. For multi-
megawatt WTG (MMWTG) in particular, fatigue load on
the tower has received special attention since the cost of
the foundations can contribute a significant part of a WTG
total cost, up to 40% for an off-shore wind turbine [24].
The control of structural fatigue has mainly focused on the
tower fore-aft oscillations that have a direct impact on the
WTG foundations. Such oscillations are commonly reduced
through collective pitch control, using linear feedback based
on the measurements of the WTG nacelle fore-aft accelera-
tion [3].

Model Predictive Control (MPC) techniques are emerging
as strong candidates for the control of future Multi-Megawatt
Wind Turbine Generators (MM-WTG). Among the main
motivations to adopt advanced control techniques for WTG
control are: the tighter actuator limitations, the intricate
operational strategies, the introduction of more actuators,
the dynamic nonlinearities, the developing regulations on
grid compatibility, and the predictive information gathered
through LIDAR systems [21]. Promising results have been
obtained in simulations, showing the potential of MPC
and Nonlinear MPC techniques when compared to more
classical control approaches [22], [15], [23]. However, a
NMPC scheme that is fast enough to achieve a real-time
implementation has not yet been proposed in the literature.
Presenting such a scheme is the main purpose of this paper.

NMPC schemes for wind turbine control are commonly
use tracking objectives as a surrogate for maximizing the
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power capture. This approach offers good performances,
albeit it has some drawbacks, chiefly in term of controller
tuning. In contrast, this paper presents an NMPC scheme
which maximizes directly the power capture (see the com-
panion paper [12] for more details).

Because it impinge directly on the control performances,
the estimation of the WTG state is an important issue in the
context of NMPC. Previous works have either considered
that a full-state measurement is available, or have relied on
an Extended Kalman Filter (EKF). In this paper, a Moving-
Horizon Estimation (MHE) scheme [20] is used, where the
nonlinear dynamics of the system are explicitly taken into
account.

The contribution of this paper is twofold: 1) it shows that
MHE/NMPC can achieve the computational speed required
for a deployment on real WTGs, and 2) it presents a real-
time implementation of an NMPC formulation that directly
maximizes the power capture, and allows for efficiently treat-
ing the WTG operational constraints while avoiding recursive
feasibility issues. The details of the proposed formulation are
developed in the companion paper [12].

This paper is organized as follows. Section II briefly
presents the WTG model used in this paper. Section III
presents the real-time NMPC scheme. Section IV presents
the real-time MHE scheme. Section V provides the details of
the real-time implementation. Section VI presents simulation
results. Conclusion and future developments are proposed in
Section VII.

II. W IND TURBINE MODEL

The model presented in [22] is also used in this paper. It
is briefly recalled here:

Jω̇ = Taero− r−1
g Tg, (1)

ẍ = M−1 (Faero−Cẋ−Kx) ,

Taero=
1
2

ρACP (β ,λ )
V 3

ω
,

Faero=
1
2

ρACT (β ,λ )V 2,

λ =
Rω
V

, V =W − ẋ,

whereω is the rotor speed,x the nacelle fore-aft position,β
the collective pitch angle of the blades,Taero the aerodynamic
torque perceived by the rotor,Faero is the aerodynamic force
perceived by the hub,W is the time-dependent wind speed
andV is therelative wind speed at the hub. Parametersρ and
A are the air density and the rotor area respectively. Factor
λ is thetip-speed ratio, which plays an important role in the
aerodynamics of WTG.



TABLE I

MODEL PARAMETERS

Parameter Description Value
J Total rotor inertia 40.47·106 [kg/m2]
rg Gearbox ratio 1/97 [−]
M Tower fore-aft inertia 0.43·106 [kg]
C Tower damping 1.76·104 [Ns/m]
K Tower stiffness 1.77·106 [N/m]
ρ Air density 1.23 [kg/m3]
A Rotor area 1.25·104 [m2]
R Rotor radius 63 [m]

ParameterJ = Jr+r−2
g Jg is the total turbine inertia as seen

from the rotor, whereJr is the rotor inertia, including the
hub and the blades,Jg is the generator inertia, andrg is the
gearbox ratio. The state and the control input vectorsX ∈R

2

andU ∈ R
2 are given by:

X =
[

ω x ẋ Tg β β̇
]

, U =
[

Ṫg β̈
]

.

In the following, the dynamics (1) are lumped into the
function f :

Ẋ = f (X ,U,W ).

Ignoring the tower fore-aft motion, the aerodynamic power
harvested from the wind field reads:

Paero=
1
2

ρACP (β ,λ )W 3, (2)

while the generated power reads:

P = ηr−1
g Tgω ,

whereη < 1 is the generator efficiency. The model parame-
ters are summarized in table I.

The maximum aerodynamic efficiency is achieved by
maximizingCP. At steady-state, it is yielded by the wind-
independent optimal valuesβ ∗ andλopt achieving the maxi-
mal value ofCP, labeledCmax

P . The optimal steady-state rotor
speedωopt and rotor torqueT opt

aero then satisfy:

W =
Rωopt

λopt
, T opt

aero=
1
2

ρACmax
P

W 3

ωopt
.

It follows that:

T opt
g = rgT opt

aero= Kω2
opt (3)

with K = 1
2rgρACmax

P

(

R
λopt

)3
. In fact, classical WTG con-

trollers commonly apply the steady-state optimal relationship
(3) as a stabilizing feedback law (see e.g. [18]), i.e. they ap-
ply Tg =Kω2 in order to achieve a state trajectory reasonably
close to its dynamic optimum.

III. NMPC SCHEME

In this paper, the objective function of the NMPC scheme
seeks to achieve the best trade-off between the power capture,
the structural load, and the pitch activity, while respecting the
WTG operational constraints. It is presented next.

A. Power capture & load alleviation

NMPC for wind turbine control is a multi-objective opti-
mization problem, which seeks at achieving an economically
sound trade-off between maximizing the power capture, and
minimizing the structural fatigue and the pitch activity. In
this paper, the objective function associated to the power
optimization was chosen as the aerodynamic power (2),
using the formulation developed in [12], which presents a
polynomial interpolation of theCP coefficient suitable for a
Gauss-Newton Hessian approximation.

A classical quadratic penalty on the nacelle fore-aft ve-
locity ẋT was chosen for the reduction of the tower load.
Whether this choice best reflects the actual structural fatigue
or whether a more accurate penalty could be devised is the
object of current research. In the NMPC objective function,
the terms associated to the power maximization and load
alleviation read:

Φ0 =
∫ t+Tc

t

(

QLoadẋ
2−Paero

)

dτ.

B. Operational strategy

The rotor speed and generator torque of WTG are subject
to soft operational constraints, i.e. constraints that ought not
be excessively violated, which are collectively referred to as
the operational strategy (see e.g. [17], [6], and Fig. 1). The
operational constraints considered here are further detailed
in [12].

Additionally to the operational constraints, limitationson
the pitch angle, rate and acceleration must be respected.
Moreover, the limited capabilities of the power electronics
prohibit very fast variations of the generator torque.

Classical WTG control techniques typically rely on elab-
orate switching strategies and filter techniques to track the
operational strategy (see e.g. [16]), so as to maximize the
power capture while respecting the constraints. Classical
NMPC schemes use switching references and weights [22].
In this work, the operational strategy and actuator limitations
are handled in the form constraints, summarized here:

ωcut−in ≤ ω ≤ ω rated (4)

P ≤ Prated (5)

0≤ Tg ≤ T max
g (6)

−45 kNm·s−1 ≤ Ṫg ≤ 45 kNm·s−1, (7)

β ∗ ≤ β ≤ 30 deg (8)

−7 deg·s−1 ≤ β̇ ≤ 7 deg·s−1 (9)

−20 deg·s−1 ≤ β̈ ≤ 20 deg·s−1 (10)

C. Constraint relaxation

Because of the system perturbations and state estimation
error, the recursive feasibility of some of the state constraints
is not guaranteed. Because the evolution ofω is subject to
wind perturbations and model errors, constraints (4)-(5) are
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Fig. 1. Conventional operational strategy. The generator torque and the
rotor speed are subject to box constraints. The thick non-smooth curve
displays the steady-state optimal relationship between the rotor speed and
generator torque. The light dotted lines are curves of constant power.

particularly problematic. This problem can be corrected by
using a slack reformulation of the problematic constraints:

ωcut−in − Sω ≤ ω ≤ ω rated+ Sω , Sω ≥ 0

P ≤ Prated+ SP SP ≥ 0 (11)

where Sω , SP ∈ R
+, labelled slack variables (see e.g. [5],

p. 131), are time-dependent variables assimilated as control
inputs in the NMPC scheme, which are penalized in the
NMPC objective function, such that any violation of the
constraint results in an extra cost. In this paper, the penalty
on the slack variables was chosen as the quadratic form:

ΠS = Qω
(

Sω + S0
ω
)2

+QP
(

SP + S0
P

)2
(12)

with S0
. ∈ R

+, hence imposing a mixedL1/L2 penalty
on constraints violations. See [12] for more details and a
discussion on the selection of the weights in (12).

D. Limitation of the cumulated constraint violation

While relaxing state constraints is often crucial to ensure
the recursive feasibility of the NMPC scheme, it is often
also crucial to ensure that the violation does not last over
time. E.g. the constraint on the maximum generated power
is typically associated to the limited capabilities of the power
electronics and generator at dissipating heat. It follows that
an over-rated power can be tolerated provided that it does
not overrun the heat dissipation capabilities of the generator
and power electronics. Such a requirement can be formulated
as:

σP ≤ σmax
P , σ̇P = SP −ασP (13)

whereσP is a differential state accounting for the accumu-
lated constraint violation over time, and coefficientα is a
dissipative term accounting for how fast the system recovers
from an accumulated constraint violation. In fact, in the case
of generated power, it can be verified thatσP is the excess
of thermal energy accumulated in the electromechanical
components of the WTG, andα is the coefficient of thermic

dissipation in s−1. Parameterσmax
P ought to be chosen as

σmax
P =

Pmax−Prated

α
where Pmax is the maximal steady-state power that can be
tolerated by the electro-mechanical components of the WTG,
in Joules. Additionally, in order to prevent unnecessary
activations of the constraint (13), aL2 penalty:

Πσ = QσPσ2
P (14)

is introduced in the cost function, withQσP proportional to
W 3. As a result, any accumulation of over-rated power is
penalized.

E. Regularization

The regularization of the variations of the generator torque
is performed via penalizing the variations of generated power
(see [12] for more details). The proposed regularization of
Ṫg reads:

RṖ = QṖ‖Ṗelec‖
2 = QṖ‖ηr−1

g

(

Ṫgω +Tgω̇
)

‖2. (15)

A penalty on the power variations tends to push the WTG
toward following the curves of constant power (see Fig. 1).

The regularization of the pitch ratėβ and pitch accel-
eration β̈ need to reflect the actuator fatigue generated by
the pitch activity. A common and reasonable choice of
regularization for the pitch activity reads:

Rβ = Qβ̇ β̇ 2+Qβ̈ β̈ 2 (16)

In this paper, the weights in (16) were chosen constant. A
systematic choice of these weights and their systematically
balancing them against the structural penaltyQLoad is the
object of future research.

F. NMPC formulation

The NMPC scheme was formulated as follows:

min
U,X ,Sω ,SP

Φ0+

∫ t+Tc

t

(

ΠS +Πσ +RṖ +Rβ
)

dτ (17)

s.t. Ẋ = f (X ,U,W ), σ̇P = SP −ασP

(11) h(X ,U)≤ 0

whereh(X ,U)≤ 0 lumps together the hard constraints (6)-
(10), and the predicted, time-dependent wind speed profile
W is provided by the LIDAR system.

IV. MHE SCHEME

In this paper, it is proposed to perform the state estimation
based on Moving Horizon Estimation. The scheme used in
this paper can be summarized as follows:

min
X ,U,W

1
2

∫ t

t−Te

(

‖Y (X ,W )− Ȳ(τ)‖2
QE

+ ‖U −UMPC‖
2
RE

)

dτ

s.t. Ẋ = f (X ,U,W ) (18)

where the vector of measurements includes the rotor velocity,
nacelle acceleration, pitch angle and past LIDAR wind
measurements:

Ȳ =
[

ω ẍ β β̇ W
]

,



TABLE II

AVAILABLE SENSORS FORMHE

Sensor Measurement σ
Rotor speed ω 1rad·s−1

Tower acc. ẍ 10−2 cm·s−2

Pitch angle β 1deg
Pitch rate β 1deg·s−1

LIDAR W 0.5m·s−1

matricesQE, QW are diagonal matrices, with the inverse of
the measurement covariances (see Tab. II) as diagonal entries,
and matrixRE accounts for the input covariances, and:

RE = diag
([

7 ·10−2 10−4
])

.

in [deg] and [kNm] respectively.

V. REAL-TIME IMPLEMENTATION

This section presents the algorithmic components used to
deploy in real time the NMPC and MHE schemes presented
in Sections III-IV.

A. Multiple-shooting

Because the model dynamicṡX = f (X ,U) are nonlinear
and because a prediction horizonTc of several seconds
needs to be considered, the optimization shall be performed
using simultaneous approaches [1]. In this paper, a direct
multiple-shooting [2] approach was chosen, where the model
dynamics are discretized on a uniform time gridt0, ..., tN
via numerical integration over the time intervals[tk, tk+1].
The control inputU is discretized as piecewise constant
U0, ...,UN−1 over the time intervals. The inequality con-
straints are discretized on the same time grid.

After each iteration, the initial guesses for problems (17),
(18) are updated by discarding the first element, shifting the
state and input vectorsX , U , and adding a new element at the
end of the prediction horizon. The control inputs are updated
by duplicating the last element, and the states are updated
using a forward integration on the last time interval [8].

B. Parametric embedding & Real-time iteration

Both the initial valueX(t) and the wind profileW ([t, t +
Tc]) predicted by the LIDAR are embedded in the NMPC
scheme (17), and the latest measurementsY (t) are embedded
in the MHE scheme (18). As a result, the first Newton step
provides already a good approximation of the exact solutions
to both problem (17) and (18), hence a real-time iteration
(RTI) approach is used, where only one full Newton step
per control time instant is performed [7].

Moreover, most computations required to perform the first
Newton step can be carried out before the new initial condi-
tions X(t) and measurementsY are known. As a result, the
re-calculation of the control inputs can be prepared beforethe
new measurement and state estimation is known, and finished
in a very short time once they become available, hence
reducing significantly the delay between state estimation and
control in the NMPC scheme [7].

C. Implicit integration scheme

It was obsvered in simulations that using an explicit
integration scheme such as a Runge-Kuta 4 requires a large
number of steps per control interval to achieve a high level of
accuracy, while the implicit integration scheme presentedin
[19] provides a good level of accuracy with a very low num-
ber of steps per control interval, allowing for dramatically
reducing the computational time required for the integration
of the system dynamics (see Fig. 8). Additionally the implicit
integration scheme presented in [19] allows for performing
MHE using sensor data sampled at a very high frequency,
and is therefore ideal to efficiently use the data provided by
the accelerometer and the encoders.

D. Code generation & Software approach

The compiled code is automatically tailored to the problem
considered, and contains only the absolutely essential algo-
rithmic components. Based on a symbolic representation of
the optimal control problem to be solved online, problem-
specific structures such as dimensions, and sparsity patterns
are exploited during the code generation process to avoid
irrelevant and redundant computations (see [14], [11]). Solu-
tions to the NMPC and MHE schemes were computed based
on the software ACADO Toolkit [13], which implements
direct multiple-shooting and RTI. The underlying parametric
Quadratic Programs (QPs) are condensed and solved using a
dense online active set strategy implemented in the software
qpOASES [10]. The generated code was executed on an i7
2.66 GHz/64 bits.

VI. SIMULATION RESULTS

The simulations were performed using the NMPC and
MHE schemes presented in Sections III- IV, and the al-
gorithmic components presented in Section V. The control
parameters are provided in Tab. III. The penalties associated
to the constraint relaxation must be chosen sufficiently large
to prevent undesired constraint violations, but are not critical
for the performance of the controller, and therefore easy to
tune. The wind profile is displayed in Fig. 2. The resulting
state trajectories are displayed in Fig. 3. The resulting gener-
ated powerP and the aerodynamic powerPaero are displayed
in Fig. 4, both as a time series and as a power curve. It
can be observed that the optimal power is achieved in the
below-rated region (lower graph). The generated power can
temporarily exceed the rated power (upper-graph), resulting
in an activation of the slack variableSP (Fig. 5. lower graph),
and an accumulationσP (Fig. 5. upper graph). The resulting
ω − Tg trajectories are reported in the operational strategy
graph (Fig. 6). It can be observed that the NMPC scheme,
by tracking the optimal power capture and regularizing the
variations of power generation, departs significantly from
the steady-state optimum manifoldTg = κω2. The achieved
computational times for the NMPC and MHE schemes are
reported in Fig. 7, and are consistently lower than the
chosen sampling timeTs = 0.2s. The simulation has been
performed for different number of integrator step per shoot-
ing interval, using both an explicit Runge-Kutta 4 and the



TABLE III

CONTROL PARAMETERS

Parameter Description Value
Tc = Te Horizons (NMPC & MHE) 10s

Ts Sampling time (NMPC & MHE) 0.2s
Qω , QP Weights forΠS, see (12) 5·10−1, 5·10−2

S0
ω , S0

P Ref. for ΠS, see (12) 1, 1
Pmax Max. power (Sec. III-D) 1.01·Prated

QσP , σ0
P Weights & ref. forΠσP , see (14) 5·10−2, −1

QṖ, Qβ̇ , Qβ̈ Weights forΠṖ & Πβ (15) & (16) 1, 0, 10−3

QLoad Weight for the tower motion ˙x 103
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Fig. 2. 10 min wind profile

implicit integrator presented in [19]. The average integration
accuracy vs. the number of steps and vs. the overall NMPC
computational time are reported in Fig. 8, showing that
the implicit integrator performs significantly better thanthe
explicit scheme. The number of QP iterations and the KKT
conditions over time are reported in Fig. 9.

VII. C ONCLUSION & FURTHER CONSIDERATION

This paper has presented a real-time MPC/MHE scheme
for the control of WTGs. The presented scheme maximizes
directly the captured power as opposed to using a more
conventional reference-tracking scheme as a proxy. The
operational constraints (speed, power, torque and actuator
limitations) of the WTG were treated in the form of relaxed
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Fig. 5. The slack variableSP (lower graph) is activated wheneverP>Prated.
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constraints. A regularization of the generated power is pro-
posed, so as to provide a means to include the power quality
in the objective function.

It has been observed in this work that a remaining diffi-
culty is to provide an accurate interpolation of theCP table
over the whole operational range, using a single polynomial
function of β and λ . This difficulty is not intrinsic to
the proposed scheme, and can be solved by a fast, code-
generated interpolation algorithm which outputs the function
sensitivities and guarantees a sufficient smoothness. See [12]
for a more detailed discussion. Such an algorithm is the
object of future research.

Finally, for horizons longer than 10 s, it may be advanta-
geous to consider using a sparse solver QP solver, such as
an interior-point solver, whose computational complexityin-
creases linearly with the horizon length instead of cubically.
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Bock, E.D. Gilles, and J.P. Schlöder. An Efficient Algorithm for
Nonlinear Model Predictive Control of Large-Scale Systems. Part I:
Description of the Method.Automatisierungstechnik, 50(12):557–567,
2002.

[10] H.J. Ferreau. An Online Active Set Strategy for Fast Solution of
Parametric Quadratic Programs with Applications to Predictive Engine
Control. Master’s thesis, University of Heidelberg, 2006.

[11] H.J. Ferreau.Model Predictive Control Algorithms for Applications
with Millisecond Timescales. PhD thesis, K.U. Leuven, 2011.

[12] S Gros. An Economic NMPC Formulation for Wind Turbine Control.
In Conference on Decision and Control (submitted), 2013.

[13] B. Houska, H.J. Ferreau, and M. Diehl. ACADO Toolkit – AnOpen
Source Framework for Automatic Control and Dynamic Optimization.
Optimal Control Applications and Methods, 32(3):298–312, 2011.

[14] B. Houska, H.J. Ferreau, and M. Diehl. An Auto-Generated Real-Time
Iteration Algorithm for Nonlinear MPC in the Microsecond Range.
Automatica, 47(10):2279–2285, 2011.

[15] A. Koerber and R. King. Nonlinear Model Predictive Control for Wind
Turbines. InProc.EWEA, 2011.

[16] W.E. Leithead and B. Connor. Control of variable speed wind turbines:
Design task.International Journal of Control, 73:1189–1212, 2010.

[17] I. Munteanu, A.I. Bract, N.-A. Cutululis, and E. Ceangˇa. Optimal
Control of Wind Energy Systems. Springer, 2007.

[18] L. Y. Pao and K. E. Johnson. A Tutorial on the Dynamics andControl
of Wind Turbines and Wind Farms. InProc. Amer. Ctrl. Conf., June
2009.

[19] R. Quirynen, S. Gros, and M. Diehl. Fast auto generated ACADO
integrators and application to MHE with multi-rate measurements. In
Proceedings of the European Control Conference, 2013.

[20] J.B. Rawlings and B.R. Bakshi. Particle filtering and moving horizon
estimation. Computers and Chemical Engineering, 30:1529–1541,
2006.

[21] D. Schlipf, A. Rettenmeier, and P.W. Cheng. Model of theCorrelation
between Lidar Systems and Wind Turbines for Lidar Assisted Control.
In 16th International Symposium for the Advancement of Boundary-
Layer Remote Sensing, Boulder, CO, 2012.

[22] D. Schlipf, D.J. Schlipf, and M. Kuehn. Nonlinear ModelPredictive
Control of Wind Turbines Using LIDAR.Wind Energy, 2012.

[23] M. Soliman, O.P. Malik, and D.T. Westwick. Multiple-Model MIMO
Predictive Control for Variable Speed Variable Pitch WindTurbines.
In Proc. American Control Conference, 2010.

[24] B. Connor W.E. Leithead. Control of variable speed windturbines:
Design task.Int. J. Control, 73(13):11891212, 2000.


