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ABSTRACT: Generalised diffeomorphisms in double field theory rely on an O(d, d) structure
defined on tangent space. We show that any (pseudo-)Riemannian metric on the doubled
space defines such a structure, in the sense that the generalised diffeomorphisms defined
using such a metric form an algebra, provided a covariant section condition is fulfilled.
Consistent solutions of the section condition gives further restrictions. The case previously
considered corresponds to a flat metric. The construction makes it possible to apply double
geometry to a larger class of manifolds. Examples of curved defining metrics are given.
We also comment on the role of the defining geometry for the symmetries of double field
theory, and on the continuation of the present construction to the U-duality setting.
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Generalised geometry (see refs. [1-38]) has arisen as a means to geometrise duality
symmetries. By using extended space-times, reduced to the physical ones by a section
condition, the local symmetries of gravity and tensor fields unite in the generalised diffeo-
morphisms. This permits not only a more symmetric formulation of the massless degrees
of string theory or M-theory, but also a situation where, for certain backgrounds, dual-
ity symmetries are understood from a manifestly geometric perspective, and where it is
possible to move beyond strictly geometric backgrounds.

Recent work [39-43] has shed more light on global questions of generalised geometry.
In particular, the global questions about the structure of extended manifolds have been
asked and partially answered, although there are remaining issues. This is closely related
to the original main purpose of the programme, namely to make the appearance of duality
symmetries as manifest as possible. It is important to note that these should not be
built into the formalism as global symmetries, but rather arise as “generalised isometries”,
special symmetries arising in special (e.g. toroidal) backgrounds, just as isometries arise in
in ordinary geometry. It is by now known [7, 8, 41, 43] that the full duality group can not
be obtained this way, at least not with the present formalism and level of understanding.
As we will see, one way forward may be to include ordinary diffeomorphisms.

The extended manifolds have however so far been restricted to manifolds equipped
with a globally defined flat metric. This is because the definition of the generalised diffeo-
morphism transformations involves such a flat metric npsn. This metric defines an O(d, d)
structure on the extended space. In the following, we will examine to what extent the
defining metric can be chosen differently. If one wants to consider not only generalised
diffeomorphisms (under which the defining metric is invariant), but also ordinary diffeo-
morphisms, this becomes necessary, already for the case of the flat metric.

The usual definition of the double diffeomorphisms contains a parameter ¢ on the
doubled space. Fields transform under double diffeomorphisms so that, in addition to
the translation generated by & = €M, they are rotated by an so(d,d) transformation
generated by a — af, where ap/N = 9y, Here, the transpose is defined using a constant
metric 175/, invariant under O(d, d) C GL(2d), such that (a*) ™ = naypnN%0oE". Acting
on a covector (which is equivalent to a vector, using 7), the standard form of a double
diffeomorphism thus becomes

LV =((+a—ad)V=(L—ad)V. (1)

It is then straightforward to verify that, when all fields, including the transformation
parameters, obey the section condition

nMNoy @y =0 (2)

(the “®” notation meaning that the two derivative may act on the same field or any pair),
the commutator of two double diffeomorphisms is again a double diffeomorphism:

[Le, Ly] = Ligny »
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where [§,n] = %(ﬁgn —L§). )



In ref. [41], this was elucidated by the observation that

1€, 7] = [&; ] + xen (4)

where Xéwm = %(—fNaMnN +nNoM¢y) is a non-translating parameter, i.e., one for which

MOy = 0 using the section condition. Therefore, £ = A¢,y is a specific local so(d, d)

X¢,m
transformation, which also turns out to be nilpotent. Using also by~ = 9™, the explicit
form of A is

Ae,y = —ab’ + ba' . (5)

The commutator can thus also be written
[Le, L] = 5[5777] + D¢y (6)

This observation was used in ref. [41] to explain the abelian gerbe structure encoded in
double diffeomorphisms.

We thus observe that the double diffeomorphisms rely on the existence of a flat metric
Ny - This implies no restriction locally, but limits the choice of double manifolds to those
globally allowing such a metric structure.! These of course include tori, which are of special
interest since they lead to the ordinary (discrete) T-duality. It seems to be of no immediate
interest to introduce curvature locally, since the defining metric is non-dynamical, but it
may be important to be able to include topologies that demand a non-flat metric, or indeed
also in the flat situation. This is the main subject of this paper.

A local O(d, d) structure is induced by any metric Hy;y. We therefore ask the ques-
tions: To what extent is it possible to use a (non-flat) metric H on the double space?
What are the restrictions on such a metric implied by the existence of an algebra of double
diffeomorphisms? As we will see, any (pseudo-)Riemannian metric (of signature (d,d)) is
algebraically allowed, and further restriction follow only from the existence of solutions to
the section condition.

We would like to stress that the introduction of the metric H has nothing to do with
equipping the double manifold with a generalised metric, containing the metric and B-field
on a subspace obtained by solving the section condition. The metric H is thought of as an
ordinary metric on the double space, whose purpose is to define a local O(d, d) structure.
It will define an ordinary torsion-free affine connection I' and a Riemann tensor R.

The Ansatz we will use for the double diffeomorphisms is the natural one that reduces
to eq. (1) when H = 7. In order to obtain covariance, we should then use covariant
derivatives D, containing I', throughout, and use the covariantly constant metric H to
raise and lower indices (i.e., to define the transpose of a matrix). Consider therefore a
transformation defined as

LeVi = ENDnVig + (a — a' )™ Viy = (Lg — a ) Vi (7)

where ayN = DM§N and (at)MN = HMPHNQCLQP. As usual, the connection terms in the
Lie derivative cancel, and the choice of defining metric is only reflected in the last term. It

! This of course only implies if one insists on the possibility of applying ordinary diffeomorphisms.



is clear that H itself is conserved by such a transformation (extended to tensors), since it
is covariantly constant and

,CgHMN:Q(a*CLt)(MPHN)P:O. (8)

In order to check the algebra of these generalised diffeomorphisms, we also need a section
condition, which will be the natural generalisation of eq. (2), namely

HMNDy @ Dy =0. (9)

Note that there is no need of a section condition involving the metric, since it is covariantly
constant.

Let us now commute two transformations of the type (7). Noting that
[Le, L) = [Le — a', L, — '] (10)

(where of course also b is defined with the covariant derivative, by = Dyn'Y), it becomes
clear that any obstruction containing curvature will reside in terms containing a’ or b*. A
careful calculation, now keeping track of the order of covariant derivatives, yields

([Le, L] = Lig)ar™
= —[a,b"]n™ + [b, 'l + P [DY, Dplna — 0" (DY, Dpléns (11)
= (—abt + bat)MN —+ QRNPMQf[P’I?Q] .

In the second step, the section condition has been used in the form a’b = 0 etc. The question
now is whether this remainder can be written as a non-translating transformation £, as
in the case of flat metric. Consider a parameter Xé{\j[n = %(—SNDMHN +nVNDM¢y). Then

1 1
(Bgn)ur™ = (L™ = (=abf + ba" )™ = 5" (D, D¥Jp + 5 (Dar, DVep

(—abt + bat)MN — RMNprPnQ .

Comparing egs. (11) and (12), we see that they are equal modulo the (vanishing) torsion
Bianchi identity R[pQM]N = 0.

This shows the somewhat surprising result that there is no curvature obstruction to
the existence of an algebra of double diffeomorphisms. The metric H defining the local
O(d, d) structure can be taken as any (pseudo-)Riemannian metric. The commutator is
still formally given by eq. (3) or eq. (6), although the definition of the bracket [-,-] is
metric-dependent, so our new algebras are most likely non-isomorphic to the flat one.

Once we have established the formal closure of the algebra (strictly speaking, algebroid)
of double diffeomorphisms with the defining metric H, it is important also to investigate
possible solutions of the section condition. Solving the section condition amounts to finding
a d-dimensional isotropic subspace of tangent space, spanned by the m directions in a split
XM — (z™ 4™), such that D = 0 on all fields. Acting with further covariant derivatives
gives the integrability condition Rj;np® = 0. If this condition is fulfilled there will be a



class of choices of coordinates where Dy, = 9. Examples of such metrics are given by the
pp-wave-like space-times

ds? = HyndXMdXY = (@) dz™dz™ + 26,mda™dy™ (13)

with a set of d light-like Killing vectors Oy,. It is not obvious to us whether this provides
an exhaustive list of allowed defining metrics. In any case, this class is general enough to
give room for any topology of a physical compactification space (with coordinates z™).

There should be analogous structures in exceptional extended geometry. Unlike the
case of doubled space, both the generalised diffeomorphisms and the section condition
involve a structure which is not a metric, but a tensor defining an E,,,) X R* structure,
the so called Y tensor [29]. The transformations look formally the same as in eq. (1), but
with a! replaced by a¥, with components (a¥) " = Yy p%Vag?, and the “fat” section
condition reads Yy nT90p ® 0o = 0. The Y tensor does not factorise into a product of a
metric and its inverse, so the structure sought for is not a metric structure. Nevertheless,
it should be possible to pursue a similar investigation in these cases.

We would finally like to comment on the symmetries of double geometry (the remarks
apply to extended geometry in general). It is known that the generalised diffeomorphisms
are not general enough to accommodate overlaps that would give truly non-geometric solu-
tions [7, 8, 41, 43]. This is because of the section condition. Once a solution to the section
condition is chosen, it is preserved by the generalised diffeomorphisms, which effectively
prevents some duality transformations, namely those that would act on the extended space
in way that changes the solution to the section condition (the section condition itself is
of course preserved). Therefore, the whole (discrete) T-duality group of some compactifi-
cation can not, with the present understanding, be constructed as generalised isometries.
(This situation is by no means improved by the construction of the present paper, rather
the opposite, since the possibilities of changing the section condition tend to be fewer.)

A proper understanding of the section condition, and of possible ways to relax it (see
e.g. refs. [44-47]) is thus one of the key problems in extended geometry. A final solution
to this problem will probably have to await a formulation where the section condition is
not applied “by hand”, but arises dynamically, as does the string theory level matching
condition. In the meantime, it is reasonable to expect that in such a formulation, although
the defining metric (or exceptional structure) is not dynamical, its symmetries, which in the
case of double field theory are the isometries of H, can be included as gauge symmetries.
If this is the case, this will suffice to fill out the T-duality group. We note that, while
ordinary diffeomorphisms in general do not have good commutators with the generalised
diffeomorphisms L, since they change the defining metric, isometries do. If uM is a Killing
vector of H it is straightforward to check that [Ly, L¢] = Ly, ¢ (the analogous statement
for a finite isometry is obviously true as well). Here, u™ does not need to obey the
solution to the section condition, and it is only Killing vectors not obeying it that generate
transformations not contained in the L’s. Hopefully, this way of constructing the full
duality group can be a first step in resolving the dilemma of obtaining duality symmetries
from extended field theories.
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