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A Real-time MHE and NMPC Scheme for Wind Turbine Control

Sébastien Gros, Milan Vukov, Moritz Diehl

Abstract—Model Predictive Control (MPC) is a strong power capture. This approach offers good performances,
candidate for the control of large Multi-Mega Watt Wind  albeit it has some drawbacks, chiefly in term of controller
Turbine Generators (WTG). Several MPC and some Nonlinear tuning. In contrast, this paper presents an NMPC scheme

MPC schemes have been proposed in the literature, formulatig hich o directly th t th
the problem of balancing the power generation against the which maximizes directly the power capture (see the com-

structural and actuator fatigue through a reference-tracking ~ Panion paper [12] for more details).
scheme. While the resulting schemes offer very promising  Because it impinge directly on the control performances,

results in term of load reduction, especially when reliable the estimation of the WTG state is an important issue in the
LIDAR systems are available, no NMPC scheme fast enough qntext of NMPC. Previous works have either considered

to achieve a real-time implementation has yet been proposed that a full-stat ti ilabl h lied
This paper presents such a real-time NMPC scheme. Moreover, al a full-state measurement IS available, or have reired o

the proposed scheme maximizes directly the power generatip an Extended Kalman Filter (EKF). In this paper, a Moving-
as opposed to tracking the optimal wind-dependent WTG Horizon Estimation (MHE) scheme [20] is used, where the
steady-state. nonlinear dynamics of the system are explicitly taken into
account.

The contribution of this paper is twofold: 1) it shows that
MHE/NMPC can achieve the computational speed required

|. INTRODUCTION for a deployment on real WTGs, and 2) it presents a real-

With the size of wind turbine generators (WTG) steadilytime implementation of an NMPC formulation that directly
increasing, there has been a growing interest in alleviataximizes the power capture, and allows for efficientlyttrea
ing structural fatigue through better control [4]. For niult ing the WTG operational constraints while avoiding reotesi
megawatt WTG (MMWTG) in particular, fatigue load on feasibility issues. The details of the proposed formutatioe
the tower has received special attention since the cost déveloped in the companion paper [12].
the foundations can contribute a significant part of a WTG This paper is organized as follows. Section Il briefly
total cost, up to 40% for an off-shore wind turbine [24].presents the WTG model used in this paper. Section Il
The control of structural fatigue has mainly focused on thpresents the real-time NMPC scheme. Section IV presents
tower fore-aft oscillations that have a direct impact on théhe real-time MHE scheme. Section V provides the details of
WTG foundations. Such oscillations are commonly reducetiie real-time implementation. Section VI presents sinoitat
through collective pitch control, using linear feedbackdxh results. Conclusion and future developments are propased i
on the measurements of the WTG nacelle fore-aft acceler&ection VILI.
tion [3].

Model Predictive Control (MPC) techniques are emerging _ ] o
as strong candidates for the control of future Multi-Megawa_ 1€ model presented in [22] is also used in this paper. It
Wind Turbine Generators (MM-WTG). Among the main'S Priefly recalled here:
motivations to adopt advanced control techniques for WTG J60 = Taero— rngg, (1)
control are: the tighter actuator limitations, the intteca . 1 :
operational strategies, the introduction of more actator X=M""(Faero— Cx—KX),

Keywords : real-time NMPC and MHE, wind turbine
control.

II. WIND TURBINE MODEL

the dynamic nonlinearities, the developing regulations on T :} ACr (B /\)V_?’
grid compatibility, and the predictive information gataer aero= 5 PALRE, ’
through LIDAR systems [21]. Promising results have been Facro— }pACT (B )\)VZ
obtained in simulations, showing the potential of MPC 2 ’ ’
and Nonlinear MPC techniques when compared to more A= Rw V=W —x
classical control approaches [22], [15], [23]. However, a v ’

NMPC scheme that is fast enough to achieve a real-timgherecw is the rotor speeds the nacelle fore-aft positiorj
implementation has not yet been proposed in the literaturtéhe collective pitch angle of the bladdgerothe aerodynamic
Presenting such a scheme is the main purpose of this papgerque perceived by the rotdfaero is the aerodynamic force
NMPC schemes for wind turbine control are commonlyperceived by the hubV is the time-dependent wind speed
use tracking objectives as a surrogate for maximizing thendV is therelative wind speed at the hub. Parametegsand

, _ o _ A are the air density and the rotor area respectively. Factor
S. Gros, M. Vukov and M. Diehl are with the Optimization in Emegring

Center (OPTEC), K.U. Leuven, Kasteelpark Arenberg 10, Bi3Deuven- A is theti p-s_peed ratio, which plays an important role in the
Heverlee, Belgiumsgr os@sat . kul euven. be aerodynamics of WTG.



TABLE |

A. Power capture & load alleviation
MODEL PARAMETERS

NMPC for wind turbine control is a multi-objective opti-

Parameter Description Value mization problem, which seeks at achieving an economically
J Total rotor inertia | 40.47-1C° [kg/m"’] sound trade-off between maximizing the power capture, and
rg Gearbox ratio | 1/97[] minimizing the structural fatigue and the pitch activitp |
M Tower fore-aft inertia| 0.43-10° [kg] thi th biective functi iated to th
C Tower damping | 1.76- 10 [Ns/m] is paper, the objective function associated to the power
K Tower stiffness 1.77-108 [N/m] optimization was chosen as the aerodynamic power (2),
p Air density 1.23[k%m3]2 using the formulation developed in [12], which presents a
A Rotor area 1.25-10% [m“] inl i i i ;

R Rotor radius 63 [m] polynomial interpolation of th€p coefficient suitable for a

Gauss-Newton Hessian approximation.
A classical quadratic penalty on the nacelle fore-aft ve-
locity Xt was chosen for the reduction of the tower load.
Parameted = J;+-r;2Jq is the total turbine inertia as seenWhether this choice best reflects the actual structurajdati
from the rotor, wherel is the rotor inertia, including the or whether a more accurate penalty could be devised is the
hub and the bladedy is the generator inertia, arrg is the  object of current research. In the NMPC objective function,
gearbox ratio. The state and the control input vec¥oesR?  the terms associated to the power maximization and load

andU € R? are given by: alleviation read:
. : 0 t+Te
X:[w x X Tg B B]7 U:[Tg B} CDO:/+ (QLoadXZ—Paero)dT'
In the following, the dynamics (1) are lumped into the ‘
function f: B. Operational strategy
X =f(X,U,W). The rotor speed and generator torque of WTG are subject

Ignoring the tower fore-aft motion, the aerodynamic powet)0 soft ope_ranngI constraints, .. constraints thathougt
harvested from the wind field reads: e excessively violated, which are collectively referrecs
the operational strategy (see e.g. [17], [6], and Fig. 1). The

Pacro= }pACp (B )\)W?’ ) operational constraints considered here are further lddtai
2 ’ ’ in [12].
while the generated power reads: Additionally to the operational constraints, limitationa

the pitch angle, rate and acceleration must be respected.
Moreover, the limited capabilities of the power electr@nic

wheren < 1 is the generator efficiency. The model parameprohibit very fast variations of the generator torque.
ters are summarized in table |. Classical WTG control techniques typically rely on elab-

The maximum aerodynamic efficiency is achieved b)prate switching strategies and filter techniques to traek th
maximizing Cp. At steady-state, it is yielded by the wind- operational strategy (see e.g. [16]), so as to_maximize _the
independent optimal valugg and Apt achieving the maxi- power capture while respecting the constraints. Classical

mal value 0fCp, labeledC®. The optimal steady-state rotor NMPC schemes use switching references and weights [22].
speedanp; and rotor torquél'g’e% then satisfy: In this work, the operational strategy and actuator linotad

are handled in the form constraints, summarized here:

P=nry'Tyw,

Raopt 1 we _
W = )\Opf , Taoeetoz épACg'aXKpt O‘)(:utfm < w < wrated (4)
P <R
It follows that: = Trated (5)
0< Ty <T™ (6)
opt __ opt __ 2 .
Tg" = IgTaero= Kwhpt ©) —45 kNm-s 1< T, <45kNm-s, @)
3 < <
with K = irgpAC,E”aX(i . In fact, classical WTG con- B< B <=30deg (8)
2 Aopt - - —7degs < B <7degs? 9)
trollers commonly apply the steady-state optimal relatiop ¢ s g L
(3) as a stabilizing feedback law (see e.g. [18]), i.e. they a —20degs "< B <20degs (10)
ply Tg= Kw? in order to achieve a state trajectory reasonably
close to its dynamic optimum.
I1l. NMPC ScHEME C. Constraint relaxation

In this paper, the objective function of the NMPC scheme Because of the system perturbations and state estimation
seeks to achieve the best trade-off between the power eaptugrror, the recursive feasibility of some of the state caists
the structural load, and the pitch activity, while respegtihe is not guaranteed. Because the evolutionuofs subject to
WTG operational constraints. It is presented next. wind perturbations and model errors, constraints (4)-(6) a



x10° : . ‘ dissipation in st. Parameteop'® ought to be chosen as

max __ Pmax— Prated

a op ¥ = g
. where Pnax is the maximal steady-state power that can be
§ 3 tolerated by the electro-mechanical components of the WTG,
E’zf in Joules. Additionally, in order to prevent unnecessary

activations of the constraint (13),la penalty:
Mo = Qop 07 (14)

is introduced in the cost function, witQg, proportional to
W3, As a result, any accumulation of over-rated power is
penalized.

0.8

Fig. 1. Conventional operational strategy. The generaiogue and the L
rotor speed are subject to box constraints. The thick nooesmcurve E. Regularization

displays the steady-state optimal relationship betweenrdtor speed and P o

generator torque. The light dotted lines are curves of emngiower. . The regulanganon OT t,he varlatlo.ns_ of the generator terqu
is performed via penalizing the variations of generatedeyow
(see [12] for more details). The proposed regularization of

particularly problematic. This problem can be corrected bys "€ads:

using a slack reformulation of the problematic constraints Ro = QP”pelecHz — Qpl\nrgl (Tgw+Tgc;)) HZ_ (15)
WVEN g < w< @l g, Su>0 A penalty on the power variations tends to push the WTG
P < Patedt S $>0 (11) toward following the curves of constant power (see Fig. 1).

The regularization of the pitch ratg and pitch accel-
where S,, S € R*, labelled slack variables (see e.g. [5], eration need to reflect the actuator fatigue generated by
p. 131), are time-dependent variables assimilated asalontthe pitch activity. A common and reasonable choice of
inputs in the NMPC scheme, which are penalized in theegularization for the pitch activity reads:
NMPC objective function, such that any violation of the o =
constraint results in an extra cost. In this paper, the pgnal Rs = QBB +QﬁB (16)
on the slack variables was chosen as the quadratic form: In this paper, the weights in (16) were chosen constant. A

2 2 systematic choice of these weights and their systematicall
MNs=Qu(Sw+) +Qr (S+) (12)  palancing them against the structural pen@yaq is the

with &° € R*, hence imposing a mixed;/L, penalty object of future research.

on constraints violations. See [12] for more details and B NMPC formulation

discussion on the selection of the weights in (12). The NMPC scheme was formulated as follows:
t+Te
D. Limitation of the cumulated constraint violation y psi:,]sp q>o+/ ) (Ms+MNs+Rs+Rg) dT  (17)
>0, t

While re_laxmg s'Faf[(.e constraints is often cruma! t(_) ensure st X = f(X,U,W), Op = So— a0p
the recursive feasibility of the NMPC scheme, it is often
also crucial to ensure that the violation does not last over (11) h(X,u)<0
time. E.g. the constraint on the maximum generated powehereh(X,U) < 0 lumps together the hard constraints (6)-
is typically associated to the limited capabilities of ttewyer  (10), and the predicted, time-dependent wind speed profile
electronics and generator at dissipating heat. It followe t W is provided by the LIDAR system.
an over-rated power can be tolerated provided that it does
not overrun the heat dissipation capabilities of the gdnera IV. MHE SCHEME
and power electronics. Such a requirement can be formulatedn this paper, it is proposed to perform the state estimation
as: based on Moving Horizon Estimation. The scheme used in
this paper can be summarized as follows:
op <op® Op=S—00p (13)

: 1 /‘t = 2 9
min > Y (X, W) =Y (1) [ge + IV — Umpcllre) dT
whereop is a differential state accounting for the accumu-XUWw 2. t*Te( s :)

lated constraint violation over time, and coefficiantis a st. X= f(X,U,W) (18)

dissipative term accounting for how fast the system recver . .
ST : where the vector of measurements includes the rotor vglocit
from an accumulated constraint violation. In fact, in theeca

. - . nacell leration, pitch angle an LIDAR win
of generated power, it can be verified that is the excess acelle acce e. ation, pitch angle and past d
. ._measurements:
of thermal energy accumulated in the electromechanical B _
components of the WTG, aml is the coefficient of thermic Y=[w x B B W],



TABLE Il

AVAILABLE SENSORS FORMHE C. Implicit integration scheme

It was obsvered in simulations that using an explicit

Sensor T Measurementl o integration scheme such as a Runge-Kuta 4 requires a large
Rotor speed I3) lrad-s T number of steps per control interval to achieve a high lefrel o
Tower acc. X 102cm-s 2 accuracy, while the implicit integration scheme preseied
Pp'ti‘t’chharg?ée g iggg_ o1 [19] provides a good level of accuracy with a very low num-

LIDAR W 05m.s ber of steps per control interval, allowing for dramatigall

reducing the computational time required for the integrati
of the system dynamics (see Fig. 8). Additionally the imiplic
) ) ) ) ] integration scheme presented in [19] allows for performing
matricesQg, Qw are diagonal matrices, with the inverse ofy,yg using sensor data sampled at a very high frequency,

the measurement covariances (see Tab. Il) as diagona@&ntriynq is therefore ideal to efficiently use the data provided by
and matrixRg accounts for the input covariances, and: the accelerometer and the encoders.

— di 2 ~ .
Re =diag([ 7-1072 10°*]). D. Code generation & Software approach
in [deg] and [KNm] respectively. The compiled code is automatically tailored to the problem
considered, and contains only the absolutely essential alg
V. REAL-TIME IMPLEMENTATION rithmic components. Based on a symbolic representation of

This section presents the algorithmic components used tioe optimal control problem to be solved online, problem-
deploy in real time the NMPC and MHE schemes presentespecific structures such as dimensions, and sparsity pstter
in Sections Ill-1V. are exploited during the code generation process to avoid
irrelevant and redundant computations (see [14], [11]juSo
) tions to the NMPC and MHE schemes were computed based

Because the model dynamigs= f(X,U) are nonlinear on the software ACADO Toolkit [13], which implements
and because a prediction horizdy of several seconds direct multiple-shooting and RTI. The underlying pararitetr
needs to be considered, the optimization shall be performeiliadratic Programs (QPs) are condensed and solved using a
using simultaneous approaches [1]. In this paper, a diregdeénse online active set strategy implemented in the softwar
multiple-shooting [2] approach was chosen, where the modghOASES [10]. The generated code was executed on an i7
dynamics are discretized on a uniform time gtid....,tn  2.66 GHz/64 bits
via numerical integration over the time intervetg, ty 1]
The control inputU is discretized as piecewise constant
Uog,...,Un—1 over the time intervals. The inequality con- The simulations were performed using the NMPC and
straints are discretized on the same time grid. MHE schemes presented in Sections lll- IV, and the al-

After each iteration, the initial guesses for problems (17)gorithmic components presented in Section V. The control
(18) are updated by discarding the first element, shiftirg thparameters are provided in Tab. Ill. The penalties assextiat
state and input vectob$, U, and adding a new element at theto the constraint relaxation must be chosen sufficientigdar
end of the prediction horizon. The control inputs are updlateto prevent undesired constraint violations, but are naicai
by duplicating the last element, and the states are updattad the performance of the controller, and therefore easy to
using a forward integration on the last time interval [8].  tune. The wind profile is displayed in Fig. 2. The resulting

_ _ o _ state trajectories are displayed in Fig. 3. The resultintege

B. Parametric embedding & Real-time iteration ated powelP and the aerodynamic powBsero are displayed

Both the initial valueX(t) and the wind profileN([t,t+ in Fig. 4, both as a time series and as a power curve. It
Tc]) predicted by the LIDAR are embedded in the NMPCcan be observed that the optimal power is achieved in the
scheme (17), and the latest measurem¥(itsare embedded below-rated region (lower graph). The generated power can
in the MHE scheme (18). As a result, the first Newton stepemporarily exceed the rated power (upper-graph), resplti
provides already a good approximation of the exact solstiorin an activation of the slack variab® (Fig. 5. lower graph),
to both problem (17) and (18), hence a real-time iteratioand an accumulatioap (Fig. 5. upper graph). The resulting
(RTI) approach is used, where only one full Newton stepo — Ty trajectories are reported in the operational strategy
per control time instant is performed [7]. graph (Fig. 6). It can be observed that the NMPC scheme,

Moreover, most computations required to perform the firdty tracking the optimal power capture and regularizing the
Newton step can be carried out before the new initial condisariations of power generation, departs significantly from
tions X(t) and measuremen¥ are known. As a result, the the steady-state optimum manifolg = kw?. The achieved
re-calculation of the control inputs can be prepared beftge computational times for the NMPC and MHE schemes are
new measurement and state estimation is known, and finishexported in Fig. 7, and are consistently lower than the
in a very short time once they become available, henaghosen sampling tim@s = 0.2s. The simulation has been
reducing significantly the delay between state estimatiwh a performed for different number of integrator step per shoot
control in the NMPC scheme [7]. ing interval, using both an explicit Runge-Kutta 4 and the

A. Multiple-shooting

V1. SIMULATION RESULTS



TABLE Il

CONTROL PARAMETERS
B
=3
o
Parameter Description Value
Te=Te Horizons (NMPC & MHE) 10s
Ts Sampling time (NMPC & MHE) | 0.2s
Qu, Qp Weights forlMs, see (12) 5.101,5.10°2 oF ‘
s Ref. for Mg, see (12) 1,1 ---Power curve
Prax Max. power (Sec. llI-D) 1.01- Pated sal - Paero
Qop: 08 Weights & ref. forMg,, see (14) | 5-1072, —1 =
Qe Q. Qs || Weights forMps & My (15) & (16) | 1,0,10°3 a2r /
QLoad Weight for the tower motiorx 10° 0== i i i i i
4 6 8 10 12 14
W [m/s]
14 B Fig. 4. The time series of the aerodynamic and generated rpoare
2 | be observed in the upper graph. The NMPC scheme tracks efficithe
'Wl optimal power curvé® = %pACB“a’W3 in the below-rated wind speed region
‘€10 1 (lower graph).
z e |
1 : :
6 -
4 ‘ ‘ Tosl ]
0 200 time [S] 400 600 S
0 ‘ ‘
Fig. 2. 10 min wind profile 0 200 400 600
0.1 : ‘
implicit integrator presented in [19]. The average int¢igra 30-05 1
accuracy vs. the number of steps and vs. the overall NMPC
computational time are reported in Fig. 8, showing that % 200 . 200 600

the implicit integrator performs significantly better thtre

explicit scheme. The number of QP iterations and the KKFig. 5. The slack variabl& (lower graph) is activated whenevr> Pates

conditions over time are reported in Fig. 9. The cumulated power excess is monitored gia (upper graph) and kept
within its limit (scaled to 1)

VIl. CONCLUSION & FURTHER CONSIDERATION

This paper has presented a real-time MPC/MHE schem@nstraints. A regularization of the generated power is pro
for the control of WTGs. The presented scheme maximizgsosed, so as to provide a means to include the power quality
directly the captured power as opposed to using a moie the objective function.
conventional reference-tracking scheme as a proxy. Thelt has been observed in this work that a remaining diffi-
operational constraints (speed, power, torque and actuatulty is to provide an accurate interpolation of tGe table
limitations) of the WTG were treated in the form of relaxedover the whole operational range, using a single polynomial
function of B and A. This difficulty is not intrinsic to
the proposed scheme, and can be solved by a fast, code-
generated interpolation algorithm which outputs the fiorct
sensitivities and guarantees a sufficient smoothness.12¢e [
for a more detailed discussion. Such an algorithm is the
object of future research.

Finally, for horizons longer than 10s, it may be advanta-
geous to consider using a sparse solver QP solver, such as
an interior-point solver, whose computational complexity

w rad/s
X7 [cm/s]

10ty FETEEEEES . . . . .
_5 creases linearly with the horizon length instead of cubjcal
—_ w
= 2 .
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Fig. 6. Operational strategy. Maximizing the power captmd regularizing
the variations of generated poweryields w — Ty trajectories that diverge

significantly from the steady-state optimum manifdigd= Kw?.

Fig. 7.
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