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Liquid phase sintering of particle agglomerates is modeled on the mesoscale as the viscous deformation
of particle–particle contact, whereby the single driving force is the surface tension on the particle/pore
interface. On the macroscale, a quasistatic equilibrium problem allows for the prediction of the shrinkage
of the sintering body. The present paper presents a novel FE2 formulation of the two-scale sintering prob-
lem allowing for the transition to zero porosity, implying macroscale incompressibility. The seamless
transition from compressibility to incompressibility on the macroscale is accomplished by introducing
a mixed variational format. This has consequences also for the formulation of the mesoscale problem,
that is complemented with an extra constraint equation regarding the prolongation of the volumetric
part of the macroscopic rate-of-deformation. The numerical examples shows the sintering of a single rep-
resentative volume element (RVE) which is sheared beyond the point where the porosity vanishes while
subjected to zero macroscopic pressure.

� 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

Powder metallurgy is a versatile technology for the manufactur-
ing of components to (near) net-shape with high product quality.
For a hardmetal (such as WC-Co) cold compaction of the powder
to a ‘‘green body’’ is followed by liquid-phase sintering from the
subsequent heating. This means that the binder metal Co is heated
to melt in order to obtain sufficient mobility via capillary action,
i.e., via surface traction, stemming from stored surface energy.
The resulting flow causes gradual filling of the pore space and
brings about a macroscopic shrinkage of the particle compact until
a completely dense state is obtained, at least ideally. To model and
quantitatively simulate the sintering process is a challenging task.
The goal is to (i) estimate the final resulting quality (i.e., in terms of
porosity) and (ii) to predict the final net shape and size of the sin-
tered component.

A wealth of literature has been devoted to the modeling and
simulation of the sintering process. From a mesoscale viewpoint,
a classical approach is to consider socalled ‘‘unit problems’’, where-
by the constitutive modeling is based on diffusion and, most
importantly, flow models. Among the early attempts to numeri-
cally simulate the surface-tension driven reshaping of contacting
particles are those by Jagota and Dawson [1,2] and van de Vorst
[3]. In a series of papers, [4,5] emphasize efficient finite element
algorithms to trace the complex 3-dimensional flow of
multi-particle interaction. The main challenges are the complex
subscale geometry and the moving free boundary giving rise to
very large deformations and severe topology changes. Recent
developments of free-boundary tracing FE-strategies for large
deformations (without severe topological changes) are discussed
by Dettmer and Perić [6] and Saksono and Perić [7,8]. All the men-
tioned work consider surface tension effects in fluids. A recent
extension to include surface tension in the context of solid model-
ing, where anisotropic surface energy may be present, is due to
[9,10].

Attempts have also been made in the literature to use macro-
scopic models based on nonlinear viscoelasticity and viscoplastic-
ity. In such models the densification process is driven by the
‘‘sintering stress’’, which is the macroscale manifestation of the
stored surface energy. From a thermodynamical viewpoint, it is
the dissipative stress that is conjugated to the current macroscale
porosity, e.g., [11,12]. Among the literature on macroscale model-
ing, we mention [13–15].

Since computational homogenization has proven useful in a
wide variety of applications, e.g., [16–20], it is natural to exploit
this technique even for the present type of complex deformation
process. In a previous paper, Öhman et al. [21], liquid phase sinter-
ing of particle agglomerates was modeled on the mesoscale as the
viscous deformation of particle–particle contact. A FE2-strategy
was outlined; however, the variational setting was applicable only
under the restriction of non-vanishing macroscopic porosity (cor-
responding to a not fully dense end-product). The present paper
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Fig. 1. Microstructure of porous particulate material with sintering particles in
contact. The sintering body is subjected to Dirichlet and Neumann boundary
conditions on the external boundary.
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generalizes this situation such that it allows for the transition to
zero porosity, which is accomplished by introducing a mixed
variational format of the macroscale problem. We (still) assume
that the particles are homogeneous and deform as a viscous fluid
with sufficiently high viscosity to motivate the neglect of all accel-
eration terms. Moreover, the simplifying assumption is introduced
that the flow properties are unaffected by temperature changes, i.e
the sintering process is only modeled during the fully heated part
of the process.

The paper is structured as follows: The various features of subscale
modeling (surface tension, particle arrangements within the RVE, etc.)
are briefly summarized in Section 2. This is followed in Section 3 which
describes the transition to macroscale and RVE problems through com-
putational homogenization. Numerical examples, based on a single
RVE, are presented in Section 5. Conclusions and an outlook to future
developments are given in the final section.

2. Subscale modeling

2.1. Preliminaries

We consider a sintering body with current macroscale configu-
ration XðtÞ in space for any given time t P 0. The boundary of XðtÞ
is denoted @XðtÞ, and we adopt standard Dirichlet and Neumann
boundary conditions on the (external) boundary parts @XD and
@XN, respectively. In particular, no prescribed tractions is consid-
ered, as is the case in free sintering. Our aim is to exploit the con-
cept of computational homogenization in order to determine the
unknown XðtÞ and certain mechanical fields on XðtÞ, such as the
current macroscale velocity field, �v , the macroscale true stress
field, �r, and the macroscale porosity field, �/ (which is the ratio of
pore volume and bulk volume). We note that the initial configura-
tion Xð0Þ represents the so called ‘‘green body’’, obtained after cold
compaction and characterized by the inhomogeneous (macro-
scopic) porosity �/0. In the case of ‘‘free sintering’’, i.e., sintering
without any external loading, it is clear that �r represents the mac-
roscopic residual stresses at every instant in time.

Subsequently, we shall adopt modeling on the subscale in terms
of an Eulerian description of the motion, which means that it will
be possible to trace the development of the current macroscale
configuration XðtÞ by computing the macroscale velocity field
�vð�x; tÞ for ð�x; tÞ 2 X� ð0; TÞ.

In a 3D representation of the microstructure the assembly of
sintering particles create an open pore system (at least initially).
With reasonable accuracy one may then assume that the pore
surfaces are ‘‘free’’ surfaces, i.e., the pore gas does not impose
any resistance on the motion. The situation is, of course, different
in the (physically unrealistic) case of a 2D representation of the
microstructure. However, in this paper, gas flow and pore
pressure from trapped gas is not taken into account. In any case
the pertinent surfaces associated with surface tension are
particle/pore and particle/particle (contact) surfaces, as indicated
in Fig. 1.
2.2. Surface tension

The ‘‘surface tension’’ along particle/particle and particle/pore
interfaces (the latter denoted pore boundaries) is considered to
be the sole ‘‘driving force’’ of the sintering process, and it is defined
in terms of a ‘‘surface tension force’’ acting in the tangent plane of
the surface. In the simplest (and most common) case of isotropic
surface tension, this traction is characterized by the constant sur-
face-specific surface energy cs in the current configuration as the
single material parameter. Although we adopt this simplified mod-
el below in the numerical results, it is possible to consider the
more general situation of anisotropic ‘‘surface stress’’ that may also
depend on the surface deformation via a suitable constitutive
assumption, cf. [22].

As shown in, e.g., Öhman et al. [21], it is possible to represent
the surface tension force by an equivalent surface traction, hence-
forth denoted ts, acting on the surface (or interface). In the pres-
ently assumed case of isotropic surface tension, ts is directed in
the normal direction to the surface and is given as

ts ¼def�jcsn; ð1Þ

where j ¼def�n � $̂ is the curvature. Here, n is the taken positive out-
wards from a convex surface, whereas $̂ ¼def $� ½$ � n�n is the surface
gradient operator.

2.3. Incompressible viscous flow of the Stokes’ type

We shall adopt a model for the subscale deformation within the
solid particles undergoing the time-dependent sintering process.
The model is simplified in the sense that elastic deformation is ne-
glected a priori. This is a common and reasonable simplification for
free sintering since the plastic deformation is dominant. It is then
possible to consider a viscoplastic (fluid-like) material with intrin-
sic incompressibility (within the particles). Such incompressibility
is expressed as v � $ ¼ 0 and, hence, ddev ¼ d ¼def ½v � $�sym. An iso-
tropic and associated viscoplastic flow rule of the classical Perzyna
type is proposed as follows:

ddev ¼
1

2l
rdev þ dp

devðrdevÞ; dp
dev ¼

1
t�

g U reð Þð ÞdU
dr

; ð2Þ

where t� is the relaxation time, gðUÞ is an overstress function, UðreÞ
is the quasistatic yield function and re ¼

ffiffi
3
2

q
jrdevj is the equivalent

stress. Upon introducing the abbreviated notation k ¼ g
t�

dU
dre

, we may
solve for re in terms of the equivalent rate of deformation
de ¼

def
ffiffi
2
3

q
jddevj from the equation

1
3l

re þ k reð Þ ¼ de ð3Þ

and we, finally, obtain the ‘‘Newtonian-like’’ constitutive relation

rdevðdÞ ¼ 2~lddev; ~l ¼def re

3de
: ð4Þ

The corresponding tangent stiffness ET;dev in the relation
drdev ¼ ET;dev : dd (representing the linearization of the subscale
constitutive problem), is given as follows:

ET;dev ¼ 2~lIdev þ
4

9d2
e

de
1

3l
þ k0

� ��1

� re

" #
ddev � ddev ð5Þ

with

k0 ¼ 1
t�

g
d2 U
dr2

e
þ dg

dU
dU
dre

� �2
" #

: ð6Þ



Fig. 2. (a) Initial configuration of a single-pore RVE in 2D consisting of circular
particles in a perfect square lattice. The contact ‘‘points’’ are flattened due to
precompaction. (b) Deformed configuration (sketchy).
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2.4. Balance equations – strong and weak formats

Referring to Fig. 1, we consider an arbitrarily chosen collection
of particles in contact (inside X) that constitutes the ‘‘solid particle
skeleton’’. Each particle domain Xpart

i has part of its boundary asso-
ciated with the pore surface Cpore

i . We assume (for simplicity) that
the surface tension along the contact surfaces can be ignored. We

also introduce the notation Xpart ¼def [iX
part
i and Cpore ¼def [iC

pore
i .

In the absence of acceleration, the balance equations for the
quasi-static motion of the assembly of viscoplastic particles can
be established in the spatial setting as follows:

�r � $ ¼ 0 in Xpart
i ; i ¼ 1;2; . . . ; ð7aÞ

v � $ ¼ 0 in Xpart
i : ð7bÞ

As to the boundary conditions, we note the surface tension acting
on the pore boundary

t ¼def
r � n ¼ ts on Cpore

i ; i ¼ 1;2; . . . ; ð8Þ

where rðdÞ ¼ rdevðddevÞ � pI is the total Cauchy stress, and p is the
pressure (Lagrangian multiplier corresponding to the incompress-
ibility constraint). In addition, there are boundary conditions (of
the Dirichlet and Neumann types) on the exterior surface @Xpart of
the considered collection of particles. For simplicity of notation,
we assume here that these conditions are homogeneous.

The weak form of (7) then reads:Z
Xpart

r : ½dv � $�dv ¼
Z

Cpore
ts � dv da ¼ �

Z
Cpore

cs dv � $̂
h i

da; ð9aÞ

Z
Xpart

v � $½ �dpdv ¼ 0 ð9bÞ

for suitable test functions dv and dp that satisfy the appropriate reg-
ularity requirements (not further elaborated in this paper). To ob-
tain the second integral on the RHS of (9a), that represents
‘‘surface tension loading’’, the surface divergence theorem was used
for any smooth pore surface segment Cpore

i . It is noted that cs may be
inhomogeneous along Cpore.

Remark. In the case that the particle/particle interfaces have
significant surface energy, they can be seen as part of Cpore.
1 Here, we refer to ‘‘prolongation’’ as the construction of a resolved field by a
(linear) Taylor series expansion of the macroscale field on the subscale.
3. Computational homogenization

3.1. Representative volume element

In a 2D-representation of the mesoscale features, the appropri-
ately chosen RVE is assumed to occupy the bulk volume X�ðtÞ. The
RVE must obviously contain a sufficient number of particles and
pores to qualify as ‘‘representative’’ in the classical sense; however,
in order to simplify the subsequent conceptual discussion and
‘‘pave the way’’ for the subsequent homogenization, we consider
a simple arrangement of particles within the RVE. In the very sim-
plest case, the RVE consists of one single ‘‘unit cell’’ containing a
single contiguous pore, which is the situation shown in Fig. 2. Mul-
ti-pore RVEs were investigated in our previous paper [21].

The current ‘‘bulk’’ domain of the RVE at a time t > 0 contains
the particles and the pore space, X�ðtÞ ¼ Xpart

�
ðtÞ [Xpore

�
ðtÞ, where

Xpore
�
ðtÞ is the domain currently occupied by the pore, whereas

Xpart
�
ðtÞ is occupied by the particles. This is shown schematically

in Fig. 2(b). The external boundary of the RVE is @X�ðtÞ ¼def C�ðtÞ.
The initial configuration of the particles within the RVE (before
any deformation has taken place) is denoted X�ð0Þ, as shown in
Fig. 2(a). The boundaries of the pore-space are collectively denoted
Cpore
�
ðtÞ. The boundary of the deforming particles currently con-

tained in the RVE is then @Xpart
�
ðtÞ ¼ C�ðtÞ [ Cpore

�
ðtÞ.

3.2. Homogenization – a format presuming macroscale compressibility

In the paper by Öhman et al. [21] the homogenization theory
was presented in a format that is restricted to the situation that
the macroscale response is compressible. In other words, the vari-
ational setting for the macroscale problem presumes non-vanish-
ing porespace in the whole macrodomain. As soon as the
porosity reaches zero in any point this format is inadequate and
the algorithm breaks down, which is obviously a serious flaw.
The present paper deals with this problem, and the main purpose
is to show that it can be alleviated upon introducing a mixed veloc-
ity–pressure control on the macro-level. It is, therefore, relevant to
first briefly summarize the theory presented in [21]:

In the most basic format it is only v that is partioned into a
smooth (macroscale) part, denoted vM, and a fluctuating (subscale)
part, denoted vs. In accordance with the classical assumption of
first order homogenization, vM is assumed to vary linearly within
the RVE, i.e.,

vMð�x; xÞ ¼ �dð�xÞ � ½x� �x� for x 2 X� ð10Þ

or, equivalently

vs ¼ 0 for x 2 X�; ð11Þ

i.e., a conventional Dirichlet type boundary condition on the RVEs
for the momentum balance equation.

The link between �v and vM is established via the macroscale
rate-of-deformation tensor �d, defined as �dð�xÞ ¼def ½�v � $�symj�x, where
�v is the macroscale velocity field.

As a direct consequence of the assumption that it is only v that
is that is prolonged from the macro- to the subscale,1 it is only the
momentum balance that is relevant as a macroscale balance equa-
tion. Find �v 2 �V that is the solution ofZ

X

�rf�dg : ½d�v � $�dv ¼ 0 8d�v 2 �V0: ð12Þ

where the macroscale (homogenized) stress �r is computed as

�r ¼hri
�
� 1
jX�j

Z
Cpore
�

½ts � ½x� �x��symda; ð13Þ

¼ 1
jX�j

Z
C�

½t � ½x� �x��symda: ð14Þ
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The volume average is defined as

h½��i
�
¼def 1
jX�j

Z
Xpart
�

½��dv ; ð15Þ

and it must be noted that, although stresses are defined in the fluid
region Xpart

�
, averaging is on the bulk volume X�.

The RVE-problem is formulated as follows: For given value of
the macroscale variable �d, find ðvs;pÞ 2 V

ðDÞ
�
� P� that solve the

system

a�ðvM þ vs; dvsÞ þ b�ðp; dvsÞ ¼ lpore
�
ðdvsÞ 8dvs 2 V

ðDÞ
�
; ð16aÞ

b�ðdp;vM þ vsÞ ¼ 0 8dp 2 P�; ð16bÞ

where the variational forms are defined as

a�ðv ;dvÞ¼defhrdevðdÞ : ½dv�$�i
�
¼ 1
jX�j

Z
Xpart
�

rdevðdÞ : dv�$½ �dv ;

ð17aÞ

b�ðp; dvÞ¼def � h½dv � $�pi
�
¼ � 1
jX�j

Z
Xpart
�

½dv � $�pdv; ð17bÞ

lpore
�
ðdvÞ¼def � 1

jX�j

Z
Cpore
�

cs dv � $̂
h i

da: ð17cÞ

Details regarding the solution of this system in terms of the relevant
iteration procedure and how to compute the ATS-tensor in the FE2

algorithm are given in [21] and are not further elaborated here. The
flow chart is summarized in Fig. 3.

In Fig. 3, we used the split into deviatoric and volumetric parts:

�d ¼ �ddev þ
1
3

�eI where �e ¼def �d : I; �ddev ¼
def �d� 1

3
�eI; ð18Þ

�r ¼ �rdev � �pI where �p ¼def�1
3

�r : I; �rdev ¼
def �rþ �pI; ð19Þ

and where �ddev ¼ ½�v � $�sym
dev ; �e ¼ �v � $.

Remark. The split in deviatoric and volumetric parts is never (or at
least does not need to be) exploited operationally in the numerical
algorithm; however, the situation is entirely different in the format
discussed in the next Section. h
3.3. Homogenization – a format allowing transition from macroscale
compressibility to incompressibility

In this Section we outline the strategy for replacing the velocity-
based format in Section 3.2 to a mixed variational format on the
macroscale. Hence, we introduce the macroscale pressure �p as an
independent variable in the momentum balance equation, and
Fig. 3. Flow-chart of FE2-format valid only for macroscopic compressibility.
the relation �e ¼ �v � $ is imposed in a weak sense. The resulting
macroscale problem then becomes: find ð�v ; �pÞ 2 �V� �P that solveZ

X

�rdevf�ddev; �pg : ½d�v � $�dv þ
Z

X
��p ½d�v � $�dv ¼ 0 8d�v 2 �V0;

ð20aÞ
Z

X

�ef�ddev; �pg � �v � $
� �

d�pdv ¼ 0 8d�p 2 �P ð20bÞ

which system of equations thus replaces (12).
The prolongation of �d to the RVE remains as before; however, it

is useful to note that vM can be expanded as

vM ¼ vM
dev þ vM

vol ¼ �ddev � ½x� �x� þ �e
1
3
½x� �x�: ð21Þ

The important difference to the previous formulation is that the vol-
umetric part is no longer an input but part of the solution of the
RVE-problem. The corresponding complementary equation is ob-
tained upon testing the momentum balance equation with the vol-
umetric part of vM. As the result, we obtain the following RVE-
problem: For given macroscale variables �ddev and �p, find
ðvs;p; �eÞ 2 V

ðDÞ
�
� P� � R that solve the system

a�ðvM
devð�ddevÞ þ vs; dvsÞ þ b�ðp; dvsÞ ¼ lpore

�
ðdvsÞ 8dvs 2 V

ðDÞ
�
;

ð22aÞ

b�ðdp;vM
volð�eÞ þ vsÞ ¼ 0 8dp 2 P�; ð22bÞ

b�ðp; xmÞd�e ¼ ½lpore
�
ðxmÞ � �p�d�e 8d�e 2 R; ð22cÞ

where xm ¼
def 1

3 ½x� �x�. Detailed derivations of (22a) and (22c) are
shown in Appendix A.

It is worth noting that the space of test functions for the sub-
scale fluctuation fields, V

ðDÞ
�

, have not changed in this new formu-
lation, and vs is still zero on the RVE boundary. Hence, Dirichlet
boundary conditions are still adopted for the velocity field. Only
the control variables, summarized in Fig. 4, have changed.

It turns out that the physical interpretation of (22c) is that the
RVE pressure plus the surface tension contribution must equal
the macroscopic pressure;

hpi
�
þ 1
jX�j

Z
Cpore
�

2
3
cs da ¼ �p: ð23Þ

As to the ‘‘feed-back’’ of variables to the macroscale problem, we
note that that �e is part of the solution of the RVE-problem, whereas
�rdevf�ddev; �pg is post-processed as

�rdev ¼
1
jX�j

Z
C�

½t � ½x� �x��sym daþ �pI; ð24Þ
Fig. 4. Flow-chart of FE2-format for seamless transition from macroscopic com-
pressibility to incompressibility.
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Remark. It was used explicitly in (22a) that rdev is proportional to
ddev. h
3.3.1. Macroscale incompressibility
Consider the extreme situation of macroscopic incompressibil-

ity, defined by the condition �e ¼ 0. The system (20) is then simpli-
fied as follows:Z

X

�rdevf�ddev; �pg : ½d�v � $�dv þ
Z

X
��p ½d�v � $�dv ¼ 0 8d�v 2 �V0;

ð25aÞ
Z

X

�v � $d�pdv 8d�p 2 �P; ð25bÞ

i.e., �p is now a classical Lagrange multiplier. Moreover, the result
�e ¼ 0 is obtained as part of the solution of the simplified RVE-prob-
lem (22) from setting lpore

�
ðdvsÞ ¼ 0:

a�ðvM
devð�ddevÞ þ vs; dvsÞ þ b�ðp; dvsÞ ¼ 0 8dvs 2 V

ðDÞ
�
; ð26aÞ

b�ðdp;vM
volð�eÞ þ vsÞ ¼ 0 8dp 2 P�; ð26bÞ

b�ðp; xmÞd�e ¼ ��pd�e 8d�e 2 R: ð26cÞ

More precisely, �e ¼ 0 is obtained as the solution of (26b) upon
choosing dp ¼ 1. Furthermore (26c) guarantees a unique solution
vs;p for the incompressible Stokes’ problem by omitting the other-
wise arbitrary constant in p.

We thus remark that the problem format employed in (20) does
indeed represent both the macroscopically compressible and
incompressible states such that the transition between them is
seamless.

3.4. Iterative solution of RVE-problem using Newton’s method

The RVE-problem (22) must be solved iteratively in practice due
to the subscale nonlinearities. To this end, we first rewrite the RVE-
problem as the vanishing residuals

Rv
�
ðvs;p; dvsÞ ¼def lpore

�
ðdvsÞ � a�ðvM

devð�ddevÞ þ vs; dvsÞ � b�ðp; dvsÞ
8dvs 2 V

ðDÞ
�
; ð27aÞ

Rp
�
ð�e;vs; dpÞ ¼def�b�ðdp;vM

volð�eÞ þ vsÞ 8dp 2 P�; ð27bÞ

Rd
�
ðp; d�eÞ ¼def½lpore

�
ðxmÞ ¼ �p� b�ðp; xmÞ�d�e 8d�e 2 R: ð27cÞ

Newton’s iteration method for finding the unknown variables
vs;p; �e for given �ddev and �p then becomes: For k ¼ 1;2; . . ., compute

vsðkþ1Þ ¼ vsðkÞ þ Dvs; pðkþ1Þ ¼ pðkÞ þ Dp; �eðkþ1Þ ¼ �eðkÞ þ D�e; ð28Þ

where the iterative updates Dvs 2 V
ðDÞ
�
; Dp 2 P�; D�e 2 R are solved

from the tangent equations

ða�Þ0ðvM
devþvsðkÞ;dvs;DvsÞþb�ðDp;dvsÞ

¼Rv
�
ð�ðkÞ;dvsÞ 8dvs 2V

ðDÞ
�
; ð29aÞ

b�ðdp;vM
volðD�eÞ þ DvsÞ ¼ Rp

�
ð�ðkÞ; dpÞ 8dp 2 P�; ð29bÞ

b�ðDp; xmÞd�e ¼ Rd
�
ð�ðkÞ; d�eÞ 8d�e 2 R ð29cÞ

until the residuals are sufficiently small. The tangent form ða�Þ0 is
given explicitly as
ða�Þ0ð�; dvs;DvsÞ ¼ dv � $½ � : ET;devð�Þ : Dvs � $½ �
� �

�
; ð30Þ
where the tangent ET;dev is defined in (5).

4. Mixed macroscale problem format – selected issues

4.1. Macroscale problem – abstract format

The macroscale problem in (20) can be put in the more abstract
form as follows: find ð�v; �pÞ 2 �V� �P that solve

�af�v ; �p; d�vg þ �bf�p; d�vg ¼ 0 8d�v 2 �V0; ð31aÞ

�bfd�p; �vg þ �cf�v ; �p; d�pg ¼ 0 8d�p 2 �P; ð31bÞ

where the pertinent variational forms are given as

�af�v ; �p; d�vg¼def
Z

X

�rdevf �v � $½ �sym
dev ; �pg : d�v � $½ �sym

dev dv; ð32Þ

�bf�p; d�vg¼def �
Z

X

�p d�v � $½ �dv ; ð33Þ

�cf�v ; �p; d�pg¼def
Z

X

�ef �v � $½ �sym
dev ; �pgd�pdv : ð34Þ

Newton iterations for solving the system (31) employ the algorith-
mic tangents

d�rdev ¼ �Ed : d�ddev þ �Ep d�p; ð35aÞ

d�e ¼ �Cd : d�ddev þ �Cp d�p ð35bÞ

taken with respect to �ddev ¼
def ½�v � $�sym

dev and �p, such that the incre-
ments D�v and D�p are obtained from the macroscale tangent
problem

�a0vf�; d�v ;D�vg þ �a0pf�; d�v ;D�pg þ �bfD�p; d�vg
¼ ��af�; d�vg � �bf�; d�vg 8d�v 2 �V0; ð36aÞ

�bfd�p;D�vg þ �c0vf�; d�p;D�vg þ �c0pf�; d�p;D�pg
¼ ��bfd�p; �g � �cf�; d�pg 8d�p 2 �P; ð36bÞ

where

�a0vf�; d�v ;D�vg
Z

X
d�v � $½ �sym

dev : �Ed : D�v � $½ �sym
dev dv; ð37Þ

�a0pf�; d�v ;D�pg ¼
Z

X
d�v � $½ �sym

dev : �Ep D�pdv ; ð38Þ

�c0vf�; d�p;D�vg ¼
Z

X
d�p �Cd : D�v � $½ �sym

dev dv ; ð39Þ

�c0pf�; d�p;D�pg ¼
Z

X
d�p �CpD�pdv: ð40Þ
4.2. Computation of macroscale algorithmic tangent tensors

The algorithmic tensors �Ed; �Ep; �Cd and �Cp, needed in order to car-
ry out macroscale Newton iterations in (36), are obtained for per-
turbations of the RVE-solution expressed in terms of perturbations
of �ddev and �p. However, in order to obtain a suitable representation
of deviatoric macroscale 2nd order tensors, we conclude that it is
convenient to replace the standard dyad bases with a complete,
orthonormal, basis fEignb

i¼1 for symmetric deviatoric tensors. Hence,
these base dyadics satisfy the conditions Ei : Ej ¼ dij and Ei : I ¼ 0.
Examples of such bases are shown in the Appendix. We may now
adopt the expansions
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�ddev ¼
XnB

i

�ddev;iEi;
�ddev;i ¼ �ddev : Ei; ð41Þ

�rdev ¼
XnB

i

�rdev;iEi; �rdev;i ¼ �rdev : Ei: ð42Þ
Remark. For 3D nB ¼ 5, while for 2D nB ¼ 2.
We are now in the position to compute sensitivity fields,

corresponding to a unit variation of the macroscale variables
�ddev;i and �p. First, we shall need to compute the differentials

dv ¼ dvM
dev þ dvM

vol þ dvs: ð43Þ

Using (41) we obtain

dvM
dev ¼

X
i

v̂MðiÞ
dev d�ddev;i; v̂MðiÞ

dev ¼ Ei � ½x� �x�; ð44Þ

where v̂MðiÞ
dev are the ‘‘unit velocity fields’’. In analogy with the defini-

tion of v̂MðiÞ
dev in (44), we introduce the ‘‘unit fields’’, or sensitivities,

due to a unit perturbation of the components d�ddev;i and of d�p, via
the ansatz

dvM
vol ¼ xm d�e with d�e ¼

X
i

�̂eðiÞd d�ddev;i þ �̂ep d�p; ð45Þ

dvs ¼
X

i

v̂sðiÞ
d d�ddev;i þ v̂s

p d�p; ð46Þ

dp ¼
X

i

p̂ðiÞd d�ddev;i þ p̂p d�p: ð47Þ

Upon using the identity �r ¼ 1
jX� j

R
C�

t � ½x� �x�da, we deduce the
component representation

d�rdev;i ¼ d�r : Ei ¼ d
1
jX�j

Z
C�

t � Ei � ½x� �x�da
� �

¼ �d Rv
�
�; v̂MðiÞ

dev

	 
h i
¼ d a� �; v̂MðiÞ

dev

	 
h i
þ d b� �; v̂MðiÞ

dev

	 
h i
� d lpore

�
v̂MðiÞ

dev

	 
h i
¼ ða�Þ0 �; v̂MðiÞ

dev ;dv
	 


¼
X

j

ða�Þ0 �; v̂MðiÞ
dev ; v̂

MðjÞ
dev þ v̂sðjÞ

d

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

@�rdev;i
@�ddev;j

d�ddev;j

þ ða�Þ0 �; v̂MðiÞ
dev ; v̂

s
p

	 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

@�rdev;i
@�p

d�p; ð48Þ

where we used that b� �; v̂MðiÞ
dev

	 

¼ 0 and d lpore

�
v̂MðiÞ

dev

	 
h i
¼ 0. Hence,

the (symbolic) tensor format of (48) is obtained from

d�rdev ¼
X

i

Ei d�rdev;i ¼
X

i;j

Ei
@�rdev;i

@�ddev;j
d�ddev;j þ

X
i

Ei
@�rdev;i

@�p
d�p

¼
X

i;j

Ei
@�rdev;i

@�ddev;j
½Ej : d�ddev� þ

X
i

Ei
@�rdev;i

@�p
d�p

¼
X

i;j

@�rdev;i

@�ddev;j
Ei � Ej

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�Ed

: d�ddev þ
X

i

@�rdev;i

@�p|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
�Ep

Ei d�p: ð49Þ

We also obtain trivially the relation

d�e ¼
X

i

�̂eðiÞd d�ddev;i þ �̂ep d�p ¼
X

i
�̂eðiÞd Ei

h i
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

�Cd

: d�ddev þ �̂ep|{z}
�Cp

d�p: ð50Þ
In order to compute the pertinent sensitivities, we conclude that the
state Eqs. (22) must hold for �ddev; �p as well as for a perturbed state
�ddev þ d�ddev; �pþ d�p. These pertubations give rise to pertubations of

dvs 2 V
ðDÞ
�

, dp 2 P� and of d�e 2 R (that defines dvM
vol). Using the lin-

earized form (29) at equilibrium with the split in (43), we obtain the
appropriate tangent problem:

ða�Þ0ð�; dvs;dvM
dev þ dvsÞ þ b�ðdp; dvsÞ ¼ 0 8dvs 2 V

ðDÞ
�
; ð51aÞ

b�ðdp;dvM
vol þ dvsÞ ¼ 0 8dp 2 P�; ð51bÞ

b�ðdp; xmÞd�e ¼ �d�pd�e 8d�e 2 R ð51cÞ

which must hold for any given d�ddev and d�p. We thus consider the
cases (d�ddev – 0; d�p ¼ 0) and (d�ddev ¼ 0; d�p – 0) in turn:

1. d�ddev ¼ Ei ð�ddev;i ¼ 1; �ddev;j ¼ 0 for j – iÞ while d�p ¼ 0: For
i ¼ 1; . . . ;nB, solve for the sensitivities v̂sðiÞ

d ; p̂ðiÞd ; �̂e
ðiÞ
d from the

system
ða�Þ0ð�; dvs; v̂sðiÞ
d Þ þ b�ðp̂ðiÞd ; dv

sÞ
¼ �ða�Þ0ð�; dvs; v̂MðiÞ

dev Þ 8dvs 2 V
ðDÞ
�
; ð52aÞ

b�ðdp; xm�̂eðiÞd þ v̂sðiÞ
d Þ ¼ 0 8dp 2 P�; ð52bÞ

b�ðp̂ðiÞd ; xmÞd�e ¼ 0 8d�e 2 R: ð52cÞ
2. d�p ¼ 1 while d�ddev ¼ 0: Solve for the sensitivities v̂s
p; p̂p; �̂ep from

the system
ða�Þ0ð�; dvs; v̂s
pÞ þ b�ðp̂p; dvsÞ ¼ 0 8dvs 2 V

ðDÞ
�
; ð53aÞ

b�ðdp; xm�̂ep þ v̂s
pÞ ¼ 0 8dp 2 P�; ð53bÞ

b�ðp̂p; xmÞd�e ¼ �1d�e 8d�e 2 R: ð53cÞ
4.3. Symmetry properties of the total macroscale tangent

The question arises whether the macroscale tangent problem in
(36) is symmetrical. Indeed it can be shown (details in the Appen-
dix) that �Ed has major symmetry, and that �Ep ¼ �Cd. Due to the lat-
ter identity, we obtain �c0vf�; d�p;D�vg ¼ �a0pf�; D�v ; d�pg such that (36)
can be rewritten as

�a0vf�; d�v ;D�vg þ �a0pf�; d�v ;D�pg þ �bfD�p; d�vg
¼ ��af�; d�vg � �bf�; d�vg 8d�v 2 �V0; ð54aÞ

�bfd�p;D�vg þ �a0pf�; D�v ; d�pg þ �c0pf�; d�p;D�pg
¼ ��bfd�p; �g � �cf�; d�pg 8d�p 2 �P: ð54bÞ

Remark. Since there is no need to compute �Cd as given in (50),

there is, in fact, no need to compute the sensitivity fields �̂eðiÞd ;
however, these are integral parts of the solution of the sensitivity
problems defined by (52). h
5. Numerical examples

The computations were carried out with a linear constitutive
model for the viscous flow. Surface tension was considered only
on the particle/pore interface. The viscosity l and surface energy
cs were set to unit values, and the time step was adjusted to obtain
sufficiently small deformations in each time step.



Fig. 6. Evolution of porosity, �/ ¼ 1� jX
part
�
j

jX� j , with time for the RVE subjected to
control representing macroscopic shear (�ddev – 0; �p ¼ 0) and free sintering
(�rdev ¼ 0; �p ¼ 0).
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Two benchmark examples are shown for a single macroscopic
material point, where �ddev; �p (RVE inputs) and �rdev; �e (RVE outputs)
are the quantities of interest. This is followed by a complete FE2-
simulation.

For the transient part, explicit time integration is used. For each
time step, the velocity and pressure are solved instantaneously,
and the geometry is updated as; nx ¼ n�1xþ Dt v . When the RVE
mesh becomes too distorted, it is remeshed.

5.1. Macroscopic shear (�p ¼ 0)

A single unit cell (one pore) is subjected to prescribed constant
macroscopic shear rate, i.e., �ddev – 0, whereas the macroscopic
pressure is set to zero, �p ¼ 0. This situation of ‘‘mixed control’’ rep-
resents ‘‘quasi-free’’ sintering in the sense that the resulting value
of �rdev is non-zero (while �p ¼ 0), and it turns out that �rdev stays
nearly constant throughout the entire simulation time. Snapshots
of the evolving RVE-configuration are given in Fig. 5, and it appears
that effects of the adopted Dirichlet boundary condition is clearly
visible in the severely sheared state.

Vanishing porosity, i.e., macroscopic incompressibility mani-
fested by �e ¼ 0 and �/ ¼ 0, was reached at around 0:69 tend. After
this point in time, the deformation continues but is completely iso-
choric (�e ¼ 0). Artifacts from the remeshing of the RVE are notice-
able in Fig. 6 under close examination; however, the overall
macroscopic behavior is mostly unaffected.

We remark that, in the adopted mixed macroscale format, �ddev

and �p are the ‘‘natural’’ control variables for the RVE-problems;
hence the computation is straight-forward (in contrast to the
situation of ‘‘free sintering’’ discussed subsequently).

5.2. Free sintering (�r ¼ 0)

In the next series of RVE-computations, the unit cell was sub-
jected to zero macroscopic stress, i.e., �r ¼ 0. Snapshots of the
(a) t = 0 (b) t = 0 45 tend

(c) t = 0 65 tend (d) t = tend

Fig. 5. Snapshots of evolving RVE subjected to constant macroscopic shear rate,
�ddev – 0, and zero macroscopic pressure, �p ¼ 0.

Fig. 7. Snapshots of evolving RVE subjected to zero macroscopic stress, �rdev ¼ 0 and
�p ¼ 0.
evolving RVE-configuration are given in Fig. 7, and the correspond-
ing porosity evolution is shown in Fig. 6. Like in the case of macro-
scopic shear, a fully dense state was reached at around 0:69 tend.
However, all deformation stops at this point (which is in contrast
to the previously considered case of macroscopic shear).

We remark that prescribing �rdev and �p represents a situation of
‘‘stress control’’ by which macroscale iterations must be carried out
on �ddev in order to ensure the prescribed value �rdev ¼ 0. Hence, the
macroscale algorithmic tensors are exploited in the corresponding
Newton iterations.

5.3. FE2-simulation

In the last numerical example, we show a fully coupled FE2-sim-
ulation, starting from an inhomogeneous initial porosity. Fig. 8
shows how the relative density evolves from the initial state, half-
way through, to the fully dense product. The final macroscopic
shape distortion is noticeable. In this simulation, 4 integration
points are used for every macroscopic element. Zoomed-in on



Fig. 8. Snapshots of the macroscopic domain with two selected RVE’s throughout the densification process.
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the right side of the macroscopic domain, RVEs in two selected
integration points are shown. They undergo successive change of
both volume and shape (although the shear deformation is hardly
noticeable in the Figure).

6. Conclusions and outlook

By introducing the mixed variational (�v ; �p)-format of the mac-
roscale problem, we can ensure a ‘‘seamless’’ transition from the
macroscopically compressible to the incompressible response.
Hence, there is no need to change the computational algorithm
when the simulation is taken beyond the state of a fully dense
macroscopic response (in some spatial point in the macro-do-
main). Without such a mixed formulation, the macroscopic ATS-
tensor would become unbounded at the transition state. In other
words, the ‘‘naive’’ method described in Fig. 3 would break down
halfway through the simulation shown in Fig. 8, when any RVE be-
comes fully dense, while the method in Fig. 4 can continue to a
complete dense state without numerical singularities.

The additional variable in the RVE-problem, as compared to
the standard format of Stokes’ problem when �d is the single var-
iable that represents prolongation from the macroscale to the sub-
scale, is �e. An additional constraint equation is added to ensure
that the subscale pressure is homogenized to p in a variationally
consistent fashion, whereby the test function is d�e 2 R. Hence,
symmetry is preserved of the linearized RVE-problem due to the
variational format of the ‘‘Galerkin-type’’. The extra computational
cost for including �e is, indeed, very small in the chosen monolithic
format.

As an outlook to future developments, the new mixed RVE-for-
mat will be adopted in conjunction with micro-periodic and Neu-
mann boundary conditions. It would also be of interest to extend
the classical strong format of micro-periodicity to a weak varia-
tional setting, cf. Larsson et al. [23]. A major advantage is that
the subscale FE-mesh does not need to be periodic, which is partic-
ularly beneficial in a context of adaptive mesh (re)generation.

The microstructural properties of the ‘‘green body’’, i.e., before
the sintering process starts, should be represented in a more real-
istic way than is presently the case. For example, the RVE should be
generated from a given statistical distribution of particle size and
shape. Parameter variations should be carried out of the various
geometrical and constitutive properties. In order to make (inverse)
parameter identification meaningful, it is necessary to extend the
description of the subscale geometry to three dimensions in the fu-
ture, although this may represent a major increase in complexity
and computational demand.
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All code for the simulations shown in the examples is available
in the open source finite element code OOFEM at http://
www.oofem.org.

Appendix A. RVE-problem

The weak format of equilibrium for an RVE isZ
Xpart
�

r : dv � $½ �dv ¼
Z

C�[Cpore
�

t � dv da ðA:1Þ

for suitable choice of test functions dv . Testing (A.1) with dvs, we
directly obtainZ

Xpart
�

r : dvs � $½ �dv ¼
Z

Cpore
�

ts � dvs da ðA:2Þ

which is precisely (22a). Next, testing (A.1) with vM
volðd�eÞ, we obtain

�
Z

Xpart
�

pdv
" #

d�e ¼
Z

Cpore
�

ts � xm da

" #
d�e� jX�j�pd�e; ðA:3Þ

where it was used that ½xm � $� ¼ 1
3 I, p ¼ � 1

3 I : r and

�p ¼ � 1
jX�j

Z
C�

t � xm da ¼ � 1
jX�j

Z
C�

t � ½x� �x�da
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�r

:
1
3

I: ðA:4Þ

Dividing (A.3) by jX�j, we obtain (22c).

Appendix B. Base dyadics in sensitivity problem

The orthonormal base Ei can be chosen in a cartesian basis, in
2D, as

E1 ¼
1ffiffiffi
2
p

1 0
0 �1

� �
; E2 ¼

1ffiffiffi
2
p

0 1
1 0

� �
ðB:1Þ

and in 3D, as

E1 ¼
1ffiffiffi
6
p

2 0 0
0 �1 0
0 0 �1

2
4

3
5; E2 ¼

1ffiffiffi
2
p

0 0 0
0 1 0
0 0 �1

2
4

3
5;

E3 ¼
1ffiffiffi
2
p

0 1 0
1 0 0
0 0 0

2
4

3
5; E4 ¼

1ffiffiffi
2
p

0 0 1
0 0 0
1 0 0

2
4

3
5;

E5 ¼
1ffiffiffi
2
p

0 0 0
0 0 1
0 1 0

2
4

3
5:

ðB:2Þ
Appendix C. Symmetry of the macro-scale problem

In order to prove symmetry of the macroscale tangent problem
it is sufficient to show that it is possible to construct a potential
�Pf�ddev; �pg with the properties

@ �P

@�ddev
¼ �rdev;

@ �P
�p
¼ �e ðC:1Þ

from which it follows directly that

�Ed¼
def @�rdev

@�ddev
¼ @2 �P

@�ddev � @�ddev
ðC:2Þ

and

�Ep ¼
@�rdev

@�p
¼ @2 �P

@�ddev@�p
¼ @�e

@�ddev
¼def �Cd: ðC:3Þ

We note that that the ‘‘tangent stiffness’’ tensor �Ed is symmetrical.
In order to show (C.1), we start by assuming that it is possible to
establish the subscale potential P�ð�ddev; �p; vs; p; �eÞ, for given mac-
roscale values �ddev; �p, such that the RVE-problem in (22) can be sta-
ted as

P0
�;vs ð�; dvs;p; �eÞ ¼ 0 8 dvs 2 V

ðDÞ
�
; ðC:4aÞ

P0
�;ps ð�; vs; dp; �eÞ ¼ 0 8 dp 2 P�; ðC:4bÞ

P0
�;�eð�; vs;p; d�eÞ ¼ 0 8 d�e 2 R: ðC:4cÞ

More explicitly, we define

P�ð�ddev; �p;vs;p; �eÞ ¼ W�ðvÞ þ b�ðp;vÞ � lpore
�
ðvÞ þ �p�e; ðC:5Þ

where we introduced the subscale free energy W�ðvÞ such that

W0
�
ðv ; dvÞ ¼ a�ðv ; dvÞ ðC:6Þ

and used tacitly the parametrization of the velocity

v ¼ vð�ddev; �e;vsÞ ¼ �ddev � ½x� �x� þ �exm þ vs: ðC:7Þ

It thus follows trivially that (C.4) is precisely the RVE-problem sta-
ted in (22).

Now, let us define the macroscale potential �P as follows

�Pf�ddev; �pg ¼
def P�ð�ddev; �p;vsf�ddev; �pg; pf�ddev; �pg; �ef�ddev; �pgÞ; ðC:8Þ

where we tacitly account for the implicit relations vsf�ddev; �pg,
psf�ddev; �pg, and �ef�ddev; �pg via the solution of the RVE-problem (C.4)
for given values of (the macroscale variables) �ddev and �p. Using
the chain rule of differentiation and using (C.4), we then obtain
the identities

@ �P

@�ddev
¼ @P�
@�ddev

����
�p;vs ;p;�e

;
@ �P
@�p
¼ @P�

@�p

����
�ddev ;vs ;p;�e

: ðC:9Þ

However, from the construction of the functional P� in (C.5), we
obtain

@P�
@�ddev

: d�ddev ¼a�ðv ; d�ddev � ½x� �x�Þ

þ b�ðd�ddev � ½x� �x�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

�lpore
�
ðd�ddev � ½x� �x�Þ; ðC:10aÞ

@P�
�p

d�p ¼ �ed�p ðC:10bÞ

and with (41) we obtain

a�ðv ; d�ddev � ½x� �x�Þ ¼
XnB

i¼1

a�ðv; Ei � ½x� �x�ÞEi : dddev; ðC:11Þ

lpore
�
ðd�ddev � ½x� �x�Þ ¼

XnB

i¼1

lpore
�
ðEi � ½x� �x�ÞEi : dddev: ðC:12Þ

Next, we can combine (42) with (24) to obtain

�rdev ¼
XnB

i¼1

½a�ðv ; Ei � ½x� �x�Þ � lpore
�
ðEi � ½x� �x�Þ�Ei ðC:13Þ

and combining this result with (C.11) and (C.12), we may rephrase
(C.9) as

@P�
@�ddev

����
�p;vs ;p;�e

¼ �rdev : d�ddev: ðC:14Þ

Finally, combining (C.14) and (C.10b) with (C.9), we obtain the de-
sired properties in (C.1). Hence, symmetry is proven.

http://www.oofem.org
http://www.oofem.org
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