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Abstra
t

This thesis 
onsiders 
omputational methods for analysis and veri�
ation

of the 
lass of automotive safety systems whi
h support the driver by mon-

itoring the vehi
le and its surroundings, identifying hazardous situations

and a
tively intervening to prevent or mitigate 
onsequen
es of a

idents.

Veri�
ation of these systems poses a major 
hallenge, sin
e system de
isions

are based on remote sensing of the surrounding environment and in
orre
t

de
isions are only rarely a

epted by the driver. Thus, the system must

make 
orre
t de
isions, in a wide variety of tra�
 s
enarios. There are two

main 
ontributions of this thesis. First, theoreti
al analysis and veri�
ation

methods are presented whi
h investigate in what s
enarios, and for what

sensor errors, the absen
e of in
orre
t system de
isions may be guaranteed.

Furthermore, methods are proposed for analyzing the frequen
y of in
or-

re
t de
isions, in
luding the sensitivity to sensor errors, using experimental

data. The se
ond major 
ontribution is a novel 
omputational framework

for determining the errors of mobile 
omputer vision systems, whi
h is one

of the most widely used sensor te
hnologies in automotive safety systems.

Augmented photo-realisti
 images, generated by rendering virtual obje
ts

onto a real image ba
kground, are used as input to the 
omputer vision

system to be tested. Sin
e the obje
ts are virtual, ground truth is readily

available and varying the image 
ontent by adding di�erent virtual obje
ts

is straightforward, making the proposed framework �exible and e�
ient.

The framework is used for both performan
e evaluation and for training

obje
t 
lassi�ers.

Keywords: Automotive, A
tive Safety, Semi-Autonomous Vehi
les, Veri-

�
ation, Performan
e Evaluation, De
ision Making, Augmented Reality.
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Part I

Introdu
tory Chapters





Chapter 1

Introdu
tion

Road tra�
 a

idents are a global problem of epidemi
 proportions. A
-


ording to the World Health Organization (WHO), road tra�
 injuries are

the leading 
ause of death globally for young people aged 15 − 29, and

the eight leading 
ause of death in total, [1℄. In the developed 
ountries

primarily, road tra�
 a

idents have been on the agenda in the past few

de
ades. Governments have invested in infrastru
ture and passed laws to

improve road safety. The automotive industry has put emphasis on design-

ing systems that prote
t the o

upants of the vehi
le in 
ase of a 
rash, so


alled passive safety systems. Passive safety innovations in
lude seat belts,


rumple zones and airbags.

In the 1970s, the introdu
tion of Anti-lo
k Braking Systems (ABS)

marked a �rst milestone for a
tive safety systems, i.e. systems whi
h a
-

tively intervene to prevent or mitigate 
onsequen
es of a

idents. In re
ent

years, a
tive safety systems whi
h monitor the surrounding environment,

using remote sensing te
hnologies, have been introdu
ed to the market.

By using information on the surrounding tra�
 environment, systems 
an

identify hazardous situations, e.g. when the driver has failed to observe a


rossing pedestrian and a 
ollision is imminent. If and when hazardous

situations are dete
ted, the system 
an a
tively intervene to prevent an

a

ident either by informing the driver of the up
oming danger or by au-

tonomously performing an evasive maneuver su
h as Automati
 Emergen
y

Braking (AEB).

This thesis 
on
erns the problem of verifying that a given a
tive safety

system a
ts 
orre
tly in the wide variety of possible tra�
 s
enarios. There

are two major reasons why this is a 
hallenging task. First, the variations

in operating 
onditions are essentially unlimited, a fa
t easily a
knowledged

when re�e
ting and 
omparing a snowy 
ountry road in northern Sweden to

downtown Tokyo. Se
ond, in
orre
t de
isions by highly intrusive systems,

like AEB, 
an only be a

epted on very rare o

asions.

1



Chapter 1. Introdu
tion

1.1 Aims and Obje
tives

The aim of the work presented in this thesis is to develop 
omputational

methods for e�
ient veri�
ation of automotive safety systems. In this 
on-

text, 
omputational veri�
ation methods are de�ned as methods whi
h pre-

di
t system performan
e by performing 
omputations with re
orded exper-

imental data and/or mathemati
al models as input.

In a
tive safety systems, de
ision fun
tions use input from sensors to

de
ide how to appropriately support the driver. A vital part of a
tive safety

system performan
e is the ability to make 
orre
t de
isions, also in the

presen
e of sensor measurement errors. Consequently, three obje
tives are

formulated, namely to develop methods that

I. For a given a
tive safety de
ision fun
tion, identify tra�
 s
enarios

where the fun
tion makes in
orre
t de
isions

II. For a given a
tive safety de
ision fun
tion, quantify the robustness to

input errors

III. Generate virtual sensor data with su�
ient quality for analysis and

veri�
ation

The �rst two obje
tives are addressed by Papers 1-3, while the third obje
-

tive is treated in Papers 4-6.

1.2 Delimitations

This thesis is 
on
erned with semi-autonomous vehi
les where a
tive safety

systems monitor the tra�
 situation and intervene if needed to ensure safety.

Obje
tives I and II are delimited to evaluating the 
orre
tness of the inter-

vention de
ision as opposed to the 
hoi
e and exe
ution of the intervention.

With regards to the same two obje
tives, only tra�
 s
enarios with single

moving obje
ts are 
onsidered. In Obje
tive II, we primarily 
onsider in-

put errors whi
h are bounded and systemati
, where systemati
 means that

they depend on the spe
i�
 tra�
 situation. Obje
tive III is 
on
erned with

e�
iently determining said input errors and is delimited to 
omputer vision

sensors, whi
h is one of the dominating te
hnologies used in a
tive safety

appli
ations.

1.3 Thesis Outline

The thesis is divided into two parts. Part I serves as an introdu
tion to

Part II by presenting ba
kground information and related work. Part II

2



1.3. Thesis Outline


ontains six s
ienti�
 papers that 
onstitute the base of the thesis.

Part I provides 
ontext to the appended papers and is organized as fol-

lows. In Chapter 1, the topi
 of the thesis is introdu
ed and aims, obje
tives

and delimitations are des
ribed. Chapter 2 gives an overview of in-vehi
le

safety systems with a strong emphasis on a
tive safety systems. In Chap-

ter 3, an overview of methods for system veri�
ation is provided. Chapter 4

brie�y summarizes the papers in
luded in Part II while Chapter 5 presents

the main s
ienti�
 
ontributions and gives suggestions for future resear
h.
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Chapter 1. Introdu
tion

1.4 List of Publi
ations

This thesis is based on the following publi
ations:

Paper 1

J. Nilsson, A. Ödblom and J. Fredriksson, Worst Case Analy-

sis of Automotive Collision Avoidan
e Systems, submitted for

possible journal publi
ation.
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J. Nilsson, J. Fredriksson and A. Ödblom, Veri�
ation of Colli-

sion Avoidan
e Systems using Rea
hability Analysis, submitted

as invited paper to the 19th IFAC World Congress, Cape Town,

South Afri
a, 2014.

Paper 3

J. Nilsson and M. Ali, Sensitivity Analysis and Tuning for A
tive

Safety Systems, in Pro
eedings of the 13th International IEEE

Conferen
e on Intelligent Transportation Systems, 2010, pages

161-167, Madeira Island, Portugal.

Paper 4

J. Nilsson, A. Ödblom, J. Fredriksson, A. Zafar and F. Ahmed,

Performan
e Evaluation Method for Mobile Computer Vision

Systems using Augmented Reality, in Pro
eedings of the IEEE

Virtual Reality Conferen
e, 2010, pages 19-22, Waltham, Mas-

sa
husetts, USA.

Paper 5

J. Nilsson, J. Fredriksson and A. Ödblom, Reliable Vehi
le Pose

Estimation using Vision and Single-Tra
k Model, submitted for

possible journal publi
ation.

Paper 6

J. Nilsson, P. Andersson, I. Gu and J. Fredriksson, Pedestrian

Dete
tion using Augmented Training Data, submitted to the

22nd International Conferen
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k-
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1.4. List of Publi
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e Evaluation in Automo-
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e Evaluation of Automotive A
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J. Nilsson and A. Ödblom, On Worst Case Performan
e of Col-

lision Avoidan
e Systems, in Pro
eedings of the IEEE Intelligent

Vehi
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Chapter 2

Automotive Safety Systems

The over 1 million annual fatalities 
aused by road tra�
 a

idents are

merely the tip of the i
eberg, e.g. the WHO estimates that road tra�


a

idents also lead to between 20 and 50 million non-fatal injuries ea
h

year, [1℄. On top of that, the e
onomi
 burden linked to road tra�
 a

idents

is signi�
ant. In 1998, a 
rude estimate of the annual global 
ost was found

to be in the order of US$500 billion, [2℄.

There are large regional di�eren
es a
ross the world as the variations

in vehi
le safety, infrastru
ture and driver edu
ation are substantial. Re-

markable progress has been made in the developed 
ountries during the last

de
ades, as 
an be seen in Figure 2.1. Improved vehi
le design, road infras-

tru
ture investments and road safety poli
ies have 
ontributed to redu
ing

the risk of getting killed in tra�
, in most developed 
ountries, by more

than 40% sin
e 1990, [3℄.

Su

ess in redu
ing fatalities has spurred stakeholders in road safety to

set more and more ambitious goals, as des
ribed in [6℄. The most ambitious

goal possible, i.e. a vision of zero fatalities in road tra�
, has been expressed

in road safety poli
ies in Sweden and the Netherlands. The 
urrent and

future automotive safety systems dis
ussed in this 
hapter have the potential

to 
ontribute signi�
antly to this goal.

We 
ategorize automotive safety systems into passive safety systems,

whi
h prote
t the vehi
le o

upants when 
ollision has o

urred, and three

types of a
tive safety systems, whi
h are designed to prevent a

idents.

The �rst 
ategory of a
tive safety systems, vehi
le dynami
s 
ontrol sys-

tems, prevent unwanted dynami
al behaviours su
h as instability. Driver

Assistan
e (DA) systems monitor the vehi
le surroundings to assist the

driver. In a not too distant future, Autonomous Driving (AD) systems may

take 
omplete responsibility for the driving task. The line between these


ategories is by no means sharp, as exempli�ed by the Roadway Departure

Prevention Assist (RDPA) system des
ribed in [7℄ whi
h in
orporate both

7
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Figure 2.1: Histori
al road tra�
 fatalities, obtained from [4℄, for some of

the developed 
ountries. As a referen
e, low- and middle-in
ome 
ountries

have annual road tra�
 fatalities of 18.3 and 20.1 per 100 000 inhabitants

respe
tively, [1℄. The sharp in
rease in fatalities for Germany in 1990 is an

e�e
t of the reuni�
ation of Germany, [5℄.

stability 
ontrol and 
ollision avoidan
e in a single framework.

In this 
hapter, the di�erent 
ategories of a
tive safety systems are de-

s
ribed, after �rst providing some 
ontext by brie�y dis
ussing the 
auses

of a

idents. In the �nal part of the 
hapter, the e�e
tiveness of these sys-

tems is reviewed followed by a dis
ussion on the 
hallenges asso
iated with

system veri�
ation, whi
h is the 
ore problem addressed in this thesis.

2.1 Tra�
 A

ident Causation

To e�
iently prevent a

idents, the 
auses of a

idents need to be under-

stood. A 
ommon approa
h for identifying a

ident 
auses is to study a
-


ident statisti
s. Figure 2.2 shows the a

ident distribution in terms of

major 
rash types, obtained from [8℄. There are numerous ways to 
lassify

a

idents, e.g. by gender, age, type of vehi
le, time of day or weather 
on-

ditions. Extensive reports with a

ident 
lassi�
ations based on national

a

ident statisti
s are published 
ontinuously, see e.g. [9℄ for the U.S. or [10℄

for Sweden.

Human error plays a major role in a majority of a

idents. In an in depth
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 A

ident Causation
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Figure 2.2: Distribution in terms of major 
rash types for all 6 394 000

poli
e-reported motor vehi
le 
rashes in the U.S. whi
h resulted in

3 189 000 injured people and a total of 41 821 fatalities, [8℄. The �gure

is based on statisti
s from the 2000 National Automotive Sampling System

(NASS)/General Estimates System (GES) 
rash database.

study of real a

idents in the 1970s, [11℄, in
luding on-s
ene investigations,

it was 
on
luded that human parti
ipants were solely or partly to blame in

92.6% of the investigated a

idents. The 
orresponding numbers for envi-

ronmental and vehi
ular fa
tors were 33.8% and 12.6% respe
tively. Com-

mon human errors were e.g. ex
essive speed, improper evasive a
tion and

driver inattention or distra
tion. Environmental fa
tors were e.g. view ob-

stru
tions and slippery road surfa
es while vehi
ular fa
tors in
luded brake

failures and inadequate tyre tread depth.

More re
ently, in 2005, a Field Operational Test (FOT) known as the

100-Car Study, [12, 13℄, was 
ompleted. 100 
ars were equipped with un-

obtrusive data 
olle
tion instrumentation to 
olle
t naturalisti
 data from

normal driving. The study rea�rms that drivers are often to blame for

a

idents as nearly 80% of all 
rashes involved the driver looking away from

the forward roadway just prior to the 
ollision. Driver inattention or dis-

tra
tion, e.g. using a mobile phone while driving, does not ne
essarily lead

to an a

ident but if 
oin
iding with another unfortunate event, e.g. the

vehi
le in front suddenly braking, the probability of an a

ident in
reases

signi�
antly. Multiple a

ident 
auses mean that there are multiple possible

preventive measures. As a

idents are very diverse, preventing a majority of

9
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a

idents requires the deployment of a large number of preventive measures.

2.2 Vehi
le Dynami
s Control

Following advan
es in ele
troni
s te
hnology, mass produ
tion of ABS sta-

rted on road vehi
les in the 1970s but the innovation had been present in

the railway and aviation industries de
ades before that. ABS monitors the

rotational speed of the wheels and automati
ally redu
e the brake for
e if

the wheels 
ease to rotate, thus preventing brake lo
k-up. This enables

steering of the vehi
le while simultaneously braking hard.

In the 1990s, Ele
troni
 Stability Control (ESC) was introdu
ed to han-

dle problems with vehi
le instability. ESC dete
ts when the vehi
le starts

to skid and 
ountera
ts this by automati
ally braking the wheels individ-

ually, as illustrated in Figure 2.3. A natural evolution of ESC is to also

prevent the vehi
le from rolling over, as presented in [14℄. Roll Stability

Control (RSC) is mostly relevant for vehi
les with high 
enter of gravity,

su
h as Sport Utility Vehi
les (SUVs) and tru
ks, and was �rst introdu
ed

in 2002, [15℄.

The interested reader is referred to e.g. [16,17℄, for more 
omprehensive

treatments of vehi
le dynami
s 
ontrol systems.

Figure 2.3: A vehi
le drives onto an i
e pat
h in a 
urve. Without ESC

the vehi
le be
omes unstable and starts spinning. With ESC the left front

wheel is braked, thereby 
ountera
ting the rotation, ensuring that stability

is maintained.
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2.3. Driver Assistan
e

2.3 Driver Assistan
e

Re
ent advan
es in remote sensing te
hnology have led to the introdu
-

tion of several DA systems, see e.g [17, 18℄ for extensive overviews. One of

the �rst examples, laun
hed in 1995, is an extension of the 
ruise 
ontrol

whi
h automati
ally maintains a 
onstant vehi
le speed set by the driver.

Adaptive Cruise Control (ACC), thoroughly des
ribed in [16,19℄, uses infor-

mation from a forward looking sensor, e.g. a radar, to maintain a 
onstant

distan
e or time gap, set by the driver, to the vehi
le in front of the host

vehi
le, see Figure 2.4. ACC 
ontributes to safe driving by assuring that a

safe distan
e is kept to the vehi
le ahead. Also, ACC 
an redu
e fuel 
on-

sumption and 
ongestion through smooth 
ontrol of the brakes and throttle,

thereby 
ontributing to a 
leaner environment.

Utilizing the same forward-looking sensor, Forward Collision Warning

(FCW) indi
ates to the driver, as exempli�ed in Figure 2.5a, when im-

minent a
tion is needed to avoid a 
ollision, e.g. when the vehi
le ahead

suddenly brakes. If there is insu�
ient time or if the driver fails to respond

to warnings, a Collision Avoidan
e (CA) system 
an autonomously 
ontrol

the vehi
le to avoid the impending 
ollision. A 
ommon a
tion for CA sys-

tems is to automati
ally apply the brakes in situations where a 
ollision

is imminent, so 
alled AEB, illustrated in Figure 2.5b. If the 
ollision is

unavoidable, AEB may still be triggered to redu
e impa
t speed, so 
alled

Collision Mitigation (CM).

There are also numerous DA systems whi
h support the lateral 
ontrol

of the vehi
le, as illustrated in Figure 2.6. If the vehi
le 
rosses a lane

marking a Lane Departure Warning (LDW), [20℄, may be issued to the

driver. A lane guidan
e system 
losely related to LDW is Lane Keeping

Assistan
e (LKA), [16℄, where the driver is supported by a torque on the

steering wheel to stay in the 
urrent lane. In [7℄ the problem of road or

lane departures and vehi
le stability are addressed in a 
ommon framework,

Figure 2.4: ACC automati
ally maintains a driver set time gap to the vehi
le

in front.
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(a) (b)

Figure 2.5: (a) FCW displayed in a Head Up Display (HUD). The red light

displayed to the driver in the windshield is designed to resemble the appear-

an
e of vehi
le brake lights. (b) When the host vehi
le enters the red zone,

an imminent 
ollision is dete
ted and an autonomous brake intervention is

initiated.

thereby 
ombining and enhan
ing the fun
tionality of lane guidan
e systems

and ESC. There are also systems that support the driver when performing

lane 
hange maneuvers. Lane Change Aid (LCA) systems, [21℄, monitor

adja
ent lanes and inform the driver when an obsta
le is present in the blind

spot of the rear view mirrors, see Figure 2.6b. In some situations there is

very little, if any, time to warn the driver of a potential hazard, making

it justi�ed for a CA system to 
ontrol the steering of the host vehi
le to

avoid a

idents. A system designed to avoid 
ollisions with on
oming tra�


using steering interventions, referred to as Emergen
y Lane Assist (ELA),

is presented in [22℄.

Information of host vehi
le motion and road geometry 
an also be used

to assess the present state of the driver. If a driver is fatigued, distra
ted

or even impaired by drugs, this will a�e
t the driver's ability to maneuver

the vehi
le smoothly in the 
urrent road lane. [23℄ presents a method for

dete
ting inadequate driving behaviour, whi
h 
an be used by systems to

e.g. inform the driver when about to fall asleep.

The underlying te
hnology for DA systems is dis
ussed in the follow-

ing subse
tions. DA systems are me
hatroni
 systems and 
onsist of three

basi
 layers, namely the per
eption, de
ision and a
tion layers. The ar
hi-

te
ture for a DA system performing autonomous interventions is illustrated

in Figure 2.7.

12



2.3. Driver Assistan
e

(a) (b)

Figure 2.6: (a) A lane guidan
e system dete
ts the lane markings and warns

the driver (LDW), or applies a steering wheel torque (LKA), when 
rossing

the lane boundary. (b) The 
olored zones visualize the blind spots, i.e. the

zones not visible to the driver through the rear view mirrors. LCA indi
ates

that an obsta
le is present in the blind spot by lighting a small lamp 
lose

to the rear view mirror.

2.3.1 Sensor Te
hnology

A key enabler for DA systems is reliable remote sensing te
hnology. In the

per
eption layer, see Figure 2.7, sensors 
olle
t observations from the envi-

ronment, driver and host vehi
le. Depending on the requirements imposed

by the system, various te
hnologies 
an be 
hosen to deliver an interpreta-

tion of the surrounding environment.

A frequently used sensor te
hnology is 
omputer vision, whi
h dete
ts

and 
lassi�es obje
ts in the environment using image data 
olle
ted by 
am-

eras. Computer vision is the dominant te
hnology to retrieve information

on the road geometry and the relative position of the host vehi
le to the

road, whi
h is done by dete
ting the lane markings or the edge of the road.

A
tive sensors su
h as radar, laser or ultrasoni
 sensors transmit radio,

opti
al or sound signals and evaluate obje
t attributes by interpreting the

re�e
ted response of the transmitted signal. Also, observations from digital

maps and sensors mounted on other vehi
les or infrastru
ture 
an be made

available to the safety system through a 
ommuni
ation devi
e.

In many appli
ations, system requirements 
annot be ful�lled by a single

sensor. Sensor observations from multiple sensors are 
ombined, or fused,

to provide an enhan
ed view of the environment. Also, obje
ts observed

by sensors are tra
ked over time to redu
e the in�uen
e of noise. General

frameworks for sensor data fusion and tra
king are des
ribed in [24, 25℄

while [26�29℄ des
ribe work tailored to DA systems.
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Figure 2.7: System ar
hite
ture for an a
tive safety system designed to

intervene in 
ase a 
riti
al situation arises. The per
eption layer provides

information used for de
ision making in the de
ision layer. The de
ision is

exe
uted in the a
tion layer via one or multiple a
tuators, e.g. brake system

or driver information displays.

2.3.2 De
ision-Making and Interventions

In the de
ision layer, see Figure 2.7, input from the per
eption layer is used

to de
ide if and how to intervene. This de
ision fun
tion 
onsists of two

parts. The pro
ess of 
onverting state estimations, e.g. obje
t positions,

into measures des
ribing whether or not the host vehi
le is in a hazardous

situation, i.e. if surrounding road users and obje
ts 
onstitute a threat of


ollision, is termed threat assessment. Based on the threat measures, a

de
ision-making algorithm 
hooses what, if any, a
tion should be taken by

the system.

The earlier, relative to the potential a

ident, the system intervenes,

the more likely it is to prevent the a

ident. Also, the earlier the system

intervenes, the more likely it is that the driver is well aware of the hazard

and thus perfe
tly 
apable of preventing the a

ident. If the latter is true

then the driver would 
onsider the intervention unne
essary. Therefore, the

aim of the de
ision fun
tion is usually to intervene at the latest point in

time when the intervention type is still likely to su

eed, where su

ess is

de�ned as e.g. preventing or mitigating the 
onsequen
es of an a

ident.

A CA system aims to avoid all potential 
ollisions. For lane guidan
e

systems, the aim is not as straightforward to de�ne sin
e a lane departure

not ne
essarily leads to a dangerous situation. Most LDW systems aim

14



2.4. Autonomous Driving

at issuing warnings ex
lusively when lane departures are unintentional. In

situations when the driver intentionally deviates from the 
urrent lane, it is

assumed that the driver 
an manage the situation.

There is a range of possible a
tions, or intervention types, whi
h 
an be

applied when a hazardous situation is dete
ted. If the situation is dete
ted

early, the system, e.g. FCW or LDW, 
an warn the driver by for instan
e

audible, visual or hapti
 feedba
k. In 
ertain situations, there is no time

for the driver to rea
t to the feedba
k and perform a driving maneuver to

avoid the impending a

ident. In those situations the system 
an, to avoid

the a

ident, autonomously 
ontrol the brakes or the steering.

System interventions are sometimes per
eived as intrusive by the driver.

The level of intrusiveness varies between intervention types where warnings

or information to the driver are generally less intrusive than autonomous

vehi
le 
ontrol. The amplitude of the intervention also has an in�uen
e as

e.g. a loud warning signal is often 
onsidered more intrusive than a subtle

warning signal. The possibility for the driver to override an intervention

also a�e
ts the level of intrusiveness.

2.4 Autonomous Driving

Automotive safety systems whi
h intervene autonomously to prevent a

i-

dents are 
urrently 
ommer
ially available from a large number of vehi
le

manufa
turers. The systems are evolving to handle more and more oper-

ating s
enarios su
h as interse
tions and night-time driving, and this trend

is likely to 
ontinue, see Figure 2.8. An enabler for this evolution is the

availability of more a

urate, a�ordable remote sensors.

The resear
h 
ommunity has for quite some time fo
used on the next ma-

jor step in automotive safety, namely Autonomous Driving systems. These

are systems whi
h takes full responsibility for the driving task as opposed

to DA systems whi
h still require the driver to monitor the system. In the

2007 DARPA Urban Challenge, [30℄, 35 teams formed from 
ollaborations

between industry and a
ademia 
ompeted with driverless vehi
les in an ur-

ban environment. A total of six self-driving vehi
les 
ompleted the 
ourse

whi
h in
luded tasks su
h as negotiating interse
tions, parking and avoiding

vehi
les stalled on the road.

In many ways AD systems are a natural evolution of DA systems and

a number of 
ompanies, vehi
le manufa
turers and others, have 
ommuni-


ated their aim to 
ommer
ialize this te
hnology. The potential bene�t of

AD systems is undoubtedly huge, not only in terms of safety, but also in

terms of redu
ed fuel 
onsumption, redu
ed 
ongestion and added driver


onvenien
e.
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(a) (b)

Figure 2.8: (a) Possible sensor setup for future vehi
les: 360◦ �eld of view

with 
ameras and radars. (b) Autonomous vehi
les and future driver assis-

tan
e systems must handle more tra�
 s
enarios, e.g. night 
onditions.

2.5 System E�e
tiveness

In the last de
ades, passive safety systems have made a major 
ontribution

to road tra�
 safety through innovations su
h as the safety belt, 
rumple

zones and airbags, see Figure 2.9. Their e�e
tiveness has been extensively

studied using a

ident statisti
s. In the U.S. during 2008, a

ording to [31℄,

seat belts saved 13 250 lives, frontal airbags 2 546 and 
hild restraints 244.
In [32℄, it is shown that passive safety improvements have 
ontributed to a

signi�
ant de
rease in injury severity between the 1970s and the 1990s, also

when ignoring e�e
ts from seat belts and airbags.

The e�e
tiveness of passive safety systems is assessed by governments

around the world. In Europe, EuroNCAP has sin
e 1997 assessed 
ars, by

e.g. 
rash tests, in order to provide 
onsumers with an independent rating

of safety performan
e. A
tive safety systems su
h as ESC are in
luded

in this rating and in 2014 AEB will also be in
luded, [33℄. These ratings

are important selling arguments for vehi
le manufa
turers and thus they

en
ourage rapid development of new safety te
hnology.

Vehi
le dynami
s 
ontrol systems have been widely deployed in the mar-

ket for many years, making it possible to assess their e�e
tiveness in im-

proving road safety using a

ident statisti
s. In [34℄, multiple studies inves-

tigating the safety impa
t of ABS are reviewed. A majority of the studies

indi
ate that equipping vehi
les with ABS signi�
antly redu
es the o

ur-

ren
e of a

idents involving multiple vehi
les. Some studies also indi
ate

that ABS in
reases the o

urren
e of run-o�-road a

idents. Possible 
on-

tributing fa
tors to this in
rease in
lude inappropriate use of ABS and driver

behaviour adaption, e.g. when the driver de
reases driving safety margins
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tiveness

(a)

(b)

Figure 2.9: (a) The airbag is an example of passive safety te
hnology. (b)

Crash tests are used to assess passive safety e�e
tiveness.

due to awareness of the positive safety e�e
ts of ABS.

A

ording to [35℄, use of ESC redu
es fatal single-vehi
le a

idents in-

volving 
ars and Sport Utility Vehi
les (SUVs) by 30-50% and 50-70% re-

spe
tively. Considering that single-vehi
le 
rashes stand for 60% of all fatal


rashes in the U.S., [31℄, the potential safety impa
t of ESC is signi�
ant.

Additionally, the redu
tion of rollover a

ident fatalities, related to the use

of ESC, is in [35℄ estimated to 70-90%, regardless of vehi
le type.

DA systems have, if at all, been introdu
ed to the market relatively re-


ently whi
h explains why their e�e
tiveness has not been studied to the

same extent. An overview on the subje
t is given in [17℄ whi
h 
on
ludes

that the safety impa
ts of DA systems are expe
ted to be 
onsiderable. Due

to the la
k of data, several approa
hes have been proposed to predi
t sys-

tem e�e
tiveness su
h as re
onstru
ting real-world a

idents from a

ident

databases and using simulations to determine if a given system 
ould prevent

these a

idents. Using this method [36℄ predi
ts that a newly introdu
ed

CA system 
ould prevent up to 24% of pedestrian fatalities and [37℄ predi
ts

that a similar system 
ould redu
e driver fatalities in rear-end 
rashes by

up to 50%.
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Driver
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Vehicle

Active Safety
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Figure 2.10: The driver monitors both the vehi
le and the surrounding envi-

ronment to 
ontrol the vehi
le. The a
tive safety system monitors the 
om-

plete pro
ess and 
ontrol the vehi
le either dire
tly, or indire
tly through

driver intera
tion, see Figure 2.7. The swit
hes determine if the system is

exe
uted in open- or 
losed-loop, see Se
tion 3.2.

2.6 Veri�
ation Challenges

This se
tion introdu
es terminology and dis
usses the 
hallenges asso
iated

with system veri�
ation. Consider a pro
ess, as illustrated by the top part

of Figure 2.10 
onsisting of a vehi
le, a driver, and an environment. The

environment has in general both stati
 and dynami
 
ontent where stati



ontent is e.g. roads, trees and tra�
 signs and dynami
 
ontent is e.g. road

users su
h as 
ars, bi
y
les and pedestrians. The a
tive safety system, in-

tera
t with the pro
ess a

ording to Figure 2.10. The system monitor and


ontrol the pro
ess to ensure that the host vehi
le is operated safely.

The purpose of system veri�
ation is to ensure that the system per-

forman
e meets the system requirements. This must be addressed for the


omplete set of operating s
enarios, de�ned by the variations in the pro-


ess, i.e. the variations in vehi
le, driver and environment behaviour. The

set of operating s
enarios is essentially unlimited in size as 
ombinations

of e.g. weather 
onditions, road user types, appearan
e and motion pat-

terns are in�nite, see Figure 2.11a. De�ning the boundaries of this set is a


hallenge in itself sin
e the system is mobile and travels in an environment

whi
h is 
ompletely or partially unknown to the system a priori.

The system relies on real-time remote sensing of e.g. road users and road

geometry to make de
isions on when and how to intervene. The sensing

performan
e depends on variations in the environment, as illustrated by

Figure 2.11b. For instan
e, a 
amera subje
ted to dire
t sunlight will exhibit

poor obje
t dete
tion performan
e, mu
h like the human eye.

The more intrusive an intervention type is, see Se
tion 2.3.2, the less
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ation Challenges

(a) (b)

Figure 2.11: Illustration of system veri�
ation 
hallenges as seen by a vision

sensor. (a) One of the many possible 
omplex tra�
 situations. (b) The

sensor is partially blinded when exiting the tunnel.

likely the driver is to a

ept an unne
essary intervention. Consequently,

the a

eptable rate of unne
essary interventions is very low for systems per-

forming intrusive interventions. The large quantity of operating s
enarios

makes veri�
ation of this requirement, on a low rate of unne
essary inter-

ventions, espe
ially 
hallenging.
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Chapter 3

Veri�
ation Methods

The goal of system performan
e evaluation, in the 
ontext of this thesis,

is to determine the performan
e of an a
tive safety system in a given set

of operating s
enarios. If system performan
e evaluation is used for sys-

tem veri�
ation, the performan
e estimate is 
ompared to a set of system

requirements, whi
h spe
ify the a

eptable level of system performan
e. A
-


urate and e�
ient methods for system performan
e evaluation are needed

for several purposes, e.g. system veri�
ation, system tuning or analysing

the system sensitivity to disturban
es. For veri�
ation purposes it is usu-

ally su�
ient to derive or estimate a bound on performan
e, to show that

the system requirements are ful�lled. As a 
onsequen
e, some methods

fo
us on performan
e bounds while some fo
us on performan
e estimates.

This 
hapter provides an overview on veri�
ation methods used in an a
tive

safety 
ontext.

3.1 Performan
e Metri
s

In this se
tion, performan
e metri
s des
ribing the ability of the system to

make 
orre
t de
isions are presented. A 
ommonly used terminology for de-

s
ribing the nature of in
orre
t de
isions 
omes from statisti
al hypothesis

testing, extensively 
overed in [38℄, and was �rst dis
ussed in [39℄. A hy-

pothesis test is 
lassi�ed with regards to the test out
ome, i.e. the de
ision

on what hypothesis to a

ept, and the true hypothesis, see Figure 3.1. The

default de
ision, often a de
ision not to perform an a
tion, is in statisti
al

hypothesis testing represented by the null hypothesis. A test out
ome is

said to be negative if the null hypothesis is a

epted and positive in the

opposite 
ase.

In an a
tive safety 
ontext, a test would be e.g. to de
ide whether or

not to initiate an autonomous brake intervention, the true hypothesis would
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Missed Intervention
Type II Error

False Negative

True Negative
Intervention is needed
(Null hypothesis is

not
true)

Intervention is needed
(Null hypothesis is false)

System intervene
(Null hypothesis is accepted)

does not System intervenes
(Null hypothesis is rejected)

Unnecessary Intervention
Type I Error

False Positive

True Positive

Figure 3.1: Error types for a system de
iding on whether or not to intervene.

represent the 
orre
t de
ision and the null hypothesis would represent the

de
ision not to intervene.

Linked to this, there are two types of errors, 
ommonly referred to as

Type I and Type II errors. If the null hypothesis is true and is reje
ted by

the test, the error is Type I or false positive. If instead the null hypothesis is

false and is a

epted by the test, the error is Type II or false negative. False

positives and false negatives are in this thesis referred to as unne
essary and

missed interventions respe
tively, sin
e these terms are more des
riptive for

a
tive safety appli
ations.

3.2 Method Properties

Di�erent methods have di�erent properties and ea
h property 
ontributes

to the overall strength or weakness of the method. Below, relevant method

properties are de�ned and dis
ussed.

Coverage

Coverage is a measure used to des
ribe the degree to whi
h the set of oper-

ating s
enarios is evaluated. A major bene�t of theoreti
al methods is that

full 
overage is possible to attain.

By 
ondu
ting experiments, i.e. tests, system performan
e 
an be eval-

uated in a 
hosen set of s
enarios. For a 
omplex pro
ess, generally, the set

of operating s
enarios 
an be des
ribed by an unbounded number of param-

eters. As the number of operating s
enarios grows exponentially with the

number of s
enario parameters, this set is very large. This e�e
t, known

as the 
urse of dimensionality, makes full 
overage of the set of operating

s
enarios unrealisti
.

Methods for sele
ting a set of s
enarios to evaluate are generally referred
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to as experimental design or Design of Experiments (DoE), see e.g. [40℄ for

a wide treatment of the subje
t. The s
enario parameter spa
e may for

instan
e be 
overed by drawing random samples, or using a more systemati


approa
h, the samples may be 
hosen su
h that the 
overage is evenly spread

while minimizing the number of evaluated s
enarios.

Online/O�ine

Systems are evaluated either online or o�ine, where these terms are used

a

ording to the following de�nitions.

De�nition 1 A system is online when for
ed to exe
ute in real-time.

De�nition 2 A system is o�ine when not for
ed to exe
ute in real-time.

Online experiments evaluate if the system 
omply with real-time re-

quirements but have the obvious disadvantages of not being able to exe
ute

slower, or faster, than real-time.

Open/Closed-Loop

An a
tive safety system monitors a pro
ess and use this information to

in�uen
e said pro
ess, as shown in Figure 2.10. In some experiments the

s
enario is partially or 
ompletely �xed, meaning that the system has limited

or no in�uen
e on the pro
ess. As a 
onsequen
e, the following de�nitions

are useful.

De�nition 3 A system is exe
uted in 
losed-loop when the 
ontrol loop

between the system and the pro
ess is 
losed.

De�nition 4 A system is exe
uted in open-loop when the 
ontrol loop be-

tween the system and the pro
ess is open.

Note that open-loop exe
ution does not equal open-loop 
ontrol, whi
h 
om-

monly refers to a 
ontrol system operating without feedba
k. Open-loop

exe
ution means that the system 
annot in�uen
e the pro
ess during exe-


ution. When evaluating the 
orre
tness of de
isions, it is in many 
ases

su�
ient to exe
ute the system in open-loop. This is valid when the system

does not perform any a
tion prior to the de
ision to intervene, and will


onsequently not in�uen
e the pro
ess prior to said de
ision.
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E�
ien
y

The 
ost in terms of time and money are measures of the method e�
ien
y.

Online methods are time 
onsuming as real-time exe
ution is required and,

in general, methods involving real world experiments have higher �nan
ial


ost than theoreti
al analysis and 
omputer experiments. Also, the 
ost

asso
iated with method development vary between di�erent methods.

Repeatability and Reprodu
ibility

Repeatability and reprodu
ibility are statisti
al terms asso
iated with a
-


ura
y. An experiment is repeatable if it 
an be performed on two di�erent

o

asions with no substantial 
hange between measured quantities. Re-

peatability only requires this to be possible using the same personnel and

equipment. An experiment is also reprodu
ible if it is repeatable using dif-

ferent personnel and equipment when performed on two di�erent o

asions.

Repeatability and reprodu
ibility ensures that the experiment results are

not signi�
antly a�e
ted by temporary fa
tors.

Ground Truth Data

Ground truth data refers to information that is 
on�rmed in an a
tual �eld


he
k at a lo
ation, as opposed to information a
quired from a distan
e.

In remote sensing, the term is 
ommonly used to des
ribe information 
on-

sidered a

urate, relative to information a
quired from the remote sensing

system being evaluated. Ground truth data des
ribes the true s
enario,

e.g. how obje
ts move in the s
ene, and aids in evaluating sensor and 
on-

trol system performan
e.

Model A

ura
y

The model a

ura
y is the ability of the model to generate output equivalent

to output from the real system. Model a

ura
y should not be 
onfused with

system a

ura
y whi
h is the ability of the system to generate output with

small errors, e.g. a sensor delivering a

urate measurements. If the input

to an a

urate model is equivalent to the real operating 
onditions, the

output is realisti
. Output 
olle
ted from real systems in the real operating

environment is realisti
 per de�nition. A
hieving high output realism from

models often indu
es high 
ost, in the form of time, money or both.
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S
enario Representativeness

For a s
enario set to be representative, it must 
orre
tly re�e
t the set of op-

erating s
enarios in terms of system performan
e. Sampling s
enarios using

the real system in the real operating environment is the most obvious way

to 
olle
t data with high representativeness. When modeling or re
reating

real s
enarios, e.g. in 
omputer simulations or real world test environments,

limitations imposed by pro
ess models or test equipment make the s
enarios

less representative to a varying degree.

Pro
ess Controllability

The ability to 
ontrol the pro
ess during evaluation is referred to as pro-


ess 
ontrollability. La
k of pro
ess 
ontrollability is primarily an issue in

real world experiments, where 
ontrol of the pro
ess related to for instan
e

weather or multiple obje
t dynami
s is 
hallenging. Also, safety-
riti
al sit-

uations su
h as 
ollisions and near-
ollisions are di�
ult to realize in real

world experiments where they are potentially hazardous for involved per-

sonnel and destru
tive to the equipment used.

3.3 Models

Many veri�
ation methods use mathemati
al models to des
ribe the a
tive

safety system, the pro
ess and their intera
tion, see Figure 2.10. The 
om-

plexity of the models vary signi�
antly and also depends on the interfa
es

to other models, e.g. interfa
es to per
eption or a
tion layer models might

require more or less 
omplexity in the 
orresponding pro
ess models.

3.3.1 System Models

A
tive safety systems 
onsist of three layers, see Figure 2.7. Commonly, the

de
ision layer is an available software intera
ting only with the per
eption

and a
tion layers. The latter two layers intera
t physi
ally with the pro
ess,

e.g. the surrounding environment, and modeling of these layers are dis
ussed

below.

Per
eption Layer Models

As des
ribed in Se
tion 2.3, the per
eption layer provides input data to the

de
ision layer, based on sensor observations of a pro
ess. In the per
eption

layer, observations from one or several sensors are generally passed through

multiple layers of advan
ed signal pro
essing, fusing sensor observations into
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estimated states su
h as positions and velo
ities of dete
ted obje
ts. Sensor

models des
ribe how the pro
ess is per
eived by the sensors and 
an be

formulated on many di�erent abstra
tion levels.

Low-level sensor models des
ribe the transformation between the pro
ess

and the unpro
essed sensor observations whereas high-level sensor models

des
ribes the transformation between the pro
ess and the estimated states.

Modeling the physi
s of remote sensing te
hnologies su
h as 
ameras, lidars

and radars, is a 
omplex task, espe
ially when 
onsidering situations where

the sensor is observing a 
omplex environment, see e.g. [41℄ for an overview

of low-level radar models. This is why high-level empiri
al models are often

used.

A 
ommon high-level approa
h is to model state estimates, e.g. obje
t

position or velo
ity, as the true estimate in�uen
ed by a noise model. If

noise is ignored, the models represent ideal or perfe
t sensors, as used in

e.g. [42℄. A 
ommon noise model is additive Gaussian noise, as used in

e.g. [43�45℄ and Paper 3. High-level models are in many 
ases a major

simpli�
ation of the sensor and in
orporate very limited information on

how the sensor errors depend on the observed pro
ess. Nevertheless, they

are useful when studying systems in limited s
enario sets, systems with

very a

urate sensors, or the aspe
ts of system performan
e not a�e
ted by

sensor errors.

For a 
omputer vision system, a low-level sensor model des
ribes how

a 
amera per
eives the pro
ess, i.e. generates a sequen
e of images. Te
h-

niques for generating images with 
omputers, known as rendering, are stud-

ied in 
omputer graphi
s. Rendering imagery requires pro
ess models whi
h

des
ribe e.g. the 3D stru
ture of obje
ts in the environment. Rendered

imagery based on 3D models, in 
ontrast to real imagery 
olle
ted from


ameras, is denoted virtual imagery while rendered imagery where virtual

obje
ts are superimposed on real imagery is denoted augmented imagery.

In [46℄, published in 1995, it is argued that the realism of virtual imagery

is su�
ient for evaluation of mobile 
omputer vision systems. Sin
e then


omputer graphi
s has evolved rapidly, as 
an be observed in for instan
e the

video gaming and movie industries. Nonetheless, photo-realism in virtual

imagery is not easily a
hieved and an overview of the multidis
iplinary


hallenges of rendering is found in [47℄. Paper 4 explores the possibility

of rendering augmented imagery for o�ine evaluation of 
omputer vision

systems.

Online evaluation methods require image rendering in real-time, mak-

ing it more 
hallenging to attain high realism in rendered images. The

tra�
 simulation environments des
ribed in [48, 49℄ have software modules

available for rendering of virtual imagery in real-time.
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A
tion Layer Models

Models of e.g. braking and steering systems are needed to des
ribe how

the driver and vehi
le are in�uen
ed by system de
isions. Des
riptions

and models of automotive systems and 
omponents, in
luding a
tive safety

a
tuators, are thoroughly des
ribed in [50℄. Note that when the system is

exe
uted in open-loop, modeling the a
tion layer is unne
essary.

3.3.2 Pro
ess Models

Modeling of the pro
ess, i.e. the driver, vehi
le and surrounding tra�
 en-

vironment, is dis
ussed in the following se
tions.

Driver Models

For evaluation methods based on real or augmented data, the behaviour of

the driver is in
orporated in the data. Therefore, only purely model-based

methods require a driver model to generate the driver input to the vehi
le,

e.g. steering and braking, based on feedba
k from the vehi
le, environment

and a
tive safety system. Driver modeling is a wide �eld of resear
h and

models are often more or less appli
ation spe
i�
. A 
olle
tion of papers

treating driver models in the automotive domain from a variety of perspe
-

tives is found in [51℄.

Vehi
le Models

Vehi
le motion models are needed to des
ribe both the motion of the host

vehi
le as well as vehi
les in the surrounding environment. Vehi
le motion

is studied within the �eld of vehi
le dynami
s whi
h is the topi
 of several

books, e.g. [52℄.

Environment Models

When modeling a dynami
 tra�
 environment, ea
h obje
t in the environ-

ment, e.g. 
ars, roads and pedestrians, are des
ribed by individual models.

Depending on the interfa
e to the a
tive safety system, e.g. sensor and a
-

tuator models, the environment models need to in
lude di�erent aspe
ts. If

low-level sensor models are used, the level of detail of the environment mod-

els is usually higher 
ompared to when high-level sensor models are used.

If for instan
e virtual imagery is generated by a sensor model, a 
omplete

3D stru
ture of the environment is required.

Presently, there exist several simulations environments for simulating

tra�
 environments in
luding a
tive safety systems su
h as PreS
an, [48℄,
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v-TRAFFIC, [49℄, or the Volvo Cars Tra�
 Simulator (VCTS), [27℄. These

softwares in
lude models of driver, vehi
le and environment.

3.4 Methods

This se
tion des
ribes di�erent types of analysis and veri�
ation methods.

The methods evaluate real physi
al systems, mathemati
al models, or a


ombination thereof.

3.4.1 Real Driving

Online experiments using real vehi
les are performed both in real tra�


and on dedi
ated test tra
ks. They are repeatable to some degree at test

tra
ks but to a minor degree in real tra�
. If the system is online, it 
an be

evaluated in 
losed-loop and sensor data often have the advantage of being

realisti
.

Real Tra�


Real tra�
 experiments are primarily used to estimate the probability of an

unne
essary intervention from a set of randomly sampled s
enarios. Also,

experiments are 
ondu
ted to estimate the probability of a missed interven-

tion, given that the tested system has relatively frequent and non-intrusive

interventions, whi
h is valid for e.g. an LDW system.

Variations between di�erent vehi
les and system 
omponents are hand-

led by using multiple vehi
les and 
omponents in testing. For a randomly

sampled s
enario set to be representative, the s
enarios available for sam-

pling must also be representative. In [27, 53, 54℄, a Real World User Pro�le

(RWUP) is used to ensure that a representative s
enario set is sampled, tak-

ing into a

ount for instan
e di�erent driving styles, weather and driving

environments.

As dis
ussed in Se
tion 2.6, the a

eptable rate of unne
essary interven-

tions for highly intrusive systems is very low, meaning that a large amount of

driving data needs to be 
olle
ted to ensure that the requirement is ful�lled.

The obvious drawba
k is that real tra�
 experiments are both expensive

and time 
onsuming. Also, ground truth data is 
hallenging to obtain sin
e

the environment is un
ontrolled.

Test Tra
k

On test tra
ks, spe
i�
 types of s
enarios are tested in a more 
ontrolled

setting. Compared to real tra�
 experiments, test tra
k experiments of-
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(a) (b) (
)

Figure 3.2: Non-destru
tive tests in 
ollision and near-
ollision s
enarios

where (a) shows stationary pedestrian dummies of both adult and 
hild

size, (b) shows an in�atable moving obje
t representing a moving vehi
le

and (
) shows an arti�
ial obje
t representing a moose.

fer a higher degree of pro
ess 
ontrollability, repeatability and reprodu-


ibility. Motions of involved obje
ts 
an be 
ontrolled to 
reate desired

s
enarios. Also, ground truth 
an be obtained by e.g. positioning involved

tra�
 parti
ipants and obje
ts with an a

urate positioning system su
h

as Di�erential Global Positioning System (DGPS). Pro
ess 
ontrollability

on test tra
ks is better but not without limitations as for instan
e weather,

e.g. snow or rain, and animals 
rossing the road are still di�
ult to repro-

du
e on demand.

When re
reating 
ollision and near-
ollision situations on test tra
ks,

non-destru
tive tests are preferred to ensure safety. Therefore, 
ollisions

are 
ondu
ted between the host vehi
le and low-mass obje
ts su
h as in�at-

able 
ars, see Figure 3.2. This 
reates limitations on s
enarios possible to

re
reate as even state-of-the-art in�atable 
ar or pedestrian systems 
annot

re
reate all motions possible for real 
ars or pedestrians. It also degrades

the representativeness of the s
enario sin
e an in�atable obje
t might not

be per
eived by the sensors as would an equivalent real obje
t.

For highly intrusive systems su
h as AEB, the s
enarios in whi
h the sys-

tem should intervene are very rare, meaning that estimating the probability

of a missed intervention would require an unrealisti
 amount of driving data

from real tra�
 
onditions. Consequently, the probability of a missed inter-

vention is often, e.g. [27, 53, 54℄, assessed by repli
ating 
ollision situations

on test tra
ks. Su
h tests are also used to estimate the e�e
tiveness of the

system, for instan
e impa
t speed redu
tion.

For veri�
ation purposes, s
enarios in whi
h an in
orre
t system de
ision

is most likely, i.e. the worst 
ase s
enarios, are often repli
ated on test tra
ks,

thus 
omplementing tests in real tra�
. If the system behaves 
orre
tly in

these worst 
ase s
enarios it 
an be argued that less 
hallenging s
enarios
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are not likely to pose a problem. Paper 1 presents a theoreti
al method for

identifying the worst 
ase s
enarios for a CA system. Examples of s
enarios

most likely to 
ause unne
essary interventions are near-
ollision situations,

e.g. evasive maneuvers where the time or distan
e margins to a potential


ollision are small.

3.4.2 Closed-Loop Simulations

If the pro
ess is mathemati
ally modeled, the system behaviour 
an be sim-

ulated in 
losed-loop with 
omputer generated inputs. Model-In-the-Loop

(MIL) simulations use a system model while Software-In-the-Loop (SIL)

simulations use an a
tual system implementation, whi
h not ne
essarily

is exe
uted on the produ
tion hardware. The border between MIL and

SIL is sometimes hard to de�ne but examples of one or the other is found

in [27, 43, 44, 55℄.

MIL/SIL o�ers many bene�ts over real driving when 
omparing for in-

stan
e e�
ien
y and pro
ess 
ontrollability. Experiments are repeatable and

reprodu
ible and these are important properties when 
omparing di�erent

system 
on�gurations. MIL/SIL are o�ine methods, meaning there are no

real-time 
onstraints, making it possible to simulate s
enarios with speeds

limited only by the 
omputational power available. In addition, systems


an be tested before deployment at early stages in development, without

the need of fun
tioning hardware.

If system hardware 
omponents are available, their performan
e 
an

be tested online with 
omputer generated inputs as Hardware-In-the-Loop

(HIL). The bene�t of HIL, 
ompared to MIL/SIL, is that the hardware

is also evaluated. The drawba
k is the online property, 
onstraining HIL

simulations to real-time exe
ution. In [56℄ a test fa
ility where a 
omplete

vehi
le is set up on a 
hassis dynamometer, with robot vehi
les represent-

ing the surrounding environment, is des
ribed and referred to as Vehi
le

Hardware-In-the-Loop (VeHIL).

3.4.3 Data Replay

In data replay methods, real re
orded data is used to evaluate the system

o�ine. If real data is used ex
lusively, di�erent system software 
on�gura-

tions 
an be evaluated by 
omputer simulations without any loss in input

data realism, as done in [57℄, but often without the impe

able ground truth

data a

essible using in-the-loop methods. Limited ground truth, e.g. im-

proved estimates of obje
t motion, 
an be obtained by o�ine pro
essing

of real measurement data, as done in [43, 57℄. Data replay methods are

restri
ted to open-loop, sin
e the s
enario is �xed by the 
olle
ted data.
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Another option is to 
ombine real data with model-based methods thus

generating mixed or augmented data, for example by adding new obje
ts or

errors in re
orded sensor data. This is exempli�ed in [43℄ where three FCW

algorithms are simulated with input data 
onsisting of a

urate lead vehi
le

motion, obtained from real data, and noise, from a radar model. Augmented

data replay has the potential to pi
k the best out of two worlds but also

risk pi
king the worst. The modeling e�ort 
ompared to purely model-

based methods is limited and many of the advantages are partly preserved,

e.g. pro
ess 
ontrollability, or 
ompletely preserved, e.g. repeatability and

la
k of real-time 
onstraints. The downside is that simulation is limited

to open-loop, as some real data is used, and that the data realism is now

dependent on a model-based data augmentation method whi
h then requires

validation.

In Paper 4, an augmented data replay framework is formulated, used

for 
omputer vision systems. This framework uses a low-level sensor model,

dis
ussed in Se
tion 3.3. If instead high-level sensor models are available,

Paper 3 presents e�
ient data replay methods for de
ision fun
tion tuning

and sensitivity analysis with regards to input perturbations, whi
h 
an be

applied to real, model-based or augmented data.

3.4.4 Theoreti
al Methods

The ultimate goal of system veri�
ation is to prove that the system meets

the system requirements. Methods for proving system properties, su
h as

requirement 
omplian
e, are known as formal methods, see [58℄ for an ex-

tensive survey.

If the a
tive safety system and the set of operating s
enarios are de-

s
ribed mathemati
ally it is sometimes possible to derive analyti
al expres-

sions des
ribing system performan
e, as done in Paper 1. Generally, this is

only possible when making quite signi�
ant simpli�
ations.

For dynami
al systems, guarantees of not entering an undesired system

state may be obtained by 
omputing the set of rea
hable states. Paper 2

explores the use of rea
hability analysis, [59℄, and viability theory, [60℄, to

formally verify a 
ollision avoidan
e system.

3.5 Method Comparison

This se
tion provides a brief 
omparison of the methods presented in Se
-

tion 3.4 with regards to the properties dis
ussed in Se
tion 3.2. An overview

of the more or less dis
rete properties is presented in Table 3.1. Figures 3.3

and 3.4 
ompare pro
ess 
ontrollability, sensor data realism and e�
ien
y
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O�ine

Online

Real Traffic
Data Replay

Hardware-
In-the-Loop

Test Track

Model/Software-
In-the-Loop

Vehicle Hardware-
In-the-Loop

Real Traffic

Augmented
Data Replay

Process Controllability

Theoretical
Analysis

E
ff

ic
ie

n
cy

Figure 3.3: A qualitative sket
h for the relation between e�
ien
y and

pro
ess 
ontrollability for di�erent evaluation methods.

for di�erent methods. It should be noted that these properties are appli
a-

tion dependent, meaning that the �gures should not be 
onsidered absolute

truths.

In Figure 3.3 it 
an be noted how the model-based methods are superior

Vehi
le

System

Online

Closed- Ground

Repeatability Reprodu
ibility

hardware loop truth

Theoreti
al analysis x x x x

Real tra�
 x x x x

Test tra
k x x x x x (x) (x)

Model/software-in-the-loop x x x x

Hardware-in-the-loop x x x x x x

Vehi
le hardware-in-the-loop x x x x x x x

Real tra�
 data replay (x) (x) (x) x

Augmented data replay (x) (x) x x

Table 3.1: Overview of method properties for di�erent methods. The fa
t

that data replay methods use vehi
les and system hardware indire
tly,

i.e. for initial data 
olle
tion, is represented by a tentative "(x)". The

same notation indi
ates that, on test tra
ks, some aspe
ts are repeatable

and reprodu
ible while others are not. Ground truth for real data replay is

also tentatively marked as o�ine pro
essing 
an o�er limited ground truth

data.

32



3.5. Method Comparison

Theoretical
Analysis

Online

O�ineE
ff

ic
ie

n
cy

Sensor Data Realism

Model/Software-
In-the-Loop

Augmented
Data Replay

Real Traffic
Data Replay
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Figure 3.4: A qualitative sket
h for the relation between e�
ien
y and

sensor data realism for di�erent evaluation methods.

in terms of pro
ess 
ontrollability and also in many 
ases are very e�
ient,

largely due to the o�ine property. The major 
hallenge for the model-based

methods is related to the sensor model a

ura
y, as visualized in Figure 3.4.

For the purely model-based methods, e.g. 
losed-loop simulations, sensor

models generating realisti
 data are either unexisting or resour
e demand-

ing. Methods using ex
lusively real tra�
 data have, by de�nition, realisti


sensor data. Augmented data is relatively realisti
 but with the drawba
k

that augmented data replay is limited to open-loop exe
ution of the system,

as shown in Table 3.1.

The 
omparisons in Table 3.1, Figure 3.3 and Figure 3.4 
learly show the


omplementary nature of the presented methods. Thus, veri�
ation is often


arried out using a variety of methods, as exempli�ed in [27, 53, 54℄. Meth-

ods whi
h require 
omplete vehi
les or system hardware are 
onstrained

to use in the later stages of the development pro
ess. Alternatively, they

may be employed with de
reased predi
tion a

ura
y using early hardware

prototypes.
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Chapter 4

Summary of In
luded Papers

This 
hapter provides a brief summary of the papers in
luded in the thesis

and also des
ribes the 
ontributions to ea
h paper by the author of this

thesis. Full versions of the papers are in
luded in Part II.

Paper 1

J. Nilsson, A. Ödblom and J. Fredriksson, Worst Case Analy-

sis of Automotive Collision Avoidan
e Systems, submitted for

possible journal publi
ation.

As dis
ussed in Se
tion 2.6, the set of tra�
 s
enarios whi
h generates the

input to an a
tive safety de
ision fun
tion is very large. This paper theo-

reti
ally identi�es s
enarios with a high risk of in
orre
t system de
isions,

i.e. the worst 
ase s
enarios. The main 
hallenge with this approa
h, as

dis
ussed in Chapter 3, is to model system and s
enarios in su
h a way

that performan
e 
an be des
ribed analyti
ally while still in
luding the key

fa
tors a�e
ting performan
e, e.g. sensor errors or obje
t motion.

The key idea of this paper is to theoreti
ally investigate the fundamental

limitations of a 
ollision avoidan
e system, subje
t to systemati
 measure-

ment errors and unexpe
ted future obje
t motion, in terms of early and

unne
essary interventions. Spe
i�
ally, we in
lude e�e
ts of sensor and a
-

tuator delays, and derive 
losed-form expressions for the worst 
ase perfor-

man
e, with regards to longitudinal or lateral predi
tion and measurement

errors. For a system example, numeri
al results show how de
ision timing

and robustness depend on s
enario and system parameters. The method 
an

be used for system veri�
ation, tuning or sensitivity analysis with regards

to s
enario variations and sensor errors. Also, s
enarios with inadequate

performan
e 
an be identi�ed, thus improving existing test methods by di-

re
ting testing and analysis e�orts towards relevant s
enarios.
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Chapter 4. Summary of In
luded Papers

The thesis author was responsible for the problem formulation, deriva-

tion of the 
losed-form expressions, implementation and writing the paper.

Paper 2

J. Nilsson, J. Fredriksson and A. Ödblom, Veri�
ation of Colli-

sion Avoidan
e Systems using Rea
hability Analysis, submitted

as invited paper to the 19th IFAC World Congress, Cape Town,

South Afri
a, 2014.

The 
losed-form expressions for performan
e derived in Paper 1 are very

useful from a veri�
ation perspe
tive but for many 
omplex a
tive safety

de
ision fun
tions, they are not possible to derive. The alternative of eval-

uating state traje
tories, as done in traditional simulations and real vehi
le

tests, does not provide guarantees for system performan
e for all possible

state traje
tories.

To address these limitations, Paper 2 des
ribes a novel set-based frame-

work for analyzing under what 
onditions the absen
e of in
orre
t de
isions

may be guaranteed for a given 
ollision avoidan
e de
ision fun
tion. Rea
h-

ability analysis and viability theory are used to 
ompute unsafe and safe

sets, i.e. sets where an ideal system should or should not intervene respe
-

tively. In these sets, in
orre
t de
isions for a given de
ision fun
tion are

identi�ed using optimization te
hniques. By separating the dynami
s of

the input spa
e from the de
ision fun
tion, non-linear and ad-ho
 de
ision

fun
tions are e�
iently handled in the proposed framework.

The method is demonstrated on a 
ollision avoidan
e system example

and, given the models used and absen
e of measurements errors, we show

that the system does not make in
orre
t de
isions. Furthermore, we des
ribe

and demonstrate how to evaluate the robustness to measurement errors,

using the proposed framework.

The thesis author was responsible for the problem formulation, develop-

ment of the proposed methods, implementation and writing the paper.

Paper 3

J. Nilsson and M. Ali, Sensitivity Analysis and Tuning for A
tive

Safety Systems, in Pro
eedings of the 13th International IEEE

Conferen
e on Intelligent Transportation Systems, 2010, pages

161-167, Madeira Island, Portugal.

Papers 1 and 2 are full 
overage methods, i.e. are 
on
erned with veri�-


ation of the 
omplete s
enario parameter spa
e. Full 
overage methods
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are desirable but set limitations on the 
omplexity of the involved math-

emati
al models. In 
ontrast, Paper 3 
onsiders veri�
ation given that a

representative experimental data set is available.

The design and tuning of an a
tive safety de
ision fun
tion, e.g. how

thresholds are pla
ed, will de
ide how sensitive the system performan
e is

to input errors. Investigating the interplay between input errors, de
ision

fun
tion and system performan
e gives rise to three relevant questions:

i. Given a de
ision fun
tion and input errors, what is the system perfor-

man
e?

ii. Given a de
ision fun
tion and system performan
e requirements, what

are the input requirements?

iii. Given input errors and system performan
e requirements, how should

the de
ision fun
tion be tuned?

This paper proposes a framework for open-loop analysis of de
ision fun
-

tions, with regards to the above mentioned questions. By introdu
ing a ro-

bustness measure, des
ribing the robustness to input errors for the de
ision

fun
tion, e�
ient o�ine methods are formulated. The robustness measure

is independent of the input errors, meaning that it needs to be estimated

only on
e for ea
h de
ision fun
tion and data set. This allows for e�
ient

evaluation of the system performan
e as 
ombinations of de
ision fun
tion

and input errors 
an be pro
essed without evaluating the de
ision fun
tion

output for ea
h 
ombination. The framework is applied to data 
olle
ted

in an experimental setting. Also, it is demonstrated how it 
an be used for

setting input requirements and tuning the de
ision fun
tion.

The formulation of the presented framework and writing the paper were

jointly 
ondu
ted by both authors of the paper. The author of this thesis is

responsible for the demonstration of the framework while the se
ond author

is responsible for the 
olle
tion of experimental data and development of

the de
ision fun
tion example.

Paper 4

J. Nilsson, A. Ödblom, J. Fredriksson, A. Zafar and F. Ahmed,

Performan
e Evaluation Method for Mobile Computer Vision

Systems using Augmented Reality, in Pro
eedings of the IEEE

Virtual Reality Conferen
e, 2010, pages 19-22, Waltham, Mas-

sa
husetts, USA.

37



Chapter 4. Summary of In
luded Papers

The methods for analyzing de
ision fun
tions in Papers 1-3, all rely on

a

urate modeling of sensor errors. In Paper 4, a novel framework using

augmented imagery is proposed for determining sensor errors of 
omputer

vision systems, whi
h are widely used in a
tive safety systems. The proposed

framework exploits the possibility to add virtual agents into a real data

sequen
e 
olle
ted in an unknown environment, thus making it possible to

e�
iently 
reate augmented data sequen
es, in
luding ground truth, to be

used for performan
e evaluation. Varying the 
ontent in the data sequen
e

by adding di�erent virtual agents is straightforward, making the proposed

framework very �exible.

The method has been implemented and tested on a pedestrian dete
-

tion system used for 
ollision avoidan
e. Preliminary results show that the

method has the potential to repla
e and 
omplement physi
al testing, for

instan
e by 
reating 
ollision s
enarios, whi
h are di�
ult to test in reality.

The formulation of the novel framework was jointly 
ondu
ted by the

�rst two authors of the paper. The author of this thesis was also responsible

for writing the paper and supervising the 
ase study implementation done

by authors four and �ve.

Paper 5

J. Nilsson, J. Fredriksson and A. Ödblom, Reliable Vehi
le Pose

Estimation using Vision and Single-Tra
k Model, submitted for

possible journal publi
ation.

The method in Paper 4 relies on an a

urate 3D re
onstru
tion of the 
am-

era motion in six Degrees of Freedom (6-DoF). Extensive use of this method

requires this to be done without adding additional expensive sensors to the

vehi
le. The 
ore idea of Paper 5 is to use a single-tra
k vehi
le model in a

lo
al bundle adjustment framework to improve the pose estimates obtained

from a standard vehi
le sensor setup, i.e. a forward looking mono
ular 
am-

era, wheel speed, yaw rate and steering wheel angle sensors. This means

pose estimates are optimized not only with regards to observed image fea-

tures, but also with respe
t to a single-tra
k vehi
le model and standard

in-vehi
le sensors.

The des
ribed method has been tested experimentally on 
hallenging

data sets at both low and high vehi
le speeds as well as on a data set with

moving obje
ts. The vehi
le motion model in 
ombination with in-vehi
le

sensors exhibit good a

ura
y in estimating planar vehi
le motion. Results

show that this property is preserved when 
ombining these information

sour
es with vision. Furthermore, the a

ura
y obtained from vision-only in
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dire
tion estimation is improved, primarily in situations where the mat
hed

visual features are few.

The thesis author was responsible for the problem formulation, devel-

opment of algorithms, implementation, experimental validation and writing

the paper.

Paper 6

J. Nilsson, P. Andersson, I. Gu and J. Fredriksson, Augmented

Training Data for Pedestrian Dete
tion, submitted to the 22nd

International Conferen
e on Pattern Re
ognition, Sto
kholm,

Sweden, 2014.

Ma
hine learning te
hniques are widely used in 
omputer vision to train

obje
t 
lassi�ers. In many appli
ations, e.g. pedestrian dete
tion, the dom-

inating approa
h in literature is to use supervised learning, e.g. Support

Ve
tor Ma
hines (SVM), to train a 
lassi�er using labelled data. This la-

belled data is 
hosen su
h that it represents the environment where the


lassi�er will be used. Thus, for a mobile system operating in a 
omplex

and un
ontrolled environment, e.g. a 
ar, the training data set must 
on-

tain a great amount of variation. Colle
ting and manually labelling large

amounts of data is an expensive and time 
onsuming pro
ess.

In Paper 6, we propose to repla
e or 
omplement real data with aug-

mented data, using the method presented in Paper 4. Augmented data 
an

be automati
ally labelled while still exhibiting a real, and 
onsequently real-

isti
, ba
kground. The proposed solution is evaluated by training pedestrian


lassi�ers using one of the gold-standard methods in pedestrian 
lassi�
a-

tion, spe
i�
ally a linear SVM and the Histogram of Oriented Gradients

(HOG), [61℄. Experimental validation is performed on real data sets and

the results are 
ompared to performan
e obtained using real training data.

The thesis author was responsible for the problem formulation and writ-

ing the paper. The design of experiments was 
ondu
ted jointly by the

author of this thesis and the se
ond author of the paper. Note that the

development and implementation of algorithms were primarily the respon-

sibility of the se
ond author, and not the author of this thesis.

39



40



Chapter 5

Con
luding Remarks

This 
hapter states the most important 
ontributions and provides re
om-

mendations for future resear
h.

5.1 Contributions

System veri�
ation of an automotive safety system must assess the 
orre
t-

ness of system de
isions in a vast array of tra�
 s
enarios. These de
isions

are based on remote sensing of the surrounding environment and 
onse-

quently, in
luding sensors in the analysis and veri�
ation methods is 
ru
ial.

Computational methods have the potential to signi�
antly improve the ver-

i�
ation pro
ess in terms of e.g. e�
ien
y and 
overage. This thesis fo
us

on 
omputational methods for both de
ision fun
tion analysis, in
luding

the dependen
e on sensor errors, and methods for determining these sensor

errors.

Related to de
ision fun
tion analysis and veri�
ation, the main 
ontri-

butions of this thesis are:

• Derivation of 
losed-form expressions for the worst 
ase de
ision tim-

ing, in the presen
e of predi
tion and measurement errors, for a 
ol-

lision avoidan
e system example. Also, 
losed-form expressions are

derived for robust avoidan
e s
enarios, i.e. s
enarios whi
h are guar-

anteed not to exhibit an unne
essary intervention. These results are

presented in Paper 1.

• A novel set-based framework for analyzing under what 
onditions the

absen
e of in
orre
t de
isions may be guaranteed for a given a
tive

safety de
ision fun
tion. In 
ontrast to evaluating state traje
tories,

rea
hability analysis and viability theory are used to 
ompute unsafe

and safe sets, in whi
h absen
e of in
orre
t de
isions and robustness to
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Chapter 5. Con
luding Remarks

sensor errors may be guaranteed using optimization te
hniques. This

framework is presented in Paper 2 and forms a generalization of the

work shown in Paper 1.

• A framework for a
tive safety de
ision fun
tion analysis using re
orded

or simulated data. E�
ient methods for system performan
e evalua-

tion are derived and these 
an be used to analyze the de
ision fun
tion

sensitivity to input errors, or for de
ision fun
tion tuning. This frame-

work is presented in Paper 3.

Related to performan
e evaluation of 
omputer vision systems, the main


ontributions of this thesis are:

• A novel performan
e evaluation approa
h using augmented imagery

for evaluation of mobile 
omputer vision systems. Performan
e is

evaluated in 
ollision and near-
ollision s
enarios, safely and non-

destru
tively, while still using a real image ba
kground from re
orded

data. This 
on
ept is presented in Paper 4 and the use of augmented

data is extended from performan
e evaluation to training of a pedes-

trian 
lassi�er in Paper 6.

• An approa
h for 6-DoF vehi
le pose estimation using a single vehi
le-

based standard 
amera. Visual features are 
omplemented by stan-

dard in-vehi
le sensors and a single tra
k vehi
le model in a bundle

adjustment framework. The method has been validated experimen-

tally in 
hallenging situations at both low and high vehi
le speeds.

This method is presented in Paper 5 and is an important module

needed for the framework introdu
ed in Paper 4.

5.2 Dire
tions of Future Resear
h

There is a great need for more e�
ient veri�
ation methods to handle the


hallenges asso
iated with future automotive safety systems. The work

presented in this thesis has inspired multiple ideas on this topi
.

Sensor error models

To make full use of the theoreti
al methods for performan
e estimation,

presented in Papers 1-3, a

urate sensor error models are needed. This

requires a
quiring and pro
essing large amounts of sensor data, with asso-


iated ground truth, but also proper 
hoi
es of model stru
tures. The pre-

sented framework for sensor evaluation using augmented data may prove to

be a valuable resour
e.
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5.2. Dire
tions of Future Resear
h

Extending rea
hability methods

The dynami
al models used in Paper 2 are linear and low-dimensional,

handling only a single moving obje
t. Applying existing methods for rea
h-

abality analysis of more 
omplex systems is an interesting approa
h. This


ould enable the analysis of the same problem with more 
omplex vehi
le

dynami
s models and/or multiple obje
ts.

Augmenting other sensors

The augmentation framework in Paper 4 has been applied primarily on

image data. Many safety systems fuse information from di�erent sensor

te
hnologies, e.g. radar, laser. Thus, a natural extension would be to ex-

tend the 
on
ept to in
lude also other sensor types. This requires in-depth

knowledge of the sensor te
hnology to be added and also a

urate and de-

tailed modeling of the spe
i�
 sensor used.
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