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Abstract

This thesis considers computational methods for analysis and verification
of the class of automotive safety systems which support the driver by mon-
itoring the vehicle and its surroundings, identifying hazardous situations
and actively intervening to prevent or mitigate consequences of accidents.
Verification of these systems poses a major challenge, since system decisions
are based on remote sensing of the surrounding environment and incorrect
decisions are only rarely accepted by the driver. Thus, the system must
make correct decisions, in a wide variety of traffic scenarios. There are two
main contributions of this thesis. First, theoretical analysis and verification
methods are presented which investigate in what scenarios, and for what
sensor errors, the absence of incorrect system decisions may be guaranteed.
Furthermore, methods are proposed for analyzing the frequency of incor-
rect decisions, including the sensitivity to sensor errors, using experimental
data. The second major contribution is a novel computational framework
for determining the errors of mobile computer vision systems, which is one
of the most widely used sensor technologies in automotive safety systems.
Augmented photo-realistic images, generated by rendering virtual objects
onto a real image background, are used as input to the computer vision
system to be tested. Since the objects are virtual, ground truth is readily
available and varying the image content by adding different virtual objects
is straightforward, making the proposed framework flexible and efficient.
The framework is used for both performance evaluation and for training
object classifiers.

Keywords: Automotive, Active Safety, Semi-Autonomous Vehicles, Veri-
fication, Performance Evaluation, Decision Making, Augmented Reality.
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Chapter 1

Introduction

Road traffic accidents are a global problem of epidemic proportions. Ac-
cording to the World Health Organization (WHO), road traffic injuries are
the leading cause of death globally for young people aged 15 — 29, and
the eight leading cause of death in total, [1]. In the developed countries
primarily, road traffic accidents have been on the agenda in the past few
decades. Governments have invested in infrastructure and passed laws to
improve road safety. The automotive industry has put emphasis on design-
ing systems that protect the occupants of the vehicle in case of a crash, so
called passive safety systems. Passive safety innovations include seat belts,
crumple zones and airbags.

In the 1970s, the introduction of Anti-lock Braking Systems (ABS)
marked a first milestone for active safety systems, i.e. systems which ac-
tively intervene to prevent or mitigate consequences of accidents. In recent
years, active safety systems which monitor the surrounding environment,
using remote sensing technologies, have been introduced to the market.
By using information on the surrounding traffic environment, systems can
identify hazardous situations, e.g. when the driver has failed to observe a
crossing pedestrian and a collision is imminent. If and when hazardous
situations are detected, the system can actively intervene to prevent an
accident either by informing the driver of the upcoming danger or by au-
tonomously performing an evasive maneuver such as Automatic Emergency
Braking (AEB).

This thesis concerns the problem of verifying that a given active safety
system acts correctly in the wide variety of possible traffic scenarios. There
are two major reasons why this is a challenging task. First, the variations
in operating conditions are essentially unlimited, a fact easily acknowledged
when reflecting and comparing a snowy country road in northern Sweden to
downtown Tokyo. Second, incorrect decisions by highly intrusive systems,
like AEB, can only be accepted on very rare occasions.



CHAPTER 1. INTRODUCTION

1.1 Aims and Objectives

The aim of the work presented in this thesis is to develop computational
methods for efficient verification of automotive safety systems. In this con-
text, computational verification methods are defined as methods which pre-
dict system performance by performing computations with recorded exper-
imental data and/or mathematical models as input.

In active safety systems, decision functions use input from sensors to
decide how to appropriately support the driver. A vital part of active safety
system performance is the ability to make correct decisions, also in the
presence of sensor measurement errors. Consequently, three objectives are
formulated, namely to develop methods that

[. For a given active safety decision function, identify traffic scenarios
where the function makes incorrect decisions

II. For a given active safety decision function, quantify the robustness to
input errors

III. Generate virtual sensor data with sufficient quality for analysis and
verification

The first two objectives are addressed by Papers 1-3, while the third objec-
tive is treated in Papers 4-6.

1.2 Delimitations

This thesis is concerned with semi-autonomous vehicles where active safety
systems monitor the traffic situation and intervene if needed to ensure safety.
Objectives I and II are delimited to evaluating the correctness of the inter-
vention decision as opposed to the choice and execution of the intervention.
With regards to the same two objectives, only traffic scenarios with single
moving objects are considered. In Objective II, we primarily consider in-
put errors which are bounded and systematic, where systematic means that
they depend on the specific traffic situation. Objective III is concerned with
efficiently determining said input errors and is delimited to computer vision
sensors, which is one of the dominating technologies used in active safety
applications.

1.3 Thesis Outline

The thesis is divided into two parts. Part I serves as an introduction to
Part II by presenting background information and related work. Part II
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contains six scientific papers that constitute the base of the thesis.

Part T provides context to the appended papers and is organized as fol-
lows. In Chapter 1, the topic of the thesis is introduced and aims, objectives
and delimitations are described. Chapter 2 gives an overview of in-vehicle
safety systems with a strong emphasis on active safety systems. In Chap-
ter 3, an overview of methods for system verification is provided. Chapter 4
briefly summarizes the papers included in Part IT while Chapter 5 presents
the main scientific contributions and gives suggestions for future research.



CHAPTER 1. INTRODUCTION

1.4 List of Publications

This thesis is based on the following publications:

Paper 1

J. Nilsson, A. Odblom and J. Fredriksson, Worst Case Analy-
sis of Automotive Collision Avoidance Systems, submitted for
possible journal publication.

Paper 2

J. Nilsson, J. Fredriksson and A. Odblom, Verification of Colli-
sion Avoidance Systems using Reachability Analysis, submitted
as invited paper to the 19th IFAC World Congress, Cape Town,
South Africa, 2014.

Paper 3

J. Nilsson and M. Ali, Sensitivity Analysis and Tuning for Active
Safety Systems, in Proceedings of the 13th International IEEE
Conference on Intelligent Transportation Systems, 2010, pages
161-167, Madeira Island, Portugal.

Paper 4

J. Nilsson, A. Odblom, J. Fredriksson, A. Zafar and F. Ahmed,
Performance Evaluation Method for Mobile Computer Vision
Systems using Augmented Reality, in Proceedings of the IEEE
Virtual Reality Conference, 2010, pages 19-22, Waltham, Mas-
sachusetts, USA.

Paper 5

J. Nilsson, J. Fredriksson and A. Odblom, Reliable Vehicle Pose
Estimation using Vision and Single-Track Model, submitted for
possible journal publication.

Paper 6

J. Nilsson, P. Andersson, I. Gu and J. Fredriksson, Pedestrian
Detection using Augmented Training Data, submitted to the

22nd International Conference on Pattern Recognition, Stock-
holm, Sweden, 2014.



1.4. LiST OF PUBLICATIONS

Other Publications

In addition to the publications above, the following publications by the
thesis author are related to the topic of this thesis:

J. Nilsson, J. Fredriksson, and A. Odblom, Bundle Adjustment
using Single-Track Vehicle Model, in Proceedings of the IEEE

International Conference on Robotics and Automation, 2013, pp.
2888-2893.

J. Nilsson, A. Odblom, J. Fredriksson, and A. Zafar, Using Aug-
mentation Techniques for Performance Evaluation in Automo-
tive Safety, in Handbook of Augmented Reality, 1st ed., B. Furht,
Ed. Springer, 2011, pp. 631-649.

J. Nilsson, On Performance Evaluation of Automotive Active
Safety Systems, Licentiate Thesis R014/2010, ISSN 1403-266X,
Chalmers University of Technology, Goteborg, Sweden, 2010.

J. Nilsson and A. Odblom, On Worst Case Performance of Col-
lision Avoidance Systems, in Proceedings of the IEEE Intelligent
Vehicles Symposium, 2010, pages 1084-1091, San Diego, Califor-
nia, USA.

A. Odblom and J. Nilsson, Augmented Vision in Image Sequence
Generated from a Moving Vehicle, Patent pending, EP2639771,
European Patent Office, 2012.

J. Nilsson, Operating Method and System for Supporting Lane
Keeping of a Vehicle, Patent granted, US8428821, U.S. Patent
and Trademark Office, 2007.

J. Nilsson, Operating Method and System for Supporting Lane
Keeping of a Vehicle, Patent granted, EP2188168, European
Patent Office, 2007.






Chapter 2

Automotive Safety Systems

The over 1 million annual fatalities caused by road traffic accidents are
merely the tip of the iceberg, e.g. the WHO estimates that road traffic
accidents also lead to between 20 and 50 million non-fatal injuries each
year, [1]. On top of that, the economic burden linked to road traffic accidents
is significant. In 1998, a crude estimate of the annual global cost was found
to be in the order of US$500 billion, [2].

There are large regional differences across the world as the variations
in vehicle safety, infrastructure and driver education are substantial. Re-
markable progress has been made in the developed countries during the last
decades, as can be seen in Figure 2.1. Improved vehicle design, road infras-
tructure investments and road safety policies have contributed to reducing
the risk of getting killed in traffic, in most developed countries, by more
than 40% since 1990, [3].

Success in reducing fatalities has spurred stakeholders in road safety to
set more and more ambitious goals, as described in [6]. The most ambitious
goal possible, i.e. a vision of zero fatalities in road traffic, has been expressed
in road safety policies in Sweden and the Netherlands. The current and
future automotive safety systems discussed in this chapter have the potential
to contribute significantly to this goal.

We categorize automotive safety systems into passive safety systems,
which protect the vehicle occupants when collision has occurred, and three
types of active safety systems, which are designed to prevent accidents.
The first category of active safety systems, wvehicle dynamics control sys-
tems, prevent unwanted dynamical behaviours such as instability. Driver
Assistance (DA) systems monitor the vehicle surroundings to assist the
driver. In a not too distant future, Autonomous Driving (AD) systems may
take complete responsibility for the driving task. The line between these
categories is by no means sharp, as exemplified by the Roadway Departure
Prevention Assist (RDPA) system described in |7] which incorporate both
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Figure 2.1: Historical road traffic fatalities, obtained from [4], for some of
the developed countries. As a reference, low- and middle-income countries
have annual road traffic fatalities of 18.3 and 20.1 per 100000 inhabitants
respectively, [1]. The sharp increase in fatalities for Germany in 1990 is an
effect of the reunification of Germany, [5].

stability control and collision avoidance in a single framework.

In this chapter, the different categories of active safety systems are de-
scribed, after first providing some context by briefly discussing the causes
of accidents. In the final part of the chapter, the effectiveness of these sys-
tems is reviewed followed by a discussion on the challenges associated with
system verification, which is the core problem addressed in this thesis.

2.1 Traffic Accident Causation

To efficiently prevent accidents, the causes of accidents need to be under-
stood. A common approach for identifying accident causes is to study ac-
cident statistics. Figure 2.2 shows the accident distribution in terms of
major crash types, obtained from [8]. There are numerous ways to classify
accidents, e.g. by gender, age, type of vehicle, time of day or weather con-
ditions. Extensive reports with accident classifications based on national
accident statistics are published continuously, see e.g. [9] for the U.S. or [10]
for Sweden.

Human error plays a major role in a majority of accidents. In an in depth
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Figure 2.2: Distribution in terms of major crash types for all 6394000
police-reported motor vehicle crashes in the U.S. which resulted in
3189000 injured people and a total of 41821 fatalities, |8]. The figure
is based on statistics from the 2000 National Automotive Sampling System
(NASS)/General Estimates System (GES) crash database.

study of real accidents in the 1970s, [11], including on-scene investigations,
it was concluded that human participants were solely or partly to blame in
92.6% of the investigated accidents. The corresponding numbers for envi-
ronmental and vehicular factors were 33.8% and 12.6% respectively. Com-
mon human errors were e.g. excessive speed, improper evasive action and
driver inattention or distraction. Environmental factors were e.g. view ob-
structions and slippery road surfaces while vehicular factors included brake
failures and inadequate tyre tread depth.

More recently, in 2005, a Field Operational Test (FOT) known as the
100-Car Study, [12,13], was completed. 100 cars were equipped with un-
obtrusive data collection instrumentation to collect naturalistic data from
normal driving. The study reaffirms that drivers are often to blame for
accidents as nearly 80% of all crashes involved the driver looking away from
the forward roadway just prior to the collision. Driver inattention or dis-
traction, e.g. using a mobile phone while driving, does not necessarily lead
to an accident but if coinciding with another unfortunate event, e.g. the
vehicle in front suddenly braking, the probability of an accident increases
significantly. Multiple accident causes mean that there are multiple possible
preventive measures. As accidents are very diverse, preventing a majority of
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accidents requires the deployment of a large number of preventive measures.

2.2 Vehicle Dynamics Control

Following advances in electronics technology, mass production of ABS sta-
rted on road vehicles in the 1970s but the innovation had been present in
the railway and aviation industries decades before that. ABS monitors the
rotational speed of the wheels and automatically reduce the brake force if
the wheels cease to rotate, thus preventing brake lock-up. This enables
steering of the vehicle while simultaneously braking hard.

In the 1990s, Electronic Stability Control (ESC) was introduced to han-
dle problems with vehicle instability. ESC detects when the vehicle starts
to skid and counteracts this by automatically braking the wheels individ-
ually, as illustrated in Figure 2.3. A natural evolution of ESC is to also
prevent the vehicle from rolling over, as presented in [14]. Roll Stability
Control (RSC) is mostly relevant for vehicles with high center of gravity,
such as Sport Utility Vehicles (SUVs) and trucks, and was first introduced
in 2002, |15].

The interested reader is referred to e.g. [16,17], for more comprehensive
treatments of vehicle dynamics control systems.

Figure 2.3: A vehicle drives onto an ice patch in a curve. Without ESC
the vehicle becomes unstable and starts spinning. With ESC the left front
wheel is braked, thereby counteracting the rotation, ensuring that stability
is maintained.

10
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2.3 Driver Assistance

Recent advances in remote sensing technology have led to the introduc-
tion of several DA systems, see e.g [17, 18] for extensive overviews. One of
the first examples, launched in 1995, is an extension of the cruise control
which automatically maintains a constant vehicle speed set by the driver.
Adaptive Cruise Control (ACC), thoroughly described in [16,19], uses infor-
mation from a forward looking sensor, e.g. a radar, to maintain a constant
distance or time gap, set by the driver, to the vehicle in front of the host
vehicle, see Figure 2.4. ACC contributes to safe driving by assuring that a
safe distance is kept to the vehicle ahead. Also, ACC can reduce fuel con-
sumption and congestion through smooth control of the brakes and throttle,
thereby contributing to a cleaner environment.

Utilizing the same forward-looking sensor, Forward Collision Warning
(FCW) indicates to the driver, as exemplified in Figure 2.5a, when im-
minent action is needed to avoid a collision, e.g. when the vehicle ahead
suddenly brakes. If there is insufficient time or if the driver fails to respond
to warnings, a Collision Avoidance (CA) system can autonomously control
the vehicle to avoid the impending collision. A common action for CA sys-
tems is to automatically apply the brakes in situations where a collision
is imminent, so called AEB, illustrated in Figure 2.5b. If the collision is
unavoidable, AEB may still be triggered to reduce impact speed, so called
Collision Mitigation (CM).

There are also numerous DA systems which support the lateral control
of the vehicle, as illustrated in Figure 2.6. If the vehicle crosses a lane
marking a Lane Departure Warning (LDW), [20], may be issued to the
driver. A lane guidance system closely related to LDW is Lane Keeping
Assistance (LKA), |16], where the driver is supported by a torque on the
steering wheel to stay in the current lane. In |7| the problem of road or
lane departures and vehicle stability are addressed in a common framework,

Figure 2.4: ACC automatically maintains a driver set time gap to the vehicle
in front.

11
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(2)

Figure 2.5: (a) FCW displayed in a Head Up Display (HUD). The red light
displayed to the driver in the windshield is designed to resemble the appear-
ance of vehicle brake lights. (b) When the host vehicle enters the red zone,
an imminent collision is detected and an autonomous brake intervention is
initiated.

thereby combining and enhancing the functionality of lane guidance systems
and ESC. There are also systems that support the driver when performing
lane change maneuvers. Lane Change Aid (LCA) systems, 21|, monitor
adjacent lanes and inform the driver when an obstacle is present in the blind
spot of the rear view mirrors, see Figure 2.6b. In some situations there is
very little, if any, time to warn the driver of a potential hazard, making
it justified for a CA system to control the steering of the host vehicle to
avoid accidents. A system designed to avoid collisions with oncoming traffic
using steering interventions, referred to as Emergency Lane Assist (ELA),
is presented in |22].

Information of host vehicle motion and road geometry can also be used
to assess the present state of the driver. If a driver is fatigued, distracted
or even impaired by drugs, this will affect the driver’s ability to maneuver
the vehicle smoothly in the current road lane. [23] presents a method for
detecting inadequate driving behaviour, which can be used by systems to
e.g. inform the driver when about to fall asleep.

The underlying technology for DA systems is discussed in the follow-
ing subsections. DA systems are mechatronic systems and consist of three
basic layers, namely the perception, decision and action layers. The archi-
tecture for a DA system performing autonomous interventions is illustrated
in Figure 2.7.

12
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1
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Figure 2.6: (a) A lane guidance system detects the lane markings and warns
the driver (LDW), or applies a steering wheel torque (LKA), when crossing
the lane boundary. (b) The colored zones visualize the blind spots, i.e. the
zones not visible to the driver through the rear view mirrors. LCA indicates
that an obstacle is present in the blind spot by lighting a small lamp close
to the rear view mirror.

T % /

2.3.1 Sensor Technology

A key enabler for DA systems is reliable remote sensing technology. In the
perception layer, see Figure 2.7, sensors collect observations from the envi-
ronment, driver and host vehicle. Depending on the requirements imposed
by the system, various technologies can be chosen to deliver an interpreta-
tion of the surrounding environment.

A frequently used sensor technology is computer vision, which detects
and classifies objects in the environment using image data collected by cam-
eras. Computer vision is the dominant technology to retrieve information
on the road geometry and the relative position of the host vehicle to the
road, which is done by detecting the lane markings or the edge of the road.

Active sensors such as radar, laser or ultrasonic sensors transmit radio,
optical or sound signals and evaluate object attributes by interpreting the
reflected response of the transmitted signal. Also, observations from digital
maps and sensors mounted on other vehicles or infrastructure can be made
available to the safety system through a communication device.

In many applications, system requirements cannot be fulfilled by a single
sensor. Sensor observations from multiple sensors are combined, or fused,
to provide an enhanced view of the environment. Also, objects observed
by sensors are tracked over time to reduce the influence of noise. General
frameworks for sensor data fusion and tracking are described in [24, 25]
while [26-29| describe work tailored to DA systems.
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Figure 2.7: System architecture for an active safety system designed to
intervene in case a critical situation arises. The perception layer provides
information used for decision making in the decision layer. The decision is
executed in the action layer via one or multiple actuators, e.g. brake system
or driver information displays.

2.3.2 Decision-Making and Interventions

In the decision layer, see Figure 2.7, input from the perception layer is used
to decide if and how to intervene. This decision function consists of two
parts. The process of converting state estimations, e.g. object positions,
into measures describing whether or not the host vehicle is in a hazardous
situation, i.e. if surrounding road users and objects constitute a threat of
collision, is termed threat assessment. Based on the threat measures, a
deciston-making algorithm chooses what, if any, action should be taken by
the system.

The earlier, relative to the potential accident, the system intervenes,
the more likely it is to prevent the accident. Also, the earlier the system
intervenes, the more likely it is that the driver is well aware of the hazard
and thus perfectly capable of preventing the accident. If the latter is true
then the driver would consider the intervention unnecessary. Therefore, the
aim of the decision function is usually to intervene at the latest point in
time when the intervention type is still likely to succeed, where success is
defined as e.g. preventing or mitigating the consequences of an accident.

A CA system aims to avoid all potential collisions. For lane guidance
systems, the aim is not as straightforward to define since a lane departure
not necessarily leads to a dangerous situation. Most LDW systems aim
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at issuing warnings exclusively when lane departures are unintentional. In
situations when the driver intentionally deviates from the current lane, it is
assumed that the driver can manage the situation.

There is a range of possible actions, or intervention types, which can be
applied when a hazardous situation is detected. If the situation is detected
early, the system, e.g. FCW or LDW, can warn the driver by for instance
audible, visual or haptic feedback. In certain situations, there is no time
for the driver to react to the feedback and perform a driving maneuver to
avoid the impending accident. In those situations the system can, to avoid
the accident, autonomously control the brakes or the steering.

System interventions are sometimes perceived as intrusive by the driver.
The level of intrusiveness varies between intervention types where warnings
or information to the driver are generally less intrusive than autonomous
vehicle control. The amplitude of the intervention also has an influence as
e.g. a loud warning signal is often considered more intrusive than a subtle
warning signal. The possibility for the driver to override an intervention
also affects the level of intrusiveness.

2.4 Autonomous Driving

Automotive safety systems which intervene autonomously to prevent acci-
dents are currently commercially available from a large number of vehicle
manufacturers. The systems are evolving to handle more and more oper-
ating scenarios such as intersections and night-time driving, and this trend
is likely to continue, see Figure 2.8. An enabler for this evolution is the
availability of more accurate, affordable remote sensors.

The research community has for quite some time focused on the next ma-
jor step in automotive safety, namely Autonomous Driving systems. These
are systems which takes full responsibility for the driving task as opposed
to DA systems which still require the driver to monitor the system. In the
2007 DARPA Urban Challenge, [30], 35 teams formed from collaborations
between industry and academia competed with driverless vehicles in an ur-
ban environment. A total of six self-driving vehicles completed the course
which included tasks such as negotiating intersections, parking and avoiding
vehicles stalled on the road.

In many ways AD systems are a natural evolution of DA systems and
a number of companies, vehicle manufacturers and others, have communi-
cated their aim to commercialize this technology. The potential benefit of
AD systems is undoubtedly huge, not only in terms of safety, but also in
terms of reduced fuel consumption, reduced congestion and added driver
convenience.
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Figure 2.8: (a) Possible sensor setup for future vehicles: 360° field of view
with cameras and radars. (b) Autonomous vehicles and future driver assis-
tance systems must handle more traffic scenarios, e.g. night conditions.

2.5 System Effectiveness

In the last decades, passive safety systems have made a major contribution
to road traffic safety through innovations such as the safety belt, crumple
zones and airbags, see Figure 2.9. Their effectiveness has been extensively
studied using accident statistics. In the U.S. during 2008, according to [31],
seat belts saved 13250 lives, frontal airbags 2546 and child restraints 244.
In [32], it is shown that passive safety improvements have contributed to a
significant decrease in injury severity between the 1970s and the 1990s, also
when ignoring effects from seat belts and airbags.

The effectiveness of passive safety systems is assessed by governments
around the world. In Europe, EuroNCAP has since 1997 assessed cars, by
e.g. crash tests, in order to provide consumers with an independent rating
of safety performance. Active safety systems such as ESC are included
in this rating and in 2014 AEB will also be included, [33|. These ratings
are important selling arguments for vehicle manufacturers and thus they
encourage rapid development of new safety technology.

Vehicle dynamics control systems have been widely deployed in the mar-
ket for many years, making it possible to assess their effectiveness in im-
proving road safety using accident statistics. In [34], multiple studies inves-
tigating the safety impact of ABS are reviewed. A majority of the studies
indicate that equipping vehicles with ABS significantly reduces the occur-
rence of accidents involving multiple vehicles. Some studies also indicate
that ABS increases the occurrence of run-off-road accidents. Possible con-
tributing factors to this increase include inappropriate use of ABS and driver
behaviour adaption, e.g. when the driver decreases driving safety margins

16



2.5. SYSTEM EFFECTIVENESS

Figure 2.9: (a) The airbag is an example of passive safety technology. (b)
Crash tests are used to assess passive safety effectiveness.

due to awareness of the positive safety effects of ABS.

According to [35], use of ESC reduces fatal single-vehicle accidents in-
volving cars and Sport Utility Vehicles (SUVs) by 30-50% and 50-70% re-
spectively. Considering that single-vehicle crashes stand for 60% of all fatal
crashes in the U.S., [31], the potential safety impact of ESC is significant.
Additionally, the reduction of rollover accident fatalities, related to the use
of ESC, is in |35] estimated to 70-90%, regardless of vehicle type.

DA systems have, if at all, been introduced to the market relatively re-
cently which explains why their effectiveness has not been studied to the
same extent. An overview on the subject is given in [17] which concludes
that the safety impacts of DA systems are expected to be considerable. Due
to the lack of data, several approaches have been proposed to predict sys-
tem effectiveness such as reconstructing real-world accidents from accident
databases and using simulations to determine if a given system could prevent
these accidents. Using this method [36] predicts that a newly introduced
CA system could prevent up to 24% of pedestrian fatalities and [37] predicts
that a similar system could reduce driver fatalities in rear-end crashes by
up to 50%.
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Figure 2.10: The driver monitors both the vehicle and the surrounding envi-
ronment to control the vehicle. The active safety system monitors the com-
plete process and control the vehicle either directly, or indirectly through
driver interaction, see Figure 2.7. The switches determine if the system is
executed in open- or closed-loop, see Section 3.2.

2.6 Verification Challenges

This section introduces terminology and discusses the challenges associated
with system verification. Consider a process, as illustrated by the top part
of Figure 2.10 consisting of a wvehicle, a driver, and an environment. The
environment has in general both static and dynamic content where static
content is e.g. roads, trees and traffic signs and dynamic content is e.g. road
users such as cars, bicycles and pedestrians. The active safety system, in-
teract with the process according to Figure 2.10. The system monitor and
control the process to ensure that the host vehicle is operated safely.

The purpose of system wverification is to ensure that the system per-
formance meets the system requirements. This must be addressed for the
complete set of operating scenarios, defined by the variations in the pro-
cess, i.e. the variations in vehicle, driver and environment behaviour. The
set of operating scenarios is essentially unlimited in size as combinations
of e.g. weather conditions, road user types, appearance and motion pat-
terns are infinite, see Figure 2.11a. Defining the boundaries of this set is a
challenge in itself since the system is mobile and travels in an environment
which is completely or partially unknown to the system a priori.

The system relies on real-time remote sensing of e.g. road users and road
geometry to make decisions on when and how to intervene. The sensing
performance depends on variations in the environment, as illustrated by
Figure 2.11b. For instance, a camera subjected to direct sunlight will exhibit
poor object detection performance, much like the human eye.

The more intrusive an intervention type is, see Section 2.3.2, the less
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(b)

Figure 2.11: Illustration of system verification challenges as seen by a vision
sensor. (a) One of the many possible complex traffic situations. (b) The
sensor is partially blinded when exiting the tunnel.

likely the driver is to accept an unnecessary intervention. Consequently,
the acceptable rate of unnecessary interventions is very low for systems per-
forming intrusive interventions. The large quantity of operating scenarios
makes verification of this requirement, on a low rate of unnecessary inter-
ventions, especially challenging.
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Chapter 3

Verification Methods

The goal of system performance evaluation, in the context of this thesis,
is to determine the performance of an active safety system in a given set
of operating scenarios. If system performance evaluation is used for sys-
tem werification, the performance estimate is compared to a set of system
requirements, which specify the acceptable level of system performance. Ac-
curate and efficient methods for system performance evaluation are needed
for several purposes, e.g. system verification, system tuning or analysing
the system sensitivity to disturbances. For verification purposes it is usu-
ally sufficient to derive or estimate a bound on performance, to show that
the system requirements are fulfilled. As a consequence, some methods
focus on performance bounds while some focus on performance estimates.
This chapter provides an overview on verification methods used in an active
safety context.

3.1 Performance Metrics

In this section, performance metrics describing the ability of the system to
make correct decisions are presented. A commonly used terminology for de-
scribing the nature of incorrect decisions comes from statistical hypothesis
testing, extensively covered in [38], and was first discussed in [39]. A hy-
pothesis test is classified with regards to the test outcome, i.e. the decision
on what hypothesis to accept, and the true hypothesis, see Figure 3.1. The
default decision, often a decision not to perform an action, is in statistical
hypothesis testing represented by the null hypothesis. A test outcome is
said to be negative if the null hypothesis is accepted and positive in the
opposite case.

In an active safety context, a test would be e.g. to decide whether or
not to initiate an autonomous brake intervention, the true hypothesis would
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System does not intervene System intervenes
(Null hypothesis is accepted) (Null hypothesis is rejected)

Unnecessary Intervention
True Negative Type I Error
False Positive

Intervention is not needed
(Null hypothesis is true)

Missed Intervention
Type Il Error True Positive
False Negative

Intervention is needed
(Null hypothesis is false)

Figure 3.1: Error types for a system deciding on whether or not to intervene.

represent the correct decision and the null hypothesis would represent the
decision not to intervene.

Linked to this, there are two types of errors, commonly referred to as
Type I and Type II errors. If the null hypothesis is true and is rejected by
the test, the error is Type I or false positive. If instead the null hypothesis is
false and is accepted by the test, the error is Type Il or false negative. False
positives and false negatives are in this thesis referred to as unnecessary and
missed interventions respectively, since these terms are more descriptive for
active safety applications.

3.2 Method Properties

Different methods have different properties and each property contributes
to the overall strength or weakness of the method. Below, relevant method
properties are defined and discussed.

Coverage

Coverage is a measure used to describe the degree to which the set of oper-
ating scenarios is evaluated. A major benefit of theoretical methods is that
full coverage is possible to attain.

By conducting experiments, i.e. tests, system performance can be eval-
uated in a chosen set of scenarios. For a complex process, generally, the set
of operating scenarios can be described by an unbounded number of param-
eters. As the number of operating scenarios grows exponentially with the
number of scenario parameters, this set is very large. This effect, known
as the curse of dimensionality, makes full coverage of the set of operating
scenarios unrealistic.

Methods for selecting a set of scenarios to evaluate are generally referred
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to as experimental design or Design of Experiments (DoE), see e.g. [40] for
a wide treatment of the subject. The scenario parameter space may for
instance be covered by drawing random samples, or using a more systematic
approach, the samples may be chosen such that the coverage is evenly spread
while minimizing the number of evaluated scenarios.

Online/Offline

Systems are evaluated either online or offline, where these terms are used
according to the following definitions.

Definition 1 A system is online when forced to execute in real-time.
Definition 2 A system is offline when not forced to execute in real-time.

Online experiments evaluate if the system comply with real-time re-
quirements but have the obvious disadvantages of not being able to execute
slower, or faster, than real-time.

Open/Closed-Loop

An active safety system monitors a process and use this information to
influence said process, as shown in Figure 2.10. In some experiments the
scenario is partially or completely fixed, meaning that the system has limited
or no influence on the process. As a consequence, the following definitions
are useful.

Definition 3 A system is executed in closed-loop when the control loop
between the system and the process is closed.

Definition 4 A system is executed in open-loop when the control loop be-
tween the system and the process is open.

Note that open-loop execution does not equal open-loop control, which com-
monly refers to a control system operating without feedback. Open-loop
execution means that the system cannot influence the process during exe-
cution. When evaluating the correctness of decisions, it is in many cases
sufficient to execute the system in open-loop. This is valid when the system
does not perform any action prior to the decision to intervene, and will
consequently not influence the process prior to said decision.
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Efficiency

The cost in terms of time and money are measures of the method efficiency.
Online methods are time consuming as real-time execution is required and,
in general, methods involving real world experiments have higher financial
cost than theoretical analysis and computer experiments. Also, the cost
associated with method development vary between different methods.

Repeatability and Reproducibility

Repeatability and reproducibility are statistical terms associated with ac-
curacy. An experiment is repeatable if it can be performed on two different
occasions with no substantial change between measured quantities. Re-
peatability only requires this to be possible using the same personnel and
equipment. An experiment is also reproducible if it is repeatable using dif-
ferent personnel and equipment when performed on two different occasions.
Repeatability and reproducibility ensures that the experiment results are
not significantly affected by temporary factors.

Ground Truth Data

Ground truth data refers to information that is confirmed in an actual field
check at a location, as opposed to information acquired from a distance.
In remote sensing, the term is commonly used to describe information con-
sidered accurate, relative to information acquired from the remote sensing
system being evaluated. Ground truth data describes the true scenario,
e.g. how objects move in the scene, and aids in evaluating sensor and con-
trol system performance.

Model Accuracy

The model accuracy is the ability of the model to generate output equivalent
to output from the real system. Model accuracy should not be confused with
system accuracy which is the ability of the system to generate output with
small errors, e.g. a sensor delivering accurate measurements. If the input
to an accurate model is equivalent to the real operating conditions, the
output is realistic. Output collected from real systems in the real operating
environment is realistic per definition. Achieving high output realism from
models often induces high cost, in the form of time, money or both.
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Scenario Representativeness

For a scenario set to be representative, it must correctly reflect the set of op-
erating scenarios in terms of system performance. Sampling scenarios using
the real system in the real operating environment is the most obvious way
to collect data with high representativeness. When modeling or recreating
real scenarios, e.g. in computer simulations or real world test environments,
limitations imposed by process models or test equipment make the scenarios
less representative to a varying degree.

Process Controllability

The ability to control the process during evaluation is referred to as pro-
cess controllability. Lack of process controllability is primarily an issue in
real world experiments, where control of the process related to for instance
weather or multiple object dynamics is challenging. Also, safety-critical sit-
uations such as collisions and near-collisions are difficult to realize in real
world experiments where they are potentially hazardous for involved per-
sonnel and destructive to the equipment used.

3.3 Models

Many verification methods use mathematical models to describe the active
safety system, the process and their interaction, see Figure 2.10. The com-
plexity of the models vary significantly and also depends on the interfaces
to other models, e.g. interfaces to perception or action layer models might
require more or less complexity in the corresponding process models.

3.3.1 System Models

Active safety systems consist of three layers, see Figure 2.7. Commonly, the
decision layer is an available software interacting only with the perception
and action layers. The latter two layers interact physically with the process,
e.g. the surrounding environment, and modeling of these layers are discussed
below.

Perception Layer Models

As described in Section 2.3, the perception layer provides input data to the
decision layer, based on sensor observations of a process. In the perception
layer, observations from one or several sensors are generally passed through
multiple layers of advanced signal processing, fusing sensor observations into
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estimated states such as positions and velocities of detected objects. Sensor
models describe how the process is perceived by the sensors and can be
formulated on many different abstraction levels.

Low-level sensor models describe the transformation between the process
and the unprocessed sensor observations whereas high-level sensor models
describes the transformation between the process and the estimated states.
Modeling the physics of remote sensing technologies such as cameras, lidars
and radars, is a complex task, especially when considering situations where
the sensor is observing a complex environment, see e.g. |[41] for an overview
of low-level radar models. This is why high-level empirical models are often
used.

A common high-level approach is to model state estimates, e.g. object
position or velocity, as the true estimate influenced by a noise model. If
noise is ignored, the models represent ideal or perfect sensors, as used in
e.g. [42]. A common noise model is additive Gaussian noise, as used in
e.g. [43-45] and Paper 3. High-level models are in many cases a major
simplification of the sensor and incorporate very limited information on
how the sensor errors depend on the observed process. Nevertheless, they
are useful when studying systems in limited scenario sets, systems with
very accurate sensors, or the aspects of system performance not affected by
Sensor errors.

For a computer vision system, a low-level sensor model describes how
a camera perceives the process, i.e. generates a sequence of images. Tech-
niques for generating images with computers, known as rendering, are stud-
ied in computer graphics. Rendering imagery requires process models which
describe e.g. the 3D structure of objects in the environment. Rendered
imagery based on 3D models, in contrast to real imagery collected from
cameras, is denoted virtual imagery while rendered imagery where virtual
objects are superimposed on real imagery is denoted augmented imagery.

In [46], published in 1995, it is argued that the realism of virtual imagery
is sufficient for evaluation of mobile computer vision systems. Since then
computer graphics has evolved rapidly, as can be observed in for instance the
video gaming and movie industries. Nonetheless, photo-realism in virtual
imagery is not easily achieved and an overview of the multidisciplinary
challenges of rendering is found in [47|. Paper 4 explores the possibility
of rendering augmented imagery for offline evaluation of computer vision
systems.

Online evaluation methods require image rendering in real-time, mak-
ing it more challenging to attain high realism in rendered images. The
traffic simulation environments described in [48,49] have software modules
available for rendering of virtual imagery in real-time.
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Action Layer Models

Models of e.g. braking and steering systems are needed to describe how
the driver and vehicle are influenced by system decisions. Descriptions
and models of automotive systems and components, including active safety
actuators, are thoroughly described in |50]. Note that when the system is
executed in open-loop, modeling the action layer is unnecessary.

3.3.2 Process Models

Modeling of the process, i.e. the driver, vehicle and surrounding traffic en-
vironment, is discussed in the following sections.

Driver Models

For evaluation methods based on real or augmented data, the behaviour of
the driver is incorporated in the data. Therefore, only purely model-based
methods require a driver model to generate the driver input to the vehicle,
e.g. steering and braking, based on feedback from the vehicle, environment
and active safety system. Driver modeling is a wide field of research and
models are often more or less application specific. A collection of papers
treating driver models in the automotive domain from a variety of perspec-
tives is found in [51].

Vehicle Models

Vehicle motion models are needed to describe both the motion of the host
vehicle as well as vehicles in the surrounding environment. Vehicle motion
is studied within the field of vehicle dynamics which is the topic of several
books, e.g. [52].

Environment Models

When modeling a dynamic traffic environment, each object in the environ-
ment, e.g. cars, roads and pedestrians, are described by individual models.
Depending on the interface to the active safety system, e.g. sensor and ac-
tuator models, the environment models need to include different aspects. If
low-level sensor models are used, the level of detail of the environment mod-
els is usually higher compared to when high-level sensor models are used.
If for instance virtual imagery is generated by a sensor model, a complete
3D structure of the environment is required.

Presently, there exist several simulations environments for simulating
traffic environments including active safety systems such as PreScan, [48|,
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v-TRAFFIC, [49], or the Volvo Cars Traffic Simulator (VCTS), [27]. These

softwares include models of driver, vehicle and environment.

3.4 Methods

This section describes different types of analysis and verification methods.
The methods evaluate real physical systems, mathematical models, or a
combination thereof.

3.4.1 Real Driving

Online experiments using real vehicles are performed both in real traffic
and on dedicated test tracks. They are repeatable to some degree at test
tracks but to a minor degree in real traffic. If the system is online, it can be
evaluated in closed-loop and sensor data often have the advantage of being
realistic.

Real Traffic

Real traffic experiments are primarily used to estimate the probability of an
unnecessary intervention from a set of randomly sampled scenarios. Also,
experiments are conducted to estimate the probability of a missed interven-
tion, given that the tested system has relatively frequent and non-intrusive
interventions, which is valid for e.g. an LDW system.

Variations between different vehicles and system components are hand-
led by using multiple vehicles and components in testing. For a randomly
sampled scenario set to be representative, the scenarios available for sam-
pling must also be representative. In [27,53,54], a Real World User Profile
(RWUP) is used to ensure that a representative scenario set is sampled, tak-
ing into account for instance different driving styles, weather and driving
environments.

As discussed in Section 2.6, the acceptable rate of unnecessary interven-
tions for highly intrusive systems is very low, meaning that a large amount of
driving data needs to be collected to ensure that the requirement is fulfilled.
The obvious drawback is that real traffic experiments are both expensive
and time consuming. Also, ground truth data is challenging to obtain since
the environment is uncontrolled.

Test Track

On test tracks, specific types of scenarios are tested in a more controlled
setting. Compared to real traffic experiments, test track experiments of-
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Figure 3.2: Non-destructive tests in collision and near-collision scenarios
where (a) shows stationary pedestrian dummies of both adult and child
size, (b) shows an inflatable moving object representing a moving vehicle
and (c) shows an artificial object representing a moose.

fer a higher degree of process controllability, repeatability and reprodu-
cibility. Motions of involved objects can be controlled to create desired
scenarios. Also, ground truth can be obtained by e.g. positioning involved
traffic participants and objects with an accurate positioning system such
as Differential Global Positioning System (DGPS). Process controllability
on test tracks is better but not without limitations as for instance weather,
e.g. snow or rain, and animals crossing the road are still difficult to repro-
duce on demand.

When recreating collision and near-collision situations on test tracks,
non-destructive tests are preferred to ensure safety. Therefore, collisions
are conducted between the host vehicle and low-mass objects such as inflat-
able cars, see Figure 3.2. This creates limitations on scenarios possible to
recreate as even state-of-the-art inflatable car or pedestrian systems cannot
recreate all motions possible for real cars or pedestrians. It also degrades
the representativeness of the scenario since an inflatable object might not
be perceived by the sensors as would an equivalent real object.

For highly intrusive systems such as AEB, the scenarios in which the sys-
tem should intervene are very rare, meaning that estimating the probability
of a missed intervention would require an unrealistic amount of driving data
from real traffic conditions. Consequently, the probability of a missed inter-
vention is often, e.g. [27,53, 54|, assessed by replicating collision situations
on test tracks. Such tests are also used to estimate the effectiveness of the
system, for instance impact speed reduction.

For verification purposes, scenarios in which an incorrect system decision
is most likely, i.e. the worst case scenarios, are often replicated on test tracks,
thus complementing tests in real traffic. If the system behaves correctly in
these worst case scenarios it can be argued that less challenging scenarios
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are not likely to pose a problem. Paper 1 presents a theoretical method for
identifying the worst case scenarios for a CA system. Examples of scenarios
most likely to cause unnecessary interventions are near-collision situations,
e.g. evasive maneuvers where the time or distance margins to a potential
collision are small.

3.4.2 Closed-Loop Simulations

If the process is mathematically modeled, the system behaviour can be sim-
ulated in closed-loop with computer generated inputs. Model-In-the-Loop
(MIL) simulations use a system model while Software-In-the-Loop (SIL)
simulations use an actual system implementation, which not necessarily
is executed on the production hardware. The border between MIL and
SIL is sometimes hard to define but examples of one or the other is found
in [27,43,44,55].

MIL/SIL offers many benefits over real driving when comparing for in-
stance efficiency and process controllability. Experiments are repeatable and
reproducible and these are important properties when comparing different
system configurations. MIL/SIL are offline methods, meaning there are no
real-time constraints, making it possible to simulate scenarios with speeds
limited only by the computational power available. In addition, systems
can be tested before deployment at early stages in development, without
the need of functioning hardware.

If system hardware components are available, their performance can
be tested online with computer generated inputs as Hardware-In-the-Loop
(HIL). The benefit of HIL, compared to MIL/SIL, is that the hardware
is also evaluated. The drawback is the online property, constraining HIL
simulations to real-time execution. In [56] a test facility where a complete
vehicle is set up on a chassis dynamometer, with robot vehicles represent-
ing the surrounding environment, is described and referred to as Vehicle
Hardware-In-the-Loop (VeHIL).

3.4.3 Data Replay

In data replay methods, real recorded data is used to evaluate the system
offline. If real data is used exclusively, different system software configura-
tions can be evaluated by computer simulations without any loss in input
data realism, as done in [57|, but often without the impeccable ground truth
data accessible using in-the-loop methods. Limited ground truth, e.g. im-
proved estimates of object motion, can be obtained by offline processing
of real measurement data, as done in [43,57]. Data replay methods are
restricted to open-loop, since the scenario is fixed by the collected data.
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Another option is to combine real data with model-based methods thus
generating mized or augmented data, for example by adding new objects or
errors in recorded sensor data. This is exemplified in [43] where three FCW
algorithms are simulated with input data consisting of accurate lead vehicle
motion, obtained from real data, and noise, from a radar model. Augmented
data replay has the potential to pick the best out of two worlds but also
risk picking the worst. The modeling effort compared to purely model-
based methods is limited and many of the advantages are partly preserved,
e.g. process controllability, or completely preserved, e.g. repeatability and
lack of real-time constraints. The downside is that simulation is limited
to open-loop, as some real data is used, and that the data realism is now
dependent on a model-based data augmentation method which then requires
validation.

In Paper 4, an augmented data replay framework is formulated, used
for computer vision systems. This framework uses a low-level sensor model,
discussed in Section 3.3. If instead high-level sensor models are available,
Paper 3 presents efficient data replay methods for decision function tuning
and sensitivity analysis with regards to input perturbations, which can be
applied to real, model-based or augmented data.

3.4.4 Theoretical Methods

The ultimate goal of system verification is to prove that the system meets
the system requirements. Methods for proving system properties, such as
requirement compliance, are known as formal methods, see [58| for an ex-
tensive survey.

If the active safety system and the set of operating scenarios are de-
scribed mathematically it is sometimes possible to derive analytical expres-
sions describing system performance, as done in Paper 1. Generally, this is
only possible when making quite significant simplifications.

For dynamical systems, guarantees of not entering an undesired system
state may be obtained by computing the set of reachable states. Paper 2
explores the use of reachability analysis, [59], and viability theory, [60], to
formally verify a collision avoidance system.

3.5 Method Comparison

This section provides a brief comparison of the methods presented in Sec-
tion 3.4 with regards to the properties discussed in Section 3.2. An overview
of the more or less discrete properties is presented in Table 3.1. Figures 3.3
and 3.4 compare process controllability, sensor data realism and efficiency
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Theoretical
Analysis

Augmented Model/Software-
Data Replay In-the-Loop

Real Traffic
Data Replay

Real Traffi i -
eal Traffic Test Track Vehicle Hardware
In-the-Loop

Process Controllability

Efficiency

Hardware-
In-the-Loop

Figure 3.3: A qualitative sketch for the relation between efficiency and
process controllability for different evaluation methods.

for different methods. It should be noted that these properties are applica-
tion dependent, meaning that the figures should not be considered absolute
truths.

In Figure 3.3 it can be noted how the model-based methods are superior

Vehicle System Online Closed- - Ground Repeatability Reproducibility
hardware loop truth

Theoretical analysis X X X X

Real traffic X X X X

Test track X X X X X (x) (x)
Model/software-in-the-loop X X X X
Hardware-in-the-loop X X X X X X
Vehicle hardware-in-the-loop X X X X X X X

Real traffic data replay (x) (x) (x) X

Augmented data replay (x) (x) X X

Table 3.1: Overview of method properties for different methods. The fact
that data replay methods use vehicles and system hardware indirectly,
i.e. for initial data collection, is represented by a tentative "(x)". The
same notation indicates that, on test tracks, some aspects are repeatable
and reproducible while others are not. Ground truth for real data replay is
also tentatively marked as offline processing can offer limited ground truth
data.
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Figure 3.4: A qualitative sketch for the relation between efficiency and
sensor data realism for different evaluation methods.

in terms of process controllability and also in many cases are very efficient,
largely due to the offline property. The major challenge for the model-based
methods is related to the sensor model accuracy, as visualized in Figure 3.4.
For the purely model-based methods, e.g. closed-loop simulations, sensor
models generating realistic data are either unexisting or resource demand-
ing. Methods using exclusively real traffic data have, by definition, realistic
sensor data. Augmented data is relatively realistic but with the drawback
that augmented data replay is limited to open-loop execution of the system,
as shown in Table 3.1.

The comparisons in Table 3.1, Figure 3.3 and Figure 3.4 clearly show the
complementary nature of the presented methods. Thus, verification is often
carried out using a variety of methods, as exemplified in [27,53,54|. Meth-
ods which require complete vehicles or system hardware are constrained
to use in the later stages of the development process. Alternatively, they
may be employed with decreased prediction accuracy using early hardware
prototypes.
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Chapter 4

Summary of Included Papers

This chapter provides a brief summary of the papers included in the thesis
and also describes the contributions to each paper by the author of this
thesis. Full versions of the papers are included in Part II.

Paper 1

J. Nilsson, A. Odblom and J. Fredriksson, Worst Case Analy-
sis of Automotive Collision Avoidance Systems, submitted for
possible journal publication.

As discussed in Section 2.6, the set of traffic scenarios which generates the
input to an active safety decision function is very large. This paper theo-
retically identifies scenarios with a high risk of incorrect system decisions,
i.e. the worst case scenarios. The main challenge with this approach, as
discussed in Chapter 3, is to model system and scenarios in such a way
that performance can be described analytically while still including the key
factors affecting performance, e.g. sensor errors or object motion.

The key idea of this paper is to theoretically investigate the fundamental
limitations of a collision avoidance system, subject to systematic measure-
ment errors and unexpected future object motion, in terms of early and
unnecessary interventions. Specifically, we include effects of sensor and ac-
tuator delays, and derive closed-form expressions for the worst case perfor-
mance, with regards to longitudinal or lateral prediction and measurement
errors. For a system example, numerical results show how decision timing
and robustness depend on scenario and system parameters. The method can
be used for system verification, tuning or sensitivity analysis with regards
to scenario variations and sensor errors. Also, scenarios with inadequate
performance can be identified, thus improving existing test methods by di-
recting testing and analysis efforts towards relevant scenarios.

35



CHAPTER 4. SUMMARY OF INCLUDED PAPERS

The thesis author was responsible for the problem formulation, deriva-
tion of the closed-form expressions, implementation and writing the paper.

Paper 2

J. Nilsson, J. Fredriksson and A. Odblom, Verification of Colli-
sion Avoidance Systems using Reachability Analysis, submitted
as invited paper to the 19th IFAC World Congress, Cape Town,
South Africa, 2014.

The closed-form expressions for performance derived in Paper 1 are very
useful from a verification perspective but for many complex active safety
decision functions, they are not possible to derive. The alternative of eval-
uating state trajectories, as done in traditional simulations and real vehicle
tests, does not provide guarantees for system performance for all possible
state trajectories.

To address these limitations, Paper 2 describes a novel set-based frame-
work for analyzing under what conditions the absence of incorrect decisions
may be guaranteed for a given collision avoidance decision function. Reach-
ability analysis and viability theory are used to compute unsafe and safe
sets, i.e. sets where an ideal system should or should not intervene respec-
tively. In these sets, incorrect decisions for a given decision function are
identified using optimization techniques. By separating the dynamics of
the input space from the decision function, non-linear and ad-hoc decision
functions are efficiently handled in the proposed framework.

The method is demonstrated on a collision avoidance system example
and, given the models used and absence of measurements errors, we show
that the system does not make incorrect decisions. Furthermore, we describe
and demonstrate how to evaluate the robustness to measurement errors,
using the proposed framework.

The thesis author was responsible for the problem formulation, develop-
ment of the proposed methods, implementation and writing the paper.

Paper 3

J. Nilsson and M. Ali, Sensitivity Analysis and Tuning for Active
Safety Systems, in Proceedings of the 13th International IEEE
Conference on Intelligent Transportation Systems, 2010, pages
161-167, Madeira Island, Portugal.

Papers 1 and 2 are full coverage methods, i.e. are concerned with verifi-
cation of the complete scenario parameter space. Full coverage methods
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are desirable but set limitations on the complexity of the involved math-
ematical models. In contrast, Paper 3 considers verification given that a
representative experimental data set is available.

The design and tuning of an active safety decision function, e.g. how
thresholds are placed, will decide how sensitive the system performance is
to input errors. Investigating the interplay between input errors, decision
function and system performance gives rise to three relevant questions:

i. Given a decision function and input errors, what is the system perfor-
mance?

ii. Given a decision function and system performance requirements, what
are the input requirements?

iii. Given input errors and system performance requirements, how should
the decision function be tuned?

This paper proposes a framework for open-loop analysis of decision func-
tions, with regards to the above mentioned questions. By introducing a ro-
bustness measure, describing the robustness to input errors for the decision
function, efficient offline methods are formulated. The robustness measure
is independent of the input errors, meaning that it needs to be estimated
only once for each decision function and data set. This allows for efficient
evaluation of the system performance as combinations of decision function
and input errors can be processed without evaluating the decision function
output for each combination. The framework is applied to data collected
in an experimental setting. Also, it is demonstrated how it can be used for
setting input requirements and tuning the decision function.

The formulation of the presented framework and writing the paper were
jointly conducted by both authors of the paper. The author of this thesis is
responsible for the demonstration of the framework while the second author
is responsible for the collection of experimental data and development of
the decision function example.

Paper 4

J. Nilsson, A. Odblom, J. Fredriksson, A. Zafar and F. Ahmed,
Performance Evaluation Method for Mobile Computer Vision
Systems using Augmented Reality, in Proceedings of the IEEE
Virtual Reality Conference, 2010, pages 19-22, Waltham, Mas-
sachusetts, USA.
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The methods for analyzing decision functions in Papers 1-3, all rely on
accurate modeling of sensor errors. In Paper 4, a novel framework using
augmented imagery is proposed for determining sensor errors of computer
vision systems, which are widely used in active safety systems. The proposed
framework exploits the possibility to add virtual agents into a real data
sequence collected in an unknown environment, thus making it possible to
efficiently create augmented data sequences, including ground truth, to be
used for performance evaluation. Varying the content in the data sequence
by adding different virtual agents is straightforward, making the proposed
framework very flexible.

The method has been implemented and tested on a pedestrian detec-
tion system used for collision avoidance. Preliminary results show that the
method has the potential to replace and complement physical testing, for
instance by creating collision scenarios, which are difficult to test in reality.

The formulation of the novel framework was jointly conducted by the
first two authors of the paper. The author of this thesis was also responsible
for writing the paper and supervising the case study implementation done
by authors four and five.

Paper 5

J. Nilsson, J. Fredriksson and A. Odblom, Reliable Vehicle Pose
Estimation using Vision and Single-Track Model, submitted for
possible journal publication.

The method in Paper 4 relies on an accurate 3D reconstruction of the cam-
era motion in six Degrees of Freedom (6-DoF). Extensive use of this method
requires this to be done without adding additional expensive sensors to the
vehicle. The core idea of Paper 5 is to use a single-track vehicle model in a
local bundle adjustment framework to improve the pose estimates obtained
from a standard vehicle sensor setup, i.e. a forward looking monocular cam-
era, wheel speed, yaw rate and steering wheel angle sensors. This means
pose estimates are optimized not only with regards to observed image fea-
tures, but also with respect to a single-track vehicle model and standard
in-vehicle sensors.

The described method has been tested experimentally on challenging
data sets at both low and high vehicle speeds as well as on a data set with
moving objects. The vehicle motion model in combination with in-vehicle
sensors exhibit good accuracy in estimating planar vehicle motion. Results
show that this property is preserved when combining these information
sources with vision. Furthermore, the accuracy obtained from vision-only in
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direction estimation is improved, primarily in situations where the matched
visual features are few.

The thesis author was responsible for the problem formulation, devel-
opment of algorithms, implementation, experimental validation and writing
the paper.

Paper 6

J. Nilsson, P. Andersson, I. Gu and J. Fredriksson, Augmented
Training Data for Pedestrian Detection, submitted to the 22nd
International Conference on Pattern Recognition, Stockholm,
Sweden, 2014.

Machine learning techniques are widely used in computer vision to train
object classifiers. In many applications, e.g. pedestrian detection, the dom-
inating approach in literature is to use supervised learning, e.g. Support
Vector Machines (SVM), to train a classifier using labelled data. This la-
belled data is chosen such that it represents the environment where the
classifier will be used. Thus, for a mobile system operating in a complex
and uncontrolled environment, e.g. a car, the training data set must con-
tain a great amount of variation. Collecting and manually labelling large
amounts of data is an expensive and time consuming process.

In Paper 6, we propose to replace or complement real data with aug-
mented data, using the method presented in Paper 4. Augmented data can
be automatically labelled while still exhibiting a real, and consequently real-
istic, background. The proposed solution is evaluated by training pedestrian
classifiers using one of the gold-standard methods in pedestrian classifica-
tion, specifically a linear SVM and the Histogram of Oriented Gradients
(HOG), [61]. Experimental validation is performed on real data sets and
the results are compared to performance obtained using real training data.

The thesis author was responsible for the problem formulation and writ-
ing the paper. The design of experiments was conducted jointly by the
author of this thesis and the second author of the paper. Note that the
development and implementation of algorithms were primarily the respon-
sibility of the second author, and not the author of this thesis.
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Chapter 5

Concluding Remarks

This chapter states the most important contributions and provides recom-
mendations for future research.

5.1 Contributions

System verification of an automotive safety system must assess the correct-
ness of system decisions in a vast array of traffic scenarios. These decisions
are based on remote sensing of the surrounding environment and conse-
quently, including sensors in the analysis and verification methods is crucial.
Computational methods have the potential to significantly improve the ver-
ification process in terms of e.g. efficiency and coverage. This thesis focus
on computational methods for both decision function analysis, including
the dependence on sensor errors, and methods for determining these sensor
errors.

Related to decision function analysis and verification, the main contri-
butions of this thesis are:

e Derivation of closed-form expressions for the worst case decision tim-
ing, in the presence of prediction and measurement errors, for a col-
lision avoidance system example. Also, closed-form expressions are
derived for robust avoidance scenarios, i.e. scenarios which are guar-
anteed not to exhibit an unnecessary intervention. These results are
presented in Paper 1.

e A novel set-based framework for analyzing under what conditions the
absence of incorrect decisions may be guaranteed for a given active
safety decision function. In contrast to evaluating state trajectories,
reachability analysis and viability theory are used to compute unsafe
and safe sets, in which absence of incorrect decisions and robustness to
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sensor errors may be guaranteed using optimization techniques. This
framework is presented in Paper 2 and forms a generalization of the
work shown in Paper 1.

e A framework for active safety decision function analysis using recorded
or simulated data. Efficient methods for system performance evalua-
tion are derived and these can be used to analyze the decision function
sensitivity to input errors, or for decision function tuning. This frame-
work is presented in Paper 3.

Related to performance evaluation of computer vision systems, the main
contributions of this thesis are:

e A novel performance evaluation approach using augmented imagery
for evaluation of mobile computer vision systems. Performance is
evaluated in collision and near-collision scenarios, safely and non-
destructively, while still using a real image background from recorded
data. This concept is presented in Paper 4 and the use of augmented
data is extended from performance evaluation to training of a pedes-
trian classifier in Paper 6.

e An approach for 6-DoF vehicle pose estimation using a single vehicle-
based standard camera. Visual features are complemented by stan-
dard in-vehicle sensors and a single track vehicle model in a bundle
adjustment framework. The method has been validated experimen-
tally in challenging situations at both low and high vehicle speeds.
This method is presented in Paper 5 and is an important module
needed for the framework introduced in Paper 4.

5.2 Directions of Future Research

There is a great need for more efficient verification methods to handle the
challenges associated with future automotive safety systems. The work
presented in this thesis has inspired multiple ideas on this topic.

Sensor error models

To make full use of the theoretical methods for performance estimation,
presented in Papers 1-3, accurate sensor error models are needed. This
requires acquiring and processing large amounts of sensor data, with asso-
ciated ground truth, but also proper choices of model structures. The pre-
sented framework for sensor evaluation using augmented data may prove to
be a valuable resource.
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5.2. DIRECTIONS OF FUTURE RESEARCH

Extending reachability methods

The dynamical models used in Paper 2 are linear and low-dimensional,
handling only a single moving object. Applying existing methods for reach-
abality analysis of more complex systems is an interesting approach. This
could enable the analysis of the same problem with more complex vehicle
dynamics models and/or multiple objects.

Augmenting other sensors

The augmentation framework in Paper 4 has been applied primarily on
image data. Many safety systems fuse information from different sensor
technologies, e.g. radar, laser. Thus, a natural extension would be to ex-
tend the concept to include also other sensor types. This requires in-depth
knowledge of the sensor technology to be added and also accurate and de-
tailed modeling of the specific sensor used.
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