CHALMERS TEKNISKA HOGSKOLA GOTEBORGS UNIVERSITET

CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG
GOTEBORG
SWEDEN

A Study on Conceptual Data Modeling

Eva }Edencrona—Ohlin

Goteborg 1979

A Study on Conceptual Data Modeling

Eva Lindencrona-Ohlin

Department of Computer Sciences
Chalmers University of Technology
and
University of Gothenburg

Akademisk avhandling f8r doktorsexamen vid
Chalmers Tekniska H&gskola,

Institutionen £f6r Informationsbehéndling—ADB
412 96 GUTEBORG

A Dissertation for Doctor's Degree at
Chalmers University of Technology,
Department of Computer Sciences

8-412 96 GOTHENBURG

© Eva Lindencrona-Ohlin
ISBN 91-7222-249--2
ISSN 0348—1050

Sundt Offset Stockholm

A STUDY ON CONCEPTUAL DATA MODELING

Akademisk avhandling

som for avlidggande av filosofie doktorsexamen
of fentligen fOrsvaras

mandagen den 21 maj 1979, k1. 10.00

i sal SB, H&rsalsvdgen 1, (Skeppsbyggnad),
Chalmers Tekniska HGgskola

av

Eva Lindencrona-Ohlin

fil.%and.

Institutionen f£8r Informationsbehandling-ADB
412 91 GUTEBORG

Goteborg 1979
151 sidor, ISBN=91-7222-249-2

ABSTRACT

The conceptual level of data base systems was
introduced by the ANSI/SPARC 1Interim Report 1975.
During the late 1970's a number of data models and
design methods intended for the conceptual level have
been suggested.

There does not exist any common agreement on the scope-
and contents of the conceptual level design area. In
this study, an attempt is made to informally define the
contents of conceptual level design in terms of problem
areas.

Further, an attempt is made to identify and discuss
semantical aspects of conceptual level data base
design. For this purpose a number of design methods
are analyzed. This analysis aims at identification of
relevant aspects and problems within the area.
Important aspects identified and discussed concern ;
inference, redundancy and a temporal dimension. Among
these aspects, inference is most thoroughly discussed.
Different types of inference are identified.
Redundancy is consgidered as closely related to
inference. Requirements of "non-redundancy" in

conceptual level models is questioned.

The results of this study hopefully contributes to
further developement of conceptual level models and

methods, and to further approaches to classification of'
such methods.

ABSTRACT

The conceptual level of data base systems was
introduced by the BANSI/SPARC Interim Report 1975.
During the late 1970's a number of data models and
design methods intended for the conceptual level have
been suggested.

There does not exist any common agreement on the scope
and contents of the conceptual level design area. 1In
this study, an attempt is made to informally define the
contents of conceptual level design in terms of problem
areas.

Further, an attempt is made to identify and discuss
semantical aspects of conceptual 1level data base
design. For this purpose a number of design methods
are analyzed. This analysis aims at identification of
relevant aspects and problems within the area.
Important aspects identified and discussed concern ;
inference, redundancy and a temporal dimension. Among
these aspects, inference is most thoroughly discussed.
Different types of inference are identified.
Redundancy is considered as closely related to
inference. Requirements of "non-redundancy" in

conceptual level models is gquestioned.

The results of this study hopefully contributes to
further developement of conceptual 1level models and

methods, and to further approaches to classification of
such methods.

ACKNOWLEDGEMENT

During several years I have had the priviledge to work with-
in the CADIS (Computer Aided Design of Information Systems)
Research Group in the Department of Information Processing
at the Royal Institute of Technology and the University of
Stockholm. The research group has had the priviledge to be
led by Professor Janis Bubenko j:r.

I am deeply grateful to Janis Bubenko for his stimulating
guidance during earlier research work as well as for his
encouragement and interest in this study.

I am also grateful to my collegues within the CADIS Research
Group, and other collegues at the Department of Information
Processing. Special thanks go to Professor Bdrje Langefors
for his valuable criticism and suggestions.

I also want to thank Bj6rn Nilsson at the National Central
Bureau of Statistics (SCB) for many stimulating discussions.

The research work has partly been financed by the Swedish
Board for Technical Development (STU).

For typing and retyping with never ending patience and for
skillful management of an editing program I am truely grate-
ful to Gunnel Gustafsson.

Stockholm, April 1979

Eva Lindencrona-Ohlin

CONTENTS

2.1
2.1.1
2.1.2
2.1.3
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.3
2.3.1
2.4

3.1
3.1.1

INTRODUCTION

Problem specification
Relevance of the problem
Related work

Model or method

A "semantical aspect"
Methods included in the study
Outline of the presentation

BACKGROUND

Information systems design
Young and Kent

The Information Algebra
Langefors' approach

Data base management systems
Two-level systems
Three-level systems
Four-level systems
Hierarchical, Network and Relational systems
Data Models

Conceptual level data models

Summary

CONCEPTUAL LEVEL DATA BASE DESIGN

Data models and data structures

Data models and data structures for dif-
ferent purposes within a data base manage-
ment svystem

Schemas

page

W

12
14

18

19
19
19
20
21
22
23
24
25
26
26
28
38

39

39
46

48

3.2
3.2.1
3.3

3.4
3.4.1
3.4.2
3.4.3
3.5
3.6

4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10

Data base design
"Logical data base design"

The scope of conceptual level data base
design

Concepts/models for description of users'
views

Concepts/models for description of users'
information requirements

Methods for design and analysis of informa-
tion structures

Concepts/models for description of concep-
tual data structures

Methods for design and analysis of concep-
tual data structures

Information structure design
Users' views

Information requirements
Information structure
Conceptual data structure design

Summary

INFORMAL ANALYSIS OF CONCEPTUAL LEVEL DESIGN
METHODS

Benci, Bodart, Bogaert and Cabanes
Bernstein

Brodie and Tsichritzis

Bubenko

Hubbard and Raver

Kahn

Sheppard-Rund

Ssmith and Smith

Sglvberg

Summary

page
50
51
52

54

55

56

57

58

60
60
68
71
73
76

78

79
83
88
92
98
104
108
113
117
120

SUMMARY AND DISCUSSION

Scope of conceptual level data base design
Views and information requirements
Inference

Redundancy

A temporal dimension

[E- R R NN L S B NG
AU s W N

Summary
6. CONCLUDING REMARKS
LIST OF REFERENCES

APPENDIX

page
121

121
126
131
133
137
139

141

144

1. INTRODUCTION

1.1 Problem specification

In recent years, several data models and some design
methods for the conceptual 1level of data base systems
have been presented.

The "conceptual level" of a data base .system is an
undefined but often used expression. In 1975
ANSI/X3/SPARC Study Group proposed an architecture for
data base management systems. The most important aspect
of this proposal was the introduction of the so called
"conceptual level".

"Current data base management systems envision a two
level organization: the data as seen by the system and
the data as seen by the programmer. A plethora of
confusing terminology has been employed to distinguish
between these views. The Study Group has chosen to
employ the neutral terms "internal" and "external" to
make this distinction. 1In addition, the Study Group has
taken note of the reality of a third level, which is
called the "conceptual”. It represents the enterprise's
description of the information as modelled in the data
base. This description 1is that which 1is informally
involved when there is a dispute between the user and the
programmer over exactly what 1is meant by program
specifications. The Study Group contends that in the
data base world this description must be made explicite
and in fact, made known to the data base management
system." [ANS-75].

Since 1975, several data models have been suggested as
formalisms for the conceptual level data description of
database management systems. There has been a debate of
what 1is the "best" data model for the conceptual level.
Today, this debate seems to have been replaced by a
common understanding of the need of different data models
in different situations, for different applications and
for different organizations. This, however, indicates
the need of a classification system for data models.
Such a classification system requires relevant and
characteristic properties of data models, 1in terms of
which the different data models can be distinguished and
described.

Some research on comparison of data models has been
reported. However, there are several problems involved
in a comparison of conceptual level data models and
design methods.

First, there does not exist any commonly accepted
definition or description on what is included in the
"conceptual level"” data base design.

Different data models and design methods originate from
different areas of computer science and information
processing as for example from “"information systems
analysis and design", froem "artificial intelligence,
specifically natural language processing" and from "file
organizations and file design". Depending on the area
from which the data models and designs methods originate,
different types of problems are focused.

No commonly accepted or commonly used terminology exists.
Different authors use the same terms for different
concepts or different terms for seemingly the same
concepts.

Very little of practical experience of the usage of
different conceptual models and design methods has been
reported. The practical value and relevance of different
properties of data models and design methods is hard to
estimate.

To evaluate data models and/or design methods for the
conceptual 1level of data base systems is unrealistic. A
classification system would be desirable. One important
step towards such a classification system is
identification of relevant properties of conceptual level
data models and design methods. 1In order to identify
such relevant properties, practical experience and
theoretical analysis of different models and methods is
required.

The work presented here is an attempt to informally
analyze and discuss some semantical properties and
problems within conceptual level data base design.

1.2 Relevance of the problem

The conceptual level of data base systems is an area of
practical and theoretical importance. Although, to our
knowledge, there does not exist any commercially
available data base management systems 'of ANSI/SPARC
type, the conceptual level design is essential in design
of any data base system and in design of any information
system.

The conceptual level design is concerned with

specification, determination, formal description and
analysis of information to be contained in a (data base)
system. When data is shared between different persons

and used for different purposes it is important that the
meaning of the data can be precisely described. It is
important to organize the data in an economical way. At
the conceptual 1level, economy in data organization
concerns the efforts that persons involved in the
information system have to spend on finding and
understanding which information that is (to be) contained
in the system, and with the accuracy, concistency and
semantical integrity of the information (to be) contained
in the systemn.

There is today, among practitioners, a strong demand for
methods and tools for data base design. Conceptual level
data base design methods however, alsohave relevance for
design of information systems to be implemented in other
ways that by data base management systems. Although, 1in
this work, conceptual level data base design methods are
not studied from a practical point of view, the problem
of characterizing and describing properties of different
design methods has relevance to practical work within
data base and information systems design.

Interest and research within the area of data models and
design methods for the conceptual 1level of data base
systems is rapidly increasing. The number of papers
presented at conferences and the number of articles and
research reports published indicates this interest for
the area. New data models are proposed for the
conceptual level of data base system and methods for
designing application data base systems are being
presented. There is from a theoretical point of view a
demand for research within the area of data models and
design methods for the conceptual level.

As an example, in the IS0/TC97 working paper [IS0O-78] on
concepts for the conceptual schema it is stated:

"It is important to remember that this conceptual level
description will eventually be mechanized. It will then
be expected to provide significant capabilities which are
not available with current data base management systems.
A principal requirement will be interactive support for
data base access and data base update. In addition to
this there will be a need for greatly improved data
integrity, and improved support for data base design and
data base restructuring. Webelieve that the situation is
hopeful and that certain actions can legitimately be
undertakes within the context of standardisation.
Firstly, there is considerable confusion over terminology
and attempts to clarify this must be welcomed Further
work within this area is appropriate.....

Secondly, there is a pressing need for a notation by
which particular conceptual schemas may be documented.
Such a notation would be of immediate use 1in the data
base design process and in the implementation of data
dictionaries. In time it will become an extremely
important form of communication between all users of an
information system.... :

Thirdly, it would be extremely useful to have a number of
well documented case studies of conceptual schemas.

These could act not only as "bench-marks" for discussions
about the conceptual schema, but also as reference
documents for those seeking to design their own
conceptual schema". [IS0-78].

Research within this area, so far, has not been primarily
concerned with models and methods for the conceptual
level, but has been concerned with data models in general
and information systems design methods in general.

One part of an ANSI/SPARC type data base management
system which 1is not clearly defined is the mapping

functions. Mapping functions exist " between the
external and the conceptual models as well as between the
conceptual and internal models. Detailed specification

of an ANSI/SPARC type data base management system will
require specification of mapping functions.

Research concerning these mappings will involve the
conceptual level data definition.

In this case, the conceptual level data definition and
the mapping functions are means for acchieving data
independence in a data base management system.

Conceptual level data base design has relevance for the
information systems design area. The conceptual level
data base design is assumed to be independent of any
specific data base management system and independent of
any specific way of implementing the information system
being designed. Thus, conceptual level data base design
can be regarded as a part of information systems design.
Conceptual 1level data base design 1is concerned with

precise descriptions of the information content of a data
base system. It includes analysis of information and
specification of constraints which are necessary for
assuring consistency and semantic integrity 1in the
information contained in the system.

It seems tous that methods for information systems design
have been more concerned either with identification of
systems requirements in general and/or with file and
process. design, than with the part of information
systems design that concerns formal description and
analysis of semantical aspects of the data to be
contained in the system. It 1is also interesting to
notice how, from a data base system point of view, the
scope of the conceptual level data base design is slowly
being widened into what traditionally has not been
regarded as data base design, but rather as information
systems design. An example of this Widened view can be
found in [ANS-77] in its description of the task of the
enterprise administrator.

In summary, research within the area of conceptual level
data base design methods and conceptual level data models
has relevance for theoretical work concerning data base
management systems of ANSI/SPARC type. It also has
relevance for theoretical and practical work within data
base design and information systems design. An
increasing number of organizations and enterprises are
developing and wusing . integrated information systems -
eventually implementedwith data base systems ~ an do
require methods and models for description and
organization of information contained in their systems.

1.3 Related work

In recent years, there has been an increasing demand for
comparative studies of data models and design methods.
So far, relatively few such studies have been presented.
Comparative studies related to this one can be
characterized as comparisons of either:

- data models

- general information systems design methods

- conceptual models/information models and design

approaches.

Comparative studies of data models have been presented
by Kerchberg et., al. {KER-76]: and by Lochovsky [LOC-77] and
of others.

The most well known and exhaustive comparison and
classification of data models 1is "A taxonomy of data

models" by Kerchberg and Tsichritzis [KER-76)]. This

comparison and classification concerns 23 data models and
is divided into comparison of the various models'

- structural properties

~ conceptual properties

- sematic properties.

The structural comparison concerns the mathematical
structure of the data models. The data models are
classified as being graph theoretic or set theoretic
oriented. Within the graph theoretic models the nodes
and edges of the data models are compared. Nodes are
classified as being either structured (for example
records, tuples) or unstructured (point sets). Edges are
regarded as binary relations and their eventual
functionality is used in the classification.

Set theoretic models are classified according to tuple
size and according to set nesting. By a nested structure
is meant that elements of a tuple can themselves be sets.
The set theoreitic models are <classified as having a
nested or a flat structure.

Similarity and difference of often used concepts as
entities, properties, relationships etc. etc. are
discussed under conceptual properties. The various
models are compared according to which of these concepts
that are used, how they are denoted etc. Some of the
models for example, do not identify the entity concept.
For those models that do identify entities the
possibility to relate entities and the possibility to
apply properties to entities atre discussed.

The semantic comparison classifies the data models as
supporting surface semantics, mixed semantics or deep

semantics. The authors summarize: "We note that
surface semantics models capture the way we speak and
communicate verbally with one another. The mixed

semantic level represents functional relationships as
properties of an entity. Lastly, at the deep semantic
level, entities relinquish their importance to data items
which are treated as entities. Associations among
entities (in graph models) are labeled with long verb
phrases which describe the relationship" [KER-76].

In Kerchbergs comparison and classification of data
models no distinction is made between data models
intended for the different levels of data base systems,
i.e. for conceptual-, external- or intermnal-levels.

An experimental approach to comparison of data models is
reported by Lochovsky [Loc-771. In Lochovsky's
experiment, hierarchical, network and relational data
models are compared from a "user performance" aspect.
Lochovsky's point of wview is that, as data base
management system are meant to be used by people, the
facilities that they provide for user interaction - data
models and data manipulation languages - should help to
maximize user performance. Aspects of data model/data
language affecting user performance are complexity of
data model/data language, level and power of the data
language, representation capabilities of the data model
and conciseness and readability of the data language.

The experiments mainly concern the first of three aspects
of data models/data langquages: and are desgigned for
measutring user “effectiveness of a specific class of

users, namely of application programmers. The
effectiveness of application programmers 1is related to
program developments. The factors considered and

measured of program development are:

" 1. portion of correctly coded application programs
for a given set of queries and a given application,
2. time required to code application programs, and
3. time required to implement the applicational
programs”.

Experiments were carried out in which three different
DBMS representing a relational, a network and a
hierarchical data model were used in program development
for three different applications. The result of the
experiments are presented in tables showing results of
measuring the factors considered for program development
for each of the three data models.

Most tutorial textbooks on data base systems include some
sort of comparison between relational, network and
hierarchical data models. For exampel, Date in [DAT-771
discusses aspects of the three data models as:

- language/operations defined for the data model,
especially whether or not the language supports
"record-at-a-time" and/or "set-at-a-time" functions

- simplicity, for example, the number of basic con-
structs in the models.

- theoretical base of the data models.

Comparative studies of design methods seem to be rare.
Two recently presented comparative studies do however
concern design methods. The one presented by Thaggert

and Tharp [THA-77] concern methods intended for the early
steps within information systems design. The one

presented by the VIA-project [via-771 concerns methods
for information systems design in general.

Thaggert's and Tharp's comparative study is presented in
the article "A survey of Information Requirements
Analysis Techniques".

First, in this axticle, a framework representing the
problem area of information requirement analysis 1is
presented. This framework is built wup from 1) The
development process, 2) Information, i.e. the problem of
identifying information, 3) Decision making and 4)
Organization, 1i.e. the problem of acchieving objectives
from the organization. The categories 2-4 are each
further divided into three subcategories of problems. 1In
all ten aspects of information requirements analysis are
identified.

In relation to these ten aspects, 22 methods for
information requirements analysis are «classified and
compared. For each of the ten aspects, and for each of
the 22 methods, the extent to which the aspect or problem

is treated in the method is estimated. A three point
scale 1is wused in this estimation: 1 = aspect not
considered, 2 = recognition given to aspect, 3 =

significant treatment of aspect. The result of applying
this scale to each of the ten aspects 1is called the
profile of a method.

Important questions raised and discussed by the authors
are "First, does the framework represent an adequate view
of the ©problem area?... Second, are the profiles
representative of the methods, given this particular
framework as the basis for evaluation? [THA-77].

The VIA-project at University of Gothenburg [VIA-77] is
concerned with classification and evaluation of methods
for information systems design. In their approach a
number of methods are classified and evaluated relative
eleven main categories of criteria. The first category
concerns the theoretical base for the methods. The
second concern where, within an over all process of
information system design, the methods are primarily
applicable. Third, the so called "level" of the methods
is discussed. By "level" is heremeant distinctions based
on defined usage of concepts as method, technique, model
etc. The fourth category concerns the degree of formalism
in the methods. Fifth, operationality in terms of the
methods applicability- in a practical situation is
discussed. Sixth, acceptance of the methods is studied.

_Acceptance is related to category of users, by whom and
for what purpose the method has been developed, Iis
introduced and wused within an organization. Seventh,
flexibility of the methods are discussed. The eighth
category concerns the complexity and the possibility of
structuring the object (organization) and the information
system being designed by the method. Ninth, aspects as
time required for users to learn and understand the
method and whether or not the method stimulates user
engagement is discussed. Tenth the possibility of using
the result of applying the method in different
implementation techniques (for example, with data base
management systems) is studied. Eleventh and last,
documentation aspects of the methods are discussed.

Comparative studies of specific interest to this study
are those especially concerned with the conceptual or
information level modeling.
Such studies have been presented by Senko [8sEN-77] and by
Bubenko [BUB-76C],[BUB-771].

In a paper named "Conceptual schemas, abstract
structures, enterprise descriptions" [SEN-77] Michael
Senko compares some conceptual data models according to
the number of name categories used by the models.

The base fo the comparison 1is the "Entity Set Model"
proposed by Senko [SEN-72], [SEN-75], [SEN-76]. The
Entity Set Modelsassumes that the real world phenomena
are categorized 1into one of the four basic categories
"associations", T"association types”, "entities" and
"entity sets". The elements of these categories can not
themselves be stored or processed in a computer or even
be talked about without the use of names. 1In DIAM II
three different types of names - Entity Set Names,
Attribute Names and Entity Names - are used.

Five data models intended for the conceptual level of
data base systems are then compared relative the number
of name categories used and relative the name categories
of the Entity Set Model.

The idea behind this comparison is that conceptual level
data models could be discussed based on "qualitative" and
"quantitative" properties. The qualitative properties
concern the formalism and the precision of the model and
therefore relates to which category of persons involved
in the data base design that are to use the model. The
quantitative properties relates to questions as “how
simple is the model relative to other proposed models,
how stable are programs addressed to it when changes
occur in the real world" [SEN-77]. The number of

- 10 -

name-categories is a quantitative property of data models
and '"much of the character of the model depends on the
number of categories and the meaning that the researcher
assigns to each category" [SEN-77].

A specific aspect of information modeling approaches is
comparatively discussed by Bubenko in [BUB-76C]. The
specific aspect discussed 1is the treatment of the
temporal dimension. It is claimed that ".. the majority
of modeling approaches pay no explicit attention to the
temporal dimension. The information model of a particual
application is seen as a finit varying set of information
objects normally reflecting the current (last observed)
state of a model of some real-world system. The state is
changed by inserting, deleting and modifying information
objects. Sometimes, in these approaches, rules
concerning how to define and maintain a set of
information objects consistent and complete are
discussed. There are, however, a few exceptions to this
time-restricted and storage oriented approach".
[BUB-76C]. The exceptions are the approaches proposed by
Young and Kent [you-581, Langefors and Sundgren
[LAN-66],[SUN-73]. Falkenberg [FAL-75] and Benci et al.
[BEN-76]1. Their approaches are then discussed from the
point of view as how they incorporate and treat time in
their models or methods.

In the paper "Validity and verification aspects of
information modeling" [BUB-77], Bubenko suggests and
discusses four "dimensions" in the conceptual base of
information modeling approaches. The "dimensions" are
named

- abstraction levels

- degree of integration

- scope of model

- time perspective.

In the "abstraction levels" dimension, a distinction 1is
made between a name based and a non name based level. At
the non name based level the elements of an information
model correspond to classes of abstractions of real
world phenomena. 1In this case no decisions on how to
refer to individual elements 1in the classes have been
made. At the name based level decisions on, by which
names to refer +to individual elements in classes of
abstractions of real world have been made.

Degree of integration refers to whether or not
information models are represented as complex or simple
structures. 1In the first case, relationships between the
components of the complex structure are explicitly
represented. When an information model is represented by
simple structures, it 1is represented by a set of
irreducible components. Relationships between the

- 11 -

irreducible components are implicitely described when the
same element occurrs in more than one irreducible
component.

Scope of model refers to redundancy in information
models. The redundancy concerns information elements
which can be inferred from other elements contained in an
information model.

In summary, relatively few approaches to classification
and/or comparison of data models and design methods have
been presented. Among approaches relevant to this study
only a few are specifically concerned with models and
methods proposed for the conceptual level of data base
systems.

1.4 Model or method.

This study is primarily concerned with methods for
conceptual level data base design.

However, the distinction between a model and a method for
conceptual level data base design is not always clear.

By a data model - a conceptual data model or an
information model - is heremeant a set of concepts and
rules intended for representation and organization of
information. (The concept "data model"™ will be discussed
in chapter 3.)

Several data models intended for the conceptual level of
data base systems have been presented in recent years.
Most papers presenting data models define the concepts -
the types of elements - included in the model and the
rules by which elements of the different types may be
combined to form structures. In examples, occurrences of
types of elements are shown. Often, however, nothing is
said about how to arrive at a specific set of occurrences
of the element types defined, or to a specific
combination - structure - of such occurrences.

In an attempt to use any of these data models the data
base designer is 1left with the problem of indentifying
the design decisions needed to arrive at the structure,
the order in which such design decisions could be made,
criteria for making the decisions, criteria for analysis
of the structure etc. etc. Approaches to conceptual
level data design that - at 1least to some degree -
suggest solutions to any of these problems are here
regarded as "methods".

The etymology of the word “"method" tells that it comes
from Greek and "first meant the path of a person who
follows or persues another person, and later came to mean
generally a path, a road to something and then the way of

- 12 -

doing something" [KOT-66]. Within philosophy and

elsewhere, definitions of the concept "method" could be

found. Here the definition given by Kotharbinski is

adopted:

- "A method is a mode of action used with the consious-
ness of repéetition of its application in similar
cases". [KROT-661].

Thus, data models, presented or proposed without
discussions, guidelines or rules for the process of
arriving at a data structure for an application are not
considered as "methods".

When a conceptual level data base design method is used,
the result is an, insome respect consistant, structure of
information expressed in terms of some data model. This
means that the methods must either comprise a proposal
for a data model or refer to an elsewhere proposed data
model. Therefore, a study of conceptual level data base
design methods must necessarily involve data models.

During the very last years, some approaches to conceptual
level modeling have been proposed. In some cases it
could be debated whether these approaches correspond to
models or to methods.

Here we have chosen not to make this an important
issue. In this study, modeling approaches that comprise
something which with a generous intepretation could be
regarded as guidelines for the process of modeling are
regarded as methods.

The reason is simply the - to our knowledge - relatively
small number of proposals for conceptual level data base
design methods, and our wish to include methods of
different characters.

1.5 A "semantical aspect"”

Semantics is a concept which can not be defined, in a
meaningful way, by a few statements.

It is far beyond the scope of this study even to attempt
to define the concept of semantics. An interested reader
is referred to relevant litterature within philosophy and
linguistics (as for example [KAT-72],[REG-58],[JOH-46].
However, as in this study, different approaches to
conceptual level data base design are to be discussed
from a "semantical" point of view an explanation is
required.

- 13 -

Generally, in this study, a "conceptual schema" or a
"conceptual structure" 1is regarded as a model of an
enterprise (some part of the real world). Conceptual
level data base design is subsequently regarded as the
process of modelling an enterprise. into a conceptual
structure (fig 1.1).

Being Modeling

modeled process Model
Enterprise Conceptual COﬁce§;
real world level data ? [tual

base design

structure

Fig. 1.1

Different methods for conceptual level data base design,
identify different intermediate models and transitions
within the modeling process (fig 1.2).

Being Modeling Model
moduled process

Fig. 1.2

Enterprise
real world

Different authors may give different names to seemingly
the same intermediate models or the same name for
seemingly different intermediate models. Some examples
of names for intermediate models are user views,
information requirements, information structures.

The different models -~ 1intermediate as well as the
resulting model - have to be expressed in terms of some

- 14 -

modeling concepts. For example one method may be said to
require as input user views expressed in terms of generic
hierarchies while another method may be said to require a
user view expressed in terms of functional dependencies.
The resulting model may in one approach be expressed in
terms of (Codd-) relations. In another approach the
resulting model may be expressed in terms of an entity
diagram etc.

The different sets of modeling concepts used for
expressing the models can be regarded as "languages".

It has been expressed by many authors and in various
ways, that semantics concerns the relation between
language and reality.

In this study, the "semantical aspect"™ concerns the
relationship between the enterprise/real world and the
models and transitions within the process of designing a
conceptual structure for a data base.

1.6 Methods included in the study

Abstract data models and design methods have existed long
before data base management systems. Already in the late
fifties such models and methods were presented within the

area of Information Systems design. These early
approaches were presented as means for abstract
formulation of information processing problems.

Classical examples are the approaches of Young and Kent
[YOU-58], CODASYL's Information Algebra [COL-68] and
Langefors' Theoretical Analysis of Information Systems
[LAN-66].

Methods and models for information systems design, to
some degree, deal with the same problems as methods and
models for conceptual level data base design. However ,
some differences can be identified.

Information Systems Design methods often cover problem
areas which are not considered in methods suggested for
conceptual level data base design.

Identification of the information needs of an

organization, crude design of an organization's
information system including business administrative
aspects, partitioning of an information system and
decisions concerning computerization of certain

subsystems are examples of problem areas which typically
are not considered in conceptual level data base design
but which may be considered in Information Systems
Design.

- 15 -

Abstract formulation of information processing problems
is the common area for Information Systems Design and
conceptual level data base design.

Characteristic of more recent approaches to such abstract
formulation is the focusing on integrated systems.

In the integrated systems, data 1is to be shared by
different users and is to be used for different purposes.
In this case the importance of a semantical description
of the data is increased. Also, criteria for consistency
and semantical integrity becomes more urgent.

Earlier, applications were implemented as tools to
support comparatively simple operational functions within
an enterprise. The traditional example 1is a payroll
routine. Only a small part - few classes of entities,
properties and relationships - were needed in an abstract
formulation of such applications. 1In an integrated data
base situation, the scope of the real world being modeled
at the same time, is very much enlarged. The problem of
defining relevant classes of entities, properties and
relationships will be increased. Complex profiles of the
intended usage of the information contained in the data
base must be considered.

Recent data base applications tend to support not only
operational functions but also more complex functions
within an enterprise as for example planning and
decision-making. Complex functions often require highly
aggregated information. Aggregated information in
combination with large number of classes of entities,
properties and relationships will require systematic ways
to analyze and define consistency conditions.

The number of people involved in the design of
information systems .and of data base systems have
increased. 1In information systems design of today, all
people affected by the system being implemented should
take part of and influence its design. The design level
that is of most importance to influence by the
non-technicians is the conceptual level. Although the
responsibility of the conceptual level design may be in
the hands of an "enterprise administrator" (as suggested
by ANSI/SPARC) the methods and models ought to be
understandable and adapted to be used by persons of
different background, knowledge and interest.

It should also be kept in mind that the conceptual 1level
data description is an important means for communication
between the different persons involved in the design and
later between the different persons using the systems.

Recent methods for conceptuél level data base design do -
to a varying degree - focus on the aspects of data base
systems design indicated above. Often these recent

- 16 -

methods are based on ideas earlier presented within the
more general methods for Information Systems Design. We
therefore have chosen: not to include in this study the
more general methods but to focus on recent methods
specifically suggested for, or applicable to, conceptual
level data base design.

The purpose of this study is not primarily to compare
different approaches to conceptual 1level data base
design, but to identify and discuss semantical aspects of
conceptual level data base design. Therefore, the aim in
choosing methods has been that the methods together
should cover current and important ideas within the area.
The methods included are the following (in alphabetic
sequence of authors name):

Bencis 1976 Benci, Bodard, Bogaert and Cabanes
presented the paper "Concepts for the design of a
conceptual schema" [BEN-76]. This paper identifies

separate steps within conceptual schema design and
proposes "data models" for two different levels in this
design. This approach belongs to those that may be
debated whether it is a model or a method. The reason
for including the approach 1is that it recognizes and
explicitely includes "dynamic aspects” of the real world.

Brodie and Tsichritzis; In an article "Data Base Constraints"
by Brodie and Tsichritzis [BRO-77] a "procedure for con-
struction a schema" is proposed. The procedure is rather
summarily presented but is nevertheless included here as

it represents an approach to conceptual data base design
based on the notation of Abstract Data Types. Some aspects

of the design procedure is more exhaustively described in

the report "Specification and verification of data base
semantic integrity" [BRO-78]

Bernstein; Proposed conceptual schema design by
"Synthesizing Third Normal Form Relations from Functional
Dependencies" in [BER-76]. Bernstein's approach is
already a <classical example of so called "synthetic
approach" as opposed to the "decomposition approach" to
data base design (see [FAG-77]). The classical example
of the "decomposition approach" i.e. Codd's
normalization [COD-70] [COD-71] is however not included.
The reason it that the ideas of Codd's decomposition
approach, i.e. normalization are used in other
conceptual level design approaches included in this study
(for example in Bubenko and Solvberg).

Bubenko; "IAM - An Inferential Abstract Modeling

- 17 -

approach to design of c¢onceptual schema™ [BUB-76Al.
Characteristic of this method is that it considers and
includes inference and derivability aspects of
information and that it explicitely considers the
temporal dimension of information.

Hubbard and Raver ; presented "Automating Logical File
Design" in 1975 [HUB-75]. This paper is a summary of the
DBDA - Data Base Design Aid - program product which is a
design tool for DL/l of IMS [IBM-73]. Some parts of the
logical file design correspond to what here is called the
conceptual Jlevel design. These parts are included in
this study.

Kahn ; has in the reports "A method for describing
information required by the data base design process
[KAH-76B] and Novak & Kahn "A framework for logical data
base design" [NOV-76BJoutlined steps in the procedure of
designing a data 'base system which concerns the
conceptual level.

Sheppard-Rundf A different and an information systems
design view of data base design is presented in the "Data
Base Design Methodology Part I and Part II" [SHE-75 . 1In
part I a method for definition of keys and attributes is
presented and this part is here regarded as conceptual
level data base design.

Smith & Smith; presented 1976 the very well Kknown
paper on "Data Base Abstractions, aggregation and
generalization" [SMI-76]. Abstraction, aggregation and
generalization are important activities within the
conceptual level design and therefore, although the paper
might be regarded as proposing a model rather than a
method, it is included in this study.

Sglvberg ; presented together with Auerdal in 1976 a

paper "A multi-level procedure for design of file
organizations® [AUE-76]. The first two steps of this
procedure - specification of the information processing

problem and transformation of the specified information
structures into a logical model of a file organization -
have been elaborated by Sdglvberg andare presented in the
report "A model for specification of henomena,
properties and information structures" {SdL~77Ai.

1.7 Outline of the presentation

In chapter 2, the expression "conceptual level data base
design" 1is put 1into a context and its evolution is
indicated. The context of "conceptual 1level data base
design" is regarded as concerning "Information systems
design", "Data base management systems" and "Data
Models".

Chapter 3 presents the frame of reference of this study.
In this frame of reference a scope and context of
"conceptual level data base design" is suggested. The
scope and context 1is described by five problems areas
identified within "conceptual level data base design”.

In chapter 4, nine approaches to conceptual level data
base design are informally ' analyzed from a semantical
point of view. First, referring to problem areas
identified in chapter 3, the main problems attacked by
each method are identified. Thereafter, for each methdd,

characteristic semantical properties and/or problems are

informally analyzed.

Chapter 5 is a summary and a discussion of semantical
properties and problems identified in the informal
analysis of the different approaches to conceptual 1level
data base design. In the last section of the chapter,
conclusions are presented.

- 19 -

2. BACKGROUND

The purpose of this chapter 1is to put the expression
"conceptual level data base design method" into a context
and to indicate its evolution.

Conceptual level data base design can be regarded as an
extension of ideas within the information systems design
area, directed towards the design of integrated data base
systems. Very early, the needfor abstract formulation of
information processing problems was recognized within the
information systems design area. It is, however, not
until recently that models for abstract specification of
data base systems have become an integrated part of data
base systems and that methods for abstract formulation
have become recognized as an important part of data base
design. .

The evolution of data base management systems is
naturally an important component in the context of
conceptual level data base design.

Data base management systems include languages for data
definition. Such languages are based on some explicitly
or implicitly specified data model. Data models are
necessary components of conceptual 1level data base
design.

Thus, important to a context for "conceptual level
database design" are ideas within information systems
design, data base management systems and data models.

2.1 Information systems design

As early as in the end of 1950's, methods for design of
computerized information systems began to appear. The
evolution of such methods and an exhaustive survey of
methods 1is presented in "Systems Analysis Techniques" by
J. Couger and R. Knapp [COU-74]. To give an idea of
the kinds of problems attacked by the early methods,
three classical examples are here summarily presented.

In 1958, Young and Kent presented a notation for abstract
formulation of data processing problems.

The process of designing a computerized information

system was regarded as consisting of three stages: "1)
Systems Analysis - the task of determining what is to be
done, 2) Programming - a statement of how it is to be
done, 3) Coding - a translation of this statement into
machine language." [You-581. The notation for an
abstract formulation of data processing problems 1is
intended for the first of these stages. The purpose for
the notation is to provide a precise and abstract way of
specifying the informational and time characteristics of
data processing problems. A basic assumption was that
such an abstract formulation could be done without the

specification of file- and program structures. Further
the approach assumes that the output from the data
processing system to be designed have been stated in

advance and is not to be changed and that input e.g. its
information content but not necessarily its structure 1is
known.

The basic concepts used in the abstract formulation were
Information Sets, Documents, Relationships and
Operational Requirements. Relationships between
Information Sets and characteristics of the relationships
were defined and described as well as relationships
between Documents and/or Information Sets. Time aspects
are considered and described in terms of intrinsic and
extrinsic time points, which makes it ©possible to
describe elapsed time relationships. The methodological
approach is to start from the given output requirements
and to describe and analyze how elements in the output
reguirements could be produced from each other or from
input.

2.1.2 The Information Algebra

The CODASYL Development Committee presented in 1962 "An
Information Algebra" intended as a framework for
description of data processing problems.

The Information Algebra was intended as a step towards a
theory of data processing on which development of new
programming languages could be based. Couger describes
the concepts upon which the Algebra is based as concepts
that have been implicitly understood for years namely
that "An information system deals with objects and events
in the real world that are of interest. These real
objects and events, called "entities" are represented by
data. The data processing systems contains information
from which the desired outputs can be extracted through
processing.

Information about a particular entity is in the form of

- 21 -

"yalues" which describe quantitatively or qualitatively a
set of attributes or "properties" that have significance
in the system." [cou-741.

Thus, the basic concepts are entities, properties and
values. Each property has a set of values associated to
it, and there is only one value associated with each
property of each entity. A coordinate set is a finite
set of distinct properties. A property space 1is the
Cartesian product of the property value sets associated to
the properties of the coordinate set. An entity is
represented by a Datum point which is a point in a
property space. Set operations (union, intersection,
difference) are defined for subsets of the property space
(areas) and more complicated set oriented operations
(corresponding to, for example, arithmetic operations)
are defined for ordered points of the property space.

2.1.3 Langefors' approach

In 1966 Langefors presented a "Theoretical Analysis of
Information Systems" (some parts had been presented in
papers in 1963). The basic concept used in an abstract
formulation and in abstract design of an information
system is an "e-message" (elementary message). An
"e-message" is defined as the smallest unit of
information carrying a semantic meaning. "E-messages"”
are described by their "e-message type". An "e-message
type" can be illustrated as the intention of a 3NF
relation with a fixed meaning of the attributes of the
relation. Two kinds of "e-message types" are defined.
In the first kind of "e-message type" the attribute. of
the relation refers to one object, one property of that
object, one property value and one time point. 1In the
second kind of "e-message type" the attribute of the
relation refers to one object, one relationship, and the
object -~ or possibly - objects - related to the first
object by the relationship and a time point.

"E-messages" can be related by precedence relationships.
An "e-process" (elementary process) 1is a process that
produces one elementary message from a set of precedent
"e-messages". '

A matrix algebra for description of precedence
relationships is introduced.

There is an explicite design method presented. The

systems analysis starts with identification and
definintion of basic functions within an enterprise or
organization. For each such basic function defined, its
information requirements are specified. Each function
may require two kinds of information, operative
information and directive information. Operative
information is the information needed to monitor the
basic function and directive information is the
information needed for decision concerning the control of

the functions. The information requirement of each
basic function (operative or directive information) is
defined in terms of "e-message types". Time intervals

and periods during which the information is valid or at
which the required information is needed are described.
Through precedence analysis of required "e-message types"
the set of "e-message types" required in the information
system is defined.

The work presented in 1966 has later been extended by
Langefors and by Sundgren and presented in several papers
as for example in [LAN-75], [sun-731].

2.2 Data base management systems

The evolution of data base management systems can be
viewed from a hardware and from a software point of view.
In [SEN-721] the important steps of the hardware evolution
are described as the step from card processing and wired
program processing to stored program machines using
magnetic tape, and next the steps from magnetic tape
processing to the use of direct access storage devices.
From the software point of view, important steps in the
evolution of data base management systems, which took
pPlace in parallel with the development of magnetic tape
processing were:

"l. Program representation in terms of binary bits
or decimal digits or punched cards for direct
reading into the computer.

2. Symbols for storage references and machine opera-
tions to be translated by assamblers.

3. Parameterized assembler language subroutines for
processing files.

4. Compilers for the translation of procedures de~
scribed in English-like (COBOL) or mathematical
(FORTRAN-ALGOL-PL/I) terms into machine code"
[sEN-72].

Connected to the introduction of direct access storage
devices were development of methods for direct accessing
and file organizations.

- 23 -

The evolution of data base management systems is closely
related to the control of data [FRY-76].

In the fifties and sixties, programmers had the control
and custody of the data. Generally, datawere not shared
between applications and not even between programs. The
possibility to 1let multiple applications share the same
data and thus to let multiple programmers access the same
data was an important step towards data base management
systems. The COBOL-Language [JOD-60] was important as it
introduced separate descriptions of data and of the
processing of data. This separation of data and
processing descriptions was a step towards a centralized
data description which in turn was needed to allow
several users to share the same data.

The CODASYL DBTG Proposals [COL-69],[COL-71], were the
first widely recognized approaches to centralized data
description. In the CODASYL DBTG Proposal [con-711, it
is explicitely stated that the responsibility and the
definition of shared data is moved from the programmers
to a centralized function <called "the data base
administrator". The CODASYL Proposal represents a data
base system architecture of two-levels. Later, in
ANST/X3/SPARC [ANS-75] and in DIAM I [SEN-72] the
two-level ' architecture was expanded and three or four
levels of data descriptions within a data base management
system were proposed.

2.2.1 Two-level systems

The CODASYL Proposal was important as it introduced two
levels of data descriptions within a data base management
system. The two levels are referred to as "logical"
level and "physical" level. At the "logical” level the
CODASYL DBTG used SCHEMA and SUB~SCHEMA definitions. The
SCHEMA is the centralized data description and it
constitutes a compromise of the data structures required
by the different application programs. SUB-SCHEMAS are
subsets of the SCHEMA and correspond to the individual
data structures of the application programs. The data
description of the SCHEMA and of the SUB-SCHEMAS are
expressed in terms of fields, records, sets and areas.

At the "physical" level, units of stored data and their
allocation on secondary storage is described. The
purpose of the separation of a "logical" and a "physical"
level of data description was to acchieve data
independence in the sense that data could be "physically"
reorganized without impact on the "logical" data
description and on the application programs. 1)

1) The CODASYL DBTG Language Proposal has been criticized for not
having achieved enough data independence as the separation of the
“logcial” and "physical” levels defined by SCHEMA DDL is not re-
garded to be satisfactory. An example is the AREA concept which is
specified in the SCHEMA DDL, i.e. at the logical level. Another ex-
ample is the specification of access methods at the Togical Tevel.

The most commonly used data base management systems of
today (for exampel IMS, IDS, DBMS-1100) are examples of
two-level systems.

2.2.2 Three-level systems

Three levels of data description within a data base
management system was proposed by the ANSI/X3/SPARC
Report [aNsS-751. The three levels are called
conceptual-, external- and internal level. '

The three levels are said to correspond to different
views of the data in the data base. The conceptual
level, expressed in the conceptual schema, is the
enterprise’'s "real world" view of the data in the data
base. This view is shared among the various users who
agree on the abstractions and classifications of real
world phenomena represented by the enterprises "real
world" view.

Different users will operate on different, possibly
overlapping subsets of the enterprise's real world model.
The application programmers might want these subsets of
the real world model to be structured and described in
ways which are adequate to their intended operations and
to the programming languages that they use. These,
possibly differently structured and described, subsets or
mappings of the real world model are called external
schemas.

The internal schema, represents the "machine view" of the
data in the data base, and describes how data is stored
and accessed in the data base.

It should be noticed that the conceptual schema, 1in the
ANSI/X3/SPARC Interim Report, is regarded as a "real and
tangible item" which is proposed to exist in machine
readable form.

Three administrator roles have been identified, each with
the responsibility of describing and maintaining the
schema corresponding to their view. Figure 2.1 shows a
subset of the data base management system architecture
proposed by ANSI/X3/SPARC.

Enterprise
adminisivator

Conceptual)
Database databose LECtmn
administrotor schema - .
processor Perion in sats

3 -
@ @ J Pummiing bmetion

3 @ l fotitacs
Internal &Y External) tenluce orter
datobase r database
schema e _‘;}A schema . ann P ot e
processor] Sl processor . et He
— A
+ . "
@ @ q (36 @ @ A Gt dlstiomonr!
3 voatory fasility
Internal Internal Conceptual/
storage/ .1 database/ external
internal conceptual | "1 datobuie
databose) transform, | L transform .,
transform, @ *
Fig. 2.1
So far, - to our knowledge - there does not exist any

commercially available three level data base management
system. An experimental three-level system has been
implemented by Nijssen [NIJ-76] .

2.2.3 Four—-level systems

Already 1972 Senko presented the DIAM I Model. DIAM
stands for Data Independence Accessing Model and could be
regarded as an overall architecture model for data base
management systems as well as specifications of models to
be used at the different levels.

REAL WORLD
INFORMAYION!

7z A,

REPRESENTATION

MALIES STRING MODEL

ENCODING MODEL

PHYSICAL DEVICE LEVEL MODEL

The overall architecture consists of a hiearchy of four
models. At a "representation independent level" there is
the Entity Set Model (see 2.3.1.2) which 1is accompanied
by a Representation Independent Accessing Language. At
the lower, representation dependent, levels the String
Model, the' Encoding Model and the Physical Device Model
are proposed.

The String Model is intended as a means to describe a
representation of the Entity Sets, defined in the Entity
Set Model, in terms of access paths. Design of a String
Model concerns efficiency of representation, search and
maintenance, i.e. use of indexes, serial v.s. direct
search, etc.

The Encoding Model 1is a model describing bit-pattern
encoding of the string paths. At the lowest level, there
is the Physical Device model which concerns space and
overflow-handling rules for physical subdivisions of the
devices. The DIAM I Model has ‘later been revised and
extended by Senko [SEN-751].

2.2.4 Hierarchical, Network and Relational systems

Data base management systems are often classified as
being either hierarchical-, network- or relational
systems.

This classification is relevant for two level systems and
refers to the data model used at the "logical level".
The data model deétermines which types of elements and
which type of structure that can be described as a
logical data structure of a data base to be managed by a
data base management system.

The data model of a data base management system effects
the complexibility of the language(s) used for accessing
the data in the data base.

Examples of hierarchical data base management systems are
IBM's Information Management System - IMS [IBM-73] and
System 2000 [MRI-72].

Data base management systems based on the CODASYL-DBTG
proposals are typical representatives of network systems.
Examples are UNIVAC's DMS-1100 [UNI-73] and Cullinan's
IDMS [CUL-75]. Relational data base management systems
are based on the Relational Data Model proposed by Codd
[coD-701, 1IBM's System R [AST-76] and the INGRESS System
[STO-75] are examples of implemented relational systems.

2.3 Data Models

By data model is heremeant a set of modeling concepts and
a set of rules for combining these concepts to form
structures.

The hierarchical, network and relational data models are
often referred to as the three principle data models
[DAT-751, [TSI-77].

When hierarchical and network data models are discussed

they are most often represented by the data structuring
facilities of IBM's data base management system IMS and
by data structuring facilities in data base management
systems based on the CODASYL-DBTG proposals.

In a network data model, as proposed by CODASYL,
information is represented in terms of records and sets.
Records and sets are generic concepts which 1in turn

represent sets of record occurrences and sets of
relationships between record occurrences. Sets may be
"information carrying” as well as "non-information

carrying" [MET-75]. 1In a general network data model sets
may represent relationships of any of the types 1:1, 1:M,
M:1 or M:M. However, 1in the CODASYL-proposals only
relationships of the types 1:1 and 1:M may be represented
by a set. 1In order to represent M:M relationships extra
records may have to be introduced in a CODASYL network.
Another restriction of a CODASYL Network compared to
general networks is that sets may only be defined between
records of different types.

A hierarchical structure is a special case of a network
structure. In a hierarchical data model records are
related by links so that tree structures are formed.
Each link correspond to a 1:1 or 1:M relationship between
record occurrences, and thus, each record occurrence can
be related to only one record occurrence at the next
higher level in the tree.

The relational model proposed by Codd [CcOD-70] 1is based
on the concept of time varying relations.

A relation is defined as a subset of the Cartesian
product Sl X 82 b. < 83 x....Sn where Sl,S 53"'Sn are
domains. .Relations are represented
by tables. Each row in such a table correspond to a
tuple and each column of a table correspond to a domain
of the relation. The column head contains names of
domains or names of the roles in which the domains are
used in the relation. A domain in a specific role is
called an attribute. The column head, i.e. the names of
domains and/or attributes of the relation is called the
intension of the relation. The rows or tuples of the
table constitute the extension of the relation. 1It is
the extension of a relation that is time varying.

Each relation must have a primary key defined for it. A
primary key is an attribute or a combination of
attributes whose values uniquely identify the tuples of
a relation.

The concept of "functional dependency" is of importance
in the relational data model.

Given a relation R, the attribute B of R is functionally
dependent on the attribute A of R if and only if, each

A-value in R is associated with precisely one B-value in
R at any one time.

Functional dependencies are wused in the process of
"normalization" of relations. The choice of a specific
set of relations for an application will be of importance
to the semantics of the operations on the data. To avoid
deletion, insertion and updating anomalies Codd proposed
relations to be in (3NF) third normal form.
"Normalization is a step-by-step reversible process of
‘replacing a given collection of relations by successive
collections in which the relations have a progressively
simpler and more regular structure" [TSI-77][COD-71].
The normal forms and the process of normalization are
described in Codd's papers [cop-70],[cop-71],[cop-72] and
in most tutorial textbooks on data base systems (for
example [DAT-77],[TS1-77]) and in many other papers.

Both CODASYL's network model and the relational model
have been proposed as conceptual 1level data models.
Criticism against the wuse of these models at the
conceptual 1level has been conveyed, for example by Senko
[SEN-75] and by Kent [KEN-76]. As an example, in the
article "New Critiera for the Conceptual Model" [KEN-76]
Kent points out how several properties of +the CODASYL
model are inherited from the record technology and how
the characteristics of the record technology differs from
the characteristics and requirement of information
representation. 1In his outlook for future data models
Kent concludes: "The popular models of today are driven
by computer technology. This is appropriate for the
external model, which must be primarily concerned with
effective and efficient algorithms for processing data
and for internal model, whose primary concern it to
provide efficient storage structures and access paths.

What has not yet been generally realized is that the
criteria for a good conceptual model may be quite
different from the criteria at the other levels. The
priorities are reversed: the conceptual model is
primarily a model of the information wused in the
enterprise” [KEN-76].

2.3.1 Conceptual level data models

In recent years, several data models have been presented
as models specifically intended for the conceptual level
of data base systems. Examples of such models are "Data
Semantics" [ABR-74], "Semantics of data bases: the
semantics of data models" [BIL-76], "The Binary Logical
Association Model®" [BRA-76] "The Entity Relationship
Model" [CHE-76], "The Entity Set Model [SEN-72], ™The
Infological Model" [SUN-75].

Data models proposed for, or applicable to, the
conceptual 1level of data base systems originate from
different areas of computer science and/or information
processing. :
Bere, we have chosen three models ~ The Semantic Network
Model, The Entitiy Set Model and The Entity Relationship
Model . - to be summarily presented as examples of
conceptual level data models. The reason for choosing
these three particular models 1is that they together
cover many of the concepts and ideas within conceptual
level data models and that they may be regarded as
representatives of three different areas of origin. The
three areas are artificial intelligence, file
organization and design, and information systems analysis
and design.

Within artificial intelligence, research concerned with
"Knowledge and belief systems, Semantics, Natural
language interpretation and Conversation®" [NEV-73] have
proposed and used several different models for
representation of knowledge (for an overview see [.NEV-73]
or [WIN-74]). Examples of such models are the conceptual
model proposed by Schank [SCH-73], the procedural model
proposed , by Winogrand [WIN-73] and the family of
conceptual models called semantic networks as for example
Simmons [SIM-73] and Quillians [QUI-68].

Strangely enough, it is not until very recently, that the
ideas and models for representing knowledge developed
within the artificial intelligence field have been
applied in conceptual level data modeling for data base
systems. Examples of this, however, are the modeling
approach proposed by Smithé&Smith [SMI-76] and the data
model "The Semantic Network Model" proposed by
N.Roussopoulos and J.Mylopoulos [ROU-757].

The Semantic Network Model is presented as a model for
representing knowledge about the real world, to be used
as a definition of the meaning of the data in a data
base. The semantic network is a labeled, directed graph.
The nodes correspond to the basic modeling concepts

concept, event, characteristic or value nodes. The edges
correspond to predefined cases and have a number of
associated semantic properties.

Concept nodes represent physical or abstract objects of
the real world, event nodes represent events or
actions which occur in the real world. "Their
representation is based on a case-grammer model
(Fillmore) and consists of an event node and several

nodes that specify who plays the roles (or fills the

cases) associated with an event. For example, fig
2.3 illustrates a representation of an instantiation of
the event "supply" with "western united" playing the role
of "agent" and "source", "eastern.co" playing the role of
"destination" and "part.#,7395" being the supplied part"
[rou-751.

western,united« agent,source - supply - destination- eastern.co

object
part.# .7305

Fig. 2.3

Characteristic nodes are used to modify other nodes or
to represent states. Value nodes represent values of

characteristics. , The labels of the nodes are used for
reference purpose.

The cases or roles defined are: agent (a), affected
(aff), topic (t), instrument (i), result (r), source (s),
destinaton (d) and object (o).

A very characteristic property of the Semantical Network
approach 1is that the nodes may correspond to types as
well as to tokens. Nodes corresponding to types are
called generic nodes and nodes corresponding to tokens
are called instantiations. Semantic nets may consists
of only generic nodes, only instantiations or a mixture
of both types of nodes. Structures consisting of only
instantiations must, in order to be meaningful, be
matched by structures of generic nodes.

Example:
1) Generic nodes:

a d
COMPANY ¢~ SUPPLY —& CITY

o

ch v .
PART #¢————— QUANTITY — QUANTITY,VALUE

2) Instantiations:

a d
Johnson&daughters c¢o. & gsupply ——3 London

o

ch v
wheel 4—— quality — 250

The authors propose that most isolated phenomena of the
real world can be represented by semantic nets as
described above. However, when "larger chunks" of
knowledge are to be represented, so called "scenarios"
are used. A scenario 1is a collection of events,
characteristics and mathematical predicates related
through causal c¢onnectives such as "prerequisite"
("prereg") and "effect". One may regard a scenario as a
pattern or template which when matched by a structure,
causes various kinds of inference and predictions to be
made. Moreover, only structures which are matched by
some of the scenarions on the semantic net are meaningful
to the systems." [ROU-75].

Scenarios or instantiations of scenarios may be
semantically related into semantic networks. Examples of
such semantical relations between scenarios are the
"axes" or "dimensions" named "SUB" (subset) and "DEF"
(definitional) and "PART" (part of).

The "SUB" axis is used to create hierarchies along which
semantic properties can be inherited. The "DEF" axis is
used to define semantics of event and characteristic

nodes. The, "PART" axis defines part-of relationships
between nodes.

Semantic Networks have been used as models for Kknowledge
representation for natural language processing. The
Semantic Network data model as proposed by Rousopoulos
and Mylopoulos may also be used as a data model for the
conceptual level of data base systems. Further, the data
model has been used by Rousopoulos as a base for the CSDL
language. The CSDL language is intended for conceptual
schema definition in the design of data base applications
[rou-781.

One major problem of file organiaztion and file design is
to acchive "data independence". The separation of a
"logical" and a "physical" level of files or data bases
was an attempt to acchieve data independence, in the
sense that it should be possible to physically
reorganize a file or a data base without effects on the
programs that used the files or the data base. The data
models that were (and still are) used in the two-level
data base system, for exampel the CODASYL network and the
IMS hierarchies, however, did not acchieve a satisfactory
separation of the logical and the physical 1levels. In
describing the background of the DIAM model, Senko writes
"we decided that networks and hierarchies both had
obvious access paths dependence built into their naming
structures and that they required quite complex data
description facilities"™ [SEN-77].

The purpose of the DIAM model is to acchieve a separation
between a representation and access path independent and
a representation and access path dependent level within a
data base system.

The Entity Set Model is a part of the multilevel model
DIAM (see fig 2.4). The DIAM model - Data Indenpendent
Accessing Model -~ can be regarded as an architecture for
a data base management system.

Figure 1 Dato independent accessing model

REAL WORID
HH CHMATION

CONGEPT NAMLS
FHIITY S MaDLE o

R

WEPRISENTATION INOEPTHEENT
AGCESSING LANLUAGE

3

774 TRANSIATOR

REPRTSENTATION
NAMES STRING MUDE? b - REPRE STMTALION DL PE NUENT

ACCESSING L ANGUALE

ENEGIDING MODT

HHYSILAL DUVICE LEVEL MDD

P it |
SN |

|
{
i
i
i
I
!
i
I
[
|

2.4 from [SEN-72]

=i
i
Q

- 33 -

The Entity Set Model is intended for a representation and
access path independent data description in a data base
system.

In the Entity Set Model, the difference between entities
and their representation in terms of names is stressed.
An entity is defined as "anything that has reality and
distinctness of being in fact or 1in thought. e.g.
objects, associations, concepts and events" [SEN-72].

A name is a symbol or a combination of symbols by which
an entity is known. An entity may have several names.
Names can be expressed in alternative coding schemas. A
name representation 1is a name expressed in a selected
coding schema. Unique names for entities are called
Entity Names.

Entities with similar properties are grouped into Entity
Sets. The Entity Sets are given unique names - Entity
Set Names. Set of unigue entity names are called Entity
Name Sets and these sets are given unique Entity Name Set
Names.

An Entity Set model for an application is built up by

Entity descriptions. Entities are described by other
entities used in descriptive roles. The roles are given
Role Names. An example is: "The Entity named PART

NAME/GEAR may be described by the Entity named COLOR
NAME /BLUE in the descriptive role, COLOR OF PART"
[sEN-72]. A characteristic property of the Entity Set
Model is that all real world phenomena are regarded and
represented in a uniform way, and thus that no
distinction is made between for example entities,
properties and relations. This uniform way of regarding
real world phenomena is based on the observation that an
association between two entities, as for example between
the entities represented by the Entity Names PART and
BLUE is descriptive in both directions.

An entity description consists of triplets of names that
together form a description of the identified entity.
(See fig. 2.5).

An entity description

[PART NAME/PART NAME/GEAR| ~[PART NUMBER/PART NUMBER/7|

[WETGHT/PART WETGHT/17] ~ [COLOR/PART COLOR/BLUE]

Fig. 2.5

Entity Descriptions for entities from the same Entity Set
are collected in (Entity) Description Sets. These
Description Sets constitute the data definition of an
application in terms of the Entity Set Model. The
Description Set is also a basis for a "data directory"
and for definition of the representation dependent data
models of DIAM, e.g. the String Model, the Encoding
Model and the Physical Device Level Model.

The DIAM model has later been modified and extended 1in
DIAM II. DIAM II has the same three models at the
representation and acccess path dependent level as DIAM.
The Entity Set Model 1level 1is <called the 1Information
level. On top of the Information Model an End User Level
is introduced. The End User Level is introduced in order
to support various user views. A representation and
access path independent language named FORAL has been
specified and implemented. [SEN-76], [SEN-77].

From an information system design point of view, a
conceptual level data model is intended for modeling
information from an enterprise's point of view. The
modeling concepts attempt to be adapted to a "natural"
view of the real world. Although it can be debated what
a "natural" view 1is, and although these models can be
regarded as developed for traditional business
administration applications they do attempt to avoid
modeling concepts inherited from the way in which
computers traditionally work. An example of such a model
is the Entity-Relationship model proposed by Chen
[CHE-76].

The Entity-Relationship Model is based on a "multilevel
view of data". The levels identified are:

"(l) Information concerning entities and relationships
which exist in our minds.

(2) Information structure - organization of information
in which entities and relationships are represented
by data.

(3) Access-path-independent data structure - the data
structures which are not involved with search
schemas, indexing schemas, etc.

(4) Access-path-dependent data structure.

The Entity-Relationship Model is intended for the two
first of these levels. At the first level, the basic

modeling concepts used are entities (entity sets),
attributes and relationships. Entities are things that
may be distinctly 1identified and relationships are
associations among entities.

Entities that have common properties are classified into
(not necessarily disjoint) entity sets. An entity set
has a predicate associated to 1it, by which entity
membership can be tested. A relationship set 1is a
mathematical relation among n entities taken from Entity

sets, {[ei,ez,...,en]eléEl eZEEZ....enEEn}.

Each tuple of entities €1r€gr-nney is an

relationship. An entity may play a role within a
relationship. = Enterprise relevant information about
entities and relationships is expressed as attribute -
value pairs. Values are «classified into value sets.
Attributes are formally defined as a function which maps
from an entity set or a relationship into a value set or
a Cartisean product of value sets:

f: E, or R,— V., or
’ i 5 N Vil X Vi2 X vae. X Vin

An. example of attributes defined on a relationship set is

shown i figure 2.5.

B

(EMPLOYEE)

Vv
k

R{ (PERCENT)
(PROJEKT-WORKER)

F

E (PERCENT OF TIME)

J
“(PROJECT)

Fig. 2.6 from [CHE-76]

The entities and the relationships
only exist in peoples minds.

do

- 36 -

of the

At the second level - the information structure

first level

level

entities, relationships and information about these are
represented as names 1in relations. Information about
entities of an entity set is organized into an entity

relation where each row is an entity

2. 7).

Information
relationship set is organized into relationship relations
where each row is a relationship tuple (se figure 2.8).

tuple
about

(see
relationships

figure
of a

The primary key of an entity relation correspond to an
entity primary key, i.e. one of alternative attributes
or groups of attributes such that the mapping from the
entity set to the corresponding value set(s) 1is
one-to-one. ’
PRIMARY
* KEY
H
JTRIBUTE ! {EMPLOYEE-NO NAME ALTERNATIVE _AGE I
'ALUE SET ;; ENPLOYEE-NO /| FIRST- | LAST- FIRST- | LAST- NO-OF=YEARS
DOMAIN) ol NAME NAME NAME NAME
-
NTITY 5 2566 PETER JONES SAM JONES 25 L
TWPLE) 51 3378 MARY | CHEN BARB | CHEN 23
' =
-
&
¥
Regular entity relation EMPLOYEE
Fig. 2.7 from [CHE-76]
PRIMARY
KEY — >
NTITY RELATION EMPLOYEE PROJECT
AME
OLE WORKER PROJECT
NTITY | EMPLOYEE-NO PROJECT-NO PERCENTAGE | RELATIONSHIP
TTRIBUTE L OF-TIME ATTRIBUTE
‘ALUE SET ;% EMPLOYEE-NO PROJECT-NO PERCENTAGE
DOMAIN) =
ELATIONSHIP | 2566 31 20
UPLE S 2173 25 100
[
5
&
. 3

Regular relationship relation PROJECT WORKER

Fig. 2.

8 from [CHE-76]

Sometimes, entities of an entity set can not be uniquely
identified by any (set of) attribute(s) defined for that
entity set. 1In such cases, the entities are identified
by a relationship to entities called an ID dependency.
Relationships between entity sets may also be of the type
"existence dependency”, 1i.e. entities of the dependent
entity set will not exist unless the related entities
exist.

Entity relationships of the type ‘"existence dependency”
are called “"weak relations" to distinguish from regular
entity relations. ,

ID dependencies are automatically existence dependencies
while existence dependencies not necessarily have to be
ID dependencies.

A graphical notation for descrivtion of entity
relationships is introduced. Fig 2.9 shows an example
of an entity-relationship diagram for analysis of
information in a manufacturing firm.

DEPARTMENT|

SUPPLIER

i
N

@ SUPP-PROV

PART

M p
M_PROJ-WOR N

EMPLOYEE prOVECT |- MeProv-parTN PART

. M /\ N
@ @

DEPENDENT

Fig. 2.9

Procedures for transformation of entity-relationship
structures into data structures based on the Relational
Data Model as well as on a Network (CODASYL) Data Model

have been outlined by Chen [CHE-79].
Languages for conceptual schema definition as well as for
data manipulation are also outlined.

2.4 Summary

This chapter describes a background and a context for
"conceptual level data base design".

The main components in this context are information
systems design, data base management systems and data
models.

As a background, examples of early approaches to
information systems design are summarily presented. The
evolution of data base management systems is indicated.
Data Models and especially data models intended for the

conceptual level of data base systems are exemplified.
+

3. CONCEPTUAL LEVEL DATA BASE DESIGN

The purpose of this chapter is to present a frame of
reference for this study.

The area of conceptual level data base design is not well
defined. Different authors have different opinions about
the scope and the contents of the area. No commonly
accepted or commonly used terminology exists. An example
of this are the names used for the methods included in

this study, as for example "logical data base design",
"conceptual schema design”, "information structure
design".

First in this chapter, the concepts "data model” and
"data structure”™ are discussed. Second, these concepts
are related to the ~data base management system
architecture proposed by ANSI/SPARC. Third, the author's
view of "conceptual level data base design" is described.
The scope of conceptual 1level data base design is
described by six problem areas. The contents described
in detailed discussions of these problem areas.

The scope and contents of conceptual 1level data base
design as presented in this study is heavily influenced
by other authors within the area. Exact references to
where different ideas have been picked up are hard to
give. Therefore, references are generally not given in
this chapter. However, two authors by whom this study is
much influenced should be mentioned. Very early,
Langefors presented works on information requirements and
messages which have had an impact on this and many other
scandinavian works (for example [LAN-66], [LAN-68]).
Bubenko's work on inference analysis in information
structure design has contributed substantially to the
frame of reference here presented (for example [BUB-76]
[BUB-791]) . o

3.1 Data Models and Data Structures

The concepts "data model"™ and "data structure" have
different meaning in different contexts. For example,
some authors associate the term "data structure"™ to the
way in which data are organized in main or secondary
memory of a computer, while others associate "data
structure" to constitute a model of a part of the real
world. Some authors regard the data stored in a data
base as a "data model" of the real world, while others
regard a "data model" as a computer independent,
intellectual tool for representing and organizing

information about a part of the real world.

Thus, in order to describe what here 1is ment by "data
model"” and "data structure" a context must be specified.
Here, the context is data base systems for administrative
applications of an enterprise. (The term enterprise
should be understood in a wide sense as in [DAT-75], i.e.
"as a convenient generic term for any reasonably
large-scale commercial, scientific, technical or other
operation").

Data base systems, however, can be regarded from different
points of view.

Most often they are described and discussed from an
implementation point of view. When this is the case, the
focus is placed on different functions performed by the
data base management systems.

Here, the data base systems are regarded primarily from
an information system point of view.

An information system has been defined, by Langefors, as
"a system of information sets needed for decision and
signalling in a 1larger system (of which it is a
subsystem) containing subsystems for

- collecting

- storing

- processing

- distribution

of information sets" [LAN-66].

In analogy to this definition of an information system, a

data base system can be regarded as consisting of

- functions to accept/process input transactions

- a data base

- application programs

- functions to accept/process output reports and answers
to queries

These components of a data base system can be described
and analyzed from different points ov views. For example
how they interact, the order in which they are designed,
their relations to the data base management system, etc.,
etc.

Here, one specific aspect - a model aspect - i.e. how
the components model the enterprise is focused on.

Now, in order to discuss the concepts "data model" and
"data structure" within this context, a definition of the
concept "model" would be appropriate. Such a definition,
relevant to our context and purpose, is not easily found.
A number of books from diciplines as philosophy,
cybernetics and business administration where surveyed.
The experience, however, was that the concept "model" was

discussed on a - for our purpose - too general or too
application oriented level. (Examples are
[BAD-71] , [KLI-65], [RIV-72]).

Within computer science, the concept "model"™ 1is often
discussed in- the . simulation field. For example, in
Svoboda ['SV0--76], a model is defined as: "A model is an
abstraction containing only the significant variables and
relations".
Models used at various stages in performance evaluation
are, by Svoboda, classified into three general classes of
models: :

{1) Structural models

(2) Functional models

(3) Performance models
"A strucutral model describes individual system
components and their connections.... A functional model
describes how the system operates.... A performance
model formulates the dependencies of performance on the
system workload and the system structure" [SV0O-76].

Zeigler, in [ZEI-76]1, is concerned with concepts as real
systems, models and computers, where modeling 1is said to
deal with the relationships between real systems and
models, while simulation deals with relationships between
computers and models. A real system is some part of the
real world which is of interest. The real system may be
natural, artificial, in existence or planned for the
future. A real system is a source of behavioral data. A
model is basically a set of instructions for generating
behavioral data. Although, a model itself does not
generate data one may speak of model generated data or
model behavior. Validity of a model concerns the extent
of agreement between real system data and model-generated
data [ZEI-76].

The concept of "model" is also frequently discussed

within the artificial intelligence area. The definition

of "model" which we find most appropriate for our purpose

is one from this field, namely the one used by Raphael in

[RAP-68] . Raphael writes about the model concept:

"The term "model" has been grossly overworked, and it

does not seem to have any generally agreed-upon

definition. For purposes of this paper I present the

following definition: '

A model for an entity x has the following properties:

a) Certain features of the model correspond in some
well-defined way to certain features of x.

b) Changes in the model represent, in some well-defined
way, corresponding changes in x.

¢) There is some distinct advantage to studying the model
and effects of changes upon it in order to learn about

- 42 -

x, rather than studying x directly. The term x may be
any of wide class of entities, such as an object, a
statement in English, or a mathematical concept".
[RaP-681.

It is important to stress - as have been made by several

authors - that a model is always a simplification and
that the simplification is done for some specific
purpose. This 1s expressed for example in ['WEI-76l: "A

model is always a simplification, a kind of idealization
of what it is intended to model. The aim of a model is
of course precisely not to reproduce reality in all this

complexity. It 1is rather to capture in a viewed, often
formal, way what is essential to wunderstanding some
aspect of its structure and behavior. The word

"essential" as used in the above sentence is enormously
significant, not to say problematical. TIt implies first
of all purpose".

Referring to the definition of model given by Raphael and
to the context of this study, the components of a data
base system can be regarded as components of a model of
an enterprise.

This model consists of data and programs. The data exist
in input transactions, in the data base and in output
reports and answers to queries.

The data in the input transactions, in the data base and
in the output consist of data elements and structural
relationships between data elements. The programs
describe inferential relationships between data elements
in input transactions, in the data base and in the output
reports and query answers.

In this study, the data elements, the structural
relationships between data elements and the inferential
relationships between data elements is called a data
structure.

A data structure can be seen as a model of an enterprise.
In this model, the data elements and their relationships
in the data structure, are representations of
abstractions of phenomena in the enterprise.

In most of the data base management systems which are
commercially available today, data structures appear at
two abstraction levels.

The two levels can be called "type level™ and "instance
level" or “occurrence level". Synonymously the levels
can be called "intentional 1level" and "extentional
level™.

The data structure at the type (or intenkional) level can
be regarded as a meta model of the data structure at the
instance (or extentional) level.

The data structure at the instance (or extentional) level
can be regarded as a model of phenomena in an enterprise.
However, this model may be very complex. The instance
level data structure may contain millions of data
elements and relationships. The instance 1level ' data
structure, 1its structure and behavior, may be so complex
that abstraction and simplification - a model - is needed
in order to describe, understand and manipulate it.

The data structure at the type (or intentional) level can
be seen as a meta model, i.e. as a model of the model
represented by the instance level data structure.
Typically, the elements of the data structure at the type
level are generalizations of the elements in the instance
level data structure. The elements of the type 1level
data structure are fewer and less time varying than the
elements of the instance level data structure.

Data structures at the type 1level as well as at the
instance level are here seen as models of an enterprise.
Both these models - independent of the abstraction level
- satisfy the properties of a model as defined by Raphael
[RaP-78 1.

The +type 1level data structure, at the same time,
constitutes a model and a meta model of an enterprise.
Some changes in an enterprise will affect only the
instance level data structure while other changes in the
enterprise will effect both instance and the type level
data structures.

For example, assume that some elements in an instance
level data structure, correspond to customers of an
enterprise and that one element of a type level data
structure correspond to a generalization of customers.
If then, the enterprise, being modeled by the data
structures, gets a new customer, this change will
effect only the instance level data structure. If,
however, a change occurrs so that customers of the
enterprise may also at the same time be suppliers to the
enterprise, and this has not been the case earlier, such
a change may effect both the 1instance level and type
level data structures.

Instance level data structures as well as type level data
structures have to be expressed in terms of some modeling
concepts.

- 44 -

An example of frequently used modeling concepts for an
instance level data structure are record occurrences and
set occurrences. Another example is tuples of relations.
The corresponding modeling concepts for a type level data
structure are record types and settypes or alternatively
relations (intensions of relations).

These examples indicate that data structures at instance
level as well as at type level could be expressed in
terms of alternative sets of modeling concepts.

Such a set of modeling concepts will here be called a
data model. Thus, a data model 1s not in itself a
model of an enterprise. A change in the enterprise will
not effect the modeling concepts of a data model.

A data model is a set of modeling concepts and a set of

rules for relating the modeling concepts to form
structures.

An often referenced data model is the one proposed by
CODASYL-DBTG. Examples of modeling concepts in the
CODASYL-DBTG data model are data item, data aggregate,
record types and settypes. The ways 1in which these

modeling concepts can be combined to form structures are
implicitly defined in general rules and in the syntax of
the SCHEMA-DDI as for example:
"- a data item is the smallest named unit of data
- a data aggregate is a named collection of data items
and/or data aggregates,
- a record type is a named collection of data items
and/or data aggregates,
~ a settype is a named collection of recordtypes
- each settype must have one record type declared as
its owner and one or more recordtype declared as its
members,
- a recordtype may not be declared as both.the owner
and the member of the same settype
- etc., etc. " [COL-71].

The CODASYL-DBTG data model is intended for specification
of a type level data structure. As an example, a type
level data structure, which is a model of (a part of) a
university department could be expressed as fig 3.1.

STUDENT COURSE

COURSE~-
PARTICIPA-
TION SET

STUDENT~
PARTICIPA-
TION SET

PARTICI~-
PATION

Fig 3.1.

The recordtypes (STUDENT, COURSE, PARTICIPATION) and the
settypes (STUDENT-PARTICIPATION, COURSE-PARTICIPATION)
are occurrences of modeling concepts defined in the data
model. The record types and settypes are combined
according to the structuring rules of the data model into
a type 1level data structure. This type level data
structure can be regarded as a model of (a part of) a
university department (an enterprise) and at the same
time as a meta model of an instance level data structure.
In the instance level data structure - which also is a
model of the same (part of) a university department -
instances of the recordtypes and settypes representing
individual students, courses and participations will
exist. An example of an instance level data structure is
shown in fig 3.2.

STUDENT STUDENT v COURSE COURSE
1 - A M 4 B
e v \
- \ /’/ \
\\\/ \
P

\

!

— [
~ﬁﬁ~}

£ P :
STUDENT 1/ STUDENT 2/ ~ STUDENT1 STUDENT2
COURSE A COURSE A COURSE B |~ "2 COURSE B

Instances of records and sets

Fig 3.2

The two levels of data structures - the type and instance
levels - as examplified above, are common in most data
base systems today. Exceptions do however exist. For

example, sometimes within the area of artificial
intelligence, data base systems with only one level data
structure exist. In these cases, the data structure

contains elements corresponding to representations of
individual real world pPhenomena as well as to
representations of generalizations of real world phernomena,
In these cases, general knowledge is mixed with specific
knowledge in an one level model of the real
world/enterprise.

So far, the type level data structure has been described
as a meta-model of the instance level data structure.
The elements of the type level data structure have been
described as generalizations of elements in the instance
level data structure.

It should, however, be pointed out, that the order in
which the data structures at the type and the instance
levels are designed is the opposite to generalization,
i.e. the type level data structure is designed before
the instance level data structure.

In summary, in this study, a data structure 1is regarded
as consisting of a set of data elements, a set of
structural relationships between the data elements and a
set of inferential relationships between the data
elements.’

A data structure is seen as a model of some part of an
‘enterprise.

Data structures can appear at different abstraction
levels. In the commonly used data base management
systems of today, data structures appear at a type level
and at an instance level. A type level data structure is
at the same time a model of some part of an enterprise,
and a meta model of the instance level data structure.
Data structures have to be expressed 1in terms of gsome
modeling concepts. A set of modeling concepts and rules
for combination of these concepts is here called a data
model. Referring to a definition of the concept model
given by Raphael, a data model 1is not a model of an
enterprise.

A data structure - independent of abstraction level - can
be expressed by alternative data models.

3.1.1 'Data models and data structures for different

purposes within a data base management system

The ANSI/SPARC 1Interim Report [ANS-75] proposes an
architecture for a data base management system. Such a
data base management system 1is said to handle data
structures at three levels. The three levels are called

- 47 -~

internal-, external- and conceptual levels.

Very crudely, the data structure at the internal level
describes how data elements in the data base are encoded,
stored and accessed. The external level data
structures describes data structures as seen by
application programs. The external level data structures
are adapted to the programming languages used for
application programs and describe . application relevant
subsets of the data in the data base. The conceptual
level data structure describes the information content

and structure of the data base.

In section 3.1 two levels of data structures, a type
level and an instance level were discussed. A type-level
data structure could be regarded as a meta model of an
instance 1level data model. The meta model was in itself
a model of an enterprise.

When a type level data structure is regarded as a model
of an instance level data structure, the type level data
structure is an abstraction and generalization of the
instance level data structure.

As has been pointed out, abstraction and generalization
is always done for some specific purpose.

Models of an instance level data structure could be built
for different purposes. For example, one model could be
built for the purpose of describing how elements of the
instance 1level data structure are encoded, stored and
accessed in a data base. Another model could be built
for the purpose of describing the information content and
structure of a data base etc., etc.

In the frame of reference of this study, an ANSI/SPARC
type of data base system is regarded as handling and
using data structures at two levels, the type 1level and
the instance level. 1In an ANSI/SPARC type of data base
system however, there exist three different type level
data structures used for three different purposes.

The here described view of the three 1levels within an
ANSI/SPARC type data base management system 1is not
common. The ANSI/SPARC terminology concerning "levels"
is widely known and used, and therefore as a concession
to commonly used terminology the ANSI/SPARC notion of
"level®" will be used in the rest of this study.

As the “levels" of an ANSI/SPARC type data base
management system have different purposes it is here
assumed that appropriate modeling concepts will be
different for the three "levels".

At the internal level, the modeling concepts should be
adapted to description of the way in which dataare
encoded, stored and accessed in the data base. At the
external level, the modeling concepts have to be adapted
to the various programming and query languages that are
to be wused in manipulation of the data base. At the
conceptual level, the modeling concepts should be adapted
to description of the semantics of the data stored in the
data base.

As the modeling concepts are assumed to be different at
the different "levels" it is practical to distinguish
between internal data models, 1i.e. data models
intended for an internal data structure, external data
models, i.e. data models intended for external data
structures and conceptual data models, i.e. data
models intended for a conceptual data structure.

The terms information structure and information model

are sometimes used as synonyms td conceptual data
structure and conceptual data model.

In this study, a distinction is made between an
information structure and a conceptual data structure.

In the meta model perspective, an information structure
is seen as a meta model of data elements and
relationships in a data base system.

A conceptual data structure is seen as a meta model of
the data elements and relationships in a data base.

Thus, the elements of an information structure describe
not only data elements and relationships in a data base,

but also data elements and relationships in input
transactions, output reports and in application programs.

A conceptual data structure corresponds to the data
structure which in an ANSI/SPARC type of data base
management system is described in a conceptual schema.

3.1.2 Schemasv

The term schema will here be used to denote a
description of a data structure 1in terms of some
declarative language. As an example, the data structure
in fig 3.1 could be described in a schema using
CODASYL-DBTG SCHEMA DDL

SCHEMA NAME IS DEPARTMENT
RECORD NAME IS STUDENT

01 STUDENTNUMBER PIC 9(5)
01 NAME PIC X (35)

.

RECORD NAME IS COURSE
01 COURSENAME X (15)

RECORD NAME IS PARTICIPATION
01 SEMSETER 9(4)

SET NAME IS STUDENT-PARTICIPATION
OWNER IS STUDENT
MEMBER IS PARTICIPATION MANDATORY, AUTOMATIC

SET NAME IS COURSE-PARTICIPATION 1)

.

Analogous to the distinction between internal-, external-
and conceptual data models and data structures there
exists an internal schema, a set of external schemas and
a conceptual schema in an ANSI/SPARC type data base
management system.

The conceptual schema is a distinguished property of an
ANSI/SPARC type data base management system. Independent
of the data base management systems used to implement an
information system, the designers will need and use an
implicit or explicit conceptual data structure. When a
data base management system of ANSI/SPARC type is used,
the conceptual data structure is not only made explicit
but also made known to and used by the data base
management system in its operation.

"The Study Group contends that in the data base area it
must be made explicit and, in fact be known to the data
base management system. The proposedmechanismfor dJdoing
so is the conceptual schema. The other two views of
data, internal and external, must necessarily be

1) Only a few clauses of the SCHEMA definition is shown in this example.

consistent with the view expressed by the conceptual
schema®. [aNs-75].

3.2 Data base design

By data base design is here meant design of
information-, conceptual-, external and internal
structures.

As different types of design decisions are made 1in the
design of the different structures, it is practical to
distinguish between conceptual level data base design,
external 1level data base design and internal level
data base design.

In this study, conceptual 1level data base design is
regarded as consisting of +two parts, the information
structure design and the conceptual data structure
design.

The information structure describes the information
contents of a data base system. Typical design decisions
within information structure design concern abstraction
and classification of real world phenomena.
Specification and analysis of statements about the real
world phenomena is an important task within the
information structure design.

~The conceptual data structure describes the content of a

data base. In order to design the conceptual data
structure, the data base system must have been crudely
specified. In this specification, data and processes

within the data base system must have been determined.
Once the data and processes of the data base system have
been determined the structure of the data base can be
designed in an appropriate way.

External level data base design concerns design of data
structures which are consistent to the conceptual data
structure and which meet the information requirements of
different applications. The elements of the external
data structures must correspond to data types which can
be handled by the programming and/or query languages
which are to be used. Definition of the mappings between
the conceptual and the external data structures is
regarded as a part of the external 1level data base
design.

Internal level data base design concerns decisions on
what elements of the conceptual data structure to
explicitly store and what elements to compute/derive when
requested. Storage principles, access methods and
physical allocation of stored data are all important
issues within this design area. Definition of the

- 51 -

mapping between the conceptual and the internal data
structures 1is regarded as a part of the internal level
data base design.

3.2.1 "Logical data base design"

The term "logical data base design" has been and is still
used to denote any one or all of the activities that take
place in a process which starts with the identification
of an information problem within an enterprise and ends
with a data base management dependent data structure, for
example a SCHEMA expressed by CODASYL SCHEMA DDL.

With the separation of a "physical" and a "logical" level
of data within a data base management system as
introduced by the CODASYL Proposals [COL-69], [con-71]
the process of designing a data base could also be split
up into "logical" and "physical" data base design.
According to the CODASYL Proposal, both the "logical" and
the “"physical" design is the responsibility of the Data
Base Administrator. The emphasis of the 1logical design
is on how to represent the information to be contained in
the data base system in terms of the modeling concepts of
the CODASYL data model. The Data Base Administrator
should: "emply a data structure(s) that models the
business or problem provided in the SCHEMA DDL in terms
of areas, records, sets, data items and data aggregates"
[COL-71].

The "logical" and "physical" levels do to some extent
correspond to the two levels of models, the type and the
instance level data structures as described in section
3.2. However, in most "two level" data base management
systems as for example in the CODASYL-DBTG systems, the
modeling concepts of the data model used to express the
"logical" data structure, are adapted to fulfillment of
several purposes of the data structure. For example, it
describes how the elements at the enterprise model level
are encoded, stored and accessed in the data base at the
same time as it attempts to model the "semantics" of the
enterprise model.

In an ANSI/SPARC type data base management system
different data models are used to express the different
type level data structures which are built for different
purposes.

In this study, the expression "logical data base design"
will not be used (except in references). The ANSI/SPARC
terminology, i.e. conceptual, external- and internal
data base design will be used instead.

3.3 The scope of conceptual level data base design

Terms as "conceptual level" and "“conceptual structure"
have been used within the computer area [SCH-731 before
it was made an everyday expression within the data base
area by the ANSI/SPARC Interim Report. It has also a
correspondence in the "infological level" as proposed by
Langefors and Sundgren [SUN-73}.
The ANSI/SPARC Report suggested the conceptual level as a
part of the data base management system, and describes it
by a number of purposes:
"- It should provide a description of the information of
interest to the enterprise. ‘
- It should provide a stable platform to which internal
schemas and external schemas may be bound.
~ It should permit additional external schemas to be de-
fined or existing ones to be modified or augmented,
without impact on the internal level. It should
allow modifications to the internal level to be in-
visable at the external level.
- It should provide a mechanism of control over the con-
tent and use of the data base."
[ANS-75], [ANS-77].

These different purposes indicate that there are several
problems and research areas related to the conceptual
level of a data base system.

For example, one research area 1is related to the
conceptual level as & meansto achieve data independence
in a data base management system. This area concerns,
for example, strategies for binding external data
required by an application program to its correspoding
internal data. Concepts and languages for definition of
mappings between external-conceptual and
conceptual-internal data structures is another important
issue.

In this study, the purpose of the conceptual level data
structure, to constitute a description of the information
of interest to the enterprise is focused.

Within . this somewhat limited perspective of the
conceptual level of a data base system, there is still a
number of different problems and researchareas, and there
still does not exist any commonly accepted or used
terminology, concepts, models or methods.

An increasing interest 1in the design. aspect can be

noticed. Some years ago, several data models intended
for the conceptual level of a data base system were
presented. However, hardly any of these presentations

discussed how to arrive at a data structure for an
application system, in terms of the data model proposed.
In the latest years, however, papers discussing design

- 53 -~

aspects of the conceptual level have appeared. Most of
the approaches analyzed in chapter 4 are such recently
presented design methods.

In the ANSI/SPARC 1Interim Report, 1975, design of a
conceptual schema was relatively summarily described as
the task of the enterprise administrator to decide what
entities, properties and relationships in the enterprise
to represent in the data base.

In a later version [ANS-77] the task of designing a
conceptual schema has approached the area of information
system design.

"Prior to undertaking, the development and creation of a
data base, it 1is necessary to have an understanding of
the environment which that data base 1is to serve.
Consequently, a very important step is the
characterization or synthesis of the information needs
within an enterprise. This includes determining the
information flows through the enterprise and how it 1is
used. This systems synthesizing function, in the context
of the many applications utilizing the data base, is one
function of the enterprise administrator. The
enterprise administrator serves as the focal point for
identification of information wuse in an enterprise",
[aNs-771.

The ANSI/SPARC description of conceptual level data base
design has the advantage of being independent of any data
model used to express a conceptual data structure or any
specific method for design of conceptual data structures.
However, a somewhat more detailed specification of tasks
or problems included in the conceptual level design is
required in this study.

Several authors within the area implicitly define
conceptual level data base design by defining the input
required by their method and/or by describing the
result expressed in terms of their data model.
However, neither the starting point nor the result of
conceptual level design is expressed in a method/model
independent way.

As a part of the frame of reference of this study, the
scope of ‘"conceptual level data base design" is here
described by five problem areas.
This description in terms of problem areas is an attempt
to describe the scope in a general, i.e. method/model
independent way.
The five problem areas are:
1. Concepts/models for description of usersg'

views.

2. Concepts/models for description of users in-
formation requirements.

3. Methods for design and analysis of information
structures.

4. Concepts/models for description of conceptual
data structures.

5. Methods for design and analysis of conceptual data
structures. '

The different methods discussed 1in chapter 4 are
concerned with any or all of these five problem areas.
However, approaches concerned primarily with the first
three problem areas will be focused. 1In sections 3.3.1
to 3.3.5 the problem areas will be summarily described.
As the problem areas are neither obvious nor commonly
recognized they will be described more thoroughly in the
sections 3.4 to 3.5.

3.3.1 Concepts/models for description of users' views

The term "user" should be understood in a broad sense,
and to mean any person involved in design and/or use of a
data base system.

In integrated data base systems, the dataare to be shared
among several different wusers and to be wused for
different purposes.

In this study, the data in a data base system areregarded
as representations of statements about real world
phenomena. 1In order to achieve semantical integrity in a
data base system it is necessary that the different users
have common interpretations of the statements in the

system.

The statements refer to abstractions, classifications and
assumptions about real word phenomena. A persons' - or
a group of persons' - abstractions, classifications and

assumptions about real world phenomena is here called a

user view.

In order to achieve a common interpretation of a
statement, the statement must refer to a common view.
Therefore, it is here assumed to be essential to
conceptual 1level data base design that users' views are
made explicit, and that they are described as precisely
as possible.

Precise descriptions of users' views require concepts or
models in terms of which the views can be expressed.
Thus, concepts/models for description of user views, i.e.
of abstractions, classifications and assumptions about
real world phenomena constitute an important problem area
within conceptual level data base design.

Concepts and models for formal description of user's
views are strongly related to models used 'in psychology,

linguistics and knowledge representation in artificial
intelligence.

Terms as "views", "local views", "user views" etc. are
frequently wused within the conceptual level data base
design area. Although the signification of these terms

is not very clear, they often seem to differ from what
here ismeant by "user's views".
"Views", "local views", "user views" are sometimes used

to denote data structures required by an application
program, sometimes used to denote a specification of
information required by some user(s). Data structures
required by an application program are in this study
called external data structures. Information required by
some user(s) is called "user's information requirement".

3.3.2 Concepts/models for description of user's
information structures

Specificaton of information requirements is necessary in
order to design purposeful and efficient data base
systems. Information requirements correspond to input to
and output from the data base system being designed.
Knowledge about information requirements is necessary in
design of data structures at all levels in a data base
management system. For example, information requirements
constitute the base for design of external data
structures and they are necessary in order to design an
efficient internal data structure.

In the conceptual level data base design, information
requirements are here seen as specifications of types of
statements that users wish to obtain from, or that they
intend to provide to, a data base system.

Information requirements and users views are here seen as
the input to and the base for information structure
design and thus as the input to and the base for
conceptual level data base design.

As a distinction is made here between users views and
information requirements (this distinction will futher be
discussed in 3.4) a distinction between concepts and
models for formal description of user's views and of
users' information requirements 1is also made. Thus,
concepts and models for formal description of users'
information requirements is considered as an important
problem area within the conceptual level design. It may
be. that the same set of concepts is suitable for both
these types of formal descriptions. However, as long as
this is not clear we wish to separate the two types of
formal descriptions.

Users' information requirements are here regarded as an
interface between information systems design and data
base design. Methods for determination of users'
information requirements are not considered as a part of

the data base design but as an essential part of
information systems design. What information a person or
a group of persons within an enterpriseneeds and/or wants
in order to fulfill his/hers tasks in line with personal
and enterprise goals is not considered a data base design
problem, but an information system design problem. We
are aware of the importance of good methods for
identification of information requirements and of the
disastrous consequences of designing a data base system
on bad, unsuitable or irrelevant information
requirements. However, we have here chosen to define
conceptual level data base design not to include

methods for determination of users' information
requirements but to include concepts/models for formal
description of - elsewhere determined - users'

information requirements.

3.3.3 Methods for design and analysis of information
structures

By an information structure we mean a specification of
all types of statements that are to be contained in a
data base system. The information structure also
includes description of inferential relationships between
statements. The types of statements specified in an
information requirement may imply or may be inferred from
statements in other information requirements. Such
relationships between statements have to be analyzed and
described in the information structure.

Information requirements can not be formally described
without references to concepts defined in users' views.
On the other hand, it may be discussed whether or not it
is practical to specify users' views without knowledge
about users' information requirements. Users' views and
users' information requirements are mutually dependent.
Independent of the order in which users' views and
information requirements are specified it is, however,
necessary to explicitly define the correspondance between
the views and the regquirements.

In the analysis of implication and inference
relationships between types of statements, it is
necessary to analyze relationships between the elements
in user views, referenced by the statements. For example
user views may or may not concern overlapping parts of
the real world, or in other words, they may partly
concern the same real world phenomena. When users' views
do concern the same real world phenomena they may still
be different as they may correspond to different
abstractions, dgeneralizations and/or classifications of
real world phenomena and they may be based on different

- 57 =

assumptions about the phenomena.

In summary, design and analysis of information structures

includes:

- For each type of statement, specification of the, by
each type of statement referenced, elements and rela-
tionships between elements in user views.

- Integration of user views. The integration of

user views implies that users views must be
consistent i.e. the abstractions, generalizations and
assumptions about real world phenomena in different
user views must be consistent.

- Analysis and specification of inferential relationships
between statements. This analysis must verify that
statements required as output from the data base
system correspond to or can be inferred from state-
ments specified as input to the system.

The resulting information structure is seen as
specification of types of statements to be contained in a
data base system, and of inferential relationships
between these types of statements.

For each type of statement, its referenced
generalizations, classifications and assumptions of real
world phenomena are explicitly described. The

generalizations, «classifications and assumptions of real
world phenomena which are referenced by the different
types of statements are - in order to achieve semantical
integrity - verified to be consistent.

The information structure is here regarded as the base
for design of the conceptual data structure of a data
base.

3.3.4 Concepts/models for description of conceptual data
structures

An ANSI/SPARC type data base system will have one
conceptual data structure declared in the conceptual
schema. The conceptual schema is used by the data base
management system in its operations.

The data model wused to express the conceptual data
structure need not be the same as the one(s) used to
express user's views and/or information requirements.
The data model must, however, support the purposes of the
conceptual schema to constitute an interface between the
external and internal data structures of the data base
system. This indicates that the data model used for the
conceptual schema must be suitable for the definitions of
external-conceptual and conceptual-internal mappings.

What constitutes a set bf good and relevant modeling
concepts for the conceptual data structure has been and
is still a much debated issue within the data base area.
Several authors propose the Relational Data Model as a
candidate for the conceptual data structure. Also, the
CODASYI, data modeling concepts have been proposed as a
candidate. Some authors (for example [KEN-76]) stress
the need of new concepts for the conceptual level as they
find the so far proposed ones toomuch adapted to the way
in which computers work, and they prefer the modeling
concepts to be adapted to the way in which human beings
think and work.

In any case, concepts and models for the conceptual data
structure 1is obviously an important research area within
the conceptual level data base design.

3.3.5 Methods for design and analysis of conceptual data
structures

Within this study, an information structure is seen as a
specification of the types of statements that are to be
contained in a data base system, and of inference
relationships between statements.

The design of the information structure is regarded as a
part of "conceptual level" data base design.

An information structure is independent of any specific
data base management system.

A conceptual data structure is here regarded as a data
base management system dependent data structure. It is
dependent in the sense that it has to be expressed in
terms of, and be consistent with the constraints of the
data model provided by the DBMS for the conceptual level.
The conceptual data structure is to be declared by a Data
Definition Language in order to be used as the conceptual
schema for a data base.

The transition of an information structure into a
conceptual data structure involves several types of
design decisions.

One important type of decision is the decision on which
of the types of statements specified in the information
structure, to include in the conceptual data structure
and which types of statements to derive from and support
to the data base. This implies the design of a
"logical" file and process structure for the data base
system.

The types of statements defined in the information
structure may refer to time in an unrestricted way. 1In
order to design the conceptual data structure, however,

it 1s necessary to give exact specifications of the time
points or intervals to which statements of the different
types may refer.

In the information structure, types of statements may be
described by- references to types or classes of entities.
At the information structure level, decisions on how to
refer to individual elements in the classes of
entities/values may not have been made. This however is
necessary in the conceptual data structure, and
corresponds to decisions on how to represent
entities/values.

Depending on the data model wused to express the
conceptual data structure types of statements may have to
be grouped together. For example, if the Relational Data
Model is wused, it has to be decided which types of
statements to group and represent by which relations.

Also, depending on the data model used for the conceptual
data structure, it will be required to conform to certain
conditions. For example, a conceptual data structure
expressed in terms of the Relational Data Model may be
required to contain only 3NF relations. A conceptual
data structure expressed in terms of the CODASYL Data
Model is requested not to allow settypes corresponding to
M:M relations or to use settypes to relate records of the
same recordtypes etc.

The analysis of the conceptual data structure aims to
assure that restrictions on the data structure, imposed
by the data model, do hold. The conceptual data
structure may have to be reorganized as a reslut of this
analysis.

In summary, the scope of "conceptual level" data base
design, as defined in this study, has been described by
five problem areas. The five problem areas have been
summarily introduced.
In order to describe the content of ‘'conceptual level"
data base design, the five problem areas will be
discussed in more detail in the following sections (3.4
and 3.5). In this discussion, the first three problem
areas:
- Concepts and models for description of users views
- Concepts and models for description of users' informa-
tion requirements
- Methods for design and analysis of information struc-
tures
are treated together as information structure design.

- 60 -

The following two problem areas:
- Concepts and models for description of conceptual
data structures
- Methods for design and analysis of conceptual data
structures
are treated as conceptual data structure design.

3.4 Information structure design

In this study, an information structure is regarded as a
specification of the types of statements that are to be
included in a data base system. A conceptual data
structure describes the types of statements included in a
data base.

"Conceptual level" data base design is here regarded as
including information structure design as well as
conceptual data structure design.

Within information structure design, a distinction is
here made between users' views and users' information
requirements. Most authors within the area are concerned
with either views or information requirements. The
distinction between views and requirements is not
commonly made and 1is not obvious and therefore requires
some elaboration.

In order to describe the distinction between users' views
and users' information requirements typical concepts used
to express users' views and information requirements are
presented. There after the information structure design
is discussed.

3.4.1 Users! views

A user view is seen as a person's or a group of persons'
abstractions, «classifications and assumptions about real
world phenomena.

Most authors within the area, explicitly or implicitly
assume some basic modeling concepts in terms of which
perceptions of real world pheneomena are expressed. The
basic modeling concept in most approaches is the concept
of "object" (or synonymously "entity") An "object" is an
undefined concept often described as something about
which information is required.

Some authors percieve real world phenomena in terms of
"objects and associations" between objects.

A representation of "objects" and an "association" could
be illustrated as in fig 3.3.

JIM . age 24

object association object

Fig. 3.3

- 61 -

As with the concept of "object", the concept of
"association" 1is not defined. Sometimes the distinction
between an "object" and an "association" is described in
terms of existence. Associations are said not to exist
unless the associated objects exist while objects may
exist independent of its associations.

Associations may be directed (fig 3.4).

is of age

JIM 24

object association object

When associations are directed, alternativ views of the

same real world phenomena may be expressed by the same
modeling concepts (fig. 3.5).

24 is the age of # JIM

object association object

Fig. 3.5

Some authors restrict associations to be binary, while
others use n-ary associations.

In some cases, a destinction between "object" and "value"
is introduced. In these case an association between an
object and a value is a directed assocaition which is
called "attribute" or "property" (fig 3.6).

TTH age of is v 24

object "attribute" value
' association

Fig. 3.6

"Object", "value", "association" and "attribute" are
often the only concepts used to express perceptions of
real world phenomena.

There do however exist "data models" with more modeling
concepts. Semantical networks are examples of such "data
models". For example, in the "Semantical network model"
[ROU-75]1 real world phenomena are classified as being
objects, values, characteristics, events or associations
of different types as "agent", "topic", "instrument",
"result", "source" etc.

Now, individual real world phenomena are most often not
described in users' views. Only types or sets or classes

of phenomena are described. (The word "set" and "class"
will here be used as synonymes. For a discussion of
their meaning see for exampel [KOT-661. Thus, frequently

used modeling concepts for expressing users' views are
classes of objects and/or classes of values.

Young age of [Ages
men
i lass of
lass of (attribute) cla
gbjects association objects/values
Fig. 3.7

In some approaches, classes of objects and classes of
values are called domains. A domain - just as a class
of objects or values - may appear in several
associations. The different associations in which a
domain appears are sometimes called roles (fig 3.8).

gquantity on hand
’_""—\

quantity ordered

roles class of entities/values
or domain

Fig. 3.8

- 63 -

In some modeling approaches the distinction between
individual phenomena and classes of phenomena is not
made. Instead, a distinction is made between types and
tokens, 1i.e. between types of phenomena and individual
phenomena. 1In this case, individual phenomena are not
classified 1into <classes of objects but generalized into
(single) generic objects. Generic objects, as well as
individual objects, may in turn be generalized to "higher
level" generic objects so that hierarchies of generic
objects are formed (see fig. 3.9). Users' views may in
this case be expressed in terms of objects, generic
objects and attributes.

Fig. 3.9 Hierarchy of objects and generic objects.

By some authors (as for example by Senko [SEN-71BS], a
distinction is made between phenomena and names of
phenomena and thus between classes of abstract phenomena
and classes of names of phenomena.

In most "graph theoretical" data models (see [KER-76])
individual phenomena as well as classes or types of
phenomena are (as for example in fig 3.4 and 3.9)
represented by names. In some approaches where user
views are expressed in terms of classes or types of
phenomena, the decision on, by which names, to represent
individual phenomena 1is postponed until after the
information structure design.

Modeling concepts as objects, values, associations,
classes or types of objects and values are here regarded
as modeling concepts for expressing users' views, i.e. a
person's or a group of persons' abstractions and
classifications of real world phenomena.

Some assumptions about the real world phenomena are
implicitly described in the classification of real world
phenomena into objects, values and associations. Further
assumptions may be expressed as properties of classes of
objects,as for example the number of members of a class
and membership conditions for a class. Properties of
associations may be described by specification of types
of mappings (1:M, M:1l, M:M, 1l:1) and/or whether or not
mappings correspond to total, partial, bijective,
surjective, injective functions etc.

As an example, the association "age of is" between object
classes "Young men" and "Ages" (fig. 3.10) may be
described as a total injective function.

Young -
men Ages

g%aii— Class of

jects objects/values

association
described as a .
total, injective function

Fig. 3.10

In this study, concepts and models for explicit
specification of users' views is suggested as one of five
problem areas within conceptual level data base design.
By this, the importance of explicit formulation of users'
views is here stressed. The data in a data base system
is regarded as representations of statements about real

- 65 -

world phenomena. 1In order to achieve a, to all users,
common interpretation of these statements it is here
regarded as necessary to describe, as precisely as
possible the real world phenomena being referenced.

User views can be seen as specifications of a semantical
aspect of statements in a data base system.

A user view 1is here regarded as a description of
abstractions, classifications and assumptions about real
world phenomena which are of interest to a user (or to

a group of |users). The real world phenomena and the
abstractions and classifications which are of interest to
a user are those, about which the user wants to make or
obtain statements.

The same real world phenomena may be of interest to
several users. However, different or partly different
abstractions and classifications of these phenomena may
be of interest to different wusers. Therefore, it is
important that abstractions and classifications of real
world phenomena are expressed in a way which makes it
possible to determine, whether or not, consistent views
of real world phenomena are held by different users.

A graphical notation may not be precise enough to
describe a wuser view. As an example a user view
described as in fig. 3.11 may be interpreted in at least
three different ways.

Fig 3.11

In one interpretation A and B may be regarded as names
of classes of objects. 1In this case the association "a"
may denote a mapping of elements in "A" into elements 1in

"B", as illustrated in fig 3.12.

class of association c¢lass of
objects objects/values

Fig. 3.12

A second interpretation of a user view as described in
fig 3.11 may be to interpret "A" and "B" as names of

classes of objects and to interpret "a" “as an
association between a class ("A") and elements of
another class ("B"), as illustrated in fig 3.13. In

this case the class "A" is regarded as an object, i.e.
the class is the object.

wpn ' npn
y 20 ©
Won)
a oo o
o
o

an object association a class of
objects/values

Fig. 3.13

In a third interpretation of the user view in fig. 3.12,
"A" and "B" may be interpreted as names of (singlg)
generic objects and the association "a" as a relationship
between these two generic objects as illustrated in fig
3.14.

"A“ ilB"
Ila"
an ‘ . '
a generic association a generic
abject object
Fig. 3.14

Then three different interpretations of the user view in
fig. 3.12 are shown to 1illustrate the importance of
explicit specifications of the assumptions on which
abstractions, classifications and associations are based.
Quantitative information, as for example the number of
"elements in classes and specification of mappings, are by
some authors regarded as necessary only in the design of
computer efficient data structures. Here, gquantitative
information is seen as a part of the assumptions about
real world phenomena which are of importance in
descriptions = of users’ views. The quantitative
information 1is important in determination of whether or
not users' views are consistent.

- 67 -

The distinction between classes of objects, classes seen
as objects and dgeneric objects is not frequently made.
Graphical representation of user's views may contain a
mixture of these as for example in fig. 3.15.

Fig. 3.15

One indication-. of a mixture of classes of objects,
classes seen as objects and generic objects is a mixture
of plural and singular forms for the names of the nodes
in the graph. However, the distinction between classes
of objects, classes seen as objects and generic objects,
would be clear if assumptions as quantitative properties
were specified.

The user view in fig 3.15 could be specified as in fig.
3.16.

Graphical representation Specification

Fig. 3.16

Precise descriptions of users views makes it possible to
identify inconsistencies inh different users' views.

An example of inconsistency in abstraction could be if
"Employee" in one user view is assumed to denote only
full time employees while "Employee" 1in another view
denotes full . time employees as well as part time
employees. Classificatios of phenomena may be
"overlapping". For example, the people employed by an
enterprise may, by some user be classified as
"mangagers", "clerks" and "workers". Another user may
classify the same employees as female employees" and and
"male employees”. Still another user may classify the
employees as "union members” and "non-union members".
Overlapping classifications may, if not identified lead
to inconcistency.

Assumptions about associations may be inconsistant. For
example, one user may assume that an employee is
associated to one and only one address while another user
may assume that an employee can be associated to several
addresses.

" User views must be analyzed and eventually reformulated
in order to achieve consistency. Consistent, overlapping
users' views can be integrated into a, to all |users,
common "global" view of real world phenomena of interest.
This "global" view can be regarded as a semantical frame
of reference for a data base system. The data base
system will contain statements which refer to the
elements in the "global" view.

3.4.2 Information requirements

The concept "information requirements" seems to originate
from the very wearly approaches to information systems
design (see chapter 2).

In these early approaches, the information to be
contained in the input files, in stored files and in
output reports of an implemented information system, was
specified in terms of information sets.

Comparatively few authors within the data base area are
concerned with or discuss "information requirements", and
very few authors make a destinction between users' views
and users information requirements.

In this study, an information requirement is seen as a
specification of types of statements which a user wants
to support to or obtain from a data base system.

Types of statements refer to types or classes of real
world pheneomena.

Information requirements can not be formulated without at
least an implicit view of the referenced real world
phenomena. As has been stressed in section 3.4.1, it is,
in this study, considered to be important that the
referenced view of the real world phenomena 1s explicit
and precisely described.

The distinction between statements and phenomena being
referenced by statements which is made in this study, is
influenced by work on "messages" by Langefors.

The "message" concepts is an example of a concept for
description of information requirements.

Langefors defines information sets as sets of messages.
Messages can be ‘'consolidated" or ‘"elementary". An
"elementary message" or "e~message" is regarded as the
smallest meaningful unit @f information.

An ‘"e-message" corresponds to information about an
observation of a state of a thing in a system
(enterprise). An "e-message" consists of references to
the thing (a phenomena) being observed, to the aspect (of
this thing) being observed (a variable), to the time at
which the observation was made (a time point) and to the
observation made {(a value). For example, "the quantity
on hand of an article" may be described by an "e-message"
containing the references : "Sisters & Sisters Ltd",
"bicycle", "15:th of October 1978", "quantity on hand"
and "694",

The references are assumed to uniquely identify the
things being referenced and an “"e-message" is defined as
references to

- A system

- A time point

- A system point

- A variable

- A value
The definition of an "e-message" does not imply any
restrictions on the references and their representation
as data. For example, referring to the example above, if
"bicycle” 1is not a unique reference to the thing being
observed the "e-message” could contain a system point
reference as "Sweden, Stockholm, Southern warehouse,
Storage Place 559, Bicycles".
The difference between an e-message and a "consolidated
message" is the number of different aspects - variables -
being observed and thus "consolidated messages" can
always be decomposed into "e-messages".

In a specification of the information content 1in an
information system types of messages are described. A

message type describes e-messages which have references
to the same system, the same type of system point and the
same type of variable(s).

The message concept,as described above, is one example of
concepts for description of statements and thus for
description of information requirements.

The relationship between users' views and information
requirements as seen in this study, can be illustrated as
in f£ig 3.17.

Informa-
tion
require~
ments

Users'
view

Fig 3.17

The types of statements of information requirements refer
to elements in users views. 1)

1) In fig 3.17 the users' view is expressed in terms of classes of
objects and associations between classes of objects. As has been
stressed (in section 3.4.1) a user view should also describe as-
sumptions as for example quantitative information about classes
of objects and about associations.

This is not shown in fig. 3.17.

3.4.3 Information structure

In this study, users' views and information requirements
are regarded as a base for information structure design.
Users' views correspond to users' perceptions and
assumptions about real world phenomena. Information
requirements correspond to statements about real world
phenomena.

Concepts and models for description of users' views and
information requirements have here been pointed out as
important problem areas within "“conceptual 1level" data
base design.

Information requirements and users views are mutually
dependent. Abstraction and classification of phenomena
is always done for the purpose of expressing some
information about the abstractions and/or classes, i.e.
in this context, to make statements. Information
requirements can not be formulated without at least an
implicit view of the phenomena being referenced.

Thus, information requirements and users views must be
specified in an iterative process.

In the information structure design, information
requirements, i.e. statements, are analyzed.

This analysis aims at identification and description of
inferential relationships between (types of) statements.
For example, the statement "Ruth's average monthly salary
the first quarter of 1978 is $2500" may be inferred from
the statements "Ruth's monthly salary for January 1978 is
$2000", "Ruth's monthly salary for February 1978 is
$3000" and "Ruth's monthly salary for March 1978 is
$2500".

Knowledge about inference relationships is necessary in
order to determine that statements required as output can
be obtained from statements specified as input.

In order to determine inference relationships between
(types of) statements the user views, referenced by the
statements, must be precisely described. Users' views
may describe implications which in turn may be used in
identification of inference relationships between (types
of) statements. For example in an user view (as in fig
3.18) where "Person" as well as "Teacher" correspond to
generic objects, the fact that a teacher has a social
security numer may be implied.

The implied fact can be used to identify an inferential
relationship between a statement about a teachers social
security number and a statement about the social security
number of a person.

As another example, in a user view where "employees",
"departments" and "managers" denote classes of phenomena
which are related as in fig 3.19 an implicit association
exist.

works in
N (M:1) Depart-
N ments

Fig. 3.19

If we assume that the manager of the department 1is also
the manager of the employee, a statement about the
manager of an employee may in this case be inferred from
statements about the department in which the employee
works and a statement about the manager of this
department.

Analysis of inference relationships may be an extensive
task in a practical application where the number of
(types of) statements may be large. A systematic
approach to identification of inference relationships is
an essential part of the information structure design.

An information structure is in this study seen as a
specification of (types of) statements to be contained in
a data base system.

This specification of types of statements include
description of a consistent, global user view of real
world phenomena as well as descriptions of inference
relationships between (types of) statements.

The information structure 1is seen as the base for
conceptual data structure design.

3.5 Conceptual data structure design

The conceptual data structure describes the (types of)
statements contained in a data base. .
In the design of a conceptual data structure decisions on
how to organize and represent statements must be made.
However, before the conceptual data structure can be
designed, a design of the data base system must have been
made.

The crude design of the data base is here regarded as a
part of the conceptual data structure design.

In the design of the data base system, decisions on which
data to be contained in which "files" and which processes
that are to operate on which "files" in order to meet the
information requirements, must be made.

The design of the data base system (or data processing
system) can be seen as a transition from the information
structure into a conceptual data and process structure.
An extremely simplified example may 1illustrate this
transition.

An information structure consisting of two types of
statements S1 and 82 and an inference rule I have been
specified (see fig. 3.20).

Fig. 3.20 1)

The S1 type of statement is specified as initial and
denotes "Monthly salary of an employee". The S2 type of
statement is required as output and denotes "Yearly
salary of an employee". The inference relationship I can
be described as:

MONTH K=12
S2 (EMP,SAL,YEAR) = Z Sl(EMP,SAL,MONTHK)
MONTH K=1
Even in this extremely simplified case we can design
alternative data base systems. Fig 3.21 illustrates
three such feasable alternatives. Notice that the

alternatives lead to different content {(in terms of
type of statements) of the data base.

1) The user view referenced by the S1 and S2 types of statements
is jllustrated in fig 3.17.

- 74 -

Alterna- Input _Process Data base Process -Output
tive type of content type of
state~ state-
ment ment
1. ' T

{51 /——-? STORE | —>

B
I
%
.

E‘"" ACKUMUH —> @ - |GET —a@
LATE S2 :

{51 /—-~> STORE ——>f-'31;{52]—9'cm —>{szz

COMPUTE
S2

Fig 3.21 Alternative data base systems

In the design of the data base system decisions of types
of statements and on restriction of the instances of the
types of statements to be contained in input transactions
in the data base and in output reports have to be made.
In fig 3.21 only types of statements in the "files" of
the "alternative data base (data processing) systems are
shown. However, specifications of possible instances of
the different types of statements are also needed.

¥

Generally, the possible instances of a type of statement
correspond to subsets of the Cartesian product of the
classes of objects/values referenced by the types of
statements.

For example, if the 81 and S2 types of statements in fig
3.20 are described as in fig 3.17 the possible instances
of 81 and 82 correspond to subsets of the Cartesian
products "Employees"x"Salaries"x"Months" and
"Employees"x"Salaries"x"Years".

The specification of the global user view determines the
possible instances of the different types of statements.

- 75 ~

However, in the specification of a global user view the
classes of objects/values may have been described in a
general way. For example, the class of objects/values
named "Salaries™ in fig 3.17 may have been described as
real number in the interval 1000-100.000. In order to
determine relevant instances of each type of statement,
restrictions on the classes of objects/values relevant
for each type of statement can be made. Sl, for example,
may be restricted to refer only to "Salaries"
corresponding to real numbers in the interval 1000-10.000
while S2 may be restricted to "Salaries" in the interval
10.000-100.000.

As another example, the "Months" referenced by Sl, may
when it appears in an input "file" be restricted to
"Current month". "“Years" being referenced by S2, when it
appears in output files, may be restricted to "the year
before current year". Restrictions on possible instances
of types of statements in input and output "files" will
determine the necessary instances of statements in the
data base.

Thus, the design of the data base system is here regarded
as determination of "files" and processes of the system.
The “"files" are specified in terms of types of statements
and restrictions on instances of the types of statements.
The specification of "files", in terms of statements, is
independent of the "data model" used by the data base
management system.

Also independent of any "data model" are decisions
concerning representation of statements in the data base
{system). Decisions on representations have to be done
before the conceptual data structure can be designed and
described. As an example, statements of the types S1 and
S2 in fig 3.17 refer to "Employees". In order to
represent these statements, decisions on how to represent
the references must be made. A reference to an employee,
for example, may be represented as the name of the
employee or may be represented as an employee number etc.

The design of the conceptual data structure is dependent
on the data model for the conceptual level provided by
the data base management system to be used.

The data structure has to be expressed in terms of the
modeling concepts of this data model. For example, if
the Relational Data Model is provided by the data base
management system, the conceptual data structure has to
be expressed in terms of relations. If a CODASYL-like
data model is used the data structure has to be expressed
in terms of record types and settypes etc.

In design of relations (or record types) decisions have
to be made on how to group types of statements into

- 76 -

relations. For example, a type of statement concerning
the monthly salary of an employee may be grouped with
types of statements as the name and the address of an
employee, into one relation (or record type).

In the grouping of types of statements, eventual
restrictions imposed by the data model have to be
considered. For example, relations may be required to be
in 3NF and thus, the grouping of types of statements into
relations must consider this restriction.

Analysis and eventual restructuring of the conceptual
data structure in order to achieve a structure which does
not violate restrictions imposed by the data model "is
seen as the final task within the conceptual level data
base design. When this task has been performed, the
resulting conceptual data structure can be described (by
some DDL) and used as the conceptual schema of a data
base.

3.6 Summary

The purpose of this chapter was to present a context for

this study. The frame of reference constitutes a

specification of the scope and the content of "conceptual

level" data base design.

The scope of "conceptual level™ data base design was

described as five problem areas:

1. Concepts/models for description of users' views.

2. Concepts/models for description of users'
information requirements.

3. Methods for design and analysis of information
structures.

4. Concepts/models for description of conceptual
data structures.

5. Methods for design and analysis of conceptaul data
structures.

In the descriptions of the context of "conceptual level"
data base design the three first problem areas were
considered as relevant to "information structure design".
The two following problem areas were considered as
concerning "conceptual data structure design".

An "information structure"” was described as a
specification of the information contained in a data base
system. Description of wuser views and information

requirements were examplified and their relevance to the
design of the information structure were illustrated.

A "conceptual data structure" was described as a
specification of the information content and its
representation in a data base.

- M7 ~

An important idea to this study is that the conceptual
data structure of a data base can not be designed until a
data and process structure for the data base (or data
processing) system has been designed. The data and
process structure of the data base system determines the
‘information content of the data base.

After decisions on how to represent the information
contained in the data base have been made, the content
can be structured in terms of the data model provided by
the data base management system to be used.

:

4. INFORMAL ANALYSIS OF CONCEPTUAL LEVEL DESIGN METHODS

In this chapter different methods for conceptual level
data base design are analyzed from a semantical point of
view.

In the previous chapter, the scope and content of
conceptual level data base design, as seen in this study,
was described. According to this description,

conceptual 1level data base design could be partitioned
into information structure design and conceptual data
structure design. An information structure was regarded
as consisting of a global user view, a set of types of
statements (referring to elements of the global view) and
a set of inference relationships between types of
statements. A conceptual data structure was seen as a
set of types of statements, including constraints on
instances of the types of statements and of specification
of representation and organization of statments.

The information structure as well as the conceptual data
structure constitute models of an enterprise (some part
of the real world).

Within the data base design context, the purpose of the
information structure model is to constitute a base for
design of a data base system. The purpose of the
conceptual data structure model 1is to constitute a
specification of the organization and representation of
information contained in a data base.

Conceptual level data base design could be illustrated as
in fig 4.1.

ﬁgggiiCt Informa- / transi- Concep-
tion tual data
structur

abstraction specification

i

Enterprise/
real world

Data
base

Fig 4.1

Nine different methods arg analyzed below (ref. chapter 1.
First in the analysis, models and transitions within the
different methods are identified. Thereafter, semantical
aspects of models and transitions are identified and
infermally analyzed. It should be noticed that the
purpose of the analysis of the methods 1is not to
compare different approaches to conceptual level data
base design. The purpose is to analyze different methods
in order to 1identify semantical aspects and problems

- 79 -

within conceptual level data base design. Therefore, an
attempt 1is made to, for each method, identify some
characteristic semantical property/problem. Semantical
properties/problems which have beeen analyzed for one

method may very well exist in other methods without being
especially commented.

4.1 Benci, Bodart, Bogaert and Cabanes

In Benci's et.al approach, conceptual 1level data base
design is the design of a "conceptual organization". The
"conceptual organization" consists of a conceptual data
structure, of integrity constraints and of evolution
rules.

The base for the design of a "conceptual organization" is
a, to all wusers common, view of real world phenomena
called a "real world perception".

The to all users common "real world perception" in turn,
is an integration of local users perceptions of real
world phenomena.

The "conceptual organization" models three different
aspects of a data base system, namely its data, its
integrity and its evolution.

The models and transitions identified in Benci's approach
can be described as in fig 4.2.

transi- /Jconcep-
-10n tual orga
nization
abstrac- Speci-
tion ficati
genera-
lization v

Data base
Enterprise/ system

real world

Fig 4.2

Different wusers are assumed to perceive real world
phenomena in terms of different models or concepts as for
example: "mathematical models, logical models,
analogical models, descriptive models etc".

The transition of local users views into a to all users
common real world perception is not described in the
reference. However, the content of each local view is said
to be described by the "real world perception model".

A set of basic modeling concepts in terms of which the
"real world perception model" 1is to be expressed is
proposed. The authors assume that the information
content of each local view can be expressed in terms of
these basic modeling concepts.

Enterprise or real world, phenomena are seen as objects,
properties and associations, and the elements of the
"perceived real world model" are described as abstract
types of objects, properties and associations.

Guidelines for identification of the elements in the
enterprise are suggested and are based on identification
of temporal and spatial localization and dimension of the
objects, properties and associations.

The modeling concepts proposed for the "perceived real
world model" are types of objects, properties and
associations. The so called types are here interpreted
as sets/classes of objects, values and associations.

The conceptual organization consists of a ‘“conceptual
structure" for -the data base, integrity constraints and
evolution rules of the data base.

As a formalism for expressing the "conceptual structure”
of a data base, an extended version of the Relational Data
Model is proposed.

A conceptual structure is made up by three types of basic
elements:

- the type of data

- the type of entity

- the relation

The transition of a "real world perception model" into a
conceptual organization is not described.

However, a correspondence between elements of the
"perceived real world model"” and the "conceptual
structure" is described as

Perceived Conceptual

real world Structure
- type of property ~ one or more type of data
- type of association - relation(s)
- type of object - relation(s)

Integrity constraints describe properties of the data in
the data base.

The integrity constraints are expressed as predicates on
the elements in the conceptual data structure or as
predicates on data elements in the data base, 1i.e. as
predicates on the type level as well as the instance
level elements. Examples of constraints are definitions
of possible values and formats for values of a data type,
definitions of realtionships between data types within a
relation.

As an example, in a relation ORDERLINE:

ORDERLINE (ORD-NR,PROD~-NR,Q,P,LV) where

ORD-NR : ordernumber

PROD-NR : product number

o] : guantity

P : Pprice

LV : value of an orderline

an integrity constraint as LV=QxP may be defined.
Integrity constraints may be used to specify different
users permitted access to data in the data base.

The transition from a "perceived real world model" into
integrity constraints is not described. A comment, in
the reference, indicates that those jntegrity constraints
are based on properties of real world phenomena.
However, it is not clear how such properties are
identified and whether or not the properties are
described in the "real world perception model" and if
this is the case, how the properties are described in
terms of the modeling concepts proposed for the "real
world perception model™.

Evolution rules are said to model dynamic aspects of the
data base system.

Evolution rules are descriptions of, under which
conditions integrity constraints are to be enforced.
Enforcement of integrity constraints is triggered by so
called events. Events are described as any decisions
which triggers the processing of an operation on the data
base. Events can be "at rest"™ or "activated". The

activation of events may depend on events in the
enterprise or on a particular state in the data base.

The extension of the Relational Data Model proposed by
the authors is made for the purpose of describing the
evoultion rules.

Again, the transition from a "perceived real world model"
into evolution rules of the conceptual organization is
not described. Thus, it is not clear whether or not the
phenomena in the enterprise, as for example "events",
which in the conceptual organization are represented as
evolution rules, are represented and described in the
"perceived real world model".

In relation to the frame of reference of this study, the
"real world perception model" corresponds roughly to a
"global user view" and the "conceptual organization"
corresponds roughly to a conceptual level specification of
a data base system.

As seen in this study, however, a problem in Benci's
approach is that the scope of the "conceptual
organization" is wider than the ‘"perceived real world

model". The T"perceived real world model" is said to be
the base for design of a "conceptual organizaton®.
However, it seems doubtful that modeling concepts

proposed for the "perceived real world model" are able to
express and model such real world phenomena which in a
"conceptaul organization" are represented as integrity
constraints and/or evolution rules.

An information structure (including a global user view),
as described in chapter 3, intends to model and describe
all relevant aspects of real world phenomena which are
needed 1in the design of a data base system and which are
represented as a data structure as well as integrity
constraints. In Benci's et al approach it seems as if
the "real world perception model" describes only those
real world phenomena which in a data base system are to
be represented as a data structure, but not those which
are to be represented as integrity constraints and/or
evolution rules.

4.2 Bernstein

In Bernstein's approach, a data base is seen as a set of
relations. The intensions of these relations constitute
a conceptual data structure for the data base.

As a base for arriving at a specific set of relations, a
universal set of attributes and functional dependencies
between sets of attributes are assumed to exist. This
set of attributes and functional dependencies corresponds
to what in this study is called a global user view.

In Bernstein's approach the origin of this global view is
not discussed. Whether or not the global view is a
result of a design process 1is not indicated. Thus,
models and transitions in Bernstein's approach can be
illustrated as in fig 4.3.

Global

transi-
user tion #/ data struc
view
Specification
Fig 4.3 Data Base

The global user view 1is expressed in terms of attributes
and functional dependencies.

Attributes correspond to sets of objects or values or
rather to sets of names of objects and values.

Functional dependencies are defined: "Let A and B be
attributes, let DOM(A) be the domain of A and DOM(B) be
the domain of B and let f be a time-varying function such
that f:DOM(A)-—>DOM(B). f 1s not a function in the
precise mathematical sence because we allow the extension
of £ to vary over time in the same sense that we allow
extensions of base relations to change over time. That
is, if f is thought of as a set of ordered pairs
{(a,b)|a€(DOM(A) andb€(DOM(B)}, then at every point in
time for a given value of a€(DOM(A) there will be at most
one value of be€DOM(B)". LBER-76].

In the notation used in this study, a functional
dependency (FD) is an "element to element" relationship
between two sets of entities/values and the relationship
is either of 1:1 or M:1 type.

A non functional association, existing in the real world,
is in Bernstein's approach represented as a functional
dependency.

"A non functional connection f among a group of
attributes Ay, A2An will be represented as the
following FD:f:Al ,A2...An=—»B®,0 is an attribute that is
unique to £, and it does not appear in any other FD. Each
FD representing a nonfunctional relationship has its own
private © attribute. The underlaying domain for all
these © attributes is the set {0,1%. For each element
(ay,a2,a3...an) € (DOM(A1)xDOM(Aj3) ..DOM(Ap), f (al,a2...an)=1
if and only if (aj,az...an) is related under £. Thus the
extention of f completely defines a nonfunctional
relationship among Al...Anp. For example a nonfunctional
relationship between a DRIVER and AUTOMOBIL, where each
AUTOMOBIL can be driven by more than one DRIVER and each
DRIVER can drive more than one AUTOMOBILE is represented
by the FD: DRIVER,AUTOMOBIL-—+82.

In Bernstein's approach <({as in other synthesizing
approaches) there may exist at most one functional
dependency between any sets of attributes. If, for
example, more than one functional dependency exist
between the attributes A and B, these functional
dependencies would be regarded as semantically equivalent
and thus as the "same" functional dependency.

In order to represent semantically different functional
dependencies between sets of attributes, new attributes
have to be introcduced. For example, to represent

work address

ADDRESS

living address

the attribute ADDRESS has to be représented as two
attributes.

The transition from the global user view to the conceptual
data structure is exactly defined by and algorithm.

This algorithm for generating a data structure from a set of
functional dependencies is based on Armstrongs Axiomatization
of Functional Dependencies [ARM-74). The axiomatizations used
in the algorithm are

Al (reflexivity) X~X

A2 (augmentation) if X+Z then X+Y + Z

A3 (pseudotransitivity) if X-+Y and Y+Z +W then X+Z >W.

Bernstein stresses and points out that application of these
axioms may lead to semantically ambigous inferences. For ex-
ample, "Let f.:DEPT# -+MGR# and f,:MGR# FLOOR »NUMBER OF EM-
PLOYEES. One interpretation of f] and f; is that f] determines
the manager of each department and f) determines the number of
employees working for a particular manager of a floor. By ap-
plying pseudotransitivity to f1 and £2 we obtain f3:DEPT#,
FLOOR -+ NUMBER OF EMPLOYEES, which determines the number of
employees of the manager of a particular department on a par-
ticular floor. If a manager can manage more than one depart-
ment then f; is not the same as the syntactically identical
FDg] :DEPT#, FLOOR -~ NUMBER_OF EMPLOYEES, which determines the
number of employees of a particular department on a particular
floor. To make gy distinct from f, one has to change an attri-
bute name to make the FDs syntactically different. For example,
one could change f2 and g1 such that fj:MGR#,FLOOR - NUMBER OF
EMPLOYEES_ OF MANAGER and gj :DEPT#, FLOOR +~ NUMBER_OF EMPLOYEES
"?F_DEPTj Now g1 is distinct from the composition of f; and £,"
BER-76

Another example presented: "let f,:STOCK#~ STORE and £+ :STOCK#,
STORE# > QTY . Since the composition of f_ and £y is g5 :STOCK#>
+QTY, it must be (by our assumption) that the attribute STORE
in £, not is needed. But suppose f6 maps a STOCK# into a

STORg# of the store that is in charge of ordering that item,
and f7 maps the STOCK# of an item and the STORE# of the store
in which it is being sold, into the quantity on hand. In this
case g2 does not imply that STORE# is extraneous in f7. To pre-
vent this syntactic inference from taking plance, we must change
an attribute name (e.g. f6:STOCK#'*ORDERING_STORE)" [BER-T76].

Bernstein points out that in these examples "a syntactic inferenc
was either errorneous or misleading.’ In each case we solved the
problem by renaming an attribute to distinguish it from another
attribute. This renaming essentially moves some semantic know-
ledge that we have about an FD into the syntactic level, where
it can be used by the algebra of FD's". Further, it is stated
that "if we are to make use of a formal algebra of FD's we must
?ake the assumption that all syntactic inference are valied".
BER-76] .

From a semantical point of view, the application of the

- 86

algebra of FD's is
The essence of
interpreted as:

uncertain.
Bernstein's

statements are here

- In order to use the algebra of FD'’s only FD's that will
lead to semantically valid inferences are assumed to

exist

- Problems of errorneous or misleading inferences are
solved by renaming attributes.

Bernstein's approach to
ambiguities" in

example in

Problem
1) PERSONS—+ADDRESSES
PERSONS—~+ADDRESSES

2) DEPTy—=MGR#
MGR# , FLOOR—#»NUM, OF . EMP
DEPT# ,FLOOR—+NUM.Of .EMP.

3) STOCK#—+STORE#K
STOCK ¢ , STORE F~+QTY
STOCK# QTY

avoid
inference of functional dependencies is
to create unique attribute names

"semantical errors or

when needed as for

Solution
PERSONS—+WORKADDRESS
PERSONS—~+HOMEADDRESS

DEPT# «-=MGR#
MGR #,FLOOR—NO .OF . EMP1
DEPT#,FLOOR—+NO .OF .EMP2

STOCK# —»STORE#
STOCK#F ,STOREk—+QTY1
STOCK#—+QTY2

Practically,Bernstein achieves unique attribute names by

moving
names as for example:

PERSONS —"9TK . ADDRESSES

PERSONS —22M€. ADDRESSES

or generally

the semantics of the association to the attribute

PERSONS —»WORKADDRESSES

PERSONS —»HOMEADDRESSES

X—»a,¥Y

X—pa ¥

Bernstein states that "Specifying a set of FD's that can

lead to no invalid
difficult problem”.

However, there is a very simple way of

syntactic

inferences is clearly a

specifying such

FD's, namely to use unique attribute names for each time an

attribute appears as the dependent attribute in a functional
dependency.

For example:

X =+ Y . is changed to X > vl
Z > Y Z > Y2

or practically:

X-ile is changed to Z alY
a2
7 —<5y 7 a2Y
or generally:
fl:x > Y is changed to X * le
f2:Z + Y is changed to z > sz

If unique names are used for attributes each time an attribute
appears as the dependent attribute in a functional dependency,
semantical errors and ambiguities which refer to the use of
non-semantical functional dependencies are eliminated.
However, if unique names of attributes are systematically ap-
plied, the axiomatizations and thus the applicability of the

gyntactical inference in the algorithm is not predictable, as
in

f1:X >Y but X may be # ;X
fz:X<+Z 3

féZ may be # fBZ
f3:Z + Y 2
f4:X +Y

£,Y may be # Y in fg
fS:Y + 2+ W

Thus, in summary, the algorithm proposed by Bernstein can not
be proved to produce semantically correct or valid relations
unless the input set of FD's can be guaranteed not to lead to
invalid syntactic inference.

In relation to the frame of reference of this study, Bernstein':
assumed input, i.e. a set of attributes and a set of functional
dependencies correspond to a to all users common shared view

of real world phenomena.

In many of Bernstein's examples the attributes refer to sets of
names of phenomena as for example STOCK#, STORE#, etc, thus in-
dicating that not only decisions on what to represent in the
data base but also on how to represent it is initially assumed
by Bernstein.

The conceptual data structure as described in the frame
of reference corresponds to the data structure generated
by Bernstein's algorithm.

4.3 Brodie and Tsichritzis

In relation to our frame of reference, Brodie and
Tsichritzis are primarily concerned with specification of
user views and with integration of users views into a
global user view. Summarily, their approach can be
described as in fig 4.4.

; transition

User
views

Global
user
views

.
- of

abstraction Specification

Jeneraliza~-
tion

Enterprise/ Data base

real world

Fig 4.4

A local user view is described as a collection of objects
and relationships, as seen by a given user or class of
users. According to this description, a (local) user
view consists of objects and relationships. However,
from a semantical point of view it 1is not quite clear
what the objects and relationships of a user view
denote.

In chapter 3, concepts frequently used for expressing
user views were described and discussed. Among these
concepts were deneric objects and classes/sets of
objects. According to the distinction between generic
objects and class/sets of objects, the elements (objects)
of a wuser view as described by Brodie and Tsichritzis
seems to (initially) correspond to single generic

objects.
In our frame of reference, associations between generic
objects - as well as associations between classes/ sets

of objects - correspond to abstractions of real world
phenomena. For example, 1in fig 4.5 the association
"teach" 1s seen as an abstraction and generalization of

some real world phenomenon, in this case of an activity
which we call "teach".

TEACER teach COURSE

Fig 4.5.

Other associations in a user view correspond to
abstractions and generalizations of other real world
phenomena for example as in fig 4.6

@ teach @ attend

Fig 4.6

However, the associations in a user view as described by
Brodie and Tsichritzis do not seem to correspond to
genralizations of real world phenomena as in our frame of
reference. 1Instead, all associations in a user view seem
to describe how objects described in a user view can be
represented in a data base in terms of other objects.
User views are expressed in terms of (generic) objects
and "is used to compose" associations as if fig 4.7.

is used to
compose

is used to
compose

Fig 4.7

The process of specifying user views

T ing is described as:
...decompose each distinct object

into its component

- 90 =

objects. Then, decompose each component object into
components and so forth until the final components are
the fundamental domains”. [BRO- 78 1]

The fundamental domains assumed are STRING and NUMBER.
Here, we regard this procedure not as a stepwise
decomposition of objects, but as stepwise decisions on
how to represent objects in the data base. Referring to
fig 4.7, the next step according to this procedure would
be to decide bow STUDENT and TEACHER are to be
represented in the data base in terms of other objects.

As pointed out inthe reference, a particular hierarchy of
objects presents only one way of viewing the objects or,
in our terminology, that it presents one possible way to
represent objects i base.

Different views, 1.e. different decompositions of an
object are combined into a so called abstract view of an
object. A schema for a data base is a combination of the
schemas for the abstract
Abstract data type specifications are suggested as
formalism to describe .the objects in a hierarchy or
network of "component objects". "The structural
properties are the component objects and their
composition rules. The behavioral properties depend on
the semantics of the objects; they are based on query,

update, insert and delete operations. The resulting
network of abstract data types forms the schema".
lrs1-771"

A conceptual data structure consists of abstract data
type specifications and of data base constraints. Brodie
and Tsichritzis describe semantic integrity rules to be
properties of abstract data types which cannot be
expressed in the data definition. Semantic integrity
rules are expressed as data base constraints. "A
constraint asserts that a (set of) data value(s) exhibits
a given property or objects; a given relation with respect
to other data values".

Some examples of constraints given in [TS1-77] are: “The
assertion that every full-time student take at least four
and at most si% courses. The assertion that a tutor must

be a student who has received at least B+ for the course
being tutored. 'The assertion that there may be one tutor
for every 25 students enrolled in the a course." In our
terminology, the constraints , in the above examples, can
be regarded as descriptions of user views where the
objects correspond to sets of elements and the
associations correspond to associations between elements
in sets. 1In this case, the integrity rules correspond to
detailed specifications of associations. For example,

- 9] -~

the constraint that every full time student takes at least
four and at most six courses can be described by an
association as in fig 4.8. :

STUDENTS COURSES

"takes"

min 1:4
max 1l:6

Fig 4.8

Thus, in the determination and description of semantical
integrity rules the objects in the user views seem to be
regarded as sets of objects and the associations as a set
of associations between elements in the two sets of
objects. 1In this case, the associations are semantical
associations, i.e. they are abstractions and
generalizations of real world phenomena.

This way of interpreting the objects and associations
within a local user view, i.e. as sets of objects and as
sets of semantical associations between elements in the
sets of objects is implicitly assumed also when
hierarchies of objects are combined into user view
schemas. In order to combine hierarchies of objects,
there must be no conflicting properties of the objects in
the hierarchies. "An example of a logical conflict is
that one abstract view may permit one or more professors
to be associated with a given course while another view
requires that exactly one professor teachesa course"
[rs1-771. This example implies an interpretation of
COURSE and PROFESSOR as sets of objects and a semantical
association between these two sets.

Thus in summaryrusers' views as described by Brodie and
Tsichritzis seem to consist of generic objects which are
related by associations which describe how the objects
are intended to be represented 1in the data base.
However, in order to combine users views and in order to
formulate and describe semantic integrity rules, user
views 1in terms of sets of objects and semantical
associations between elements in the sets of objects are
implicitly assumed. 1In the presentation of the design
approach the authors stress the possibility of allowing
different users to maintain alternative views of the real
world. Here this possibility could rather be expressed
as the possibility for different users to represent
objects in different ways. However, in order to assure
semantical integrity, a to all users common view in terms
of sets of objects and semantical associations between
sets of objects is reqguired.

In relation to the frame of reference of this study,
Brodie's and Tsichritzis' approach 1is regarded as
concerned with design of a global view of real world
phenomena, 1i.e. of determination of a part of an
information structure and with the transition of this
part of the information structure into a conceptual data
structure. 1In this transition the problem of how to
represent real world phenomena as data stored in the data
base is focused.

4.4 Bubenko

The ' IAM-approach is presented as a method for design of a
conceptual schema. Conceptual schema is informally
defined as: "a conceptual schema describes the
information content and relationships of a data base.
The information content is an integration of different

local "needs" and "views". Redundancy exists in the sence
that some information "elements" can be inferred from
others. The conceptual schema acts as a basis for i)

definition of external schemata and queries and 1ii)
design of data structure schema (storage oriented) where
performance, efficiency and limited storage issues have
to be considered". [BUB-76]

This informal definition of "conceptual schema"
corresponds to what in this study is called an information
structure.

The design of a "conceptual schema" as described by
Bubenko does not include . or persume the design of a data
base (or of a data base system). The "conceptual schema"
as described by Bubenko does not restrict the types of
statements within a data base system that are to be
contained in the data base, it does not specify
constraints on instances of types of statements in the
data base or specify an organization of types of
statements in the data base.

Therefore, Bubenko's "conceptual schema" is here regarded
as an information structure.

The first three steps within the IAM method concerns
modeling of real world phencmena in terms of local users
information requirements and in terms of a to all users
common shared view of real world phenomena.

The local information requirements correspond to
anticipated input transactions, output reports and
queries. They are assumed to be 1initially stated in
narrative terms.

The local information requirements and the global users
view together constitute a base for a systematical design
of an information structure as in fig 4.9.

local
informa-
tion
structuref

Informa-

Enterprise/
real world

Fig. 4.9

The design approach 1is primarily concerned with the
transition of a global wuser view and a set of local
information requirements to an information structure.

The process of designing or determine a global user view
is not elaborated in the IAM report [BUR-76B}. However,
the three first steps of the design method are said to
concern analysis of anticipated input transactions and
output requirements in order to determine relevant
classes of objects and associations between classes of
objects.

The, to all users common shared view of real world
phenomena, is expressed in terms of "concept classes" and
functional dependencies between concept classes. :\
"concept class" corresponds to what in this study is
called an object class, and thus, to an abstraction and a
classification of real world phenomena. Real world
phenomena are required to be classified into disjoint
concept classes.

Assoclations between concept classes are expressed in
terms of functional dependencies.

Functional dependencies between sets of objects (concept
classes) correspond to "semantical associations" of the
types 1:1 or M:1 between sets of objects. By "semantical
associations" is meant that an association 1s an

abstraction of some real world phenomena. The
associations are assumed to be named. For example:

EMP,D—1ives—ADR

which denotes a functional dependency between the concept
classes EMPLOYEE, DAY and ADDRESS and which states that a
particular employee and a particular day uniquely
determine the employeel living address.

By wusing semantical associations several functional
dependencies between the same set of concept classes may
be defined.

The information requirements correspond to (types of)
statements about real world phenomena. As such they
refer to concept classes in the global user view.

However, initially, the information requirements are
local, i.e. the referenced classes of real world
phenomena may not begonsistent. Different users may have
abstracted and classified the real world phenomena
differently. The analysis of the anticipated input
transactions and output requirements (L.e. the
information requirements) in the first steps of the IAM
procedure aims at identification and elimination of such
inconsistencies.

The process of designing an information structure from
information requirements and from the common shared view
starts with a formal representation of information
requirments and functional dependencies in terms of
"abstract objects". "An abstract object of class Ay is
an abstract construct which conceptually serves to
represent information about some associations or
relationships in the real world. The structure of an
abstract object class A; can be described as:

A;=[<a:0,>,<b:6p>. ... <5:0_>]
where a,b... are associations names, unique within A.,
and ©@a,eb... denote concept classes or abstract object

classes (sub-objects to Ai)" [.BUB-76 1
Graphically an abstract object class can be illustrated
as in fig. 4.10.

- 95 -

C’;*i
/I
a b
i {
O O
o, 8 O

Fig 4.10

When information requirements and functional dependencies
have been represented as abstract object classes, these
abstract object = classes are "normalized" to
"gself-contained", l-level objects.

"A l-level abstract object has the properties that all
its associations are functional ((l:1) or M:1)) and that
one or more subsets of its associations uniquely identify
it". [BUB-761.

However, from a semantical point of view, it is not
clear what ismeantby a "self-contained®™ abstract object
and it is not clear how "normalization" is carried out.
"Normalization" and "self-contained" abstract objects are
described by the following example in the report
[BUB-76].
"Assume the following request:
Ql For each plant and each month list the total

number of employees and total-salary, then list

for each employee name, hours-worked

and salary".

Dlsregardéng the fact that the formulation of this
request is ambigous, we assume that it leads us to the
set of concept classes{PLﬁTﬁTﬁﬁ,$$,EMP,NAME} and to the
following abstract object construct:

AX Lsplant:PLA>,<month:M>,<tot—emp=NR>,<tot—sal:$$q,
< sub-report:Ax' s} where .
Ax'f<empl:EMP>,<e-name:NAME>,<sal:$$>,<hours-w:NR>§

We assume that the associations ‘'plant' and ‘'month'
together uniquely identify objects of class Ax and that

the associations ‘empl' and 'sub-reportc' (where the
subscribt 'c' denotes the <converse of an associaton)
uniquely identify Ax-type objects. This implies 1:1

correspondences between PLA,M 4&—— Ax and AX,EMPe——AX',
making it possible to normalize Q1 AX to the two
‘self-contained' abstract objects Ax and Ay:

f&plant:PLA>,<month:M>,<tot—emp:NR>,<tot—sal:$$>}
{ <empl:EMP>,<month:M>,<plant:PLA>,<name:NAME>,
<hours-w:NR>,<sam:$$>} " [BUB-76].

AX
Ay

o

The described normalization process could be interpreted
as:

assume: PLA,M —p AX
and assume: Ax,EMP —=% Ax'
then : PLA,M,EMP —wAx'

which indicate that some "syntactical inference" of
functional dependencies is applied (see 4.2).

However, this should not be the case in
"IAM-normalization" as the associations and thus the
functional dependencies are here required to have a
"semantical meaning”.

In terms of functional dependencies, the result of
"normalization" in the example above can be described as:

empl ,month,plant
EMP,M,PLA ® Ax'

However, in order to infer this functional dependency
from the initially assumed functional dependencies

plant,month
1) PLA,M ¥ AX
sub—reportg,empl
2) Ax,EMP » AX'
general assumptions about inference of "semantical,

functional dependencies" must have been made. Also,
assumptions which are specific to the application, about
semantical equivalence between associations (in this
application probably between plant, month and subreport€)
must have been made. o

As none of these assumptions are described we conclude
that from a semantical point of view, it is not clear how
"normalization" is carried out.

The meaning of the expression "a selfcontained abstract
object" is not described. It seems to have something to
do with a "semantical context".

For example in

Ax' ={<empl=EMP>,<e~name:NAME>,ésal:$$>,%hours—w:NRﬁ}

the "semantical context" 1is not wide enough for
interpretation of the semantics of the associations "sal"
and "hours-worked".

However, in the "self-contained" abstract object:

Ay = {<empl :EMP>,<month:M>, <plant:PLA>, <name:NAME>,
<hours:NR>,<sal:$$>5

the "semantical context" is widened and the associations
could be interpreted as "hours-worked at a specific plant
during a specific month" and "salary for work performed
at a specific plant during a specific month". The
"semantical context" is one possible interpretation of
the meaning of "self-contained" abstract object, other
interpretations may exist.

Referring back to the IAM-method, the initial abstract
objects are "normalized" to "self-contained" 1l-level

abstract objects. Foreach association within each
l-level abstract object it is to be indicated whether the
association is regarded as identifying, implied or

derivable.

The next step within the IAM-method 1is the so called
"implied association analysis". If an association is
specified as "implied" within an abstract object, the
analysis and the determination of the implication rule
may lead to identification of (by wusers) not specified
information requirements or functional dependencies which
are needed in order to produce the required output from

the specified input. Ssuch "new" abstract objects are
specified and analyzed iteratively. After the "implied"
association analysis is carried out, "derivation
analysis" is performed. In this analysis, derivation

rules for associations specified as derivable are
determined. As in the analysis of implication rules,
this analysis may lead to identification of '"new"
abstract objects which are necessary in order to derive
"requirements" formulated as associations specified as
derivable.

The result achieved after iteration of implication and
derivation analysis is an abstract model expressed in
terms of abstract objects, implication and derivation
rules. Characteristic of this model is that it is
complete in the sense that abstract objects specified as
input are sufficient to produce abstract objects
specified as output.

In the last step of the IAM-method the abstract model is
transformed to a name-based model, i.e. for each concept
class decisions on how to represent its elements in terms
of names are made.

In relation to the frame of reference of this study, the

IAM-method is concerned with determination of an
information structure.

The information structure describes the information to be
contained in a data base system in terms of abstract
objects and inference relationships between abstract
objects.

The determination of the information structure 1is based
on, a to all users common shared view expressed in terms
of concept classes and functional dependencies, and on
information requirements expressed in terms of abstract
objects associated to concepts classes of the user views.

4.5 Hubbard and Raver

Hubbard's and Raver's design method is primarily intended
for design of data bases to be managed by IBM's data base
management system IMS. The design process can, 1in the
terminology of this study, be described as:
- Specification of users' views
- Design of a data base management system dependent data
structure.
A user view corresponds to the data elements and
associations between data elements that are required by
an application. The global view, which 1is called "the
associative model" constitutes an integration of the
local views. The integrated view 1is said to be
"non-redundant" in the sence that only associations which
can not be inferred from other associations are included.
The integrated view can be regarded as a data structure
for a data base. To be used as a data structure, the
associative model has to be expressed in termsof a data
model used by some data base management system, and thus
be adapted to structuring restrictions imposed by that
data model. In the reference [HUB-75]design of "logical"
data structures for IMS and CODASYL data base management
systems is discussed. However, these DMBS's are examples
of two level systems based on "logical" and "physical"
data structures,where the logical data structure to some
extent is concerned with storage and access aspects of
the data. Therefore, the part of Hubbard's and Raver's
design method concerned with design of IMS or CODASYL
structures are not included in this discussion.
In terms of models and transitions, the to this study
relevant part of the design method can be described as in
fig. 4.11.

- 99 -~

transi-
»/ Global
tion user
view
Enterprise/
real world
Fig. 4.11

There are some distinctions between local user views as
described by Hubbard and Raver and user views as
described in our frame of reference. First, the elements
in local user views described by Hubbard and Raver are
seen as data itmes and associations between data items.
In the frame of reference, the elements of local user
views are seen as abstract objects, i.e. as abstractions
and generalizations of real world phenomena. 1In the
case, when the elements are seen as data items, decisions
on how to represent abstract objects in terms of names
must have been made. 1In the frame of reference, user
views might corespond to "overlapping" classification of
real world phenomena and to inconsistent assumptions
about the real world phenomena. Such inconsistencies
between local views are not considered or discussed in
Hubbard's and Raver's approach. The data items in the
local views are assumed to refer to consistent
classifications of the real world phenomena.

Thus Hubbard's and Raver's local user views are
"overlapping" only at the type level, and the types are
assumed to be consistent. Homonyms and synonyms among
the names of the classes are considered and discussed.
The basic modeling concepts proposed for specification of
local user views are "data elements" and "associations".
A "data element" corresponds to an IMS "field" or a
CODASYL "data item", i.e. 1is the smallest nondivisible
data unit. Data elements are to be interpretated as
specifications of sets of data values. 1In Hubbard's and

Raver's terminology: "A ‘'data element name' is the
symbolic reference to all occurrences of that data
element and a 'data element occurrence' is a specific

value" {[HUB-75).

Two different kinds of data elements are identified: "A
key is a data element whose occurrences uniquely

- 100 -

identify the entity or concept being described. An
attribute is a data element that adds further
description but does not by itself provide unique
identification™ [IBM-76]. If necessary for unique
identification of entities more than one data element can
be wused as a key. Such keys are called compound keys.
Associations are described as "from-to" relationships
between two data elements. "The "from" element serves as
a key, and each of its occurrences identified one or more
(or no) occurrences of the "to" element". [IBM-76] .

For each association in a local user view 1its "mapping"

is to be described. "Mappings" are combinations of
foreward and backward associations. Each directed
association is described as either "simple" ("1%),
"complex" ("M") or ‘“conditional" ("C"). "A simple

_association 1is one in which every occurrence of the
"from" element identifies one and only one occurrence of
the "to" element. A complex association is one in
which each occurrence of the "from™ element can identify
any number (including zero) of occurrences of the "to"
element. A conditional association is similar to a
simple association, except that the "to" occurrence may
or may not exist. Each occurrence of the "from" element
identifies either one or no occurrence of the "to"
element." [IBM- 76]

Five possible "mappings" i.e. pairs of associations and
their inverses are identified.

In Hubbard's and Raver's design approach local user views
are integrated 1into a global user view. During this
integration "redundant" associations are identified and

eleminated. "Redundant" associations are such
associations that can be inferred from other
associations. The resulting global view - the
associative model - consists of a "minimum" set of

associations from which all associations specified in
local users views can be inferred.

It should be noted that "inference" and thus "redundancy"
in Hubbard's and Raver's approach refers to "syntactical
inference".

Two important tasks within the process of integrating
local views are:

- generation of implied associations

- identification of implied associations.

When, in local users views, compound data elements have
been specified, these compound data elements imply

additional associations. As an example, suppose the
compound data element (AXxBxXC) has been identified. This
compound data element implies the 12 (syntactical)

associations:

- 101 -

Fig. 4.12

Syntactically implied associations are "automatically"
generated from compound data elements specified in the
local user views. The number of implied associations
increases with the number of elements in the compound
data elements. A combination of three elements leads to
12 implied associations, a combination of four elements
leads to 50 implied associations, a combination of five
elements leads to 180 implied associations etc. etc.

As all syntactically implied associations may not be of
value to the users, a possibility to restrict the number
of generated associations is suggested. In this case,
only associations which involves data elements included
in local views are generated. For example, referring to
fig 4.12 and assuming that in a set of local views, the
data elements (AxC), A, B and C have been specified, a
restricted generation of implied associations would
identifiy six associations:

- 102 -

(AxBxC)

Fig. 4.13

Simple associations, specified in local wusers views or
implied by compound data elements are structured into a
network. As an example, suppose the following simple
associations have been specified in local views.

EMPLOYEE -————— MANAGER

EMPLOYEE ——— DEPARTMENT

MANAGER =———= DEPARTMENT
When the local views are integrated into an associative
network, the asSociation EMPLOYEE———®DEPARTMENT 1is
considered as implied - redundant - as it is possible to
determine the department of an employee via the simple
associations EMPLOYEE—+>MANAGER and
MANAGER——%DEPARTMENT . Implied associations can be
identified "automatically" from the specifications of
associations 1in the users views. However, a warning
against automatic identification of implied associations
is issued: "An implied association may yield a different
occurrence of the "to" -element than 1is obtained by
following the alternate path of simple associations.
Consider the data elements Employee, Manager and Phone-No

connected by simple association as shown. The
association (EMPLOYEE, PHONE-NO) will yield the phone
number of the employee whereas the associations

(EMPLOYEE, MANAGER) and (MANAGER, PHONE-NO) will vyield
the phone number of the employees manager". [IBM-762].

- 103 -

oy
o> Gions3o>

Fig. 4.14 (from [IBM-76 1.)

Although expressed in another way, this describes the
same semantical problem in inference and implication of
functional dependencies as has been pointed out in 4.2
and 4.3.

Hubbard and Raver suggests a practical solution to this

semantical problem. All automatically identified
"implied" associations are listed and presented to the
designer. The designer decides whether or not "implied"

associations can be regarded as implicable also from a
semantical point of view. If this is not the case, the
designer redefines such associations as being "essential"
instead of implied. After the implied associations have
been inspected and eventually redefined by the designer,
all essential, simple associations are integrated into a
"non-redundant" global view, i.e. the associative model.

Compared to the frame of reference of this study, Hubbard
and Raver are concerned with determination of a global
user view. The global user view 1s name-based, 1i.e.
decisions on how to represent phenomena in terms of names
is assumed to have been made.

Information requirements in the sence of statements about
phenomena are not considered. However, statistical
information about local user views as for example
frequency and response time requirements are collected
and used in the design of storage oriented data
structure.

- 104 -

4.6 Kahn

Beverly Kahn's design approach is intended for "logical
data base design". Logical data base design is regarded
as consisting of three main activities, named:

- Information Requirements Analysis

- Information Structure Design

- Information Structure Implementation

Kahn's approach is based on the idea that the information
content of a data base system can be described from two
different points of view, or from two different
perspectives: the information structure perspective and
the usage perspective.

The information content of a data base sgystem to be
designed 1is specified in terms of "local" requirements.
These local requirements are analyzed and the information
to be <contained in the data base is described from a
"semantical" point of view, i.e. the information
structure perspective and from a usage perspective.

"The information structure perspective depicts the
natural and conceptual relationships of all data in the
information system as vViewedby the entire user community
and is determined by the users of the system. It is not
bound to any application and it represents the natural
clustering of data (information). Therefore, this
pergpective will provide the mechanism for a flexible
data base design and the basis for expressing the basic
semantic properties as well as other facts about the
entities 1in the information system and the relationships
between these entities. The representation of natural
relationships and facts 1in the data base provides the
basis for handling unstructured and unanticipated queries
or requests for information." [KAH-76B1].

The "iInformation structure" corresponds to what in the
frame of reference of this study has been called a global
user view. This global user view is the result of an
analysis and design process.

After the "information structure" has been designed, the
usage perspective of the data, i.e. of elements of the
information structure, can be determined. The
information structure and the usage perspective together
constitute a base for design of a data base management
system dependent "logical" data structure as for example
a CODASYL data structure. The design of the "logical®
data structure is not elaborated in the references,Kahn's

approach as seen in this study can be illustrated as in
fig 4.15.

- 105 -

) transi-
tion

abstrac-
tion

Enterprise/
real world

Fig. 4.15

User views are expressed in terms of entities, properties

and relationships.” "An entity is a person, place, thing,
concept or event, real or abstract, of interest to the
enterprise (organization). A property is a

characteristic of an entity. A relationship in the real
world 1is a connection between two or more collections of
entities, individual entities or properties of entities.
A relationship involves the objects connected, the kind
of connection, and the direction of the connection”.
[RAH-T76B]. Entity diagrams (as in fig 4.16) are
suggested as representations of views.

Entity - Entity
STUDENT PROFESSOR
-Name -Name
~-Address -Address
]
Entity Entity
COURSE DEPARTMENT]
-Course No Dept .Name|
~Section

Fig. 4.16

The interpretation of nodes and arcs in an entity diagram
is not quite obvious. For example, the entity diagram in
fig 4.16 could be interpreted as a graphical
representation of general knowledge about real world
phenomena. In this case, the nodes of the entity diagram
would correspond to single, generic objects and the arcs

- 106 -

would corresepond to binary associations between single
generic objects. The entity diagram in fig 4.16 would
then describe the general knowledge that:
- a student has a name and an address and is related to
course,
- a professor has a name and a degree and is related to
course and department,
- a department has a department name and is related to
professor and course,
- a course has a course number and a section and is re-
lated to student, professor and department.
However, in the reference, Kahn summarily describes how the
relationships in the wentity diagram may be specified.
This description indicates that the entities in the entity
diagram could be interpreted as sets of entities and that
the relationships could be interpreted as relationships
between elements in sets.
For example: "An relationship between two entities
describes how they are logically connected. The first
entity occurrence form the basis for the domain of the
relationship while the second form the basis for the
range of the relationship” [KAH-76B]. It is also
suggested that relationships between two entities could
be classified as one-to-one, one-to-many, many-to-one oOr
many-to-many mappings. How to, 1in a entity diagram,
describe an association between a class of entities and
an element of another class of entities (as illustrated
in fig 4.17) is not clear. h

STUDENTS NUMBER OF
STUDENTS
o © v
o
o 2 4 o,
o o
Fig. 4.17

The processes of arriving at a global wuser view from
(local) users views is summarily described as:

"After the basic description of all of the pertinent
system entities and relationships are collected and
recorded by each participating member of the user
community, these individual descriptions can then be

refined. The refinement process includes detecting
redundant and duplicate information, creating
"relational" entities, analyzing relationships and

derived elements and normalizing entities. When all of
the individual information structure perspectives have
completed this refinement process, they can be aggregated
and consolidated into a global, consistent and
non-redundant information structure perspective for the

- 107 -

entire organization through the use of the same
refinement process” [KAH-76B].

Although, several steps in this process are not described
in detail, we interpret Kahn's approach as similar to
what in our frame or reference has been described as
determination of a global view of real world phenomena
based on local views.

The meaning of "non-redundancy" in an entity diagram is
not clear. As an example, it 1is stated that: "All
elements that belong to more than one entity (i.e. are
included in more than one entity definition) should be
determined. The information structure perspective should
be as non-redundant as possible, therefore, a given
element should only occur in one entity. To minimize the
number of unique elements represented in the information
structure perspective, all relational and derived
properties should be separated from their associated
entites". [KAH-76B].

First, it is not obvious why the information structure
perspective should be as "non-redundant as possible".
Second, it is not clear why the number of unigque elements
in the information structure should be minimized and
whether or not this concerns "redundancy". Furhter, does
"separation" of relational and derived properties from
their associated entities imply that these properties are
excluded from the information structure?

The "usage perspective” is a definition of the systems
processing requirements. In Kahn's approach, the
information structure 1is seen as an application
independent model of real world phenomena. The elements
of the information structure are to be represented in the
"logical schema" for a data base, however, the logical
schema is application dependent as the structuring and
grouping of the elements of the information structure is
adapted to the applications processing requirements, i.e.
to the usage perspective.

Identification and description of the usage perspective
indicates a design of a data and process structure for the
data base system.

"The first task in building fhe usage perspective is to
identify all processing functions and then subdivide
these functions into moduls (processes). The next task
is to determine all of the data that each process uses to
perform its designated functions" [KAH-76B].

In the detailed specification of the usage perspective
the operations of each identified process is described

- 108 -

The operations are described in terms of the primitive
operators FIND, ADD, DELETE and MODIFY.

Thus, in summary, the usage perspective describes the
data and process structure of a data base system. Each
process is described by its primitive operations on data
elements of the information structure.

The information structure and 1its usage perspective
together constitute the base for design of a "logical”
data structure. The design of the "logical" data
structure 1s called implementation of the information
structure. Within this step, "optimization" of the
logical data structure relative the specified usage
perspective is performed. Kahn does not suggest “any
specific method or algorithm for this optimization but
refers to existing techniques as for example the ones
proposed by Mitoma and Irani [MIT-75 and Hoffer
[HOF-751.

4.7 . Sheppard-Rund

A method for "logical data base design" is proposed by
Donna Sheppard-Rund. This method differs from the other
methods in this study with respect to its perspective of
the result of the logical data base design. "The product
of logical design can best be described as a model that
depicts all pieces of data and how each relates according
to its many uses across the organization" [SHE-76].
This perspective has an impact on the design method in
the sence that it is primarily concerned with analysis of
tasks and their information requirements rather than with
abstractions and generalizations of real world phenomena.
The result of the design process is a model of real world
phenomena expressed in terms of of data elements and
relationships between data elements. However, this model
is determined as a result of an analysis of how the data
elements are used in different tasks of the organization
and the frequencies at which they are used.
"Logical data base design" is described as consisting of
- definition of scope
~ identification of data elements
- identification of relationships of data elements
~ identification of the organization's operating rules
and their implication on data elements.

In the definition of scope, the functional areas of the
organization which are to use and to be served by the
data base are identified. Crude sets of data used by
these functional areas are identified. The result is
called an "Information Plan".

In the next step, functional areas, 1identified in the

- 109 -

Information Plan, are analyzed and described. The

analysis includes

- identification and description of tasks performed
within each functional area

- identification and description of data associated with
performing each task

- identification and description of rules associated with
when and how the task is performed.

Systematical interviews with top managers and middle

managers are proposed as a "method" for identification of

tasks and their associated data requirements. Flow chart

technique is wused in the description of tasks and data

processing requirements.

The data requirements of each task are analyzed and
organized into a "logical" data structure of a data base.

In summary, the method approach may be described as in
fig 4.18.

Tasks and
data re-
guirements

Transi-

A

tion

Analysis of
functional
areas

Enterprise/
real world

Fig. 4.18

The Data Requirements identified in the analysis of tasks
within an enterprise may be regarded as corresponding to
information requirements at a name based level. However,
Sheperd-Rund's approach differs from our frame of
reference with respect to the aspect of an enterprise
that is primarily modeled.

In our frame of reference, the enterprise phenomena
primarliy being modeled, (and referred to by statements)
are those which are objects 1in the activities of an
enterprise as for example ARTICLES, CUSTOMERS, ORDERS.
In Sheperd-Rund's approach, the enterprise phenomena
primarily being modeled are the activities (tasks)
themselves, as for example the ORDER PROCESSING, the
SALES FUNCTION.

This distinction has an impact on the approach taken in
the transition of Data Requirments into a "logical" data
structure.

- 110 -

The "logical" data structure is expressed in terms of
data items and relationships between data items. Data
items are <classified as keys or attributes. The
classification of data 1items as keys or attributes is
based on the frequencies by which the data items are used
in the different tasks of an enterprise. The
classification of data items into keys or attributes is
said to be based upon the "hypothesis" that:

- A data element will most likely be a key if it is used:
- in a large number of tasks
- with a large number of other data elements
- with each individual data element a low percentage
of the total time it is used
- A data element will most likely be an attribute
referenced and owned by one key if it is used:
- in a relatively small number of tasks
- with a few data elements
- with each data element a high percentage of the
total time it is used.
- A data element will most likely be an attribute
referenced by many keys but owned by one key if
it is used:
- in an average member of tasks
- with an average number of other data elements
- with each data element an average number of times.

Thus, a main activity within the transition of Data

Requirements into a "logical"™ data structure 1is to
created a frequency distribution of data elements across
tasks (fig 4.19). Ranges corresponding to low, average

and high frequencies are thereafter determined.

No of low ' average high
data ele- range ! range | range
- |
ments ¢, 4_ | |
| 1
50 - 1 |
|
40 - ‘ |
|
30 T |
|
20 -+
‘ 1
|
10 T ‘ |
I |
It !
T T T T T T
1-10 11-20 21-30 21-40 41-50 51-60 No of

tasks
Fig. 4.19

- 111 -

The high, average and low ranges determine whether a data
element is classified as a key, an attribute owned by one
key and referenced by several keys or as an attribute
owned and referenced by one key. After data elements
have been classified, attributes are assigned to keys.
Assignment of attributes +to keys 1is accomplished by
identifying the individual data elements that are related
to the attribute being assigned, and assigning the
attribute to the data element that has been identified as
a key. Criteria for <choosing one, out of several
possible keys, 1in assignement of attributes are
described:
"~ if there is a wide range in the number of times

the attribute is used with each key, assign it

to the cne with-which it is most frequently used

- refer back to the list of task/data relationships
and identify the task that created and deleted the
attribute. Assign the attribute to the key
present in those tasks.

- if different keys were used in the creation and
deletion tasks, assign the attribute to the key
present in the task in which it was deleted".

[SHE-76]

The next step in the design of the "logical" data
structure is to identify dependencies between attributes
assigned to a key. 1In this steps, the tasks which create
the attributes of one Kkey are identified and ordered
according to their occurrence. The order in which the
tasks occur will determine a hierarchical structure of
attributes assigned to one key (fig. 4.20)

- 112 -

Account Receivable

Number
|
| | | T |
Age Name Address Entry Current
Number Balance
' |
{ l l ‘
Item Amount Gross 30-Day
Number Pur- Price Past Due
chased |
Tax I
| 60-Day
Net Past Due
price

& hiearchial structure of attributes assigned to one key.
Fig. 4.20

In the last step of the "Logical" data structure design,
relationships between keys are determined. Again, a to
our frame of reference different aspect of real world
phenomena constitutes the base for determination of
relationships between keys. Relationships between keys
are considered as reflecting the following aspects: '

- owner relationships, i.e. existence relationships bet-
ween keys,

- status relationships, i.e. relationships between keys,
caused by the fact that groups of data change their
meaning over time.

- regulation relationships, i.e. relationships between
keys caused by regulations on the way in which the
business is conducted, enforced by agencies outside
the enterprise,

- policy relationships, i.e. relationships between keys
caused by policies which regulated how different areas
of the business must function either separately or
together.

The identification of relationships between Kkeys 1is
considered as the most difficult and the most crucial
task within the "logical" data structure design. The
"logical" data structure design is considered as complete
after all key relationships have been identified and
reflected in the "logical" data structure.

- 113 -

It is difficult to relate Sheppard-Rund's approach to data
structure design to the frame of reference of this study.
The reason -for this is the perspective of an enterprise
which 1is represented 1in the design approach. The data
elements of a "Logical" data structure are not primarily
considered as representations of abstract objects and
properties of abstract objects. which in turn model

phenomena in an enterprise. 1Instead, the data elements
are primarily considered as components of the tasks that
are performed 1in the enterprise. The organization of
data elements into a "logical" data structure 1s based
completely on how data elements are used in different

tasks - and on - relationships between tasks. The
relationship between data elements and what they
represent is not - explicitly considered in

Sheppard-Rund's . .design approach.

4.8 Smith and Smith

Diane and John Smith present a method for design of a
relational data base. The method 1is based on the
concepts abstraction, generalization and
aggregation. A conceptual data structure for a data base
consists of representations of abstractions,
generalizations and aggregations, of real world
phenomena. . Abstractions of real world phenomena -
generalizations as well as aggregations - are represented
in terms of -relations. An extended version of Codd's
Relational Data Model is proposed as a formalism for this
representation. In relation to the frame of reference of
this study, the design approach can be illustrated as in
fig 4.21.

transition
B

3

~abstrigta Specification

generaliza~-
tion

- aggregation

\

Data base

Enterprise/
real world

Fig. 4.21

- 114 -

The elements of a global user view correspond to
abstractions of real world phenomena. Two kinds of

abstraction - aggregation and generalization -~ are
identified. " regation refers to an abstraction in
which a relationship between objects is regarded as a
higher 1level object". "Generalization refers to an

abstraction in which a set of similar objects is regarded
as a generic object." [SMI-76].

The here referenced article is primarily concerned with
generalization.

The term "generalization" is said to be wused in the
following way: "a generalization is an abstraction which
enables a class of individual objects to be thought of
generically as a single named object". [sM1-76].
However, examples and discussions of "generic objects"
indicate an interpretation of "generic object" not as a
single object but as a class/set of individual objects.

Attributes of generic objects are described as
information which "summar izes" attributes of the
individual objects being generalized. Two examples of
attributes of generic objects are described. The first
example concerns the single generic object "dog". "Since
all dogs have "sharp teeth" and "four 1legs", this
information can be attached as an attribute of the
generic object dog. This information could be attached
redundantly as attributes of individual dogs. However,
this disguises the fact that dogs in general have these
attributes rather than the individuals mentioned".
[sM1I-76].

This example describes very clearly the concepts of a
single generic object and of attributes of single generic
objects. 1In the second example however, this description
does not seem quite as clear.

"As another example, we might generalize a class of
truck-drivers into the generic object "trucker". We may
not be interested in the pay-rate of each individual
truck-driver, but only in the average (maximum, minimum)
pay-rate of truck-drivers in general. This pay-rate
information belongs as an attribute of the generic object
"trucker" [SMI—76%.

This second example indicates that "trucker" is seen not
as a single generic object, but as a class/set of
individual objects. According to the first example, an
attribute of a generic object could be redundantly
attached to the individual objects being generalized.
This however, does not seem applicable in the second
example. An individual trucker has no average pay-rate.
Also, average pay-rate can hardly be regarded as
something that a trucker 1in general has. Attributes
corresponding to an average, a maximum, or a minimum are
typical examples of attributes of classes/sets of
objects rather than of single generic objects.

- 115 -

A basic construct in the design approach is a hierarchy

of generic objects. An example from |[SMI-76] of a
generic hierarchy is shown in fig 4.23.

vehicle

o vehicle
\\\\‘ river
craf

costal

plane vessel

passenger S
aircraft car submarin

Fig. 4.22

The interpretation of generic hierarchies as described by
[sMI-76] is not quite clear.

In a discussion of properties of generic hierarchies the
hierarchy in fig 4.22 is said to indicate, for example,
that "truck", "bike" and "car" are generalized to the

notion of "road vehicle" that "road vehicle" and "rail
vehicle" are generalized to the notion of "land vehicle"
e.t.c.

This description seems to indicate an interpretation
where the nodes (in the graphical representation) denote
single, generic objects and where the edges denote "is"
relations, as for example

a "truck" is a "road vehicle" a "bike" is a "road
vehicle® a "road vehicle" is a "land vehicle" etc.

An implication of this interpretation - as understood in
this study - would be that all properties of a generic
object are valid for all related objects at lower levels.
For example, referring to fig 4.23, all properties of a
"vehicle" are valid for a "river craft" as well as for an
"air frighter".

For each node, at lower levels in the hierarchy further
attributes may be associated. These attributes need not
be valid for nodes at higher levels but again, must be
valid for each node at lower levels in the hierarchy.
For example, an "air vehicle" may have attributes which
are not valid for a "vehicle", but which are valid for a
"plane", a "helicopter", a "passenger aircraft" and an
"air freighter".

- 116 -

However, often in the article [SMI-76] the generic
objects are referred to as c¢lasses o¢ individual
objects. For example, "In general, an individual object
will have more relevant attributes the lower the
generic level of the class in which it appears. We will
call the attributes of an individual object that are
relevant to a class G the G-attributes of that object".
This implies another interpretation of a "generic
hierarchy®. 1In this other intepretation the nodes (in a
representation of a hierarchy) will denote classes of
objects and the edges may denote "sub-set" associations.
For example, the node named "vehicle" may be interpreted
as the <class of vehicles the node named "land
vehicle” as the class of land vehicles and the
association between these classes as denoting a subset
relation 1i.e. that the elements of the class "land
vehicle” is a subset of the elements of the class
“yehicle®. The interpretation of the nodes as classes
of objects implies that the rules for "inheritage™ of
attributes along the hierarchy will be more complicated.
For example, a distinction between attributes of elements
of classes and attributes of the classes themselves ought
to be made. Attributes of a class will not be valid for
elements in subclasses and attributes of elements of a
class will not be valid for the subclasses themselves, as
examplified above by “trucker" and "average pay-rate.

Relations are used to represent c¢lasses of individual
objects. A <class of objects is said to be defined by a
generalization abstraction and by an aggregation
abstraction.

A conceptual data structure 1is expressed in terms of
intentions of relations. An intention of a relation
defines explicitly an object. 1In this definition, names
of other objects being aggregated to the defined object
as well as names of other objects being generalized to
the defined object are explicitly described. It is
required that the object being defined by the intention
of a relation 1is explicitly named. A consequence of
defining an object in terms of other objects being
generalized and to represent this in terms of relations
is that names of relations will appear as values in
domains.

In the design of a conceptual data structure a
systematical, stepwise decomposition of objects is
propesed. Generalization and aggregation are considered
as independent of each other and the decomposition of
objects is carried out alternatively in a generalization
and an aggregation plane. Decompositon in the
generalization plane consists of identification of
objects being generalized to the decomposed object, i.e.

- 117 =

identificaion of objects at the immediate lower level in
a generic hierarchy. Decomposition along the aggregation
plane consists of identification of relevant attributes
of the object being decomposed.

In relation to our frame of reference, Smith and Smith are
concerned with design of a global user view and with
representation of this user view in terms of relations as
a conceptual data structure. The user view is expressed
in terms of generic and aggregate objects structured into
a generic hierarchy. The concepts of generic objects and
generic hierarchies are used as means to achieve a
systematical approach to the process of designing a
conceptual structure, and as means to achieve
semantically meaningful relations 1in a relational data

base.

4.9 sglvberg

Sglvberg's appraoch consists of specifications of models
and relationships between models within "logical" data
base design.

A characteristic property of Solvberg's approcach is the
distinction between phenomena and information about
phenomena.

Real world phenomena are modeled in a "phenomena model".
Properties of phenomena are modeled in a "descriptor
structure". Information requirements, i.e. information
about phenomena are modeled in an "information
structure". The "information structure” is a part of an
information system. An information system consists of an
"information structure" and a "process structure". An
information system specification, i.e. specifications of
an information- and a process structure, constitutes the
base for design of a "logical®™ data structure and a
program structure for a data base system. This design
process 1is partitioned into two phases "cracking” and
"synthezis®”. 1In the "cracking" phase, the information -
and process structures specified for an information
system are decomposed to the smallest selfcontained units
of information and processing. These smallest
selfcontained units are called (as in [LAN-66])
Yelementary files" and ‘"“elementary processes". The
result of the "cracking" process 1is an "elementary
system”. In the "synthezis" phase, the elements of the
"elementary system" are synthezised into a "logical" data
structure and a program structure of a data base system.
In the ‘"synthezis" phase computer efficiency is

~ 118 -

considered. The models and their relationships within

"logical” data b i i
et ase design are illustrated as in fig

PHENOMENA,
; A7IMODEL | ~Context
- CBAL ' [ELEMENTARY DATA BASE
O attribute A FILE M STRUCTURE
ZRSPECTIVE - | STRUCTURE
e
con~| |prscripToRE P
toxt STRUCTURE
v
type PROGRAM
\ 4 PROCESS -~ STRUCTURE
// _STRUCTURE
INFORMATION
STRUCTURE
gﬁﬁ%ﬂ@z&m T ELEMENTARY SOFTWARE
ERSPECTTVE PROCESS |/ SYSTEM SYSTEM
STRUCTURE
INFORMATION
SYSTEM

=2 b
W

USER-DIRECTED INFO-SYSTEM DESICN COMPUTER DIRECTED SOFTWARE DISIGN

v

CRACKING , . SYNTHESIS -
D’I‘ o
Fig. 4.23.
The “phenomena model” and the descriptor structure"

together correspond to what in this study is called a
global user view. Modeling concepts proposed for the
"phenomena model® are "entitysets"™ and "connections”.

An "entityset" is a mathematical set. An "entityset”
corresponds to the result of abstracting and classifying
real world phenomena.

Entitysets may in turn be abstracted and classified into
higher order entitysets. Higher order entitysets may be
viewed as n-ary relations between the entity sets being
abstracted and classified. Vo special modeling concept
is provided for higher order abstractions and
clagssifications except for the special case when the
higher order abstraction corresgsponds to a binary
relation. In this case the modeling concept "connection"
is used. A connection is a - not necessarily named -
binary relation between entitysets.

- 119 -

Detailed descriptions of quantitative properties of
entitysets and connections . are required in the
specification of the phenomena model.

A distinction is made between phenomena, and data which
convey information about properties of phenomena.
Property values are classified in value sets. A wvalue
set is called a "descriptor". A specification of a
descriptor includes specifications of how the values of
the . value set are represented. The descriptor structure
consists of specifications of descriptors.

Descriptors of the descriptor structure are related to
entitysets and connections of the phenomena model by
attribute and/or identifier relationships.

The distinction between values sets -~ descriptors - and
entitysets is not obvious. One difference seems to be
that descriptors are described at a name-based level
while entitysets are not.

Also, and consequently, the distinction between a
connection between two entitysets and an attribute
relation between an entityset and a descriptor is not
obvious.

An information system is described as consisting of
information structures and information handling
processes.

An information structure is a tree structure, expressed
in terms of information sets, groups and items. The
elements of an information structure are related to
elements of the phenomena model by "contextual"
relationships, and to elements of the descriptor
structure by "type" relationships.

The process structures describes processing requirements
- relative a given information structure - of an
application. Processes are related to elements of an
information structure by relations as "target", "result"
etc.

As seen in this study, the base for specification of a
data- and process structure is knowledge about inference
relationships between statements. A data- and process
structure representsone - out of several - possible data
processing systems by which statements required as output
can be produced from statements specified as input. This
implies, that data- and process structures can not be
specified unless inference relationships are known. 1In
Solvberg's approach a data- and process structure
represents the data and processing requirements of an
application. BAs seen in our frame of reference, an
application or a wuser does not have requirements of
processes, only of information/data. Identification of
processes and process structures is not seen as a result
of an analysis of information/data requirements, but a
result of a data processing system design procedure.
This design procedure requires as input, knowledge about
inference relations.

In Solvberg's approach, the 1inference relationships on
which the information - and process structures are based
are not explicitly described.

- 120 -

tn order to design a data structure and a rocess
structure of a data base systems, the application
dependent information - and process structures are first
decomposed to "elementary files" and "elementary
processes”. These elementary elements correspond to the
smallest selfcontained wunits of data and of processes.
The result of the decomposition ("cracking") 1is an
“elementary system". In the synthezis phase, elements of
the "elementary system" are grouped into a "logical" data
structure and a program structure. In the synthezis
phase, computer efficiency is consgidered.

Though not elaborated, the synthezis phase indicates, as
in our frame of reference, the mutual dependency between
the logical structure of a data base and the process
structure of the data base system.

4.10 Summary

In this chapter, a number of approaches to conceptual
level data base design have been informally analyzed.
The purpose of the analysis has been to identify
characterigtic semantical properties/problems in the
different approaches.

Bach method approach has first been described in terms of
models and transitions between models. These
descriptions are intended to indicate which problem areas
within conceptual level data base design that are
primarily attacked by each method. The reason for this
is the 1lack of a common understanding of the scope and
content of “conceptual level data base design”.

After identification of models and transitions,
characteristic semantical properties/problems within
models and/or transitions of a method approach are
identified. The purpose of the identification of
semantical properties/problems is not to compare the
different approaches but to identify semantical
properties/problems within conceptual level data base
design. In the next chapter, the analysis of the
different method approaches will be summarized and
discussed.

- 121 -

5. SUMMARY AND DISCUSSION.

In this chapter, the analysis of different methods for
conceptual level data base design 1is summarized.
Characteristic semantical properties and problems are
pointed out and discussed.

5.1 Scope of conceptual level data base design.

One of the problems in comparison of (conceptual level)
data models and design methods is the difference in their
purpose. The purpose of data models and/or design
methods are often summarily presented in very general
terms. The purpose of a data model may be to provide
concepts in terms of which an enterprise or a problem can
be modelled. The purpose of a method or of a step within
a method may be to decompose, analyze and describe
components and their inter relationships etc. still,
however, the purpose of the Relational Data Model and the
purpose of a Semantical Network Model does not seem to be
the same. The purpose of "inference analysis" and of
"normalization" is not the same.

The purpose of this study is not primarily to compare
different approaches to conceptual level data base
design, but to identify relevant semantical properties
and problems within design methods. However, the problem
of different purposes for different method approaches is
apparent also in our attempt to identify relevant
semantical properties and problems.

The approach taken in this study is to identify the
problems primarily beeing attacked by each method. 1In
the frame of reference (presented in chapter 3) the scope
of conceptual level data base design was informally
defined as five problem areas. In the description of
these problem areas different steps within a design
procedure were described. In summary, problem areas and
design steps within conceptual level data base design can
be described as:

- concepts for description of users' views

- integration of users' views into a global user view

-~ concepts for description of information requirements/
/statements

- design and analysis of an information structure

- crude data base system design, i.e. design of a
file and process strucuture

- concepts for description of conceptual data struc-
tures

- 122 -

- desién and analysis of a conceptual data structure for
a data base.

In the analysis of different methods (see chapter 4),
models and transitions between models within each method
were identified. Below, these models and transitions
will be related to the problem areas and design steps
(described in chapter 3) summarized above. The result
describes, for each method, the problem area(s) primarily
attacked.

In Benci's et.al. approach, the starting point for the
design process is local users' views. The first step in
the design procedure is to express these local users'
views as a common "real world perception”, for which a
set of basic modeling concepts is proposed. As
interpreted here, the integration of the local users views
is not considered. The "real world perception” is the
base for design of a ‘“conceptual organization". The
"conceptual organization" consists of a data structure, a
set of integrity constraints and a set of evolution
rules. Concepts for expressing a data structure are
proposed (an extended version of the Relational Data
Model) . Integrity rules and evolution rules are
exemplified. The process of designing a conceptual
organization from a ‘“real world perception" is not
described. However, the evolution rules indicate that
the conceptual data structure is seen as a part of a data
base system consisting of a data~ and a process
structure.

Bernstein's design approach starts with a global user
view of real world phenomena, expressed in terms of
attributes and functional dependencies. The problem
attacked by Bernstein is to group attributes into a set
of 3NF Relations. As concepts for the conceptual data
structure, the Relational Data Model 1is assumed.
Referring to problem areas and design steps in our frame
of reference, this approach is regarded as proposing a
set of concepts for expressing a global user view and 1is
concerned with design of a conceptual data structure.

Brodie and Tsichritzis are here interpreted as
primarily concerned with specification and integration of
. local users views. Modeling concepts for descriptions of
local views as well as of a global user view are
proposed. When the global wuser view is described in
terms of abstract data types it constitutes a conceptual
data structure.

- 123 ~

Bubenko's design method is here seen as a method for

design of an information structure. The most important
problems attacked by the IAM method are formal
specificaion of information requirements and systematical
analysis of inference relationships between abstract
objects, i.e. between elements of information
requirements. Concepts for description of users views
are here regarded as indirectely <considered by the
modeling concepts proposed for information requirements.

Hubbard and Raver are concerned primarily with
integration of wusers' views into a global view. The
global user view is intended to be "nonredundant" and in
order to acchieve this, implied associations between
attributes are identified and analyzed. The resulting
global view or "associative model" is intended as a base
for design of "logical data" structures.

Kahn's approach to "logical" data base design is here

considered as primarily concerned with design of a global
user view. The global user view is seen as a result of
integration of local views. The global user view
describes the information to be represented as data in a

data base. The global user view 1is said to be
independent of any application. The processing
requirements of different applications, however,

determine the grouping and organization of the data in
the data base. The processing requirements (the so

called usage perspective) |is here interpreted as
corresponding to a process structure.

Sheppard-Rund& design approach is different from all
the other methods here studied in that it 1is not
concerned with views of real world phenomena. The
initial steps in Sheppard-Rund's approach can be
interpreted as concerned with identification of
information required by different functions and tasks
within an enterprise. Identification of information
requirements 1is, in this study, regarded as an important
task within information systems design, but not as a
problem specific to data base design. The result of
these initial steps, however, can be interpreted as a data-
and process structure. The parts of Sheppard-Rund's
approach, relevant to this study, concern the
determination of keys and attributes among data elements
and the assignment of attributes to keys. This part of
Sheppard-Rund's approach 1is here regarded as concerning
design of a conceptual level data structure.

Smith and Smith's design approach 1is concerned with
design of a conceptual data structure. The conceptual

- 124 -

data structure is expressed in terms of an extended
version of the Relational Data Model. Though not
expressed by Smith and Smith in this way, we here
interpret generic hierarchies as a concept for
description of a user view.

Sglvberg 1is primarily concerned with concepts and
notations for different models identified within
"logical® data base design. Relationships between
elements of the different models are also identified and
described. Thus, S¢lvbergs approach is not primarily
concerned with the process of logical data base design.
Concepts and notation for description of a phenomena
model and of a descriptor structure which correspond to a
global user view are proposed. Also proposed are
concepts and notation for description of information- and
processing requirements. A procedure for design of a
data and process structure of a data base system is
outlined. This procedure consists of the two main steps:
decomposition ("cracking") and synthesis of information
and process requirements.

The problems attacked by the different approcaches to
conceptual level data base design are summarized in fig
5.1. It should be noticed that the purpose of the table
in fig 5.1 is not to "evaluate" the different methods or
to define any specific method in terms of problem areas
concerned. The informal analysis on which fig. 5.1 is
based 1is not exact enough for such purposes. The
intention is to show that also within a seemingly narrow
area as “"conceptual level data base design" different
method approaches may be concerned with varying problems,
which in turn causes problems in an attempt to identify
properties which are common to and/or specific of the
different methods.

- 125 -

= 1t le]2
-r—v—-‘t”l ot .% L‘L 3 il {6
Dl & |5S= ¢ |88 < | &o|SH £
S5 |25 |25 52588 s
| Q) W @ Of o I) X mccuauvs’;g
concepts for descrip-
tion of views X X X 100 | X X X | X
integration of views X X X

concepts for descrip- ‘
tion of information X X
requirements

design and analysis
of an information ‘ X
structure

file- and process
structure design X 01X X

concepts for the con-
ceptual data structure | X X X

design of a conceptual .
data structure X X | X

Fig. 5.1

As seen in this study, an important distinction between
different approaches concerns the scope of the input to
the method. For some methods, the input, i.e. a set of
local views or a global view corresponds to the information
to be contained in a data base. The problems primarily
attacked concern representation of elements of the
view(s), grouping of elements and eventually analysis and
elimination of "redundant" elements. Examples of this
type of methods are the approaches by Bernstein, Brodie
and Tsichritzis, Hubbard and Raver, and Smith and Smith.
For other methods, the input in terms of views as well as
information requirements corresponds to information to be
contained in a data base gystem. In this case, the
determinaton of which Information to represent in the
data base is not assumed to have been made in advance,
but is & task of the design process. Characteristic of
such methods are problems concerning inference
relationships, the temporal dimension and data- and
process structures. As methods of this type cover many
mor e and diverse problems, these methods are less

uniform.

5.2 Views and information requirements

- 126 -

All except one of the methods, informally analyzed,
require as input "a global user view" (or a set of local
views) i.e. models of real world phenomena. However,
the concepts in terms of which these views or models

are expressed vary

among the methods.

In all approaches, the concept of '"entity" can be
identified. In some approaches, a distinction is made
between an entity and a value. Fig 5.2 describes for
each method its name for the entity concept and
eventually its name for a value.
Brodie Bern- Brodie Bubenko | Hubbard | Kahn Smith & | Sélvberg
stein Tsichrit- Raver Smith
Zis
. . : . . , . tit
tity | object attribute object entity data item| entity obJFct entity
lue [|property value value property lattribute| property
value value value value
Fig 5.2
Users views are expressed in terms of abstractions of
entities/values, and associations between these
abstractions.
An abstraction can be described by its connotation and

by

its

denotation.

to the extention of the abstraction.

elements of user views clearly describe
abstractions.

of

whether elements of a view correspond

connotation

of

abstractions.
their descriptions are summarized in fig.

denotaton

the

to

The connotation corresponds to the
intention of the abstraction while

corresponds
In some apporaches,
denotations
In other approaches it is not obvious

denotation or

Names of abstractions and

5.3,

- 127 -

Benci Bern- Brodie Bubenko { Hubbard Kahn Smith & | Sglvber
et.al. stein Tsichrit- Raver Smi th
~ z1s
abstractio
generic
connotation entit object
object Y lattribute
object |attribute concept | data property entityse
. class class jtem property
denotation | property value se-
value set
Fig. 5.3
When elements of views correspond to denotations of

abstractions,
of entites.

names

Hubbard
denoted.
entities

the denoted
For exanmple,

elements

in

may be entities or

Bernstein's
and Raver's approaches only names of entities are

This implies that decisons on how to

and

represent

before the conceptual level data base design starts.
other approaches, decisions on representation of entities
as part of

(in terms

of

names)

are considered

conceptual level data base design.

The associations between abstractions of
"yviews" vary

in

- "gsemantical"

the

phenomena.
- "gtructural" associations which models structural

relationships between abstractions.
The types of associations used
methods are summarized in fig.

between the methods.
types of associations are here identified:

in the

5.4.

(in terms of names) is assumed to have been made

In

the

entities/values

Two crude

associations which models real world

"views" of

the

- 128 -

Benci Bern- Brodie Bubenko | Hubbard Kahn Smith & [Splvberg
et.al. stein Tsichrit- Raver Smi th
sociation Z1s
emantical’ X X X X X
= Hi
uructuraT X X
Fig. 5.4
However, also among "semantical" associations as well as
among “"structural" associations there are differences.
For example, the structural associations in Brodie and
Tsichritzis' approach correspond to “component"

relationships while structural associations of Smiths and
Smiths approach (seem to) correspond to "is" relations.

The

"semantical®

according to:

i)
ii)

By explicit

associaions can be further

- explicite or implicite semantics
~ functionality

chategorized

semantics ismeant that the associations

are

named. Implicit semantical associations are not named.
The use of implicit semantical associations implies that
whenever more than one association exists between the

same abstractions these associations

semantically equivalent.

The use of explict

and implicit

are

considered

is summarized in fig. 5.5.
, Benci Bernstein Bubenko | Hubbard | S@lvberg
) Raver
semantic
explicite X X X X
implicite X X
Fig. 5.5

as

semantical associations

- 129 -

That associations correspond to "functions" is required
by some approaches as summarized in fig. 5.6.

Benci Bernsteinf Bubenko |Hubbard |Sglvberg
Raver
functionality) X X
required
functionality
not required X X X
Fig. 5.6

The concepts "view" and "information requirements" can be
regarded in two perspectives.

In the first perspective (which is the most frequently
used perspective within the data base area) a (global)
"view" corresponds to a model of some part of the real
world. Elements of the model correspond to abstractions,
generalizations and classifications of real world
phenomena. The purpose of the model is to specify
types/classes of objects and associations which are to be
represented in the data base. The data base is seen as
containing representations of objects, values and
associations. In this perspective, information
requirements are seen as specifications of subsets of the
objects, values and associations of the (global) view.
Information requirements are specified by the same
concepts as the (global) view. Analysis of information
requirements aims at verifying that objects, values and
associations sgpecified in the requirements do exist or
have correspondance to objects, values and associations
in the (global) view. 1In this perspective, conceptual
level (as well as "logical") data base design is
primarily concerned with grouping/structuring of the
elements of the (global) view into modeling concepts of
the data model used by the data base management system.
Criteria for this grouping/structuring seem: to be of two
kinds; 1) frequencies at which objects, values and
associations are required for update and retrieval (as
for example in Kahn's approach) or 2) avoiding of
insertion, deletion or update anomalies (as for example
in Bernstein's approach). When the first kind of
criteria is used, the goal seems to be minimization of
data storage and access. The second kind of criteria
indicates a goal in which ‘"semantically" simple and/or
independent units are searched for.

- 130 -

Semantical integrity in the data base refers to
restrictions on associations between objects represented
in the data base or to restrictions on values of
attributes of objects represented in the data base. 1In
some cases (as for example in Benci's et.al. approach)
relationships between attribute values may also be
specified as semantical integrity constraints.

In this perspective, there is no difference between a
(global) user view and an information structure.

In the second perspective, the global user view is also
seen as a model of some part of the real world. Also,
elements of the model are seen as abstractions,
generalizations and classifications of real world
phenomena. However, the purpose of this model 1is to
constitute a “semantical context" of the information
represented in a data base system. A distinction is made
between information and the "things"™ being informed
about. The data base is seen as containing
representations of (units of) information. These (units
of) information refer to or inform about elements of
the {(global) "view".

In this perspective, information requirements specify
(units of) information required by some user. The
concepts in terms of which information requirements are
expressed are different from the concepts used to express
the (global) ‘“"view". Specification of information
requirements corresponds to specification of units of
information. Examples of units of information are
"messages” and ‘“"statements". An “"abstract-object" as
suggested by Bubenko may also be interpreted as an unit
of information.

Units of information may be related in different ways.
For example, they may be semantically equivalent, they
may imply other units of information, they may be
inferred from each other, etc.

In this perspective, an information structure is a
specification of units of information and their
interrelationships. In the design of a conceptual data
structure, information about properties of units of
information required as output and specified as input are
needed. Important properties are the frequencies at which
the units of information are required or supplied, and the
actuality required for output information.

Thus, in this second perspective, there is a difference
between a (global) "view" and an information structure,
and views and information requirements are expressed in
terms of different concepts.

Among the design approaches included in this study, only
the ones by Bubenko and 8Sglvberg can be seen as
representatives of the second perspective. -
The difference in perspective on "views" and information

- 131 -

requirements will have an impact on aspects such as
"inference", "redundancy” and "temporal dimension".

5.3 Inference

Inference relationships are discussed and/or used within
different phases in conceptual level data base design
depending on the perspective of "views" and "information
requirements".

For approaches representing the first perspective,
inference relationships seem to appear primarily in the
conceptual data structure design phase i.e. when
elements of the (global) view are to be grouped according
to modeling concepts used for the conceptaul data
structure. Inference relationships also appear in
specification of semantical integrity constraints for the
data base.

In this first perspective, inference relationships refer
to relationships between attribute/property values,
represented in the data base.

In the second perspective, 1inference relationships are
analyzed and described in the design/specification of the
information structure. In this case, the inference
relationships refer to relationships between units of
information.

Indenpendent of perspecitve, three different kinds of
inference relationships can be identified in the here
studied design methods. The three kinds may be called:

i) = calculation
ii)} - inheritance
iii) - implication

Caluclation refers to inference relationships where a
value 1is calculated from other values. For example,
"average salary of employee" may be calculated from a set
of "salary of an employee" and "number of employees”.

Inheritance relationships refer to “the case when
attributes/properties of an objects in a generic
hierarchy are inherited by objects at lower levels in the
hierarchy {(for example see fig 3.18).

Implication refers to inference relationships between
associations in cases where an association between two

- 132 -

sets of entities/values is implied by other associations
(for example see fig 3.19).

In Benci's et.al. design approach, inference
relationships of the kind ‘"calculation" appear as
semantical integrity contraints on values of data in the
data base. From the presentation of Benci's approach,
inference relationships do not seem to be discussed at
the "percieved real world" level, i.e. in the real world
model.

Bernstein is concerned with inference of the
"implication" kind, and the algorithm presented is based
on this kind of inference. In his approach, the
inference relationships are wused in the design of the
conceptual data structure. However, as pointed out (in
section 4.2) in Bernstein's approach, the semantics of
inferred associations is not specified. Other kinds of
inference are not considered in Bernstein's approach.

In Brodie. and Tsichritzis' approach, inference
relationships are not discussed. The formulation of
views indicate that inference relationships of the kinds

"inheritance" and "implication" are not applicable.
Relationships of the kind "calculation® are not
explicitely mentioned, but are applicable in

specifications of semantical integrity constraints, i.e.
as constraints on data values.

In Bubenko's IAM-method inference relationships of the

kinds "calculation" and "implication" are applied. 1In
this approach, both these kinds of inference are analyzed
and specified between "abstract objects", i.e. between
units of information. 1In this case the determination and
specification of inference relationships is a part of the
information structure design and specification process.

Hubbard and Raver's design approach 1is based on

Yimplication™ relationships. Here, these inference
relationships are used in the design of an "associative
network". In Hubbard and Raver's approach, as distinct

from Bernstein's, the semantics of the inferred
associations is not autmatically considered as relevant,
but has to be checked by the data base designer. Other
kinds of inference are not considered in this approach.

In Kahn's approach, inference relationships of the kind
"calculation® are considered. In the specification
properties (of entities) "der ived" properties are

- 133 -

identified. Specification of derived properties
corresponds to identificaion of what here 1is called
"calculation™ relationships. Inference of the other

kinds are not considered.

Smith and Smith's approach is the one in which
"inheritance" relationships are identified. This is the
only approach, in this study, in which this kind of
inference is discussed. From a semantical point of view
this kind of inference seems powerful. It originates
from ideas within the AI field and has, strangely enough,
not been adopted in any of the other methods of this
study. In Smith and Smith's approach, inference
relationships exist between properties of objects in a
generic hierarchy and the inference relationships are
specified in the (global) user view. Other kinds of
inference are not considered.

As S¢@glvberg's approach is primarily concerned with
identification of models within "logical" data base
design and with specification of formal notations for
these models, analysis of inference relationships as a
part of a design procedure is not applicable. However,
in the specification of the phenomena model, a
possibility to define connections in terms of other

connections is indicated. Such a definition may
correspond to specification of "implication"
relationships.

In summary, inference relationships are treated very
differently within the here studied approaches to
conceptual level data base design. Depending of the
perspective of user views and information requirements,
inference relationships may be applicable either to
"entities” and ‘“property wvalues" or to "statements" or
units of information,

5.4. Redundancy

In several of the here analyzed methods, the conceptual
(or logical) data structure which is the result of
applying the method, is said to be "non-redundant". In
many cases, the concept "non-redundancy" is not described
in detail, and its interpretation is not obvious.

The requirement of "non-redundancy" appears for different
models within the conceptual level data base design,
depending on the perspective of users views and
information requirements.

In approaches representing the perspective where

- 134 -

information requirements are seen as subsets of a "global
view" and where the data base is seen as containing
representations of objects, values and associations,
non-redundancy is required also in the global view.
Often, in this <case, integration of local views into a
global view concerns elimination of redundant elements.
Characteritic of the perspective 1in which information
requirements are seen as units of information referring
to elements in a global view, is that an information
structure 1is redundant in the sense that units of
information specified in the information structure may
imply or be inferred by other units of information.

In Benci's approach, redundancy is assumed to exist in
the "real world perception" model, in the sence that a
class of entities or a type of property appears only once
in the model. Redundancy or non-redundancy in the
conceptual data structure is not discussed.

A conceptual schema designed by application of
Bernstein's algorithm contains a minimal number of 3NF

relations. In the synthesis of functional dependencies
into 3NF relations, extraneous attributes as well as

transitive dependencies are eliminated. The conceptual
schema can be regarded as nonredundant with respect to
associations - functional dependencies -~ which can be

(syntactically) inferred from other associations.

In Brodie and Tsichritzis' approach, there 1is no
requirement of non-redundancy in the global
view/conceptual data structure. On the contrary, a
characteristic idea of their approach 1is to permit
different (and overlapping) users views to coexist.
However, in combination of hierarchies of objects into a
common schema, redundant decompositions, i.e.
decompositions in terms of "component objects" which are
common to two (or more) objects are eliminated.

In Bubenko's approach, an information structure which
is "the result of applying the IAM-method, is explictly
described as being redundant. "Redundancy exists in the
sense that some information "elements" can be inferred
from others" [BUB-76A]. 1In this case redundancy refers
to units of information and to inference of the types
"implication" and "calculation".

In Hubbard and Raver's approach, an associative network

which is the result of applying (a part of) their method,
is said to be "non-redundant”. In this case,
non-redundancy refers to elimination of associations

- 135 -

which are implied by - can be inferred from -~ other
associations.

In Kahn's approach, the entity diagram which correspond
to a representation of a global "view" is explicitely
requiered to be "non-redundant". Requirements of
non-redundancy are expressed as
"- each entity must appear only once in the diagram
(entity non=-redundancy)
- each relationship must appear only once in the diagram
(relationship non-redundancy)". [NOV-76B].
Concerning redundancy of properties, it 1is clear that
non~redundancy 1is aimed at. How this non-redundancy is
acchieved is however not quite obvious. "All elements
that belong to more than one entity (i.e. are included
in more than one entity definition) should be determined.
The information structure perspective should be as
non-redundant as possible; therefore, a given element
should only occur in one entity. To minimize the number
of unique elements represented in the information
structure perspective, all relational an erive

properties should be separated from their associated
entites". [KAH-76B],

In Sheppard-~Rund's approach, non-redundancy is
considered for data elements required by the different
tasks. "In order to thoroughly analyze the flow charts

developed during the interviews, it 1is necessary to
develop a list of unique data elements and definitions.’
The problem most often experienced creating such a list
is trying to determine which data elements are or are not
redundant" [SHE-761]. The meaning of non-redundancy of
data elements is however not discussed. As, in this
approach, inference relationships between data elements
are not considered redundancy may refer to different
names for "the same" things.

In Smith and Smith's design approach, the conceptual
data structure is not required to be "non-redundant".
"It is clear that a great deal of information occurrs
redundantly in a relation hierarchy. This is perfectly
acceptable provided there is some way to implement a
relation hierarchy such that
i) storage space is not wasted due to data dupli-
cation
ii) consistency of redundant information can be
maintained" [SMI~T761].
The redundancy of a relational hierarchy makes it
possible for different users to access the data base at
different levels of abstraction and thus to allow
coexisting user views.

- 136 -

In Sglvberg's approach, an information structure 1is
explicitly described as being redundant in the sense that

information objects may represent the same information.
One of the purposes of decomposition ("cracking") of an
information structure is to identify and eliminate such
redundancy, so that the input to the synthesis phase is a
non-redundant specification of information to be
contained in the data base.

As can be seen from the above descriptions, requirements
on "redundancy" or "non-redundancy" vary among the here
studied design methods.

Characteristic is that methods, representing the
perspective of views and information requirements where
information requirements correspond to subsets of a
global view, require non-redundancy in the global user
view. This is natural, as non-redundancy is required in
the conceptual data structure, and as the conceptual data
structure is seen as a representation of the global user
view.

Methods representing the perspective where information
requirements correspond to units of information referring
to elements of a global view characteristically do not
require "non-redundancy" in the information structure.

From a semantical point of view, the meaning of
*redundancy"” is not clear. For example, suppose
"non-redundancy" is required in a global user view in the

sence that unique names are required for classes of
entities/values and for associations. Does this imply

that the "same" real world phenomena may be abstracted
and classified as an element of only one class of
entities/values/associations, or may a real world
phenomenon be an element of several classes? If disjoint
classes of phenomena are not required, does this imply
redundancy? This kind of redundancy is not discussed 1in
any of the method approaches discussed in this study.

"Non-redundancy" in a global user view means different
things in the different approaches. Characteristically,
*non-redundancy" is related to the type(s) of inference
considered by the methods, 1i.e. what is regarded as
redundant depends on the type(s) of inference
identified/used in the design method. For example, in
Bernstein's and Hubbard and Raver's approaches,
redundancy refers to associations which are implied by
other associations. In these two approaches, inference
relationships between attributes/data items corresponding
to "calculation®, i.e. that an attribute/data item value
can be calculated from other attribute/data item values
is not considered as redundancy.

- 137 -

Disregarding the fact that "non-redundancy" means
different things in different approaches, none of the
approaches requiring *non-redundancy" discusses or

indicates =advantages of this "non-redundancy".

As seen in this study, "non~redundancy" in a global user
view as described by several of the here studied methods,
restricts the possibility to allow different users to have
alternative views of real world phenomena. The
alternative views allowed by a "non-redundant" global
view concern only alternative, eventually overlapping,
subsets of the elements of the global view. Redundancy
in a global user view may allow users not only to specify
subsets but also to specify alternative views of the real
world phenomenon. An example of this possibility is
described in Smith and Smith's approach, where
"non-redundancy" is not required. "There are two ways to
view a generic hierarchy. We will call one way a
"levelled view" and the other way a "direct view". 1In a
levelled view one thinks of a generic object as being a
generalization of the class which contains its
immediate descendants. For example, "water.vehicle" is
viewed as a generalization of the clasg {ocean vessel,
costal vessel, river craft}; and "road vehicle" |is
viewed as a generalization of the class {truck, bike,
car}. 1In a direct view one thinks of a generic object
as beeing a generalization of the class which contains
all its descendant individuals. For example, "water
vehicle" is viewed as a dgeneralization of the class
containing all individual liners, submarines, coastal
vessels, caonoes and sailboats: and "road vehicle" is
viewed as a generalization of the class containing all
individual trucks, bikes and cars." [sMI-761. This
example (which refers to fig 4.22 in our study) - describes
very clearly the possibility to allow different users to
view "the same" real world phenomena in different ways.

5.5 A temporal dimension

A temporal dimension in conceptual data modeling is
explicitly considered in two of the methods included in
this study. The two methods are the one presented by
Benci et.al. and the IAM-method presented by Bubenko.

In Benci's approach, two aspects of a temporal dimension
can be identified. One aspect concerns a temporal
dimension of objects and properties. The other aspcet
concerns events and evolution of the data base.

The temporal dimension of objects and properties is here
interpreted as related to the existence of objects and to
the need of qualifying some properties by time
references. The qualification of properties may be
achieved by the introduction of domains corresponding to

- 138 =

sets of time points or time intervals 1in the relations
of the conceptual data structure. The existence of
objects seems to be represented by the existence of
n-tuples in the data base. .

The other aspect of the temporal dimension in Benci's
approach concerns the evolution of the data base. The
evolution is described as depending on events external to
the data base i.e. events in the organization as well as
on events internal to the data base. Events are modelled
by evolution rules specified in the “conceptual
organization”. ‘

In Bubenko's approach, the temporal dimension relates to
a "time-unrestricted" perspective of information
requirements and of the information structure.

A "global user view" is, in Bubenko's approach, built up
by "concept-classes" which correspond. to classes of
abstract entities and to property value sets. Time
points and time intervalls are considered as entities.
Entities are described by their associations to other
entities or values. From an application point of view,
some associations are considered as "time stable" while
other associations are considered as "timevarying". The
temporal dimension is described 1in the following way:
"Information about entity associations is represented by
abstract objects (AOs). The set of all abstract objects
correspond to stated output information requirements and
transactions. Abstract objects which represent
time-varying associations are related to time-entities.
In fact, we assume that every abstract object, which
represents a time-varying association is coupled to a
time point or interval indicating the time when the
(true) assertion about an association was issued. This
assumption makes each abstract object's "truth-value"
time-invariant once the object has been created".
[BUB~76C]

An information structure, as described by Bubenko,
consists of abstract objects and inference relationships
between these. The information structure represents a
"full-time perspective" model as opposed to "snapshot
type" models. A ‘"snapshot type" model implicitly or
explicitly presumes processes for update/maintenance of
the information. In the IAM-method, the transformation
of a "full~time perspective" model into a conceptual data
structure corresponding to a "snapshot" model is
identified as a problem, but is not included as a step
within the method.

- 139 -

5.6 Summary

The analysis of a number of design methods shows that
these methods are concerned with varying problems within
the conceptual level data base design area. 1In order to
discuss the different methods and the problems by which
they are concerned, a frame of reference is suggested.
In this frame of reference, conceptual level data base
design is regarded as consisting of five problem areas.
The problem areas are:

- concepts/models for description of user's views

- concepts/models for description of user's in-

. formation requirements

- design and analysis of an information structure

- concept/models for conceptual data structures

- design and analysis of a conceptual data structure.

The suggested problem areas have been used to describe
the problems primarily attacked by the different methods.
For eight out of nine methods, the suggested problem
areas turned out appropriate for such a description. The
method for which the problem areas were not quite
relevant - the method by Sheppard-Rund - can be
considered as primarily concerned with identification of
information requirements, i.e. with a problem which , in
this study, is not considered as a data base design
problem, but as an information system design problem.

The analysis of the design methods indicates that methods
for conceptual level data base design can be regarded as
comprising models and transitions between models. When
the methods were described as models and transitions two
"schools" can be identified. In one "school" models
corresponding to a "global user view" and a "conceptual
data structure" could be identified. 1In this case, the
data base was regarded as containing representations of
objects, properties and associations specified in the
"global wuser view". In this "school" there was no
distinction between a ‘“global user view" and an
"information structure'.

In the second "school" a distinction is made between a
model of real world phenomena, i.e. a "global user view"
and information about real world phenomena, i.e. an
“information structure", The data in a data base is, in
this case, regarded as representation of information
which refers to elements of the "global user view". This
second "school" is represented by the Scandinavians, i.e.
in this study by Bubenko and Solvberg.

Determination and use of inference relationships is
identified as an important semantical aspect of

- 140 -

conceptual level data base design.
Analysis of 1inference relationships in the different
methods has led to identification of three kinds of
inference which have been called:

- calculation
- inheritance
- implication
Most methods are concerned with only one of these kinds
of inference. In the Scandinavian "school", inference

relationships are considered to exist between units of
information. Here, 1inference relationships are used in
the design of an information structure and in the design
of a conceptual data structure. In the other "school",
inference relationships are considered as existing
between elements of a global "user view" as for example
between associations or between property values. In some
of these methods, inference relationships are used in
order to design a "non-redundant® data structure, in
other methods the inference relationships appear as
semantical integrity constraints.

"Non-redundancy" in the global "user view" and in the
conceptual (or logical) data structure is required in
some of the design methods. Characteristically, no
reasons for the requirement of "non-redundancy" are
presented. Further, the meaning of "redundancy" varies
among different approaches. What is ment by "redundancy"
is often related to the type of inference identified in a
design method. In this study, the reguirement of
"non-redundancy” in models at the conceptual level Iis
questioned.

Very few authors within the area consider a temporal
dimension in conceptual level modeling. Most conceptual
data structures correspond to "snapshot type" models. A
"snapshot" type model preassumes processes for
update/maintenance of the model. However, the design of
the preassumed process structure is, in most cases, not
considered as a part of the conceptual level design
process.

In the analysis of a number of design approaches,
semantical aspects have been identified. In many cases,
semantical problems have been critically discussed. The
purpose of these discussions has not been to critisize
individual design approaches, but to point out and stress
semantical aspects and problems within conceptual level
data base design.

- 141 -

6. CONCLUDING REMARKS

In this study, an attempt is made to 1identify and
discuss semantical aspects of conceptual level data
base design. XA number of methods are analyzed and
discussed. The purpose of this analysis has been to
identify relevant aspects and problems. The result of
the analysis constitutes a base for future
developement of design methods and for classification
of approaches to conceptual level data base design.

The conceptual level of data base design has only
recently been identified and accepted. Since
approximately five years , research work within this
area has been reported. So far, however, there does
not seem to exist any common aggreement on scope and
contents of the area. 1In this study, an attempt is
made to informally define the scope of conceptual
level data base design in terms of problem areas. The
analysis of a number of design approaches has
emphasized the need of some aggreement of scope,
contents and stucture of the conceptual level problem
area. Such an aggreement must aim at faciliating
communication between researchers within the area
without beeing an obstruction to the expansion of a
new field.

The conceptual level design results in a data
structure for a data base. Traditionally, syntactical
aspects of such specifications have been emphasized.
The distinction between syntax and semantics is not
obvious. However, the concepual schema level as
suggested and described by the ANSI/SPARC Interim
Report can be interpreted as‘emphasising semantics in
the information specification. The analysis carried
out in this study stresses that further efforts should
be dedicated to the semantical area. A semantically
oriented terminology would constitute a progress from
today's situation.

Within the data base area, semantics has been
approached mainly via physical and logical data
representation. This is a fairly straightforward line
of thought. However, semantics in a data base system
can be arrived at from other starting points. The
data base area could profite from closer contact with
other diciplines as linguistics and psychology. Also,
as shown for example by Smith and Smith, research and
experience in "knowledge representation" within the AT
field can be proved useful.

- 142 -

An important semantical aspect, as seen in this study,
concerns “"inference". The possibility to infer some
information from other information is identified and
used in most of the here analyzed methods.

Very different approaches to determination of
inference relationships are represented among the
methods. Some methods represent a formal approach

to determination of inference relationships. The
formal approaches can be characterized by their formal
definitions of what is inferable and by the
possibility to automatize the analysis and
determination of inference relationships. However, as
seen in this study, formal approaches as represented
by methods in this study may lead to semantically
unidentified or ambigous results.

Semi-formal approaches are also represented among

the methods. An example of what here is regarded as
semi-formal is the case when inference 1is formally
defined and 1identification of possible inference
relations may be automatically performed but is
complemented by manual decisions. The manual
decisions are made in order to assure the semantical
relevance of the atomatically identified inference
relationships.

Still other methods can be seen as representing
intuitive approaches to determination of inference
relationships. In this case, there does not exist any
formal definitions of what 1is inferable and the
analysis and determination of inference relationships
is completely manual.

A central question to the data base design area which
may be raised concerns how far it is profitabl or
meaningful to formalize and automatize the analysis
and determination of inference relationships.

"Non~redundancy" is by some methods required in models
at the conceptual level. What 1is considered as
"redundant” is often related to the inference
relations identified and used in these methods. In
this study, the advantages of "non-¥edundancy" in a
conceptual level model is questioned.

User influence in the design of computerized
information systems is - at least in Sweden~ generally
agreed on as essential. So far, it seems as user
influence has been emphasized in the determination of
information regirements and in decisions on how to
represent information in terms of data and layouts.
Information - represented as data and otherwise -

- 143 -

convey abstraction of and assumptions about real world
phenomena. As seen in this study, such abstactions of
and assumptions about real world phenomena have most
often been implicitly built in the data
representations without explicitly beeing subjected
to user influence. It has been suggested in this
study that abstractions and assumptions of real world
phenomena underlying the information contents of a
data base system should be made explicit. This
explicit formulation can be regarded as a prerequisite
fo user influence on the semantics of the data in a

data base system.

REFERENCES

[ABR-74)
[ACM-76A]
[ACM-76B]
[acM-76C]
[ACM-76D]
[ACM-77]

[ANS-75]
[aNS-77]

[ARM=-74]

[AST-76]

[AUE-76]

[BAD-71]

- 144 -

Abrial J.R.; "Data Semantics"
in [KIM-74] pp 1-60

ACM Transactions op Database Systems 1,
Volume 1, No. 2, June 1976

ACM Transactions on Database Systems,
Volume 1, No.4, December 1976

ACM Transactions on Database Systems,
Volume 1, No.l, March 1976

ACM Computing Surveys,
Vol.8, No.l, March 1976

ACM Computing Surveys,
Vol.9, No.4, Dec. 1977

ANSI/X3/SPARC Study Group on Database Manage-
ment systems,
Interim Report, 1975

ANSI/X3/SPARC DBMS Framework Report of the
Study Group on Data Base Management Systems,
edited by D. Tsichritzis, A. Klug.

Armstrong,W.W.; "Dependency structures of data
base relationships"

Information Processing 1974, North Holland
Publ.Co., Amsterdam 1974

Astrahan,M.M., Blasgen,M.W., Chamberlin,D.D.,
Eswaran,K.P., Gray,J.N., Griffiths,P.P.,
King,W.¥., Lorie,R.A., McJones,P.R., Mehl,J.W.,
Putzolu,G.R., Traiger,I.L., Wade,B.W., and
Watson,V.; "System R: A Relational Approach to
Data Base Management" in [ACM-76A].

Auerdal,E. and Sglvberg,A.; "A multilevel proce-
dure for design of file organizations”.

Proceedings, National Computer Conference 1977,
AFIPS, Vol.46, 1977

Badiou,A; "Begreppet modell"
Libraire Frangois Maspero/Alain Badiou/
Bo Cavefors Bokfdrlag AB

[BEN-761
[BER-761

[BIL-76]

[BRA~76]
[BRO=77]

[BRO-78]

[BUB-76A]

[BUB=-76C]
[BUB=-77]
[BUB~79]

[CHE-76]

[.coB-731

- 145 -

Benci,E., Bodart,F., Bogaert,H., Cabanes,A.;
"Concepts for the Design of a Conceptual
Schema", in [IFP-761

Bernstein,Ph.A.; "Synthesizing Third Normal
Form Relations from Functional Dependencies”,
in [ACM-76B] :

Biller,H., Neuhold,E.J.; "On the semantics of
Data Bases: The Semantics of Data Models",
Report Institut filir Informatik, Universitat
Stuttgart, 1976

Bracci,G., Paolini,P., Pelagatti,G.; "Binary
Logical Assciations in Data Modeling", in
[1FP-76]

Brodie,M.L., Tsichritzis,D.; "Data Base Con-
straints" in [T8I~77]

Brodie,M.L.; "Specification and verification of
data base semantic integrity"

Technical Report CSRG-91, April 1978, Computer
Systems Research Group, University of Toronto

Bubenko,J.A.; "IAM - Inferential Abstract Mo~
deling - An Approach to Design of Information
Models for large shared data bases"

IBM Thomas J.Watson Research Center, Yorktown
Heights, New York 10598, 1976

Bubenko,J.A.; "The Temporal Dimension in Infor-
mation Modeling"

IBM, Thomas J.Watson Research Center, Yorktown
Heights, New York 10598, 1976

Bubenko,J.A.; "Validity and Verification Aspects
of Information Modeling" in [VLD-77]

Bubenko,J.A.; "On the role of 'understanding
models' in conceptual schema design"
Gothenburg, Febr. 1979, Unpublished paper

Chen,P.Pin-Shan; "The Entity-Relationship Model

= Toward a Unified View of Data" in [ACM-76C]

Colby,K.M., Schank,R.C. edits; "Computer models
of thought and language"”
W.H.Freeman and Company, San Fransisco 1973

[coDp-70}

[CcoD-T71]

[coDp-72]

[COL-62]

[COL~69]

[COL-71]

[COU—74J

[CUL=-T75]

[DAT-75]

[DOU~T75]

[DEL-77]

- 146 -

Codd,E.F. "A relational model of Data for
Large Shared Data Banks"
CACM, 13, 1970

Codd,E.F. "Normalized Data Base Structure: A
Brief Tutorial"

Proc. ACM SIGFIDET Workshop on Data Description
Access and Control 1971

Codd,E.F.; "Further Normalization of the Data
Base Relational Model" in Data Base Systems,
Courant Computer Science Symposium 6th,
Prehtice Hall 1972

CODASYL Development Committee, "An Information

" Algebra, Phase 1 Report"

Communication of the ACM, Vol.5, No.4, April 1962

CODASYL Systems Committee; "Report on the CODASYL
Data Base Task Group,
ACM, October 1969

CODASYL Systems Committee; "Report on the CODASYL
Data Base Task Group,
ACM, April 1971

Couger,J.D., Knapp,R.W.; "System Analysis Tech-
nigues",) -
John Wiley & Sons, Llnc 1974

Cullinane Corporation: Integrated Database Mana-
gement System (IDMS). 1975

Date,C.J.; "An Introduction to Database Systems"
Addison-Wesley Publishing Company 1975 (Second
edition 1977)

Douque,B.C., Nijssen,G.M. (eds); "Data Base De-
scription"
North-Holland, Amsterdam 1975

'Deliyanni,A.J.; "A comparative study of semantic

networks and predicate logic"

" Department of Computing and Control, Computing

Science section, Imperial College, University of
London

[FAL-75]

[FaG-778B1

[FRY-76]

[HOA-72]

[HUB-75]

[1BM-73]

[1BM-761]

[IFP~76]

[1s0-78]

[JOD-68]

[JOH~46]

[KaH-76B]

[KAT-72]

[KEN-76]

[KER-76]

- 147 -

Falkenberg,E.; "Design and application of a
natural language oriented data base language"
Advanced Course on Data Base Language Procesing,
Freudenstadt, Black Forest, Fed.Republic of
Germany, Aug. 1975

Fagin,R.; "The Decomposition versus the Synthe-

‘tic Approach to Relational Data Base Design"

in [(VLD-77])

Fry, J.P., Sibley,E.H.; "Evolution of Data-Base
Management Systems" in [ACM-76D]

Hoare,C.A.R.; "Notes on data structuring”
APIC Studies in Data Processing No.8: Structural
Programming, Academic Press, New York, 1972

Hubbard,G., Raver,N.; "Automating logical file;
design" in [KRR=75]

IBM, IMS/360 Application Description Manual,
GH 20-0767, White Plains, N.Y.

IBM, Program Product, Data Base Design Aid,
Designer's Guide, GH 29-1627-1, IBM

IFIP-TC~2 Working Conference on Modeling in
Data Base Management Systems, January 5-9,
1976. Freudenstadt, Fed.Republitc of Germany,
Preprints

ISO/TC97/SC5/WG3 working paper: "Concepts for
the Conceptual Schema", April 1978

CODASYL, COBOL Journal of Development, 1968

Johnsson,W.; "People in Quandaries"
Haper & Row Publishers, New York 1946

Kahn,B.; "A method for describing information
requiremed by the data base design process"
University of Michigan, Technical Report 76
D.E. Jan 1976

Katz,J.; "Semantic Theory"
Harper & Row Publishers, New York 1972

Kent,B.; "New criteria for the conceptual model"
in [LOK~=76]

Kerchberg,L., Klug,A. and Tsichritzis,D.;
"A taxonomy of data models" in [LOK-76]

[KIM-74]

[KLI=65]

[KOT-66]

[KRR=75]
[LAN-66]

[LAN-68]

[LAN-75]

[LOK=76]

[LOC-771
[MET-75]
[MIN-68]

[MRI-72]

- 148 =~

Klimbie,J.W. and Koffeman,K.I.; "Data Base
management",

Proceedings of the IFIP Working Conference,
Corsica 1974, North-Holland/American Elsewier,
1974

Klir,J. Valach,M.: "Cybernetic Modelling",
Iliffe Books Ltd, Dorset House, Stanford
Street, London 1975

Kotarbinski,T.Y "Gnosiology The Scientific
Approach to the Theory of Knowledge"
Pergamon Press Ltd, Headington Hill Hall,
Oxford 1966

Kerr,D.S. (ed); Proceedings of the internatio-
nal conference on Very Large Database, ACM,
Framingham, Massachusets, USA, Sept. 1975

Langefors,B.; "Theoretical analysis of Infor-
mation Systems",
Studentlitteratur, Auerbach, Lund 1966

Langefors,B.; "Introduktion till Informations-
behandling, Natur och Kultur, Stockholm 1968

Langefors,B., Sundgren,B.; "Information Systems
Architecture"
Petricelli/Charter, N.Y. 1975

Lockeman,P.C. and Neyhold,E.J.(eds); "System
for large data bases"
Preprints Brussels, Belgium 8-10 sept., 1976
North Holland Publ.Co.

Lochovsky,F.H.; "User Performance Measures for
Data Base Mangement Systems" in [TSI-77]

Metaxides.A:"'Information bearing' and 'non-
information bearing' Sets" in [DoOU-75]

Minsky; "Semantic Information Processing"
The MIT Press, Cambridge, Massachusetts 1968

MRI Systems Cooperation, System 2000, General
Information Manual, Austin, Texas 1972

- 149 -

[NEV-73] Nevell,A.; "Artificial Intelligence and the’
Concept of Mind" in [COB-73]

[NIJ-76] Nijssen; EDMS Version 1.0, DDL Reference
Manual, Control Data 1976

[NOV~-768] Novak,D. Kahn,B.; "A framework for logical data
base design" ‘)
Working Paper D.E. 3.1, June 1976, University of
Michigan

[QUI-68) Quillian,R.M.; "Semantic Memory" in [MIN-68]

[RAP-68) Raphael,B.; "SIR: Semantic Information Retrieval"
, " in [MIN-68] ’

[REG-58] Regnell ,H.; "Semantik"'
Scandinavian University Books, Stockholm 1958

[RIV-72] Rivett,P.; "Principles of Model Building"‘
John Wiley & Sons, Inc. 1972

[ROU-75] Roussopoulos,N., Mylopoulos,J.? "Using Semantic
Networks for Data Base Mangement” in [KRR-75]

[ROU-78] Roussopoulos,N.; "CSDL: A conceptual schema de-
finition language for the design of data base
applications". Department of Cemputer Science,
University of Texas, Austin , April 1978

[SCH-73] Schank,R.; "Identification of Conceptualizations
Underlaying Natural. Language" in [COB-73]

[SEN-72] Senko,M.E., Altman,E.B., Astrahan,M.M., Fehder,P.L.
and Wang,C.P.; "A Data Indenpendent Architecture
Model I: Four levels of description from logical
structures to physical search structures"”
IBM Research, RJ 982, February 25, 1972

[SEN=75] Senko,M.; "Specification of stored data structures
and desired output results in DIAMII with FORAL"
in [KRR-75]

[SEN-77] Senko,M.; "Conceptual Schemas, Abstract Data Struc-
tures, Enterprise Descriptions".
Preprints, ACM, April 1977

- 150 -

[SHE-76] Sheppard-Rund,D.L.; "Data Base Design Methodo-
logy - Part I and II"
Cincom Systems Inc.

[s1M~73] Simmons,R.F.; "Semantic Networks, Their Compu-
tation and Use for Understanding English Sen-
tences" in [COB-73]

[sMI-76] Smith,J.M., Smith,D.C.P.; "Data Base Abstractions:
Aggregation and Generalization"
Proceedings of the Conference on Data: ABSTRAC-
TION, DEFINITION AND STRUCTURE, Salt Lake City,
Utah, March 22-24, 1976

[sT0~75] Stonebraker,M.R. and Wong,E.; "INGRESS: A rela-
tional data base system", Proceedings of Natio-
nal Computer Conference, Anaheim, California,
May 1975

[suN-73] Sundgren,B. ; "An infological approach to Data
Bases" .
Ph.D. Dissertation, University of Stockholm, 1973

[syo-76] Svobodova,L.; "Computer Measurement and Evalua-
tion Methods: Analysis and Applications"”
American Elseview Publishing Company Inc. 1976

[sp1-77 1 Sdlvberg,A.; "A Model for specification of pheno-
mena, properties and information structures”
IBM Research Laboratories, San José&, California

[THA-77] Thaggert,W.M., Tharp,M.0.; "A Survey of Informa-
tion Requirements Analysis Techniques"
in [ACM~77]

[Ts1-77A] Tsichritzis,D. (ed); "A Panaché& of DBMS Ideas"
Computer Systems Research .Group, University of
Toronto, Technical Report CSRG-77, Feébr. 1977

[Ts1-778] 1Tsichrtizis,D., Lochovsky,F.; "Data Base Manage-
ment Systems"
Academlic Press 1977

[unI-73] Data Base Management System (DMS-1100) Schema
Definition. Data Administrator Reference.
Sperry Rand Cooperation,

[VIA-77]

[WEI-T76]

 [WIN-73]

[WIN-75]

[ZEI-76]

['YOU-58]

- 151 -

Brandt,P., Gustafsson,M.R., Hohansson,L-A.;
"Att jadmfSra systemeringsmetoder',

Delrapport frdn VIA-projektet, Inst f8r Inf.-
beh-ADB, G&teborg, 1977

Weizenbaum,J.; "Computer Power and Human Reason",
W.H.Freeman and Company 1976

Winograd,T.; "A Procedural Model of Language
Understanding” in[COB=-73]

Winograd,T.; "Five Lectures on Artificial In-
telligence"

Computer Science Department, Stanford University
1975

Zeigler,B.P.; "Theory of Modeling and Simulation"
John Wiely & Sons Inc, 1976

Young,J.W., Kent,H.K.; "Abstract formulation of
data processing problems" in [COU-74]

Azl APPENDIX

SUMMARY OF METHODS

The purpose of this appendix is to summarily characterize
each of the approaches that are discussed in chapters 4
and 5. Each method is presented without comments or dis-
cussions. The presentations are based on the authors' :
terminclogy, and references from the original papers are
frequently included, in order to give examples from the.
original texts. The presentation of each method is struc-
tured into: .
- 1. The context in which the author presents the method
= 2. Characteristic ideas in the method approach

3. Modeling concepts used or proposed in the approach
4, Summary of the method.

¢

Some of the methods have names, other do not. For prac-
tical reasons, each method approach is presented under
the name(s) of the author(s).

l. . Benci, Bodart, Bogaert and Cabanes

This summary is based on the report *"Concepts for design
of a conceptual schema" [BEN-76]

As indicated by the title, concepts to be used at differ=

ent steps in the process of designing a conceptual schema
are proposeds

1.1 The Context

The authors introduce the approach by regarding an
ANSI/SPARC definition of the concept "conceptual schema"
as consisting of two views of the conceptual schema:

"~ the conceptual schema as an integrated view and a
bridge between the external schema and the internal

schema,
- this integrated view as the result of an analysis and
design process". [BEN-76]

According to the authors, it is the second view of the
conceptual schema which is focused in their approach.

The authors propose that the processes of designing a
conceptual schema starts with the design of a conceptual

or%anization.

Different users are supposed to percieve the real world
in terms of different models for example "mathematical
models, logical models, analogical models, descriptive
models, etc,". There is a basic assumption made by the
authors, that the information of any such model can be
described by a suggested set of "basic modeling
concepts”.

Using these basic modeling concepts, real world modeling
is performed and the information contained 1in the
different users perception models are structured into a
shared view of the real world. This common shared view
is the conceptual organization.

The conceptual organization consists of two parts, the
conceputal structure and the evolution rules.

"The conceptual structure contains the description of the
data sets (conceptual data base) and their properties
(integrity constraints). The evolution rules describe

the set of operations that modify the state of the data
base: in this respect they describe the interaction _of
the information systems with the "environment" [BEN-761].

A formalism - modeling concepts - for the description of
the conceptual data structure is proposed. The formalism
is an extension of the relational data model. A
conceptual schema is the description of the conceptual
structure in terms of a declarative language.

1.2 Characteristic ideas

Some characteristic ideas in the article are:

- The identification of two levels of models and of
modeling within conceptual schema design.

- The proposal of a set of basic modeling concepts for
the conceptual organization level model.

- The proposal of an extension of the relational data
model to be used as a formalism for description of a
conceptual data structure.

- The distinction between evolution rules and integrity
constraints.

1.3 Modeling concepts

A "conceptual organization" is a, to all wusers, common
model of the percieved real world. The basic modeling
concepts proposed for the conceptual organization are
objects, associations and properties.

"-Object: An object is what an individual or group
(e.g.: an organization, a firm, a group of scientists,
...) sSsees as a whole. (As a system or element of a
system, an object 1is characterized by a set of
quantitative and qualitative properties, and a
permanent behavior being function of the 1level of
resolution.)

- Association: Association is a set of two or more
objects where every one plays a given role. A relation
may possess different properties. The existence of an
association is contingent on the existence of the
objects it relates. : :

~ Property: A property value belonging to an object
or an association is a quality that the individuals
attribute to this object or this association. The
existence of the attribut ‘property values is
contingent on the existence of the object or the
association concerned." .

A conceptual organization can be used as a definition of
the meaning of data in a data base. When the conceptual
organization is used for this purpose the relational
model 1is proposed as a basic formalism. However, as the
relational model can only define statical structures of
data in the data base, extensions to the relational data
model are proposed for expressing evolution rules and
integrity constraints.

"Although the concept of relation is useful to describe a
static state of a conceptual data base, this is not the
case when describing its evolution. To this purpose, the
notation of relation family 1is introduced R1..‘.R%
which is a series of relations defined on 'the same
components, indexed€I and writted (RI1i€I). 1F Ri is

defined on the sets A, B, C it is quite clear that the

families (Allie€1) (Bilier) and (cl|i€1) have to be
defined.

An operation on a relation is a function f{ such that
Ritl = £+ (r%) and Ri*l are obtained

by addition of a n-tuple to R

- by suppression of a n-tuple from R
by modification of n-tuple of R%

- by equating with Ri (identity operation).

i

A conceptual data base Rl is a set of relations idexed
by the same value i€I

ol _ i Si i

B ~{R1,R2....Rq} ‘
A conceptual data base ri*l ig optained by applying to
each relation Ré}EBi, one of the possibleé operations.

i+l | (pitl pitl i+1y_r el (giy £l (gi igh
B = {Ry ~/R} ree R }={£1(R]) ,£5(R3) , .. . £ (Rg)}

Note: a relation R; can be empty. We will call type of
relation, of set... a family of relations, sets... We
will call evolution rules the definition of the allround
operations on a base B1l" [BEN-76]

1.4 Method Approach

The design of a conceptual schema is separated into the

two parts

- design of a conceputal organization

- representation of the conceptual organization by a
formalism which is an extension of the relational
model.

The conceptual organization design 1is described by the
two tasks
i) identification of basic elements of the pe¥ceived
real world,
ii) definition of temporal and spatial context of the
basic elements.

Elements of the perceived real world are identified, and
people in the enterprise or organization decide whether
an element is to be regarded as an object or as a
property. Elements of the real world are represented by
names in the conceptual organization.

When objects, properties and associations have been
identified their spatial and temporal context are
determined. Spatial and temporal context are described
as localization in space and in time and as a temporal
dimension.

Localization in time can have two different natures:
"The existence duration or validity duration of a basic
element"
"The date at which something or some events are

observed in the real world".

Concerning the temporal dimension it is pointed out that
-quantitative property values are defined by this
.dimension.

The conceptual structure is a formal representation of a
part of the conceptual organization:

"The conceptual structure is made up by three types of
basic elements:

- the type of data

- the type of entity
- the relation

They correspond to basic elements of the perceived real
world in the following way:

Perceived real world’ uonceptuai structure
- a type of property is represented by - one or more of data
- a type of asscciation is representedby - relation(s)
~ a type of object is represented by - relation(s)
is identifiedby - a type of entity identi-

fies is only in the con-
ceptual structure

a value of property is represented by - adata"

[BEN-761]

Integrity constraints are regarded as properties of data
sets. The purpose of the integrity constraints are to
assure semantically correct data in the data base.
Semantically correct data are those which conform to
properties of the real world. A definition of integirty
constraints is given:

"In the conceptual structure, the integrity constraints are
predicates relative to the data of the base, defined on the
conceptual structure elements in order to provide the user

with correct data as a result of his application programs
insofar as those are syntactically and semantically
correct." [BEN-76]

Characteristic of some frequent types of integrity
constraints are desribed. Examples of such integrity
constraints are:
- constraints concerning the possible values of a type

of data or a type on entity,
- specification of the format(s) of a type of data or

a type of entity.

The conceptual structure and the integrity constraints
describe statical properties of the real world beeing
modeled. Evaluation rules model dynamic aspects of the
real world. Evaluation rules are regarded as procedures
related to integrity constraints and to events that trigger
the execution of operations on data in the data base.

2. Bernstein

Bernstein's approach to conceptual structure design is
described in the report "Synthesizing Third Normal Form
Relations for Functional Dependencies" [BER-76]

2.1 The Context

In this approach the conceptual structure is regarded as a
definition of the meaning of data in a data base. "The
purpose of any data model, relational or otherwise is to
allow the user of the model to describe and manipulate those
relationships among objects in the real world that he

intends to store in the data base".

"A relational schema consists of data base relations and
for each relation the specification of one or more keys"
[BER-761}.

The method proposed for design of a relational schema is an
algorithm which derives a set of relations from a set of
functional dependencies. The set of derived relations can
be proved to contain the fewest possible number of relations
and each relation can be proved to be in Third Normal Form.

The input to the algorithm is a set of functional
dependencies between sets of attributes. Thus a real world
model is implicitly assumed. In this assumed model, the
real world phenomena are regarded as sets of attributes
between which there exists a set of (functional)
dependencies.

2.2 Characteristic ideas

As has been shown by Codd, relations in first or second
normal form have properties that will cause problems when
tuples of the data base are to be inserted, deleted or
updated and that these problems are avoided when relations
are in third normal form. In Codd's approach third normal
form relations are achieved through the process of
normalization of relations in first or second normal form.
This process of normalization requires information about
functional dependencies.

. In Bernstein's approach, relations in first or second normal
forms never exist. Attributes are "directly" grouped into
third normal form relations. This process, called
"synthesizing"”, is based upon knowledge about functional
dependencies between sets of attributes.

The suggested process of synthesizing 1is based on the
assumptions that all relationships between attributes can be
represented as functional dependencies. "The approach of
building a relational schema for FD's rests entirely on the
ability to represent all data relationships as functional
dependencies., Clearly, though, not everylogical connection
in the world is functional. Nevertheless, we claim that all
connections among attributes in a data base description can
be represented by functional dependencies" [BER-76]

The process described further asumes that there exists at
most one functional dependency between any one set of
attributes.

Based on these assumptions.. an algorithm for deriving a
"conceptual schema” in terms of a set or relations is
proposed. The conceptual schema which 1is the result of
applying the algorithm 1is proved to contain the fewest
possible number of relations and to contain only 3NF
relations.

2.3 Modeling Concepts

The conceptual framework of this approach is the relational
data model as proposed by Codd [cop-701[cop-71]. A
restriction to the relational model - that between any two
sets of attributes there 1is at most one functional
dependency - is introduced by Bernstein.

A conceptual schema for a data base is seen as a set of data
base relations and for each relation the specification of
one or more keys. "A functional dependency X-~A is embodied
in a relation R if X 1is a key of R and A is any other
attribute or R. The set of FD's embodied in a schema is the
union of the FD's embodied in all of relations of the
schema”.

This 1is a modification of Codds formulation, where

functional dependencies are given as information
additional to the relations and their keys.

2.4 Method Approach

The method consists of an algorithm by which 3NF relations
are generated. The input to the algorithm is a set of
functional dependencies between sets of attributes.

The algorithm:

"l.(Eliminate extraneous attributes.) Let F be the given
set of FDs. Eliminate extraneous attributes from the
left side of each FD in F, producing the set G. An
attribute is extraneous if its elimination does not alter
the closure of the set of FD's.

2. (Find covering.) Find a nonredundant covering H of G.

3. (Partition.) Partition H into groups such that all
of the FD's in each group have identical left sides.

4. (Merge equivalent keys.) Let J = §. For each pair of
groups, say Hj and H., with left sides X and Y,
respectively, merge H] and Hp; together if there is
a bijection X+»Y in H¥. For each such bijection add
X+Y and Y+ X to J. For each A€Y, if X»A is in H, the
then delete it from H. Do the same for each ¥Y+B in
H with BEX.

5. (Eliminate transitive dependencies.) Find and H'CH
such that (H'+J)" and no proper subset of H' has
this property. Add each FD into its corresponding
group of H'.

6+ (Construct relations.) For each group, construct a
relation consistingof all the .attributes appearing in
that groups Each set of attributes that appears on the
left side of any FD 1in the group is a key of the
relation. (Step 1 garanties that no such set contains
any extra attributes.) All keys found by this algorithm
will be <called synthesized. The set of construced
relations constitutes a schema for the given set of FDs".
[3ER-76]

Proofs of the minimality of the number of relations in a

schema and of all relations of a schema being 1in 3NF are
presented in the article.

3. Brodie and Tsichritzis

This summary is based on the ref. . "Data Base Constraints"
within the report "A panache of DBMS Ideas" [TSI-77A} and to
some extent on the report "Specification and verification of
Data Base Semantic Integrity" [BRO-78]. None of these
papers are primarily concerned with a method for conceptual
level data base design. However, an approach to conceptual
schema design 1is summarily presented in "Data Base
Constraints".

3.1 The Context

A Data Base Management system is regarded as a system which
should present each user with an abstract view and abstract
operations appropriate to- the user. A Data Base Management
system must maintain each view both structurally and
behaviorally with respect to the limited evolving real world
that is models.

The authors regard an abstract view as the collection of
objects and relationships seen be a given user (class of
users), and abstract operations as means of modifying an
abstract view.

The authors point out that some of the problems concerning
data base management systems concern the lack of concepts
and rigorous methods for the specification, description and
maintenance of coexisting user vies.

Four important DBMS problems are stressed:

"l. Specification and representation of an appropriate
abstract view for each user in such a way that views
may coexist without interference over the same data
base.

2. Verification that each and every abstract view satis-
fies stated requirements.

3. Implementation and enforcement of the properties of
each abstract view.

4. Evolution of any or all abstract view through the
alteration of view properties or global data
base requirements” LTSI-77 J.

The authors propose formalization of the problem
specification as a step towards solution of the problems.

Abstract data types and constraints are introduced as means
to achieve such a formalization.

3.2 Characteristic ideas

The referenge proposes an approach to conceptual schema
design. The most characteristic property of a schema
designed by this approach is that it is not a to all
users common view, but rather a schema which permitsthe
coexistence of different user's views.

"First a description of the schema is constructed in terms
of objects. Then, the schema 1is specified in terms of
abstract data types. It is assumed that the data model/data
language provide the fundamental domains string and number.
It is also assumed that there has been informal description
of the data base in terms of its abstract views which, in
turn, are described in terms of the objects and
relationships in the views. The problem is to specify the
objects in terms of the fundamental domains" [TSI-77].

In this approach, each user's view of an object will be
represented by a tree. The root of the tree is the object
being viewed by the user, the other nodes are the component
objects that the wuser (in this specific view) regards the
objects as being composed of. Thus the nodes of the tree
represent objects and the edges represent and"is used to
compose" association between the objects.

Several trees might represent the same object, but each tree
represents a particular way of viewing that object. Each
tree expresses a set of properties that the data base system
must obey.

A:1l

A schema for a specific user view (an abstract view) is the
result of combining all trees involving objects from that
user view. A data base schema 1is constructed from the
abstract view schema descriptions. More precisely "A data
base schema is a collection of data types. A data base
Schema specification is a collection of data type
specifications. A data base schema specification may be
used to verify that types are specified consistently and to
validate the type and manipulation of data values. A data
base is a collection of data values stored in instances. A
data base schema comprises the type level corresponding to
the data base which comprises the token level. Variables
and constants exist only in the programs used to access data
base wvalues. Data bases consist entirely of instances"
[BRO-781.

3.3 Modeling concepts

The basic concept used in the schema definition is the
"abstract data type". The concepts of an abstract data type
is described by the stages of the abstraction process as
proposed by Hoare [HOA-72]. The stages are:

"{1l) Abstraction: the generic¢/aggregate type that results
from abstraction over <certain tokens, perhaps via types.
(2) Representation: the choice of a set of symbols to stand
for the abstraction. (3) Manipulation: rules for
transforming the representations. (4) Axiomatization:
rigorous statements of those properties that have been
abstracted from tokens, perhaps via types."

The data type concept is used within the data base area for
three purposes

"(1l) for abstraction and relating data values via gene~
ralization, aggregation, and more general binary relations,
(2) for generating or reconizing particular data values and
binding those values to variables and instances of the type
and (3) for specifying that certain properties be maintained
.Lor data values." [BRO-78].

3.4 Method Approach

A procedure for «constructing a schema is presented in
[T81-77A1. It is assumed that a model of the "real world"
application, or informal descriptions of the users different
abstract views, exists before the schema design can start.

When the objects of interest have been identified the
procedure staxts with decomposition of each distinct object
into its component objects, as viewedby a user.

Example: Suppose the objects STUDENT and COURSE have
been identified.

A STUDENT might (by some user) be regarded as composed by
the objects STUDENT , COURSE, PERSON, FEE. :

A Course might (by some user) be regarded as composed by the
objects STUDENT, TUTOR and PROFESSOR.

The decompositions of the objects STUDENT and COURSE can be
illustrated:

STUDENT COURSE

N SN T~

STUDENT#| | COURSE PERSON} | FEE STUDENT{ | TUTO PROFESSOR

Fig. A.1l.

The directed edges in the hlerarchies, X+Y, denote that
y is used to compose X.

Next, each component object is decomposed, and so forth,
until the fundamental domains STRING or NUMBER is reached.
The decomposition of component objects will result in a
forest of trees of component objects. The trees can be
simplified by recognition of semantically similar (sets of)
components (e.g. Students, professors and tutors have
common properties that pertain to their being people) and
by representing them in a single object type (e.g. person
data type).

A:13

COURSE
Example: N
STUDENT] |TUTOR PROFESSOR
&
EMPLOYEE

STUDENT#

PN

PERSON SALARY EMPLOYEEgi
3 |
NAME MONEY
/ N
FIRST [iiST SOCIAL INSURANCEE
STRING NUMBER

Fig. A.2.

The components of the STUDENT object as seen in fig A.1 can

be decompsed in the same way, until the fundamental domains
are reached.

A‘pagticular hie;archy of objects represents one way of
viewing the objects, For each object, several alternative
views, rgpresented by hierarchies can be specified. Such
gé§ga£ch1es, representing alternative views of the same
Cts, are requested not to e : i i
propesties: Xpresa inconsistent
A schema for an abstract view is the result of combining all
hierarchies involving objects from that abstract view. For
example, in fig A.3 the hierarchies representing STUDENTS
and COURSES are combined into a schema for an abstract

view.
COURSE \
STUDENT| [TUTOR PROFESSOR
] ¥y g
/ Y EMPLOYEE
Y
STUDENT#|| FEE SALARY EMPLOYEE#

{§OCIALINSURANCE#

\\\
i
=
]
2
| &
9%

' LR
STRINGl NUMBER

Fig. A.3.

uuce the‘properties of each component object are determined,
each object 1is defined as an abstract data type. The
structural properties of the abstract data types are the

component objects and their composition rules. The
behavioral properties depend on the semantics of the
objects; they are based on query, update, insert and delete
operations.

4., Bubenko

This summary is based on the report; Bubenko J: "IAM:
Inferential Abstract Modeling - An approach to Design of
Information Models for Large Shared Data Bases" [BUB-76Al.

4,1 The Context

IAM is presented as a method for design of a conceptual
schema. An informal definition of a conceptual schema is
given: "A conceptual schema describes the information
content and relationships of a data base. The information
content is an integration of different local user ‘"needs"
and “views“q Redundancy exists 1in the sense that some
information "elements" can be inferred from others. The
conceptual schema acts as a basis for
i) definition of external schemata and queries and

ii) design of data structure schema (storage oriented)

where performance, efficiency and limited storage

issues have to be considered." [BUB-76A]

4.2 Characteristic Ideas

A common shared view of the real world is assumed and it is
expressed in terms of entities, events and associations.
Application relevant entities are classified into disjoint
concept classes, and functional dependencies between concept
classes are identified. Characteristic of this part of the
IAM approach is that time points or time periods are
regarded as entities and that every event is associated to
at least one time~entity.

Information requirements correspond to anticipated input
transactions and output requirements of the data base system
to be designed. It is assumed that the set of output
requirements is complete while the input transactions are
assumed incomplete. Output requirements as well as input

A:15

transactions are all assumed to be ambigous and inconsistent.
Characteristic of the IAM approach is that it 1is c¢oncerned
with analysis and determination of relationships between
information requirements. Information requirements andXnown
functional dependencies are formally described as "abstract
objects". Abstract objects represent information about
associations between concept classes. An abstract object
refers to a set of concept- classes. However, as the
concept classes explicitely referenced in an abstract object
may - according to the functional dependencies identified -
be functionally related to concept classes not explicitely
referenced in the abstract object, the abstract object may
imply information about not explicitely referenced concept
classes.

Analysis and determination of such implied associations |is
performed and may result 1in new abstract objects and in
identification of further functional dependencies.
Thereafter, derivation analysis is performed and for each
abstract object which 1is not implied it 1is determined
whether or not it can be derived from initial abstract
objects. When this is not the case, new 1initial abstract
objects are created and thus, in the resulting information
model, all information required as output can be guaranteed
to be obtainable from the information specified as initial.

~ In the last step of the IAM approach decisions on how to
refer to concept classes are made. In this step abstract

objects are transformed to information objects.

"The end product of the procedure is a specification of a

set I= ‘ID,IOX, where Ip denotes the set of derivable

and Ip the set of initial information object classes. The
set I corresponds to the total set of information

requirements and the set Iop to input transactions
(signalling events or stating time-invariant facts) needed

to maintain the data base consistent with @ {output

requirementg). To is sufficient to generate all stated
output requirements". [BUB-76A]. —

4.3 Modeling concepts

The basic concepts used in the abstract model and in the
analysis are: concept classes, functional dependencies and
abstract objects.

Application relevant entities in the real world are
classified into disjoint _concept classes. The abstract
model concerns a set C=)C,,C,....C of disjoint

1772 n
concept classes.

Functional dependency exists between concept classes .if a
given a c-tuple, ¢ >0, of entities from concept classes

C1:,C3,...Cnh it may uniquely determined another entity in
a concept class Cg.

Functional dependencies and other associations between

concept classes are 1in the abstract model represented as
abstract objects. An abstract object is described as "an
abstract construct which conceptually serves to represent

information about some associations or relationships in the
real world".

Abstract objects'can be described by the notation:

Ai={§a:ea>,<b:9b>....<s:es>}
"where a, b are association names that are required to be

unique witbin A; and o eg denote concept classes or
abstract object ciasses ?su object to Ai),.

Graphically an abstract object can be illustrated:

/AX\\.\\.‘

course course year tutor sub number average
name report of stu- grade

l dents recieved
COURSE COURSE YEAR TUTOR Ay NR GRADE

\‘\ recieved/

student student-
name

\

STUDENT STUDENT~
NAME
Fig. A.4

4.4 Method Approach

It is assumed thatsystems analysis has been carried out 1in
the organization and that is had led to identification of
user information requirements, expressed in narrative terms.
The wuser information requirements correspond to input or
output transactions of the planned data base system.

In the first of the seven steps of the procedure, existing
information requirements are determined. In the second

step, users information requirements are analyzed and
entities which are referred to in these requirements are
classified into the set C of disjoint concept classes. In
the third step, functional dependencies between elements of
concept classes are determined.

Neither of the three first steps can be per formed
mechanically and they require thorough knowledge about the
real world and the application.

In the fourth step, information requirements and functional
dependencies are represented as abstract objects. The
abstract objects are "normalized" to Il-level abstract
objects. 1In a l-level abstract object, all its associations
are functional ((l:1),(1l:M)), and one or more subsets of its
associations, uniquely identify the abstract object.

Abstract objects representing input transactions are
decomposed to "elementary abstract object c¢lasses". An
abstract object is in "elementary form" if it can not be
decomposed further into separate, selfcontained abstract
objects, such that the original abstract object can not be
restructured again.

In the fifth step, implied association analysis is
per formed.

An association within an abstract object is said to be
implied if it is functionally dependent on a subset of a set
of identifiying associations for that abstract object. When
implied associations are found within an abstract object, a
search among other existing abstract objects is made in order
to determine if there exists any abstract object which has a
set of identifying associations which correspond to the
subset of identifying associations on which the implied
association is functionally dependent. If no such abstract
objects are found, the (partial) functional dependencies are
expressed as additional abstract objects. For the
additional abstract objects, the steps 4 and 5 of the
procedure are iteratively applied.

In the sixth step, derivation analysis 1is performed. An
association wwithin an abstract object is called derivable
if it is fully dependent on a set of identifying
associations of that abstract object and if it is not
initial. Rules for determination of potential precedents of
derivable associations are presented. These rules make it
possible to mechanically determine potential precedent
abstract objects. Examination of whether or not the
potential precedent abstract objects are also feasible
precedents and the determination of the derivation rules can
then be performed.

The examination of potential precedent abstract objects will

lead to one of three casés:

{1) One set of feasible precedents is found and a
derivation rule can be specified.

(2) Several, alternative sets of abstracts object
classes are found and several alternative deri-
vation rules can be specified.

(3) No feasible pregedent abstract objects are found
and new abstract objects has to be introduced.

When - as in the third case - new abstract objects are
introduced, the steps 4-6 of the procedure are iteratively
applied. When the sixth step is ready, the result 1is a
complete specification of the application problem, expressed
as an abstract model. The model <consists of abstract
objects. The initial abstract objects of the model can
"generate" abstract. objects corresponding to all |user
specified output requirements.

In the last, seventh step of the procedure the abstract
model 1is transformed to an "external-name-based information

model”.
For several of the steps 1in the procedure, matrices for

documentation are defined.

5. Hubbard and Raver

This summary is based on the article "Automating Logic File
Design" [HUB-75] and to some extent on "Data Base Design
Aid" [IBM-76]. The automatic file design was primarily
developed for design of IMS data base systems. However, the
initial steps of the procedure correspond to what here is
called conceptual level data base design.

5.1 The Context

An integrated data base 1is regarded as a system which
supports a network structure of data and which can generate
local data structures required by different applications.
The authors regard data to occur in at least three levels
within an integrated data base. The three levels are:

"(a) External - The external level is data as presented
on output reports, displays etc and, therefore, correponds
to the structure of data as it appears to a user at a

A:l9

terminal or a user reading a report printed by the system.
Note that the application program generates (or absorbs) the
external view.

(b) Local view - this is the data structure needed to
support a particular application. The local view or LVIEW
is wused to generate the external view or in the case of
update, absorb the external view by the application program
(AP) .

(c) Associative model - this is the data structure main-
tained by the system to generate the multiple LVIEWS. The
term associative model 1is wused to describe the internal
network or integrated data base." ['HUB-75]

By "logical design" is meantthe procedure which results in
an associative network for an integrated data base system.
The associative network should make it possible to generate
all local views required by the applications. The
associative network is restrained by the datamodeling
possibility of the data base management system used to
implement the system.

Some parts of the logical design, i.e. integration of local
views into an associative network involves computation which
can be automated. The authors present a tool - concepts and
procedures -~ for such an automated design. As different
data base management systems imply different restrictions on
the associative network, the tool must be adapted to
different data base management systems. The IBM program
product DBDA (Data Base Design Aid) is an adaption of the
tool, for deign of IMS data base system.

Logical design is regarded as consisting of three steps.
The first step concerns specification of LVIEWS and is
regarded as the task of a systems analyst. The second step
concerns integration of LVIEWS into an associative network
and adaption of this network to the restrictions imposed by
the data base management system. In the third step the
LVIEWS are modified so that they satisfy the restriction of
the data base management system. A LVIEW which satisfies
such restrictions is called a restrained LVIEW.

In relation to the frame of reference used in this study,
unrestrained LVIEWS and their integration into an
associative network correspond to design and analysis of the
conceptual level data structure. The adaption of the
associative network and the LVIEWS to a specific data base
system 1is here not regarded as concerning conceptual level
data base design.

5.2 Characteristic ideas

Local user views are described in terms of data elements,
associations and mappings. Analysis of local user views
result in identification of "essential" associations, 1i.e.
associations which occur as input associations and which can
not be implied from other associations.

The "essential®” associations determine how data elements can
be clustered into segments. An associative network is
created where the nodes represent the segments and the arcs
represent the ‘"essential" associations. The associative
network is unrestricted in the sense that it is independent
of any restriction imposed by a data base management system.

5.3 Modeling Concept

The basic concepts used in this approach are data elements
and associations. A data element 1s the smallest
nondivisable unit of data. A data element corresponds to an
IMS or DBTG data item. A data element name is the symbolic
reference to all occurrences of the data element and a "data
element occurrence" is a specific value.

Two kinds of data elements are recognized - keys and
attributes -~ where keys are data elements whose occurrences
are unique,while the values of attributes need not be
unique.

bata elements can be clustered or grouped into segments.
Each segment must contain a key and thus each occurrence of
a segment is uniquely identified by that key. A key can
consist of one or more elements. A key which consists of
more than one data element is called a compound Key. A
"full compound key” which contains a data element which is
not a key in 1itself is called a "qualified compound key".

An association is a from-to relationship between two data
elements. The notation for an association is (A,B) :LABEL.
The labels are optional and can be used in
"multiple-meaning" associations, 1i.e. when there exists

more than one association between the same pair of data
elements. Three basic types of associations are identified.

A 'l' association is an association where: "Each occurrence
of the data element A has a single associated B occurrence.

Note that every B occurrence need not be involved."

A 'M' association is an association between A and B where:
"Bach occurrence of the A can have multiple occurrences of
B. Note that the number of multiple B occurrences can take
on the values of 0,1,2,3... etc. so that there can be an A
occurrence which has no B occurrence".

In a 'C' association between A and B ‘"not every A
occurrence, has a single B occurrence but that for those A
occurrences that do, each of these occurrences has only one
B occurrence".

"Mappings" are defined by combinations of backward and
foreward associations between two data elements:

Inverse
Ill IM! ICI
e 1:1 1:M 1:C
™' M:1 M:M M:C "Mapping
table"
'c! c:1 C:M Not pos-
sible
Fig. A.4

5.4 Method approach

The method approach is regarded as comprising the six steps
that are described for the DBDA tool. The six steps are

1) Data Capture and Edit

2) Association Analysis

3) Mapping Analysis

4) Path Evaluation

5) Hierarchical Determination

6) Structure Model.

The first four of these steps are relevant for the
conceptual 1level data base design while the two last steps
are specific for design of IMS data base systems.

Step 1, Data Capture and Edit: A System Analyst is assumed

to identify and document local views, 1i.e. the data
structures needed to support the different applications.

DBDA has specific forms for documentation of the local
views. The local views are the input to the data base
design procedure. In step one the 1local views are
transformed into a set of data elements and a set of
associations. Data elements which are keys are identified
and local views transformed into associations by pairing
each key field with all fields identified by the key. Each
association contains thename of the "from" field, (data
element), the name of the "to" field, (data element) and the
association type.

Information about the frequencies of use of the associations
are collected. When compound data elements are found in the
input specifications it 1is <checked whether or not the
elements of the compound data element are specified as data
elements elsewhere in the input local views. If not, the
non specified elements of compound data elements are
generated as data elements.

Step 2, the association analysis, takes as input the
associations from step 1. The first function performed
within step 2 is decomposition of compound data names. The
compound data names imply not only the simple data elements
identified in step 1. but also additional associations not
explicitely specified in input local views. Such additional
associations are automatically generated. Within step 2,
inconsistency between association specifications is checked.
The type of inconsistency checked, concerns the case when the
same association between the same two elements is specified
several times in the input specification. In such cases the
association must have the same association type specified
for it at the different places where it occurs. If this |is
not the case this inconsistency is automatically reported.

Attribute analysis is performed within step 2 and 3‘concerns
identification of attributes identified by more than one
key. Multi-keyed attributes may represent errors in input
specification or may represent valid design decisions.

Within the Association Mapping evaluation the mappings
specified for the associations are analyzed and evaluated.
Incomplete mappings, i.e. when only one association type is
specifed between a pair of data elements, are identified.
The evaluation procedure determines whether or not a mapping
should be modified by the DBDA. There are three types of
mappings that are modified by the DBDA. The (C:1) mapping
is changed to the (M:1) mapping, the (C:M) mapping is
changed to the (M:M) mapping and incomplete complex
association mappings are eventally completed by simple
assocliations created by DBDA. An associative network
consisting of the dssociations specified is created.

A:23

In the third step, this network is analyzed. First, loops -
connected sets of simple associations that double back onto
themselves - are detected. Second, paths comprising more
than 15 associations are identified as the DBDA does not
handle paths of a length greater than 15 associations.
Third, implied associations are identified. ‘"A given
association is said to be an implied association 1if its
"from-to" elements are connected by some other path of
essential, simple associations. A simpel association is an
essential association if it can not be implied" TIBM-76].. A
network of essential associations represents the
non~redundant information content of the data base.
Implied associations are decision points for the data base
designer as implied associations may be implemented for
per formance reasons.

In the fourth step complex mappings in the associative
network are identified and analyzed.

In the fifth step, candidates for secondary indexes are
identified and hierarchical levels are established.

In the sixth step, a structural model <containing suggested
segments, parent/child relationships, candidates for
secondary indexes is proposed. After this structural model
is «created the unrestrained local user views {(LVIEWS) that
was the original input to the design can be adapted to the
model and replaced by restrained local user views.

Figure A.5 is a summary of the basic computations performed
by DBDA:

input
LVIEWS

Create List of

sum of M original Loa

LVIEWS associations

Generate Implied
implied Associations
Associations List

IAL

%

Create list
of essential)
associations Replace unq

l restrained!

LVIEWS with
restrained
Iy y

REPORTS

Generate
network &
diagnostigs

L

Fig. A.5.

6. Kahn

The summary of Beverly Kahn's approach is based on the
reports "A method for describing information required by the

datg base design process" [KAH-76B) and "A framework for
logical data base design" [NOV-76B].

6.1 The context

The overall data base design is regarded as structured into
seven, sequential, iterative phases: 1) Information
requirements Specification and Analysis, 2) ©Logical Data
Base Design(s), 3) Evaluation of Logical Database Design(s),
4) Physical Data Base Design(s), 5) Evaluation of Physical

Database Design(s), 6) Database Construction and
Initialization, 7) Performance Evaluation.
Relevant for this study, i.e. for conceptual level data

base design, are the two first phases.

The first phase is illustrated as in fig A.6,

Requirements Diverse Information Information
Analysis Users =¥ | Requirements|—% Requirements
Phase Needs Analysis Specification

Fig. A.6. from.[NOV~-76B]

The first phase is not elaborated in the work presented.
However, the importance of this phase is stressed. The

accuracy of the information requirements is essential to the
succeding phases.

The preéeﬁtéd method approach concerns the second phase.
This phase is further divided into two separate steps as
illustrated in fig A.7.

Requirements —3 | Structure - Structure
Logcial

Information Information User Information

Specification Design (Entity Diagram)
Database
Design

User Informa- Information Logical
Phase

mation Struc- —%|Structure -p» Database

ture DBMS Implementa- Structure

Data Model tion

Flg, A.7. from [NOV-76B]

The first step, in the second phase, is the design of an
Information structure, i.e. a specification of the
information (to be) contained in the data base. In the
second step, the information structure is organized and
adapted according to the Data Model used by the Data Base
Management System to be used for implementation.

6.2 Characteristic ideas

The author identifies and distinguishes between two views of
the data base system. These two views represent two kinds
of information used in the logical data base design. The
two kinds of information are described as "two diverse and
independent perspectives of the organizational information
requirements to construct the logical data base design.

The information structure perspective depicts the natural
and conceptual data relationships in the organization. The
usage perspective describes how data is used in the system
to faciliate and to satisfy the organization's processing
requirements." [KAH-76B]. According to the author, existing
methods for logical data base design are (almost) only based
on the usage perspective, 1i.e. on process oriented
information. This use of only process oriented information
may result in data bases that are inflexible. The approach
proposed aims at complementing the existing methods with
information from the information structure perspective.

6.3 Modeling concepts

The basic concepts used to express an information structure
are entities, properties and relationships. Definitions of
these basic concepts are the game as 1in the ANSI/SPARC

Interim Report [ANS-75].

Bach entity must have a name and certain attributes or
properties. "A property plays a role 1in describing an
entity, a property identifies it, characterizes it etc. A
property has a set of eligible values referred to as a value
set. A given property may be a characteristic of more than
one entity. An element is the smallest named object (unit
of information) to which processes, such as an application
program, can refer. With respect to an entity, properties
and elements can be described with a similar structure "
[KAH-76B].

6.4 Method Approach

The information structure perspective 1is created through
three sequential activities:

1) The collection of information from various system
users to describe entities and relationships.

An Entity description consists of the name of the entity and
of a list of attributes or properties for that entity. Each
property must be classified into one or several of five
roles. The property roles are:
- description of an entity
-~ unique identification of an entity
- representation of a relationship or a connection
between entities (relational or structural pro-
perty role)
- derived properties
- information necessary to operate in a specific data-
base management system environment for example pro-
perties which describe the ordering of entity in-
stances or describe entity security.

Relations are discussed only between pairs of entities. A
description of a relationship includes a unique name, a
probability of existence and a type of mapping.

In this first step entities and relationships are collected
and described by each participating member of the user
community. In the next step, these individual descriptions
can be refined.

2) BAggregation, consolidation and analysis of each user's
perspective of the system's entities, facts and rela-
tionships into a global, consistent and nonredundant
state.

Three criteria that must be satisfied in order to meet the
objectives of having a consistent entity diagram are
specified:
- each entity myst be related to at least one other

entity,
- each entity must appear only once in the diagram

(entity non-redundancy),
- each relationship must appear only once in the

diagram (relationship non-redundancy) .

A primary goal for the information structure perspective is
that it should be “as non-redundant as possible" and
therefore "a given element should only occur in one entity".

To achieve this,"normalization of entities" 1is proposed.
Normalization of entities 1is described as "a step by step
reversible process of replacing a given set of entities by
succesive collections of entities which have a progressively
simpler and more regular structure."

3) Collection of volume and other statistical informa-
tion about entities and relationships.

Examples of statistical information about entities is

cardinalily and about attributes, length, size of value set,
probability of existence, cardinality and repetition factor.

The result of the information structure design step is a
user information structure which can be represented by an

entity diagram:

Entity Entity
Student Professor
- Name - Name
- Address -~ Address
Entity
Course
- Course No
- Section
Fig. A.8

An Entity Diagram is said to "represent all of the
information necessary to model the organization's
information needs as documented in the wuser requirement
specifications".

The Entity Diagram 1is described as "an implementation
independent, general, undirected network which is the most
general form of relationship representation and which can be
mapped to alogical data base structure that uses any of the
DBMS organizations, i.e. hierarchical, network, relational
or inverted, to implement the general entity network".

When an Entity Diagram is designed according to the three
steps above, the entities and relationships included in the
Diagram are regarded as "the natural and conceptual
relationships of all the data in the information system”.
It is regarded as independent of any application and as a
representation of "the natural clustering of data
({information) and it will therefore provide a basis for
expressing basic semantic properties®.

7. Sheppard-Rund

This summary is based on the report "Data Base Design
Methodology" [SHE=76]. The report contains two parts; the
logical and the physical data base design. Here, it is part
cne -~ the logical data base design approach - that is of
interest.

7.1 The Context

Data Base Design is regarded as consisting of two major
phases: Logical Data Base Design and Physical Data Base
Design. The Logical Data Base Design 1is said to be the
planning and analytical phase of the design, and to include:

- Definition of scope

- Identification of data elements

- Identification of the relationship of data elements

- Identification of the organization's operating

rules and their implications on data relationships.

The logical design 1is independent of the Data Base
Management System that is to be used in implementing the
system. "The product of logical design can best be
described as a model that depicts all pieces of data and how
each relates according to its many uses across the
organization. As a by-product of the model, a list is
produced that outlines the capabilities and limitations of
the data base in terms of data dependencies. These rules
describe how an organization conducts its business and
should be carefully verified" [SHE-76] .

The definition of the scope of the logical design comprise
decisions of which functional areas of the organization that
should be included. The base for such a decision is a so
called Information Plan. An Information Plan should contain
definitions of the organization's current and future
information requirement as well as diagrams of the
dependencies between major systmems (both manual and
automated) and groups of data.

Crder Order | Item Inventory
Data Processing at Management

Accounts | <Customer) Credit
Receivabl Management

Fig. A.9. Information Plan - Data and System Depen-
dencies from [SHE-76]

When the scope of the logical design has been decided the
collection of information about data can start. Three types
of information about data are required in the logical
design. "(1) The first type of information describes the
business basic functions and their related sets of data, (2)
The second type of information identifies the explicite and
implicite operational policies that determine when and how
basic functions are performed. (3) The third type of
information identifies additional data elements required to
forecast, measure or maintain a history of the data utilized
by basic functions" [SHE-76]. Identification of basic
functions and their associated data 1is accomplished by
interviews with persons within the operational area of the
business. The interviews should result in a complete
understanding of the tasks performed within each operational
area, the data associated with performing each task and the
explicit or implicit rules associated with when and how the
task is peformed.

7.2 Characteristic ideas

Three characteristic ideas of Sheppard's approach are here
identified.

First, the "over all" approach to logical data base design
is characteristic. Sheppard stresses that the logical
design of a data base system should be separate from any
application development effort and that it should be based
on a plan over all functional areas of the organization.
Thus, also when a data base is to be designed for only one
functional area or for a specific application the
information plan, i.e. data and system dependencies of the
whole organization must be known. Second, the data elements
that are to be contained in the data base are identified and
analyzed relative their associations to the specific
operational tasks where they are used. Thus, the tasks
performed within the operational areas of the organization
are important parts of the logical data base design. Third,
the approach 1n categorizing data elements as keys or
attributes based on their relative usage in the identified
tasks is specific for Sheppard's logical data base design
approach.

7.3 Modeling concepts

The major concepts used in the logical structure are; keys,

attributes and relationships.

"Keys are data elements used throughout the organization to

identify objects, create other data or reference other data.

There are two types of keys:

~ Unique keys are data elements that identify a particular
and distinct thing or object (e.g. social security
number, order number, customer number etc.)

- Nonunique keys are collections of data elements unique
in their use, that receive their identity through two or
more unique keys (such as an inventory that is identified
through the wunique keys, item number and warehouse
location).

Attributes are data elements that must be qualified by a
unique key in order to have any meaning (e.g. address and
quantity received have no useful meaning unless they are
respectively qualified by the keys: customer number and item
number) .

Relations represent dependencies between two or more data
elements and are devided 1into three «categories, Key
Relationships, Key-Attribute Relationships and
Attribute-Attribute Relationships" [SHE-761].

7.4 Method Approach

In the interviews with people involved in the operational
areas, the tasks performed within each operational area and
the data elements associatied to each task are identified
and documented in "Flow Charts of Operations". These flow
charts are the input to the logical data base design.

First, a list of all unique data elements is created. To
resolve redundancy it 1is recommended that data elements
should be categorized into generic elements (e.g. dates,
names, amounts etc.). Unigque data elements are given unique
identifiers and descriptions.

Second, relationships between tasks and data elements are
specified. Tasks are defined as: "A unit of work, that
consists of a set of performed steps, all of which are
directed toward a common goal, and all of which utilizes one
common set of data". A set of rules for dividing the
operations described by the flow <charts, into tasks are
given.

When all tasks have been defined, they are described by
their frequency, volume, usage of data (e.g. create, delete
etc.), functional area (i.e. where it 1is performed) and
data element usage. The task/data element relationships are
input to the analysis which result in categorization of data
elements into keys or attributes. This analysis are based
on the assumptions:

"A data element will most likely be a key if it is used: -
In a large number of tasks, - With a large number of other
data elements, - with each individual data element a low
percentage of the total time is used. A data element will
most likely be an attribute referenced and owned by one Kkey
if it is used: -In relatively small number of tasks, ~ with
each data element in high percentage of the total time it is
used. A data element will most 1likely be an attribute
referenced by many keys but owned by one key if it is: =~ In
average number of tasks, - With an average number of other
data elements, - With each data element an average number of
times" [SHE-76 1.

In the analysis of task/data element relationships, the
tirst step 1is to analyze the number of times that a data
element is used together with other data elements. For each
data element 1its usage and relative usage with other data
elements is determined. ,

Data Total Total Data Relative Usage
Element Tasks Relationships with Data

1 75 120 20%

2 40 97 45%

3 140 241 13

4 10 50 97%

5 65 101 30%

6 140 211 2%

Fig. A.10 from [SHE-76]
Summary of Data Element Usage

Frequency distributions of Data Elements across tasks are
the created. The frequency distributions are used to define
which data elements that are to be categorized as keys and
as attributes.

An exampel:

No. of
Data
Ehmﬁnb;Go_

Average

50-
40
30 -
20 1
10

t
1
t
1

1-10 11-20 21-30 31-40 41-50 51-60

No. of tasks

Fig. A.1l from [SHE-76] Frequency Distribution of Data
- Elements across Tasks

In this example, a data element will be regarded as a key if
its task wusage >49, as an attribute owned by one key and
referenced by many keys if its task usage is >10<50 and a
data elements will be an attribute referenced and owned by
one key 1f its task usage is <1ll.

After data elements have been categorized as keys and
attributes, the attributes are assigned to their owning
keys. "Assignment of attributes to keys is accomplished by
identifying the individual data elements that are related to
the attribute beeing asssigned, and assigning the attribute
to the data element that has been identified as a key."
[SHE~76). When an attribute is related to more than one
key, the following criteria for which key to use are
proposed:

"If there is a wide range in the number of times the
attribute 1is wused with each key, assign it to the one with
which it is most frequently used. Refer back to the list of
task/data relationships and identify the task that created
and deleted the attribute. Assign the attribute to the key
present in those tasks. If different keys were used in
creation and deletion tasks, assign the attribute to the key
present in the task in which it was deleted." [SHE-76].

When all attributes has been assigned to keys, the next step
is to analyze relationships between attributes assigned to
the same key. Attribute-Attribute relationships represent
unqualified dependencies between attributes. For example

the attribute "Total Balance Owned" may own another
attribute "30-Days Past Due Balance" which implies that the
attribute "30-pDat Past Due Balance" will never exist unless
"total Balance Owned" exists. In order to determine
relationships between the attributes of a key, the tasks
‘that created the attributes are identified and ordered in
the sequence in which they are performed. From such a
ordered sequence of tasks, the order in which the attributes
are created and the unqualified dependencies . between the
attributes can be determined. When the dependencies are
identified they are documented in hierarchical diagrams:

Accounts Receivable Number

| .
| T : 1
Age Name Address Entity Number CurrentiBalance

‘ 30-Day Past Due

i] 7
Item Amount Gross

Number Purchased Price
l 60-Day Past Due
Tax
Net Price

Fig A.12 Hiearchical Diagram of Key's Attributes
from [SHE-761

After attribute-attribute relationships have been identified
and documented, key-key relationships are determined. Four
types of relationships between keys are identified:

"Owner : In many situations a key may be totally
meaningless unless it is related to another key. This type
of key relationships 1is termed Owner, because the
dependent key must always be related to the owning key in
order to exist in the data base.

Status: Groups of data may take on different
characteristics because their use and meaning change over a
period of time. Under these conditions, a group of data may
be owned by one of several different keys, depending upon
its current status.

Regulations: Oftentimes, outside regulatory agencies
determine the way in which part of a business is conducted.
The rules enforced by such agencies normally create
relationships between keys. These relationships are termed
requlatory relationships.

Policies: The policies of an organization (i.e. major
rules that regulate how different areas of the business must
function either separately or together) represent yet

another type of relationship between keys. Policy
statements usually fall into two categories: organizational
and functional. Functional policies tend to be fairly
static over a period of time while organizational policies
are not wusually included in developing key relationships."”
EsuE-761.

Identification of key relationships is stressed as the most
important part of the logical data base design. and it is
proposed that each of the four types of relationships are
identified separately.

In the very last step of the logical data base design the
limitations and capabilities implied by the logical design
of the data base are verified with the users.

8. Smith and Smith

This summary is based on thereport "Data Base Abstraction:
Aggregation and Generalization" [SMI-76]. The approach
presented 1is primarily a model, based on an extended
relational data model, for representing a conceptual data
structure. = However, the process of aggregation and
generalization, suggested in thereéport, is here regarded as
essential to conceptual level data base design and therefore
motivates that the approach 1is included in this study of
method approaches.

8.1 The Context

The conceptual data structure corresponds to an abstraction.
"An abstraction of some system is a model of that system
in which certain details are deliberately omitted. The
choige of the details to omit is made by considering both
the intended application of the abstraction and also its
users" [SMI-76].

There are two fundamental types of abstraction; aggregation
and generalization. "Aggregation 1is an abstraction which
turns a relationship between objects into an aggregate
object. Generalization 1is an abstraction which turns a
class of objects into a generic object”. When models, i.e.
abstractions, are comprehensive they may be structured as
hiearchies of abstractions. Such a hierarchy of
abstractions makes it ©possible to control the number of

details included at each leve. An advantage of this is the
possibility to let different users interact with the model
at different levels of the hierarchy and thus ignoring the
abstractions and details at higher levels in the hierarchy.

In this approach, an extention to Codd's relational data
model is proposed. This extention makes a relational schema
appropriate for representing hierarchies of aggregation and
generalization abstractions. A structuring dicipline for
arriving at such a relational data base schema is outlined.

8.2 Characteristic Ideas

The authors point out that data base research almost
exclusively has been concerned with aggregation abstractions
while artificial intelligence research has been concerned
with generalization abstractions. The approach taken is to
combine aggregation and generalization into a structuring
dicipline and to extend the relational data model so that it

can represent hiearchies of abstractions.

The term generalization is used in the following way:

"a generalization is an abstraction which enables a class of
individual objects to be thought of generically as a single
named object".

The importance of generalization in data base design is
stressed, referring to its importance in conceptualizing
real world phenomena and as a basis for natural language.
In a data base it is important that generic objects can be
explicitely represented. Explicit naming of generic objects
allows the following capabilities:

" 1) the application of operators to generic objects;
ii) the specification of attributes of generic
objects; and
iii) the specification of relationships in which
generic objects participate”.

In order to represent hierarchies of generalization and

aggregation abstractions in the relational data model, t@is
model is proposed to be extended so that domains may consist
of relation names.

8.3 Modeling Concepts

"A generalization is an abstraction which enables a class of
individual objects to be thought of generically as a single

named object".
Generic objects may have attributes attached to them.

Such

attributes may be "summaries" of attributes of the objects
being generalized, e.g. attributes that all objects bedng
generalized into a generic object have. Attributes of
generic objects may also be specific for the generic object
and not exist for the individual objects. Generic objects
may participate 1in relationships with other objects.
Hierarchies of generic objects can be created as generic

objects may be generalizations of other generic objects.

vehicle

water

& land vehicle
" vehicle .
river
craft
ocean
1 rail vessel costal
piane . vehicle vessel
air
frighter truck
liner
passenger
aircraft submarin

car

Fig. A.13 "A generic hierarchyover vehicle from [SMI-76].

Generally, generic hierarchies do not necessarily have to be
trees, i.e. a generic object may be an immediate descendant

of more than one generic object. In such casesy

the

descendent generic object has been generalized in more than

one way.

When the generic hiearchies are to be represented by
relations, it is required that the intermediate descendents
of any node are partitioned into groups. "Each group must
contain generic objects which have mutually exclusive

classes. In practice, this grouping can usually be
quite easily from semantic considerations." [SMI-767F.

made

Mutually exclusive groups sharing a common parent are called
clusters. A cluster is said to belong to its parent generic
object. Each cluster must hav a semantically meaningful
name, that describes the generic objects included in the

cluster.

A generic hierarchy is represented as a hierarchy of Codd
relations; "We will create one relation for each generic
object in the hierarcy. Assume G is a generic object such
that:

i) I is the class of individual objects generalized

to G,

ii) Ai,...,An are the G attributes, and
iii) C4s+.-.,Cm are the names of clusters belonging to G.
G is represented by the Codd relation:

G: Al An C1 Cm
vy co vy Vel | oo Voot
where:
i) there is one and only one tuple for each individual
in I,

ii) if an ‘individual has a value vy for attribute Aj,
then its tuple containsvy in domain Aj,
iii) if an individual is generalizable to generic object
Vi+§ in domain C and
iv) if an individual is not generalized to any generic
object in cluster Cj, then its tuple contains blanks(-)
in domain Cj". [sMI-761.

A structuring primitive for representing generalizations as
well as aggregations is proposed. The primitive which is
called the relation structure is defined:

var R : relation key (selectorlist)
Sl : {key of} Rl;

s {kj_zg_f} R}

: {key of} Rn+l = [Rll"""’Rjkl]‘;‘

sn+m: {key of} Rn+m = {Rm+l"""Rmkm] H

end

where:

i) R1$l<1<n+m) is either a relation 1dentifier (in
wnich case "key of" must appear) or a

non-relational type identifier (in which case
"key of" must not appear),

ii) selectorlist is a sequence of sj's geparated
by commas,

iii) each Rj is a relation identifier,

iv) for each ng its key domains must be the same
as the key domains of R (possibly excluding Sp.j).

Five semantic conditions are added to the four syntactic
requirements:
i) each R-individual must determine a unique R-individual
(l<i<n+m) ;
ii) no two R-individuals determine the same set of R-~indi-
viduals for all Rj named in selectorlist;

iii) gaC? Rjj-individual must also be an r~-indivi-
ual;

iv) each R-individual classified as le must also
be an R; 3~1nd1v1dual-

v) no le 1ndlv1dual is also an Rjk-individual,
for j#k.

A relation R is said to be well-defined if its definition
satisfies all the syntactic and semantic conditions. The
naming of the relation is stressed as the most crucial part
of the definition as a relation which can not be given a
name which is in common usage in the application area is not
a well-defined relation.

8.4 Method Approach

The basic activities in real-world modeling are aggregation
and generalization. An important assumption is that
aggregation and generalization are independent activities.
A graphical representation for relation definitton 1is
proposed. In this representation, aggregation and
generalization are represented as two orthogonally planes.
Aggregation is represented in the plane of the page and
generalization in the plane perpendicular to the page.

aggregation
R : R :
A 1k mkm
generaliza-
tion
S
Gomains / \
domains —~ . .,
Ry: Rotm®

-

Fig A.14 "A graphical notation for the relation structure”
from [SMI-76] ’

‘"High level aggregate objects will appear towards the top of
the page and low-level aggregate objects towards the bottom.
Aggregation therefore occurs up the page. High-level

generic objects will appear (in a simulated three
dimensional space) in the surface of the page and low-level
generic objects will appear below the surface.

Generalization therefore occurs out of the page" H{SMI-76).

The modeling approach is to start with a high level abstract
object and then to stepwise decompose this object along the

generalization and the aggregation planes.
An example: suppose the initial model is an abstract object

"employee”

emplcyee:

Fig. A.1l5 from [SMI-76]

The abstract object "employee" can be decomposed - along the
generalization 'plane into the generic objects "trucker!,
“secretary" and "engineer":

engineer:

secretary:

trucker:

employee:

Fig. A.1l6 from [SMI-76]

Along the aggregation plane, the abstract object employee
can be decomposed into other (eventually) aggregate objects
as for example into "employee ID*", "name", "age" and
"employee type". o

engineer:

secretary:

trucker:

employee:
i
emp.ID# name age emp. type

Fig. A.17 from [SMI-76]

A:42

The decomposition is continued alternatively along the
generalization and the aggregation planes. Along the
aggregation pane, the decomposition ends when each component
at the 1lowest level is thought of as a whole. Along the
generalization plane the decomposition ends when there is
no -~ from an application point of view - need for, or
inteiest in any sub-types of the components at the lowest
evel.

9. Sglvberg

In the report"A multi~level procedure for design of file
organizations" [AUE-76], Auerdal and S@glvberg have presented
an approach to data base design. The first steps of the
procedure have been elaborated by Sdlvberg in the report "A
model for specification of phenomena, properties and
information structures" [8dL-77A}. This report does concern
the conceptual level data base design.

9.1 The Context

The multilevel procedure:for design of data base systems
contains as main steps:

"~ Specification of the information processing problem.
- Transformation of the specified information struc-
tures to a data structure which satisfy retrieval

reguirements.

- Modification of the data structure to fit a parti-
cular data base management system.

- Physical implementation of the modified data struc-
ture using the chosen data base management system.

- Evaluation of the final solution using performance
analysis".

The model for specification of phenomena, properties and
information structures, proposed by Sglvberg, concerns these
two first steps in this procedure. The specification model
consists of interrelated models for specification of:
"- relevant phenomena
- descriptors, which represent ranges of phenomena -
properties
~ information objects, which convey information about
particular properties about particular phenomena
- processes, which transmit and transform information
about relevant phenomena”.

The overall specification model is illustrated:

PHENOMENA
(" MODEL \

GLOBAL ELEMENTARY DATA BASE
attribute FILE H STRUCTURE
COMMUNTTY STRUCTU
PERSPECTTVE . RE
DISCRIPTOR
STRUCTURE
]
type ELEMENTARY PROGRAM
A PROCESS s STRUCTURE
STRUCTURE
\\ INFORMATION/
STRUCTURE
LOCAL ELEMENTARY SOFTWARE
APPLICATION : SYSTEM SYSTEM
PERSPECTIVE PROCESS

STRUCTURE

INFORMATION
SYSTEM

o
P

v

1
[=

USER-DIRECTED INFO-SYSTEM DESIGN QOMPUTER DIRECTED SOFIWARE DESIGN

CRACKING . .. SYNTHESIS

) B

v

Fig. A.17

"Features of a system specification model"
from [S@L-77A 1.

9.2 Characteristic ideas

The same piece of information can be represented in
different ways. The over-all model <contains different
representations of the same information. The information
system (see fig A.l17) containing the information structure
and the process structure, corrsponds to a representation of
the information (to be) contained in the data base system
made from a user point of view, i.e. with the purpose of
easy user comunication. The data base structure and the
program structure together contain the same information as
the information system, but the information is here
structured from the data base management system point of
view, i.e. with the purpose of optimal computer processing.
In order to transform the information system representation

Azd4

into a data base system representation in a way that retains
the semantics of the information represented by the two
different structures, a common "semantical" model, to which
both structures are related is introduced. This
"semantical” model <consists of the phenomena model and the
descriptor structure (see fig. A.17).

The transformation from information systems structure to the
data base management system structure is made in two main
steps. First the information structure is decomposed
("cracked") into atomic parts. Next, these atomic parts are
synthesized into the data base management system structure.
The elementary file structure and the elementary process
structure constitute the intermediate structures, i.e. the
structures consisting of the atomic parts.

Modeling concepts are proposed for the phenomena model, the
descriptor structure and for the information and process

structures.

9.2 Modeling Concepts

The basic concepts used in the phenomena model are
entitysets, and a connection is a (user defined) binary
relation between entitysets, and does therefore represent
an abstracted set of phenomena, each individual phenomenon
being that one phenomenon in the connections omain is
related to one phenomenon in the connections range. The
formation of connections is the result of a process of
abstraction of relations between phenomena, based on a
recognition of similarities between these relations".
[sgr-77a]. [S@L-77Al.

Quantitative aspects of entitysets and connections can be
specified. For entitysets, the size, i.e. the number of

members, are specified. For connections, for example, the

correspondence, 1i.e. the number of elements in the range
which are related to one element 1in the domain can be
specified. A formal notation for the specification of

entitysets and connections is introduced.

In the descriptor structure, properties of the phenomena in
the phenomena model are specified. Descriptors can
represent value configurations of varying complexity. A
descriptor may be a value set, a Cartesian-product between
value sets. A member of a descriptor may be a member of
several alternative descriptors or each member of a
descriptor may be a set of members of another descriptor.

PHENOMENA
(/’ MODEL ‘\\\\\\\\\

CLOBAL ELEMENTARY DATA BASE
attribute FILE M STRUCTURE
COMMUNITY STRUCTURE
PERSPECTIVE .
DISCRIPTOR
STRUCTURE
]
type ELEMENTARY PROGRAM
Iy PROCESS STRUCTURE
STRUCTURE
\N\INFORMATION/
STRUCTURE
LOCAL ¥ ELEMENTARY SOFTWARE
gzgggigigg SROCESS A SYSTEM SYSTEM
STRUCTURE
INFORMATION

SYSTEM

2 b 2,
PV &

USER-DIRECTED INFO-SYSTEM DESIGN COMPUTER DIRECTED SCFTWARE DESIGN

CRACKING , . SYNTHESIS

A

S

Fig. A,17

"Features of a system specification model™”
from [S@L-77A 1.

9.2 Characteristic ideas

The same piece of information can be represented in
different ways. The over-all model contains different
representations of the same information. The information
system (see fig A.l7) containing the information structure
and the process structure, corrsponds to a representation of
the information (to be) contained in the data base system
made from a user point of view, i.e. with the purpose of
easy user comunication. The data base structure and the
program structure together contain the same information as
the information system, but the information is here
structured from the data base management system point of
view, i.e. with the purpose of optimal computer processing.
In order to transform the information system representation

into a data base system representation in a way that retains
the semantics of the information represented by the two
different structures, a common "semantical" model, to which
both structures are related is introduced. This
"semantical" model consists of the phenomena model and the
descriptor structure (see fig. A.1l7).

The transformation from information systems structure to the
data base management system structure is made in two main
steps. First the information structure is decomposed
("cracked") into atomic parts. Next, these atomic parts are
synthesized into the data base management system structure.
The elementary file structure and the elementary process
structure constitute the intermediate structures, i.e. the
structures consisting of the atomic parts.

Modeling concepts are proposed for the phenomena model, the
descriptor structure and for the information and process

structures.

9.2 Modeling Concepts

The Dbasic concepts used in the phenomena model are
entitysets, and a connection is a (user defined) binary
relation between entitysets, and does therefore represent
an abstracted set of phenomena, each individual phenomenon
being that one phenomenon in the connections omain is
related to one phenomenon in the connections range. The
formation of connections is the result of a process of
abstraction of relations between phenomena, based on a
recognition of similarities between these relations”.
{spL-77a]. [spL-77Al.

Quantitative aspects of entitysets and connections can be
specified. For entitysets, the size, i.e. the number of
members, are specified. For connections, for example, the

correspondence, 1i.e. the number of elements in the range
which are related to one element in the domain can be
specified. A formal notation for the specification of

entitysets and connections is introduced.

In the descriptor structure, properties of the phenomena in
the phenomena model are specified. Descriptors can
represent value configurations of varying complexity. A
descriptor may be a value set, a Cartesian-product between
value sets. A member of a descriptor may be a member of
several alternative descriptors or each member of a
descriptor may be a set of members of another descriptor.

A:45

In the descriptor structure, attributes and identifiers of
phenomena classes are specified.

"An attribute is a partial function from a phenomena class
(i.e. entityset or connection) into a descriptor". "An
identifier is a partial, one-to-one, function from an
entityset into a descriptor. One entityset can have more
than one identifier." {S@L-77].

The phenomena model and the descriptor structure are of a
global nature. The model is shared by all users and exists
independent of any specific applications.

The information system consists of information structures
and process structures. "Information structures are normally
user-oriented, such that information that "naturally belongs
together" 1is represented in one and the same structure.
What "naturally belong together" is dependent upon is the
intended use of the information.

Retrieval and updating processes are specified relative to
the user-oriented information strucures, so the form of the
information system can be quite different from what one
would expect by looking at the phenomena model. The normal
situation is that information about several phenomena of

different classes, is integrated 1in one information
structure, because this integrated information "belongs
naturally together® for the intended application."
[sdL-77a 1

Basic modeling concepts proposed for the information
structures are information sets, groups and items.

"An information structure is a tree structure, the leaves of
the tree structure being items. An information object is
analogue to a program varible, in that it 1is a «c¢lass of
{(structured) values, ordered in a time seguence.
Information objects represent the values that are stored and
transmitted in the information system at one particular
point in time". 1In parallel with the specification of the
information structures, the process structures are
developed. "The information object which 1is retrieved or
updated 1is <called the target of the retrieval/update
process while the transaction which is the reason for
performing the retrieval/updating, is called the process'
request". Four different classes of processes can be
specified; retrieve! insert, change and delete.

The information structure and the process structure are
representations of the information system. The information
structure conveys information about properties and behavior
of phenomena, and thus the information structure is related
to the phenomena model and the descriptor structure. This
relation is called the ‘"contextual relationship" and

A:46

concepts for explicite description of the contextual

relationship are proposed. The main "contextual" systems
relations are called foreach, foreone and selector,
where: -

foreach is a one-to-one function from an information

foreach is a one-to-one function from an information
set or repeating group, to a phenomena class
(i.e. entityset or connection),

foreone is a relation which connects one group or
item, thus implying that the group or item
convey information about only one phenomenon
of this class,

selector relates an information object, which is not
the root node of an information structure, to
a connection. The selector related connection
represents the operator which determines which
phenomena in the connections range, the infor-
mation is about.

9.4 Method approach

The over all specification model (fig A.17) illustrates
the different models which are the results of a number
of steps within a method approach. First the phenomena
model and the description structure are designed. "In
- general, several interest groups and persons, of dif-<:.
ferent background and of different ability, are involved
in the design of information ‘'systems. Those different
persons and groups, the "user community', have an obvious
right to have their say, when decisions about systems
features are made. Through a discussion process one
strives to agree on a classification of phenomena, based
on decisions of ignoring differences between phenomena
within the same class". Thus, the phenomena classes are
designed on the base of the relative importance of pheno-
mena and their properties.

After the phenomena model and the descriptore structure have
been specified, the information structures and the process

structures appropreate for the individual applications are

determined and formally specified. The information
structures are contextually related to the phenomena model
and the descriptor structure. °

The following steps of the design procedure are summarily
described as "cracking" and synthesis. "Developement of an
elementary information systems sturcture, first proposed by
Langefors, 1is introduced as one step of the data system
design procedure. An elementary information object 1is the
smallest information structure that can be unambigously
interpreted with regard to its meaning, within the
contextual framwork provided by the phenomena model. An

A:47

elementary process retrieves andupdates the content of one
elementary information object. The data systems design
procedure can be seen as consisting of a cracking of the
user oriented system structure to its elementary, "atomic”,
parts, followed by a synthesis of these elementary parts,
aimed at <creating a performance~optimal data base and
program system." [S8L-77A]

	omslag_sani_opt
	straightened_och_OCR

