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Abstract 

Perovskite-structured oxygen carriers of the type CaxMn1−yMyO3−δ (M = Mg, Ti) have been 

investigated for the CLOU process. The oxygen carrier particles were produced by spray 

drying and were calcined at 1300°C for 4 h. A batch fluidized-bed reactor was used to 

investigate the chemical-looping characteristics of the materials. The effect of calcium 

content, dopants (Mg and Ti) and operating temperature (900, 950, 1000 and 1050°C) on the 

oxygen uncoupling property and the reactivity with CH4 in presence and absence of SO2 was 

evaluated. In addition, the attrition resistance and mechanical integrity of the oxygen carriers 

were examined in a jet-cup attrition rig. All of the investigated perovskite-type materials were 

able to release gas phase oxygen in inert atmosphere. Their reactivity with methane was high 

and increased with temperature and calcium content, approaching complete gas yield at 

1000°C. The reactivity decreased in the presence of SO2 for all of the investigated oxygen 

carriers. Decreasing the calcium content resulted in a less severe decrease in reactivity in the 

presence of SO2, with the exception of materials doped with both Mg and Ti, for which a 

higher resistance to sulphur deactivation could be maintained even at higher calcium contents. 

The drop in reactivity in the presence of SO2 also decreased at higher temperatures and at 

1050°C, the decrease in the reactivity of the Mg- and Ti-doped material was minimal. Sulphur 

balance over the reactor system indicated that the fraction of the introduced SO2 that passed 

through the reactor increased with temperature. It was shown that it is possible to regenerate 

the oxygen carriers during reduction in the absence of SO2. Most of the materials also showed 

relatively low attrition rates. The results indicate that it is possible to modify the operating 

conditions and properties of perovskite-type oxygen carriers to decrease or avoid their 

deactivation by sulphur.  

 

Keywords: CO2-capture; chemical-looping combustion (CLC); chemical-looping with oxygen 

uncoupling (CLOU); oxygen carrier; perovskite-structured, sulphur deactivation. 

 



1. Introduction 

The chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling 

(CLOU) are innovative processes for efficient combustion of hydrocarbon fuels with inherent 

separation of carbon dioxide.1-3 Chemical-looping has the great advantage of capturing CO2 

without the energy and cost penalties resulting from gas separation, which cannot be avoided 

in other CO2 capture technologies.2, 4, 5 Until now, CLC has been successfully demonstrated in 

a number of units of sizes up to 120 kW6 and reviews of current achievements in CLC are 

given by Lyngfelt,6-8 Hossain and de Lasa9, Adanez et al.10 and Fan et al.11 

In the fuel reactor of a chemical-looping system, a gas-solid reaction is preferred over a solid-

solid reaction due to the much faster reaction rates. This is particularly important with respect 

to applications for solid fuels, which means that solid fuels must be gasified initially with 

steam or CO2 to produce CO and H2 gases which can then react with the solid oxygen carrier 

material.12-16 Since the gasification of a solid fuel is a rather slow process, the gasification step 

in CLC becomes the rate-determining step in the overall process. Therefore, another 

technique can be used for solid fuels which is called chemical-looping with oxygen 

uncoupling (CLOU).17 In CLOU, the oxygen carrier releases gaseous oxygen which can then 

react directly with the solid fuel as in normal combustion. For this reason, the gasification 

process can be avoided in CLOU. The source of the gaseous oxygen in CLOU is the oxygen 

carrier material. Demonstration of the CLOU process18 has proven the advantage of this 

technology over the CLC process, where slow gasification is an imperative step.19 Moreover, 

the solids inventory in the fuel reactor of the CLOU process would be lower than in CLC due 

to faster fuel conversion,20 thus limiting the need for a carbon stripper or additional 

treatments. In CLOU, thermodynamic equilibrium governs the uncoupling of gaseous oxygen 

from the oxygen carrier and the subsequent oxidation of the reduced oxygen carrier to its 

initial state in the air reactor. Therefore, a required property for the oxygen carrier in CLOU is 

that it must be able to both react with O2 (oxidize) and release O2 at temperatures suitable for 

the process, i.e. 800 to 1200°C. 

The CuO−Cu2O oxide pair is one of the prominent monometallic oxygen carriers suitable for 

the CLOU process, along with Mn2O3−Mn3O4 and CoO−Co3O4 oxide pairs.21-23 For pure 

Mn2O3−Mn3O4, reoxidation is restricted to lower temperatures (below 800°C), which are of 

less practical importance for a realistic CLC unit. It is however possible to overcome this 

thermodynamic constraint by combining manganese oxide with other oxides, for instance Ni, 

Cu, Si, Mg, Si, Fe.21-23 Co-based oxygen carriers are however, less attractive due to cost, 



health and environmental issues. A third group of manufactured oxygen carriers suitable for 

the CLOU process are ABO3 perovskite-type materials.24-34 These materials can release a 

significant amount of oxygen through, 
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Here δ is the degree of oxygen non-stoichiometry in the perovskite-structured material and 

AR and FR refer to the value of δ in the air and the fuel reactor, respectively. The amount of 

oxygen that can be released or taken up depends on the oxygen partial pressure and the 

temperature in the fuel and the air reactors. The A- and the B-sites can also be doped or 

substituted with other elements, and thus a number of different perovskites can be 

synthesized. One promising group of perovskite-type oxygen carrier materials belongs to the 

calcium manganate (CaMnO3−δ) family and its slightly altered variants, which have shown 

excellent behaviour for gaseous fuel combustion in continuous operation.35, 36 It has also been 

reported that doping at the A- and/or B-sites can significantly affect the oxygen-carrying 

capacity, performance, reactivity and stability of the oxygen carrier.24 

Using perovskite-type oxygen carriers in CLC or CLOU is not without limitations. Sulphur is 

present in significant concentrations in solid fuels and to a lesser extent in natural gas. Several 

studies have investigated the use of perovskite-structured materials in fuel cell applications 

and have found that these oxides can be highly susceptible to deactivation in the presence of 

sulphur-containing compounds.37-42 The general consensus is that the deactivation of these 

materials by SO2 or H2S occurs in two steps. Initially, the sulphur-containing species binds or 

adsorbs to certain active sites by pairing with oxygen ion vacancies. Then, the adsorbed 

sulphur species is converted to sulphite (e.g. CaSO3 or LaSO3) and after that to a sulphate 

species (e.g. CaSO4 or LaSO4).43 Severe deactivation of perovskite-type materials have been 

reported after exposure to even small amounts of SO2 which has been ascribed to phase 

separation and the formation of sulphates.39-42 Substitution with transition metal elements 

such as Ti, Zr, V, Sn, Cu or Cr might make the SO2 bonding with the surface weaker, and 

therefore could result in higher resistance to SO2 poisoning.43, 44 For instance, the presence of 

Mn at the B site increases the reactivity for methane conversion but makes such materials 

more prone to poisoning by SO2, while the presence of Cr at the B site decreases the former 

and increases the latter, owing to the acidic nature of Cr.38 Moreover, the addition of MgO to 

such materials could slow the deactivation process, as MgO preferentially reacts with sulphur, 

thus allowing the perovskite-structured material to avoid deactivation for a longer period of 



time.45 It should be mentioned however, that operating conditions such as oxygen partial 

pressures and/or temperatures in CLC or CLOU are substantially different from those 

encountered in fuel cell applications, which necessitates additional research on this matter. 

Predicting the behaviour of CaMnO3−δ during the chemical-looping combustion of sulphur-

containing fuels is not a trivial task. Earlier studies on the use of limestone (CaCO3) in 

fluidized-bed combustion (FBC) for capturing SO2 provide some information on the possible 

reaction pathways in the system Ca−S−O under oxidizing and reducing conditions,46-48 which 

are summarized in Table 1. It is possible to envisage the occurrence of similar reactions in the 

fuel and the air reactor of a CLC or CLOU unit for perovskite-type oxygen carriers should 

calcium in a perovskite-structured material form CaSO4 or CaS. Of particular importance in 

Table 1 are the decomposition reactions of CaSO4 under reducing conditions, i.e. equations 

(5)−(7), which indicate that CaSO4 is not stable under reducing conditions.  

Figure 1 shows the stability regions of CaS, CaO and CaSO4 as a function of temperature and 

partial pressure of O2 and SO2 using FactSage® 6.3.1.49 It can be readily seen that CaO is 

thermodynamically more stable than CaSO4 and CaS at certain partial pressures of O2 and 

SO2. Worth noting is that the stable region for CaO increases with temperature, thus favouring 

the decomposition of CaSO4 or CaS. 

Figure 1 would be slightly different if CaMnO3−δ was replaced with CaO. While precise 

thermodynamic data on the CaMnO3−δ perovskite-structured materials is lacking, it is helpful 

to consider CaMnO3−δ as being composed of the two individual components CaO and MnO2-δ. 

It is known that a mixture of calcium and manganese oxides of the correct stoichiometry 

spontaneously forms perovskite-type materials during calcination, at least above 1000°C. This 

indicates that CaMnO3−δ is more strongly favoured thermodynamically at these temperatures 

than calcium and manganese oxides. Considering that manganese oxides are inert to sulphur 

species at these temperatures, it is expected that the window of operation without the 

formation of solid sulphur compounds should be larger for CaMnO3−δ than for CaO. 

Research on the tolerance of perovskite-type oxygen carriers to sulphur deactivation in CLC 

or CLOU is very limited. Reactivity testing with CaMn0.875Ti0.125O3−δ as oxygen carrier using 

CH4 at 950°C in the presence of SO2 has suggested a decrease in reactivity, most likely due to 

the formation of CaSO4.50 The aim of this study is to investigate the sulphur tolerance of 

different calcium-manganese-based oxygen carriers in CLOU. The effect of the calcium 

content, dopants (Mg and Ti) and the effect of operating temperature (900, 950, 1000 and 

1050°C) on the oxygen uncoupling property and the reactivity of oxygen carriers with 



methane has been evaluated. In addition, the mechanical and attrition resistance of the oxygen 

carriers has been evaluated in a jet-cup attrition rig. To investigate the influence of sulphur on 

reactivity of oxygen carriers and their oxygen release ability, the oxygen carrier particles have 

been exposed to SO2 during reduction, to simulate the sulphur that would be released from 

sulphur-containing solid fuels. Using an overall mass balance over the reactor system for 

sulphur, it has been possible to evaluate the sulphur tolerance and the degree of sulphur 

deactivation of the investigated materials. 

2. Experimental 

2.1  Preparation and fabrication of the oxygen carriers  

The oxygen carriers prepared in this investigation are summarized in Table 2. The particles 

were manufactured by spray-drying at VITO (Flemish Institute for Technological Research, 

Belgium) using the intended combination of Mn3O4 (Trimanox, Chemalloy), Ca(OH)2 

(Nordkalk), MgO (MagChem 30, Martin Marietta Magnesia Specialties) and TiO2 (Alfa 

Aesar). Details of the spray drying technique can be found elsewhere.32, 51 The spray-dried 

particles were calcined at 1300°C for 4 h and were then sieved through stainless steel screens 

to yield particles in the range of 125−180 and 180−250 µm. 

2.2 Characterization of the oxygen carriers 

The crystalline phases of the oxygen carriers were identified using powder X-ray diffraction 

(Bruker AXS, D8 Advanced) with CuKα1 radiation. The bulk (tapped) density was obtained 

for particles in the size range of 125−180 µm with a graduated cylinder and a scale. The 

Brunauer-Emmett-Teller (BET) specific surface area was determined using N2-adsorption 

(Micromeritics, TriStar 3000). The crushing strength, i.e. the force needed to fracture a single 

particle, was measured by using a digital force gauge (Shimpo, FGN-5) for particles in the 

size range of 180−250 µm. 30 measurements were made of each sample and the average value 

was chosen as the representative crushing strength. The morphology of the particles was 

examined with an environmental scanning electron microscope (ESEM) fitted with a field 

emission gun (FEI, Quanta 200) and energy-dispersive X-ray (EDX). 

In order to assess the oxygen capacity (RO) of the investigated materials for CLOU, a 

thermogravimetric analyser (Netzsch, STA 409 PC Luxx) was used. Approximately 20 mg of 

a used sample (125−180 µm) from the reactivity experiment in the fluidized-bed rector 

following oxidation in 5% O2 was used. The sample was exposed to high purity N2 with an 

inlet flow rate of 20 mLN/min. The heating rate was a linear ramp of 40°C/min and after 



reaching 1000°C, the temperature was maintained constant for 30 min. Prior to this, the 

thermobalance was calibrated with an empty Al2O3 crucible under identical experimental 

conditions. 

The attrition rate of the particles sized 125−180 µm was measured using a customized jet-cup 

attrition rig,52 which simulates the effects of grid jet attrition and cyclone attrition in a 

circulating fluidized-bed combustor, details of which can be found elsewhere.24, 51 

2.3  Experimental setup and procedure in the fluidized-bed reactor  

A laboratory-scale fluidized-bed reactor system was used for examining the oxygen 

uncoupling behaviour and the reactivity of the oxygen carriers. A more detailed description of 

the reactor system has been presented previously.24, 51, 53, 54 In order to obtain an understanding 

of the degree of deactivation of perovskite-structured oxygen carriers, a mass balance for 

sulphur must be made over the reactor system. However, a major difficulty arose due to the 

high solubility of SO2 in water55 resulting in the partial loss of SO2 in the condensed water 

produced from the conversion of methane during reduction. In the previously used 

experimental setups,24, 53, 54 the exit gas stream from the reactor was led into a condenser to 

remove the water formed during the conversion of methane. In the present study, the 

condenser was replaced with a filter pipe directly after the sampling probe, followed by a 

short heated line. The filter was filled with granulated magnesium perchlorate anhydrous 

(Mg(ClO4)2) as the drying agent in order to dry the effluent stream. Thus, SO2 was prevented 

from dissolving in the water produced during the conversion of methane.  

A summary of the experimental procedure is outlined in Table 3. Initially, the reactivity and 

the oxygen release ability of the materials were investigated. Here, 15 g of the sample sized 

125−180 µm was placed on the porous plate and the reactor was heated to 900°C in 5% O2-

balance N2 mixture in order to fully oxidize the oxygen carrier. The rationale for using 5% O2 

was to determine whether the oxygen carrier could be oxidized in conditions similar to those 

at the outlet of the air reactor in a realistic CLC unit. Hereinafter, the term ‘cycle’ will be used 

to describe a sequence of reduction-oxidation periods. The reducing periods consisted of 

exposures to either an inert (N2) or a fuel (CH4) gas, followed by oxidation with the 

aforementioned 5% O2 mixture. Fuel cycles with 50% CH4-balance N2 for 20 s during the 

reduction period were conducted at the temperatures 900, 950 and 1000°C. Nitrogen was used 

as an inert purge gas for 60 s in between oxidation and reduction periods to avoid gases being 

mixed during the preceding reduction or the succeeding oxidation period. After the fuel 



cycles, inert (N2) gas cycles were conducted at 900, 950 and 1000°C for 360 s, to investigate 

the oxygen release ability.  

In order to investigate the tolerance of the oxygen carrier towards sulphur deactivation, the 

stream of 50% CH4–balance N2 used in the reduction phase was substituted with a stream of 

50% CH4–0.5% SO2–balance N2. Thus, the concentration of SO2 in this stream corresponds to 

5000 vppm which is representative of a low-sulphur coal. The fuel cycles were carried out in 

a similar way followed by inert (N2) gas cycles, with the difference that the order of the 

experimental temperatures was 1000, 950 and 900°C. This was to minimize the deactivation 

process of the oxygen carriers by virtue of lower favourability of CaSO4 formation at higher 

temperatures, as shown in Figure 1. 

To establish reproducibility of the results, all inert gas (N2) cycles and fuel cycles in the 

absence of SO2 were repeated three times, while fuel cycles in the presence of SO2 were 

repeated five times. Thus, the performance of each oxygen carrier was evaluated for a total of 

42 fuel and inert cycles. The flow rate was kept constant at 900 mLN/min during reduction, 

inert and oxidation periods. This flow rate corresponded to a superficial gas velocity, U, in the 

reactor of approximately 9 to 21 and 12 to 26 times higher than the calculated minimum 

fluidization gas velocity, Umf, of the oxygen carrier particles during reduction (with 50% CH4) 

and inert (N2) and oxidation periods (5% O2), respectively. The minimum fluidization 

velocity, Umf, was calculated using the correlation given by Kunii and Levenspiel.56 However, 

it should be noted that due to gas expansion during reduction, the actual velocity in the bed 

was higher, as one mole of CH4 can be converted to one mole of CO2 and two moles of H2O.  

2.4  Data analysis 

When methane was used as the fuel, it was converted to CO, H2, H2O and CO2 during the 

reduction period. The reactivity of a given oxygen carrier was quantified in terms of gas yield 

or conversion efficiency, γ, and was defined as the volume fraction, yi, of fully oxidized fuel, 

CO2, divided by the sum of all the volume fractions of carbon containing gases, i.e. CH4, CO 

and CO2, in the outlet stream, 

COCHCO
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Here, yi denotes the concentration (vol.%) of each respective gas measured with the gas 

analyser.  



The oxygen carrying capacity, OR , of the investigated carriers for CLOU is defined as the 

mass change of oxygen in the samples as follows: 
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where mox and mred are the mass of the oxygen carrier in oxidized and reduced states, 

respectively. 

The mass-based conversion of the oxygen carrier ω is defined as. 

oxm
m

=ω
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where m is the actual mass of the oxygen carrier in the reactor. Since it is not possible to 

measure the mass of the oxygen carrier in the reactor while cycling between different phases, 

a mass balance for oxygen has been made over the reactor system. Consequently, by 

measuring the concentrations of various gaseous species in the gas analyser, the mass-based 

conversion ω of the oxygen carrier can be calculated via 
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where ωi is the instantaneous mass-based conversion at time t1, outn  is the molar flow rate of 

dry gas at the reactor outlet as measured by the analyser, MO is the molar mass of oxygen and 

t0 and t1 are the initial and final times of measurement. 

In order to facilitate a comparison between different oxygen carriers at varying temperatures, 

aveCH ,4
γ , has been used defined as the average of gas yield in Eq. (5) for the period of ω from 1 

to 0.99. 

The total SO2 yield, 
2SOη , due to the adsorption of sulphur and/or reaction with the oxygen 

carrier particles has been determined using a mass balance for SO2 over the reactor system 

via, 
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where inSOn ,2
 are the moles of SO2 introduced to the reactor and outSOn ,2

 are the moles of SO2 

in the effluent during the entire cycle. Thus, 
2SOη = 1 indicates that all SO2 has passed through 

the reactor and is seen by the gas analyser, while 
2SOη = 0 implies that all SO2 has been 

absorbed by and/or reacted with the oxygen carrier particles.  



3. Results and Discussion 

3.1  Oxygen uncoupling of the oxygen carriers 

The oxygen uncoupling profile during an inert gas period is shown as an example in Figure 2 

for C46MTMg at 900, 950 and 1000°C. An inert period at 900°C for sand particles has been 

included in this figure for comparison. Similar to C46MTMg, all investigated materials 

released a substantial amount of oxygen. In this particular case, the oxygen release increased 

with temperature. The oxygen released decreased steadily as a function of time due to the 

oxygen non-stoichiometry, δ, being dependent on the defect chemistry and oxygen partial 

pressure in the ambient, according to Eq. (1), which is typical for perovskite-type materials.24, 

29, 32, 33 There was little difference in the oxygen release profiles during cycling, indicating a 

stable oxygen uncoupling property for all materials. 

To facilitate the comparison of the oxygen uncoupling property among the different 

investigated perovskite-type materials prior to and after fuel cycles in the presence and 

absence of SO2, an average oxygen concentration during the inert phase has been used in 

Figure 3. In order to avoid any influence on the results from the oxygen remaining in the 

reactor from the oxidation phase, the average oxygen concentration has been calculated for 

the inert phase starting from 100 s into the inert period and until the end of the period. The ten 

perovskite-type oxygen carriers have been categorized into three different groups, namely 

undoped, doped with Mg and doped with Mg and Ti, all three groups contained materials with 

different calcium content. It can be observed in Figure 2 that all of the investigated 

perovskite-structured materials were able to release oxygen and therefore have CLOU ability. 

During inert periods following the fuel cycles in the absence of SO2, the undoped and the Mg-

doped materials showed the same trend of an increase in the average oxygen concentration 

with a rise in the temperature from 900 to 950°C. However, for both of these materials, the 

average oxygen concentration at 1000°C fell below that at 900°C, suggesting that it was not 

possible to fully oxidize these materials at 1000°C. The materials doped with both Mg and Ti 

showed an increase in the average oxygen concentration with a rise in temperature from 900 

to 1000°C. 

It can also be seen that, in general, lowering the calcium content in the perovskite-type 

materials decreased the average oxygen concentration during the inert periods. In the inert 

periods following reduction in the presence of SO2, all perovskite-type materials showed an 

increase in average oxygen concentration in the inert period with a rise in temperature. 



However, for undoped and Mg-doped materials, the average oxygen concentrations were 

considerably lower than the inert periods following a reduction in the absence of SO2. Thus, it 

can be inferred that SO2 had degraded the oxygen uncoupling properties of the investigated 

materials. Materials doped with both Mg and Ti materials showed no substantial difference in 

the average oxygen concentration following reduction in the presence of SO2. 

3.2  Reactivity of the oxygen carriers 

Figure 4 shows a typical gas concentration and temperature profile during the third reduction 

and following oxidation periods at 1000°C for the C43MMg oxygen carrier with 50% CH4-

balance N2. Initially, the carrier was oxidized in 5% O2, however, when it was shifted to the 

inert (N2) period, the oxygen concentration decreased steadily in the same way as shown in 

Figure 4 for the oxygen uncoupling tests. Upon fuel addition, the CO2 evolved as methane 

was converted, while the oxygen concentration decreased to zero. After the complete 

conversion of fuel in the early part of the reduction period, some CH4 and CO could be 

detected. There was a slight increase in temperature during the reduction period and a greater 

increase in temperature during the oxidation period as a result of the overall exothermicity of 

the occurring reactions. As shown previously,24 the reduction of similar perovskite-structured 

materials caused by methane has occurred by means of a combination of two reactions: (1) 

direct reaction of methane with the solid particles (via CLC), and (2) the reaction of methane 

with the gaseous oxygen released from the carrier (via CLOU). 

A large of number of chemical reactions could be written for the SO2−CH4−O2 reaction 

system. Preliminary equilibrium calculations using HSC Chemistry® (ver. 5.11)57 indicates 

that under the experimental conditions used in this investigation, i.e. the sub-stoichiometric 

combustion of CH4 in the presence of SO2, H2S should be formed. Therefore several basic 

experiments were carried out to investigate the reactions that may possibly occur, the products 

of the SO2−CH4−O2 reaction system, and to ensure that a mass balance for sulphur over the 

reactor system could be obtained. Initially, the absence of homogenous reactions in the system 

or any influence from the reactor system was confirmed by passing the 0.5% SO2 and 50% 

CH4-balance N2 feeding gas mixture through a reactor without a bed of oxygen carrier 

particles at 950°C. Following this, a set of experiments with partial and complete combustion 

of methane in the presence of SO2 at temperatures of 900 and 1000°C was performed using an 

empty reactor. In this set of experiments, oxygen was added to the feeding gas mixture in 

stoichiometric and sub-stoichiometric conditions to emulate oxygen release from the particles. 

The rationale for this experiment was to investigate whether reduced sulphur compounds such 



as COS, H2S or S could be formed by means of gas-phase reactions, which would need to be 

taken into account in the sulphur mass balance. Therefore, it would be possible to confirm 

whether the loss of sulphur in the effluent was due to the formation of reduced sulphur species 

or due to a reaction with the actual perovskite-structured material. No reduced sulphur species 

were found when running the experiment in an empty reactor since all SO2 introduced to the 

reactor was detected by the analyser in the form of SO2, meaning that a 100% mass balance 

for sulphur could be achieved.  

It has also been reported that perovskite-type materials possess catalytic activity for the 

reduction of SO2 to H2S, COS and S in the presence of a reducing gas such as methane.58, 59 In 

order to examine whether reduced sulphur species may form in the presence of the 

investigated materials, several preliminary reactivity cycles were carried out. To do this,  the 

gas following the first filter filled with Mg(ClO4)2 as the drying agent was led into another 

heated oven at 900°C where additional oxygen was provided to oxidize all the compounds to 

their fully oxidized state. This meant that the remaining unconverted CO and CH4 as well as 

any reduced sulphur species that may had been produced as a result of the bed material’s 

catalytic activity for the reduction of SO2, would be oxidized to CO2, H2O and SO2. An 

additional filter with Mg(ClO4)2 as the drying agent was also placed after this second 

oxidation step. By-pass mechanisms using two-way valves allowed bypassing the second 

oxidation step and therefore leading the effluent gas from the reactor directly to the analyser. 

Thus, a fuel cycle with 50% CH4 and 0.5% SO2-balance N2 was performed using the C45M-

1300 oxygen carrier at both 900 and 1000°C. The total SO2 yield was measured in two 

different ways: (1) through the second heated oven, and (2) through bypassing the second 

oven and leading the off-gas directly to the analyser. The total SO2 yield was determined by 

integrating the area under the SO2 curve. The total SO2 yield was the same in both cases and 

at both temperatures which indicated that reduced sulphur species were not created during the 

reduction phase, even in the presence of a perovskite-type oxygen carrier in the bed. 

Consequently, the second oxidation step was omitted in the remainder of the reactivity tests. 

Figure 5 shows the concentration and temperature profiles for C43MMg during the fifth fuel 

cycle with 50% CH4 and 0.5% SO2-balance N2 at 1000°C. By comparing Figure 5 with Figure 

4, it can be seen that less methane had been converted, as shown by the lower CO2 and higher 

CH4 peaks when the oxygen carrier was exposed to SO2 during the reduction phase. Only a 

small fraction of SO2 had passed through the reactor during the reduction period, whereas in 

the subsequent inert and oxidation periods, more SO2 was found in the off-gas. The oxidation 



time until stable oxygen concentration (5%) was reached, was also shorter for the experiment 

in the presence of SO2 than in the experiment with the absence of SO2. This can be explained 

by the fact that more oxygen was consumed during the reduction of the material when SO2 

was absent than when the oxygen carrier was reduced in the presence of SO2, likely due to 

deactivation of the oxygen carrier in the latter case. Possible mechanisms for the reaction of 

sulphur with the investigated perovskite-type oxygen carriers are discussed in Section 3.3. 

Figure 6 shows the gas average gas yield, aveCH ,4
γ , and total SO2 yield, 

2SOη , as a function of 

temperature during fuel cycles in the presence of SO2 for C40MTMg at 900, 950 and 1000°C. 

It can be noted that there was a slight decrease in reactivity after every cycle. It was shown 

previously that a significant number of fuel cycles (~30) must be carried out in order to 

observe a significant decrease in reactivity caused by sulphur deactivation.50 However, 

carrying out such a large number of cycles was outside the timeframe of this study because of 

the large number of investigated materials. It can also be observed that at 1000°C, 

approximately 80% of the introducing SO2 passed through the reactor and was detected by the 

gas analyser. At 950°C this decreased to nearly 40% and at 900oC, only 10% of the 

introducing SO2 reached the gas analyser. Consequently, it can be readily deduced that less 

SO2 was adsorbed to and/or reacted with the oxygen carrier with an increase in temperature. 

This is in accordance with Figure 1, given the fact that the stable region of CaO increased 

with temperature, meaning that the driving force for CaSO4 or CaS formation was weaker at 

high temperatures. 

Figure 7 shows the total SO2 yield, 
2SOη , as a function of temperature during fuel cycles with 

50% CH4 and 0.5% SO2 for all investigated materials at 900, 950 and 1000°C. Similar to 

Figure 5, it can be inferred that the amount of SO2 that passed through the reactor increased 

with an increase in temperature. Moreover, the total SO2 yield, 
2SOη , increased with a 

decrease in the calcium content of the materials for both Mg- and Mg and Ti-doped materials. 

This could be expected since less calcium was available in the structure which could possibly 

result in the formation of CaSO4 or CaS. It should be mentioned, however that this was not 

the case with undoped materials. 

To facilitate the comparison between the reactivity of different oxygen carriers at different 

temperatures, the average gas yield, aveCH ,4
γ  is shown in Figure 8 for all of the investigated 

oxygen carriers in the presence and the absence of SO2. Since aveCH ,4
γ  was stable during 



reactivity testing in the absence of SO2, the aveCH ,4
γ  presented in Figure 8 is the average of gas 

conversion during three fuel cycles in the absence of SO2. However, as shown in Figure 6, 

aveCH ,4
γ  decreased slightly with cycling during reactivity experiments in the presence of SO2, 

likely as a result of sulphur deactivation. Therefore, the aveCH ,4
γ  presented in Figure 8 during 

reactivity testing in the presence of SO2 is representative of the gas yield of the last cycle at 

each temperature, and not the average gas yield of all cycles at a given temperature. In Figure 

8, three different effects can be discussed, i.e. the effect of calcium content, the effect of 

temperature and the effect of dopant, both during reduction in the presence and the absence of 

SO2. It can be seen that in the experiments in the absence of SO2, a lower calcium content in 

the materials generally resulted in less gas conversion. This would be expected since less 

CaMnO3−δ is expected to be formed during synthesis in those materials. In the presence of 

SO2, the drop in gas conversion for oxygen carriers with lower calcium content was also less 

for the undoped and Mg-doped materials. This could be anticipated, too, due to less chance 

for CaSO4 or CaS formation in samples with a lower calcium content. This can also be 

asserted by their higher total SO2 yield, 
2SOη , as shown in Figure 7, compared to materials 

with higher calcium content. However, this was not the case for the doubly Mg and Ti-doped 

materials. Instead, for these materials it was possible to maintain a lower drop in reactivity for 

materials with higher calcium content, despite their lower total SO2 yield, 
2SOη , as shown in 

Figure 7. It is unclear at this point, whether this could be attributed to the substitution of the 

B-site with Ti in these materials, consequently this requires additional study of the interaction 

of different perovskite-structured materials and sulphur species. The reactivity of most of the 

oxygen carriers increased with temperature both in the presence and the absence of SO2. 

However, it was also clear that reactivity decreased in the presence of SO2 for all of the 

investigated oxygen carriers. The drop in reactivity increased at lower temperatures and could 

be as large as 50% at 900°C, whereas at 1000°C, the largest decrease in reactivity was about 

20%. This again can be ascribed to the lower thermodynamic favourability of CaSO4 or CaS 

formation at higher temperatures, as shown in Figure 1.  

Since increasing the temperature had a more notable effect on the decrease in sulphur 

deactivation, additional experiments for the reactivity of three oxygen carriers were carried 

out at 1050°C, which are summarized in Figure 9. It is easily seen that at 1050°C, the 

decrease in reactivity following reduction in the presence of SO2 became minimal at only 1%. 

Furthermore, the doubly Mg and Ti-doped material exhibited a lower decrease in reactivity in 



the presence of SO2 compared to undoped and singly Mg-doped materials. The total SO2 

yield, 
2SOη , at 1050°C could reach as high as 0.94. Experiments at even higher temperatures 

(e.g. 1100°C), could possibly result in a total SO2 yield, 
2SOη , of 1, and consequently entirely 

avoid any sulphur deactivation. However, it should be mentioned that a slight deactivation in 

the reactivity of C50MMg in the absence of SO2 has been reported already at 1050°C,33 which 

could become more severe at 1100oC. 

3.3  Mechanisms of sulphur reaction with the oxygen carriers 

Possible mechanisms for the reaction of sulphur with the investigated perovskite-structured 

materials are discussed in the following. The first possible mechanism could be that CaS is 

formed during the reduction period via similar reactions to Eq. (10) and (11), given the highly 

reducing potential of CH4, in accordance with Figure 1. However, in the inert period 

following reduction, SO2 could be seen in the effluent, as shown in Figure 5, despite the 

absence of any oxygen which could possibly oxidize CaS to CaO and SO2, via Eq. (2). This 

suggests that this mechanism cannot solely describe the formation of SO2 in the inert period 

subsequent to reduction and instead CaSO4 must be the source for the release of SO2. 

Another possible pathway could be that CaS reacts with CaSO4 via Eq. (12) resulting in the 

formation of SO2. This in particular could be valid in the later cycles after CaSO4 had already 

formed in the material during earlier methane cycles in the presence of SO2. However, this 

was not the case, since a similar concentration profile for SO2 as shown in Figure 5, was also 

seen in the inert period of the first methane cycle in the presence of SO2 at 1000°C, for which 

there was no CaSO4 in the material from the beginning. Nevertheless, it may be possible that 

both CaS and CaSO4 were formed during a reduction period. As shown in the early part of the 

reduction phase in Figure 5, some oxygen was present in the bed which could favour the 

formation of CaSO4, while in the later part of the reduction, CaS formation was more 

favoured due to the absence of oxygen, see Figure 1. 

It is worth noting that even 4 h inert (N2) gas cycles for C45M did not show any SO2 in the 

off-gas, which could indicate the spontaneous decomposition of CaSO4 following several 

methane cycles in the presence of SO2. This indicates that a sufficiently reducing environment 

is required to allow CaSO4 to decompose. Thus, a third mechanism could be that the presence 

of a highly reduced bed material, e.g. CaMnO2 or CaMnO2.5, following the reduction period, 

increases the reducing potential in the reactor in the subsequent inert period, thus enforcing 

CaSO4 to decompose. It is likely that the deactivation and subsequent partial regeneration of 



the perovskite-type oxygen carriers occurred via either the second or the third mechanism or a 

combination of both. Both mechanisms can be seen as the decomposition of CaSO4, the 

reversed Eq. (4), made possible by the presence of compounds that can readily react with any 

surplus of oxygen, e.g. CaMnO2, CaMnO2.5 or CaS. It can be speculated that such reactions 

may be facilitated by the high oxygen conductivity typical of perovskite materials. 

3.4  Regeneration of the oxygen carriers following deactivation with SO2 

Figure 1 also implies that the perovskite-type oxygen carrier may be regenerable since CaSO4 

can decompose to CaO and SO2, where CaO can react again with Mn3O4 and reconstruct the 

CaMnO3−δ phase. In this set of experiments, the C45M oxygen carrier which had already been 

subjected to 43 fuel cycles in the presence of SO2 and as a result, the reactivity had decreased 

substantially compared to experiments in the absence of SO2, was used to investigate the 

potential for regeneration. Figure 10 shows the aveCH ,4
γ  as a function of cycle number at 

1000°C in different conditions. The experiment consisted of seven fuel cycles with a 

considerably longer second inert period (~40 min) in the absence of SO2. The rationale for 

using a longer second inert period was to decompose as much CaSO4 as possible. It can be 

observed that the aveCH ,4
γ  increased to approximately that of the experiment without the 

presence of SO2 from the beginning, thus showing that the oxygen carrier could be 

regenerated. Similar observations have been reported for the partial regeneration of 

LaFe0.8Cu0.2O3 catalysts in 5% H2 in Ar.42 When SO2 was again included in the reduction 

period, see cycles eight and nine, the reactivity decreased in a manner similar to that shown in 

Figure 8.  

3.5  Attributes of the oxygen carriers before and after reactivity tests 

Table 4 summarizes the physical and chemical characteristics of the investigated oxygen 

carrier particles before and after the reactivity testing. There was no significant change in the 

density and BET specific surface area of the particles and the observed minor changes can be 

considered as being within the margin of error for the methods used. 

The oxygen capacity, OR , for CLOU for most of the materials except those containing Mg 

and Ti were nearly constant at approximately 1%, irrespective of the calcium content. 

However, for the doubly Mg and Ti-doped oxygen carriers, the oxygen capacity for CLOU 

increased with the calcium content. This could indicate that the effect of Ti substitution in 

these materials is more pronounced in increasing the oxygen non-stoichiometry. 



There was no change in the crystalline phase of any of the oxygen carriers after the reactivity 

test compared to their fresh counterparts, as determined with the XRD analysis. Figure 11 

shows the XRD signatures of fresh and used samples as well as the signature after reactivity 

testing in the presence of SO2 for C40MMg. In the case of used particles after reactivity 

testing in the presence of SO2, no characteristic peaks could be attributed to CaSO4 or CaS. 

This is not surprising given the low number of sulphur deactivation cycles, since it has been 

reported that a large of number of cycles are needed in order to readily observe peaks 

associated with CaSO4 during the deactivation of perovskite-structured materials with SO2.39 

However, the intensity of the characteristic peaks for marokite (CaMn2O4) increased with a 

concomitant decrease in the intensity for peaks associated with the active perovskite, e.g. 

CaMnO3−δ, in all samples following reactivity testing both in the presence and absence of 

SO2. In all Mg-containing samples, MgO was also found as a separate phase, and was not 

incorporated into the perovskite structure, most likely due to a mismatch in the ionic radii of 

Mg and that of Mn,60 which has also been reported elsewhere32, 33, 36 for CaMn0.9Mg0.1O3−δ 

(C50MMg).  

The ESEM images of fresh and used samples after reactivity testing in the presence and 

absence of SO2 for the C43MTMg material are shown in Figure 12. The porosity and 

morphology of the particles did not seem to have been affected after the reactivity test. This 

was valid for all of the oxygen carriers investigated here.  

Partial EDX analysis of the surface of the fresh and used samples after reactivity testing in the 

presence and absence of SO2 is shown in Figure 13. Following the reactivity experiments in 

the presence of SO2, a uniform distribution of the sulphur element could be found on the 

surface of the materials in addition to the inherent elements of the oxygen carrier, i.e. calcium, 

titanium, magnesium, manganese and oxygen. However, analysis of the bulk cross sections 

did not show the presence of the sulphur element, despite reports of the complete destruction 

of the perovskite bulk catalysts when deactivated with SO2.40-42 This could be again attributed 

to the low number of reactivity cycles in the presence of SO2 in this study. 

Only a few of the materials prepared in this study showed reasonable mechanical stability, as 

indicated by the crushing strength measured prior to the reactivity tests shown in Table 4. 

Figure 14 shows the rate of attrition of the used oxygen carriers in a jet-cup attrition rig for 1 

h. In Table 5, the attrition index, Ai, defined as the slope of the attrition in the last 30 minutes 

of the test period, is shown for the oxygen carriers investigated. It can be seen that most of the 

investigated oxygen carriers have very similar attrition rates and are in an order similar to 



CaMn0.9Mg0.1O3−δ (C50MMg) which has shown excellent functionality in continuous 

operation in a 10 kW unit.36 Consequently, equally good results could be expected for these 

materials. Nevertheless, experiments in continuous operation are required for confirmation. 

4. Conclusion 

Perovskite-structured oxygen carriers of the type CaxMn1−yMyO3−δ (M = Mg, Ti) were 

investigated for the CLOU process. The materials were prepared by spray drying, and the 

experiments were carried out in a batch fluidized-bed to evaluate the influence of calcium 

content, dopants (Mg and Ti) and operating temperature (900, 950, 1000 and 1050°C) on the 

oxygen uncoupling property and the reactivity of oxygen carriers with CH4 in the presence 

and absence of SO2.  

All of the oxygen carriers exhibited oxygen uncoupling behaviour. Their reactivity with 

methane was high and increased with temperature and calcium content, approaching complete 

gas yield at 1000°C. The reactivity decreased in the presence of SO2 for all of the investigated 

oxygen carriers. Decreasing the calcium content in the materials generally resulted in less of 

decrease in reactivity in the presence of SO2, with the exception of materials doped with both 

Mg and Ti, where a higher resistance to sulphur deactivation could be maintained even at a 

higher calcium content. The drop in reactivity in the presence of SO2 also decreased at higher 

temperatures and at 1050°C, the decrease in the reactivity of the Mg and Ti-doped material 

was minimal. Sulphur balance over the reactor system indicated that the fraction of the 

introduced SO2 that passed through the reactor increased with temperature. It was shown that 

it is possible to regenerate the oxygen carriers during reduction in the absence of SO2. Most of 

the developed materials also showed relatively low attrition rates. Nevertheless, achieving 

higher sulphur tolerant perovskite-type oxygen carriers requires further study.  
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Tables 
 

Table 1 Possible reaction pathways in the Ca−S−O system in oxidizing and reducing (CO and H2) 
environments. 

 Oxidizing conditions 
(2) CaS + 3/2 O2 → CaO + SO2 
(3) CaS + 2 O2 → CaSO4 
(4) CaO + 1/2 O2 + SO2 → CaSO4 
  
 Reducing conditions* 
(5) CaSO4 + CO → CaO + SO2 + CO2 
(6) CaSO4 + H2 → CaO + SO2 + H2O 
(7) CaSO4 + 4 H2 → CaO + 4 H2S + 3H2O 
(8) CaSO4 + 4 CO → CaS + 4 CO2 
(9) CaSO4 + 4 H2 → CaS + 4 H2O 
(10) CaO + SO2 + 3 CO → CaS + 3 CO2 
(11) CaO + SO2 + 3 H2 → CaS + 3 H2O 
(12) CaS + 3CaSO4 → 4CaO + 4SO2 

* Hydrocarbons such as CH4 could replace CO or H2 as a reducing agent in reactions (5)−(11). 

 

 

 
 

 

 
 

Table 2 Oxygen carriers prepared in this study. 

Oxygen carrier* Nominal molar composition† Synthesis composition [wt.%] 
C49M CaMnO3−δ 50.7% Mn3O4, 49.3% Ca(OH)2 
C45M Ca0.83MnO3−δ 55.3% Mn3O4, 44.7% Ca(OH)2 
C50MMg CaMn0.90Mg0.10O3−δ 46.8% Mn3O4, 50.5% Ca(OH)2, 2.7% MgO 
C46MMg Ca0.85Mn0.90Mg0.10O3−δ 50.6% Mn3O4, 46.4% Ca(OH)2, 3.0% MgO 
C43MMg Ca0.75Mn0.90Mg0.10O3−δ 53.5% Mn3O4, 43.3% Ca(OH)2, 3.1% MgO 
C40MMg Ca0.65Mn0.90Mg0.10O3−δ 56.8% Mn3O4, 39.9% Ca(OH)2, 3.3% MgO 
C50MTMg CaMn0.775Mg0.10Ti0.125O3−δ 40.1% Mn3O4, 50.4% Ca(OH)2, 2.7% MgO, 6.8% TiO2 
C46MTMg Ca0.85Mn0.775Mg0.10Ti0.125O3−δ 43.4% Mn3O4, 46.3% Ca(OH)2, 3.0% MgO, 7.3% TiO2 
C43MTMg Ca0.75Mn0.775Mg0.10Ti0.125O3−δ 45.9% Mn3O4, 43.2% Ca(OH)2, 3.1% MgO, 7.8% TiO2 
C40MTMg Ca0.65Mn0.775Mg0.10Ti0.125O3−δ 48.7% Mn3O4, 39.7% Ca(OH)2, 3.3% MgO, 8.2% TiO2 

* Example of nomenclature for the oxygen carriers: C46MTMg, C46: ~46 wt.% Ca(OH)2; M: Mn3O4; T: TiO2; Mg: MgO. 
† The nominal molar composition is an empirical composition of the samples assuming formation of perovskite-structured 
materials. 



Table 3 Experimental scheme used for evaluating the reactivity and oxygen release ability of the 

investigated materials in the presence and absence of SO2.  

No. of 
cycles Inert/reducing gas 

Time during inert 
period for CLOU [s] 

Time during 
inert purge [s] 

Time during 
reduction period [s] 

Temperature 
[°C] 

3 50% CH4 – balance N2 − 60 20 900 
3 N2 360 − − 900 
3 50% CH4 – balance N2 − 60 20 950 
3 N2 360 − − 950 
3 50% CH4 – balance N2 − 60 20 1000 
3 N2 360 − − 1000 

5 50% CH4 – 0.5% SO2 − 
balance N2 

− 60 20 1000 

3 N2 360 − − 1000 

5 50% CH4 – 0.5% SO2 − 
balance N2 

− 60 20 950 

3 N2 360 − − 950 

5 50% CH4 – 0.5% SO2 − 
balance N2 

− 60 20 900 

3 N2 360 − − 900 
 

 

 

 

 

 

 

Table 4 Physical and chemical characteristics of the investigated oxygen carriers as prepared and 

following reactivity testing in the absence of SO2. 

Oxygen 
carrier 

Bulk density [g/cm3]* 
BET specific surface 
area [m2/g]* 

Oxygen capacity 
for CLOU at 
1000°C, Ro [%] 

Crystalline phases detected by XRD 

Fresh Used Fresh Used 

C49M 1.4 1.6 0.28 0.25 1.04 CaMnO2.98, CaMn2O4 
C45M 1.3 1.3 0.27 0.42 1.05 CaMnO2.80, CaMn2O4 
C50MMg 1.5 1.5 0.37 0.39 0.94 CaMnO2.80, CaMn2O4, MgO 
C46MMg 1.4 1.4 0.25 0.02 1.00 CaMnO2.97, CaMn2O4, MgO 
C43MMg 1.1 1.3 0.4 0.22 0.99 CaMnO2.98, CaMn2O4, MgO 
C40MMg 0.9 1.0 0.47 0.57 0.98 CaMnO2.98, CaMn2O4, MgO 
C50MTMg 1.6 1.5 0.33 0.29 1.58 CaMn0.7Ti0.3O2.94, MgO   
C46MTMg 1.4 1.4 0.29 0.05 1.50 CaMn0.7Ti0.3O2.94, CaMn2O4, MgO 
C43MTMg 1.3 1.4 0.29 0.27 1.01 CaMn0.7Ti0.3O2.94, CaMn2O4, MgO 
C40MTMg 1.2 1.3 0.27 0.31 0.86 CaMn0.7Ti0.3O2.94, CaMn2O4, MgO 



Table 5 Attrition rates of the investigated oxygen carriers after reactivity testing and their corresponding 

crushing strength (CS) in the fresh state. 

Oxygen carrier Attrition rate, Ai [wt.%/h] Crushing strength (CS) [N] 

C49M 3.6 0.47 
C45M 10.8 0.42 
C50MMg 8.4 1.4 
C46MMg 4.8 0.30 
C43MMg 7.8 0.50 
C40MMg 3.6 0.23 
C50MTMg 8.2 1.4 
C46MTMg 3.6 1.01 
C43MTMg 7.8 1.37 
C40MTMg 6.6 0.73 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figures 

 
Figure 1 Predominance diagram for the system Ca−S−O showing the stability regions of CaS, CaSO4 and 
CaO between 900 and 1050°C. The CO/CO2 ratio corresponding to the log 

2OP  at 1000°C is also shown in 
the diagram. 
 

 

 

 

 

 

 

 
Figure 2 Oxygen profiles for inert cycle at 900, 950 and 1000°C using C46MTMg as bed material. 



 
Figure 3 Average oxygen concentration as function of temperature during inert cycles for all investigated 
oxygen carriers following fuel cycles with (upper row) 50% CH4-rest N2 and (bottom row) 50% CH4 and 

0.5% SO2-rest N2 at 900, 950 and 1000°C. 

 

 

 

 

 

 

 
Figure 4 Gas concentration and temperature profile for C43MMg particle during third fuel cycle with 

50% CH4 (balance N2) for 20 s at 1000°C. 



 
Figure 5 Gas concentration and temperature profile for C43MMg particle during fifth fuel cycle with 

50% CH4 and 0.5% SO2-rest N2 for 20 s at 1000°C. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 Average gas yield, aveCH ,4

γ , and total SO2 yield, 
2SOη , as function of temperature during fuel 

cycles with 50% CH4 and 0.5% SO2-rest N2 for C40MTMg as bed material at 900, 950 and 1000°C. 



 

Figure 7 Total SO2 yield, 
2SOη , as function of temperature during fuel cycles for all investigated oxygen 

carriers using 50% CH4 and 0.5% SO2-rest N2 at 900, 950 and 1000°C. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 Average gas yield for CH4, aveCH ,4
γ , as function of temperature during fuel cycles for all 

investigated oxygen carriers using (upper row) 50% CH4-rest N2 and (bottom row) 50% CH4 and 0.5% 
SO2-rest N2 at 900, 950 and 1000°C. 



 

Figure 9 Average gas yield for CH4, aveCH ,4
γ , during fuel cycles for C49M, C50MMg and C50MTMg 

oxygen carriers using (left) 50% CH4-rest N2 and (middle) 50% CH4 and 0.5% SO2-rest N2 and (right) 
their respective total SO2 yield, 

2SOη , at 900, 950, 1000 and 1050°C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10 Average gas yield for CH4, aveCH ,4
γ , as function of cycle number for C45M at 1000°C during 

regeneration and following sulphur deactivation of oxygen carrier. 



 

Figure 11 Comparative XRD signatures of (bottom) fresh and used in (middle) absence and (top) presence 
of SO2 for C40MMg following oxidation in 5% O2 stream. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 ESEM images of (left) fresh C43MTMg and particles subject to reactivity in the (middle) 
absence of SO2 and (right) presence of SO2 for particles. The size bars for the images with higher 
magnification are 50 and 100 µm, while those of the images with lower magnification are 1 mm. 



 
Figure 13 Partial EDX spectrums of fresh C43MTMg, and particles subject to reactivity test in absence 
and presence of SO2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 14 Accumulated attrition as a function of time for all investigated oxygen carriers. Note: For 

reasons of clarity, the scale of accumulated attrition is different in the figures. 
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