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Abstract
This thesis investigates certain aspects of a six-dimensional quantum theory

known as (2,0) theory. This theory is maximally supersymmetric and conformal,
making it the most symmetric higher dimensional quantum theory known. It has
resisted an explicit construction as a quantum field theory yet its existence can be
inferred from string theory. These properties suggests that an understanding of the
theory will create a deeper understanding of the foundations of both.

In the first part of the thesis an explicit formulation of the non-interacting ver-
sion of the theory is investigated on space-time manifolds that are circle fibrations.
The circle fibration geometry enables a compactification to a five dimensional su-
persymmetric Yang-Mills theory. A unique extension to an interacting theory is
found and conjectured to be the compactification of the interacting theory in six
dimensions.

The second part of the thesis concerns the topological twisting of the free theory
in six dimensions. A space-time manifold which is a product of a four-dimensional
and a two-dimensional part is considered. This setup has recently been proposed
as an explaination for the conjectured correspondence between four dimensional
gauge theory and two-dimensional conformal field theory known as the AGT corre-
spondence. We perform the twisting and subsequent compactification on the two-
dimensional manifold of the free tensor multiplet in Minkowski signature to avoid
the problems associated with the definition of (2,0) theory on Euclidean manifolds.
With the same choice of supercharge as in the usually preferred Euclidean scenario
we conclude that there is no stress tensor which exhibits the topological properties
previously found in similar theories.

Keywords: Supersymmetry, Yang-Mills theory, Topological field theory, Topolog-
ical twisting, (2,0) theory, Compactification, Circle fibrations.
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Chapter 1:

Introduction

In the search for a unified theory of gravitation and quantum mechanics we have
been led into the world of higher dimensions. This thesis investigates an enigmatic
six-dimensional theory that seems to hold many keys to the understanding of a large
class of interesting phenomena.

As a warm-up to the more technical investigations of Paper I and II, I would
like to give an overview of why this six-dimensional theory is important and how it
rather recently came into the spotlight. Let us recall a few facts about the world of
theoretical physics as it stands today. We have a beautiful theory of the elementary
particles and forces known as the standard model. It correctly predicts the behaviour
of our world at the smallest scales to a stupendous degree of accuracy [1]. The
standard model is a quantum field theory and is based on the marriage between
quantum mechanics and the theory of special relativity. The one thing it does not
describe however is gravity. Einstein’s theory of general relavitity describes gravity
at length scales that are large in a certain very precise sense. It shows us how
mass and energy curves space-time so that planets orbit their suns and light deflects
when travelling past a cluster of galaxies. When it comes to details of a gravitational
collapse however, or the early events of our universe, it falls short. In these very
energetic processes gravity is not well described by the classical theory of general
relativity but rather is expected to have a quantum mechanical formulation. The
problem of quantum gravity is a difficult one, and to find a solution we are forced to
give up the notion of four-dimensional universe. Even though a full answer to this
question is still out of reach we have a good candidate: string theory.

String theory is higher dimensional in two ways. One in that it is formulated
in more than four dimensions and another in that the fundamental objects are not
zero-dimensional but rather one-dimensional: they are strings. Why is string theory
interesting? It is a theory that describes both the fundamental particles and their
interactions, and gives a quantum mechanical description of gravity. Why is string
theory not the answer? Maybe it is, but even though much progress has been made
in understanding the theory we still know too little about it to say for sure.

It is in the cross roads of string theory and quantum field theory that we find the
theory that is the topic of this thesis. The rather dull name of (2,0) theory does not
convey the importance that it warrants. As will be covered in the next chapter it is
a very special theory that enjoys a host of interesting properties, the most peculiar
of which is that as of yet there is no framework where it can be explicitly defined.
String theory provides evidence for its existence yet quantum field theory cannot
accomodate its formulation. This is the precarious situation that the theory finds
itself in still today, about 20 years after its inception.

This thesis aims to add a small piece of the puzzle that hopefully increases the
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Chapter 1. Introduction

understanding of the theory and in the end will result in its explicit formulation.

1.1 Outline

In chapter 2 an introduction to (2,0) theory, the main theme of this thesis, is given.
The theory is described in terms of its symmetries and the problems of its explicit
formulation are explained. The simpler non-interacting version of the theory is
introduced with the field content of the tensor multiplet together with classical
equations of motion.

Chapter 3 begins with an introduction to the concept of compactification. A
simple example of a vector field in a circle geometry is worked through. Fibre
bundles are then introduced to facilitate the generalisation to circle fibrations. The
last section in this chapter summarises Paper I where (2,0) theory is placed on a
circle fibration.

The last chapter concerns topological twisting, the topic of Paper II. Rigid su-
persymmetry on curved manifolds is used as a motivating problem and the technique
is then introduced through a concrete example of N = 2, D = 4 SYM. This section
ends with some comments on the general features of topologically twisted theories.
The final section gives an overview of Paper II where (2,0) theory is topologically
twisted and compactified to a four-dimensional theory.

2



Chapter 2:

(2,0) theory

In both PaperI and PaperII the main subject is a six-dimensional superconformal
theory known as (2,0) theory. It is the purpose of this chapter to try to give an
overview of this theory and its place in theoretical physics.

2.1 The hard life of a quantum field theory

In the early parts of the 20th century theoretical physics produced two wonderful
theories that both completely changed the way we view the world around us: special
relativity and quantum mechanics. They describe a strange reality where light
travels at constant velocity independent of the reference frame and where things
at a small scale become quantised and uncertain. Both have now been shown to
describe our world extremely well. It was therefore very annoying that quantum
mechanics did not seem to be on friendly terms with special relativity. It took an
enormous effort and the greater part of the 20th century to find the correct way of
joining these two theories into what is now called quantum field theory. The efforts
were not without reward because the result was the standard model, a quantum
field theory that describes almost everything we see around us and more in terms
of a handful of elementary particles and forces.

The standard model is a four-dimensional quantum field theory. There are now
many examples of well defined quantum field theories in four dimensions and lower,
but above four dimensions there is as of yet no known well defined quantum field
theory ∗. One of the developments that have taken place, beginning in the 90s, is that
there is now strong indications that there should exist a theory in six dimensions.
This theory is intriguing for many reasons. It has strong connections to string theory
from which its existence was first derived [2]. Here it has a privileged position that
can be described as somewhere in the middle between a quantum field theory and
string theory. Understanding the theory will hopefully help us to understand them
both better. From another perspective the theory is very interesting in its own right.
It is one of the most symmetric theories we know of, having in a certain sense the
maximal possible amount of symmetry a theory can have†. In physics, symmetry
almost always provide a tool for understanding a theory better, in many cases solving
a theory completely. This makes the case of (2,0) theory baffling because as of yet
there is no explicit formulation of the theory. Here we have a theory whose existence
is almost a certainty but for which no consistent equations are known. This makes
the problem of an explicit formulation a very intriguing problem, but also a very
∗Well defined here means, among other things, the UV finiteness of the theory.
†This will be expanded on in greater detail in the coming sections.
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Chapter 2. (2,0) theory

hard one.

2.2 Shadows

How symmetric can a theory be? It turns out that this question has a definite answer
in the context of quantum field theories. The answer gives surprising restrictions
on possible theories and at the very extreme end we find a special theory in six
dimensions. A non-interacting version of the theory can be explicitly defined in
terms of a six-dimensional field theory. The difficulties that a formulation of the
interacting theory present might indicate that the free field theory is only a shadow,
but a shadow non the less represents some features of its creator and this is the
approach that motivates this thesis.

2.2.1 Symmetries

The space-time symmetry group of any physically viable theory must contain the
Lorentz group to abide by the laws of special relativity. It can furthermore be invari-
ant under scaling transformations as the theory of classical electromagnetism is. The
smallest group containing both Lorentz transformations and scaling transformations
is the conformal group which in addition to the aforementioned transformations also
contain what is called special conformal transformations. By a theorem due to Cole-
man and Mandula [3] this is the largest possible space-time symmetry group for a
consistent quantum field theory under some very natural conditions on the theory
and on the form of the symmetry group. There can also be internal continuous
symmetries of the theory that have to commute with the space-time group. It turns
out however that there is a loop hole to this argument [4] that makes it possible to
extend the spacetime symmetry of a theory. The loop hole is to regard symmetries
that are not generated by ordinary numbers but rather by anticommuting numbers.
This extends the possible symmetries to include what is called supersymmetry. This
is a symmetry that looks very peculiar, it exchanges fermions and bosons. If we com-
bine the conformal group with the supersymmetry transformations we get what is
called the superconformal group. This constitutes the largest possible space-time
symmetry group for a reasonable theory.

Armed with the knowledge of the possible symmetries a theory can possess we
can now look for its representations. In the 70s Nahm [5] classified the supercon-
formal algebras and showed among other things that they exist only in space-time
dimensions less than or equal to six.

Thus if we are looking for superconformal theories we need only look in dimension
six and below. The existence of a superconformal algebra is a necessary condition
but certainly not a sufficient one. Actually it was not at all clear that there should
exist any well defined superconformal theories above space-time dimension four‡.
It was therefore a very interesting development when evidence for a theory in six
dimensions was put forward [2] in the mid 90s.

‡There are now many examples of superconformal theories in dimension four and below, the
most prominent one being N = 4 SYM in D = 4.
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2.2. Shadows

Since its inception the theory has remained very mysterious. Still today, 20 years
later, there is no mathematical formulation of the interacting theory. Some of the
reasons for this ghostly existence will be reviewed in the following section, and they
can be seen quite easily even from the very basic ingredients of the theory.

There is a by now rather large literature on (2,0) theory. For a review on its
relation to M-theory and string theory see [6, 7]. There have been much work
on finding a consistent formulation of the theory, a non-exhaustive list of relevant
references is [8, 9, 10, 11, 12].

2.2.2 Tensor multiplet

From the work of Nahm [5] we know that there is one possible representation of the
(2,0) superconformal algebra which we call the tensor multiplet. This representation
contains scalars, fermions and a three-form. Thus if we would like to try to write
down a field theory description of the theory our field contents is fixed §.

The tensor multiplet contains the fields summarised in table 2.1 where the bold
face numbers indicate the dimensionality of the representations and a subscript c
indicates that the spinor has positive chirality.

Field Spin(5,1) × Spin(5)R
Φ 1 5
Ψ 4c 4
H 10 1

Tab. 2.1: Field content of free (2,0) theory, the tensor multiplet.

A few general comments on this field content is in order. Firstly the fermions
Ψ are symplectic Majorana-Weyl, where the word symplectic stems from the fact
that they transform¶ under Spin(5)R ∼= Sp(4). The observant reader will have
noticed that the theory contains no gauge field in the usual sense of a two-form field
strength. Instead we have a three-form that, as can be seen from the dimensionality
of its representation, must be self-dual. This is the source of the main mystery
surrounding the theory. It is known that the theory is interacting and that it is
classified by a choice of Lie group in the ADE-series, however the natural way
to implement such an interaction would be through a gauge field which from just
representation considerations is not present. Furthermore a dynamical theory of
a self-dual three-form in six dimensions is notoriously difficult as we will shortly
experience.

For the moment we can sidestep the problems of interactions and regard just the
free theory. In this case the three-form poses no immediate conceptual difficulties,
apart from the interesting features we will look closer at in a moment.

The next step in constructing a candidate theory would be to write down an
action for the fields. In the case of the scalars and fermions the answer is essentially
§There is of course the possibility of having multiple tensor multiplets which would be the case

for the general theory.
¶This is in fact crucial for the Majorana reality condition which in six dimensions requires an

interplay between the R-symmetry and complex conjugation.
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Chapter 2. (2,0) theory

unique and is given by the standard expressions

SΦ =
∫
M6

d6x
√
−G

(
∇MΦ∇MΦ + 1

5RΦ2
)

(2.1)

and
SΨ =

∫
M6

d6x
√
−GΨ̄ΓM∇MΨ. (2.2)

Here R is the scalar curvature of the manifold M6 and ΓM are six-dimensional
gamma matrices. The curvature term in the scalar action is required for the theory
to be conformally invariant. These actions give rise to the local equations of motion

∇2Φ− 1
5RΦ = 0 (2.3)

ΓM∇MΨ = 0. (2.4)

When it comes to the three-form the situation is more precarious. The nat-
ural action for an n-form can be generalised from the action of electromagnetism
SEM =

∫
F ∧ ?F , where F is the U(1) field strength. This form of the action carries

over to the general case immediately and we are led to consider

SH =
∫
M6
H ∧ ?H. (2.5)

Here we face a problem. Since H is self-dual we have that ?H = H and substi-
tuting this into the action we find H ∧H = 0. This is the second mystery, there is
no known six-dimensional covariant action for a self-dual three-form.

If we restrict attention to the equations of motion we are for the moment saved.
The equation of motion that follow from the action for a general, non-self-dual, H
is given by

d ? H = 0. (2.6)

This equation works perfectly well also for a self-dual field and reduces in this case
to

dH = 0, (2.7)

the condition that H is a closed three-form.
This means that a consistent set of equations for the three-form is

H = ?H

dH = 0.
(2.8)

The theory should be invariant under the superconformal algebra and hence
there should exist suitable supersymmetry variations transforming solutions to these
equations of motion into each other. Indeed one finds that the transformations
(2.9)-(2.11) transforms solutions to the equation of motion into each other provided
the supersymmetry parameter satisfies condition (2.12). A few words on notation
is here warranted. Apart from the six-dimensional indices M,N,.. these expressions
contain lower case Greek indices α, β, · · · . These are indices for the four-dimensional
spinor representation of the Spin(5)R symmetry. The bilinear forms Mαβ and Tαβ

6



2.2. Shadows

lowers and raises indices in this representations. It is now very convenient to regard
the five-dimensional vector representation of Spin(5)R as the symmetric traceless
tensor product of two spinor representations instead. This gives the scalar Φ a
representation as a bispinor, enabling a compact and computationally convenient
form of the supersymmetry transformations.

δHMNP = 3∇[M
(
ΨαΓNP ]ε

α
)

(2.9)

δΦαβ = 2Ψ[αεβ] − 1
2T

αβΨγε
γ (2.10)

δΨα = i

12HMNPΓMNP εα + 2iMβγ∇MΦαβΓMεγ + 4i
3 MβγΦαβΓM∇Mε

γ (2.11)

∇Mε
α − 1

6ΓMΓN∇Nε
α = 0 (2.12)

Equation (2.12) is the conformal Killing spinor equation. For rigid supersymme-
try the natural condition that comes to mind is for the parameter to be covariantly
constant, this is however not a conformally invariant equation. The operator in
(2.12) is, together with the Dirac operator, the only natural conformally invariant
operators available [13]. On a manifold that admits two independent solutions to
(2.12) the theory is maximally supersymmetric with 16 supercharges.

Conformal invariance of abelian (2,0) theory manifests itself in the fact that
the equations of motion and supersymmetry transformations depend only on the
conformal class of the metric. This means that the theory is invariant under a
change of the metric of the form

G→ e−2σ(x)G, (2.13)

where σ is a function on M6.
At last we find ourselves with a starting point for explicit investigations, the

tensor multiplet together with its classical equations of motion. This might seem
like a poor substitute for the full interacting quantum theory but this is the only
explicit formulation available at the moment. It seems reasonable that some general
features of the theory should also be present in the free, classical version. In fact
there are some quantities of the full theory that can be calculated in terms of only
the free theory, see [14] for such an example.

Before moving on to the description of Paper I let us recall the counting of
dimensionality of the representations in table 2.1. The scalar Φ is a vector un-
der Spin(5)R. The fermionic field Ψ is a chiral spinor in six dimensions, hence it
transforms in a four-dimensional representation of Spin(5,1). It also transforms in
the spinor representation of Spin(5)R, enabling the symplectic Majorana condition
to be imposed. The self-dual three-form H has three antisymmetric indices with(

6
3

)
= 20 components that gets halved by the condition that H is self-dual.
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Chapter 3:

Circle fibrations

The topic of the first paper is compactification of (2,0) theory on a space-time with
the special property of being a circle fibration. It is the purpose of this chapter to
introduce the concept of fibered spaces and how they are used in physics. There
is a beautiful but rather large theoretical basis behind the methods used in this
chapter which will not be covered. This chapter will instead contain rather informal
discussions and where details are given the reader is expected to be familiar with
Riemannian geometry and the basics of field theory. For an excellent exposition of
these topics in the context of (2,0) theory see [7].

3.1 Compactification

Starting with a theory defined in D space-time dimensions there is a way to create
a whole class of d < D-dimensional theories. This process is called compactification
and as the name implies it involves the use of compact manifolds. The concept dates
back to the early 20th century when a unified theory of electromagnetism and gravity
was sought. It was found that general relativity defined on a five-dimensional space-
time, where one of the directions is periodic, describes gravity and electromagnetism
in four dimensions [15].

The unifying theory of electromagnetism and gravity did not work out in the
end but the concept of building lower dimensional theories from higher dimensional
ones became a widely used method. The process of compactification can be readily
described by an example and usually the simplest possible example is the theory of
a scalar field compactified on a circle. In the next section a slightly more involved
example of a vector field compactified on a circle is described. The purpose of
this is two-fold: firstly it provides an example where there arises new fields in the
compactification of a different type than the original fields, secondly the specific
example lies closer to the computations carried out in Paper I and the reader may
therefore find it elucidating to compare the results.

3.1.1 Theories on a circle

The canonical example of a compactification is when the space-time is taken to be
of the form ∗

MD = RD−1 × S1. (3.1)
Where S1 denotes a circle. Let us investigate what happens to the theory of a single
gauge field on this manifold. Given a one-form potential A = AMdxM and its field
∗For simplicity the space-time is taken to be flat but in general it can be curved, as will be the

case for the later parts of this chapter.
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3.1. Compactification

strength F = dA, the canonical action is given by

S =
∫
MD

F ∧ ?F (3.2)

where ? denotes the Hodge dual†. Let us denote the index corresponding to the
circle by ϕ and the D − 1 other directions by lower case Greek letters. Let us also,
by a slight abuse of notation, use ϕ to denote the coordinate on the circle. The fact
that the circle is periodic enables us to make a Fourier expansion in the coordinate
ϕ.

A =
∞∑
n=0

An(xµ)einϕ (3.3)

Here An are one forms on MD and can be split into the parts that lie in the direction
of RD−1 and in the direction of the circle

An = AD−1
n + Aϕndϕ. (3.4)

Substituting this into the expansion and taking the exterior derivative, recalling that
dϕ ∧ dϕ = 0, gives us three terms

dA =
∞∑
n=0

dAD−1
n einϕ +

∞∑
n=0

dAϕn ∧ dϕeinϕ +
∞∑
n=0

AD−1
n ineinϕ ∧ dϕ. (3.5)

Substituting this back into the action might not seem to give us anything par-
ticularly nice but with a few observations we arrive at a very elegant answer. The
first observation is that the Hodge dual induces an inner product between forms and
that the action in (3.2) is nothing but the inner product 〈dA, dA〉. The basis forms
dxM are orthogonal with respect to this inner product which has as a consequence
that ‡

〈dA, dA〉 =
〈 ∞∑
n=0

dAD−1
n einϕ,

∞∑
m=0

dAmeimϕ
〉

+
〈 ∞∑
n=0

dAϕn ∧ dϕeinϕ,
∞∑
m=0

dAϕm ∧ dϕeimϕ
〉

+
〈 ∞∑
n=0

AD−1
n ineinϕ ∧ dϕ,

∞∑
m=0

AD−1
m imeimϕ ∧ dϕ

〉
.

(3.6)

The second observation is that einϕ are orthogonal functions on S1. This means that
if we perform the integration over ϕ we end up with

∫ 2π

0
〈dA, dA〉 =

∞∑
n=0

〈
dAD−1

n , dAD−1
n

〉
−
∞∑
n=0

n2
〈
AD−1
n , AD−1

n

〉
+
∞∑
n=0
〈dAϕn, dAϕn〉 .

(3.7)
The first and second term describe an infinite tower of massive vector fields in

D − 1 dimensions as well as a single massless vector field (the n = 0 term). This
is accompanied by the third term which is a kinetic term for a massless scalar in
†Here taken to be defined by ?1 = vol(M).
‡There are also additional cross terms that are gauge equivalent to zero.
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Chapter 3. Circle fibrations

D − 1 dimensions. These are quite general features when compactifying a theory,
the appearance of a tower of new massive fields as well as massless ones. It might
seem distressful that we now have an infinite number of fields in our theory. On the
other hand if we are only interested in what happens below a certain energy scale
the increasingly heavy fields in the tower will not play a role. In the low energy limit
we are only left with the massless fields which as we have seen are finite in number.

For a very readable introduction to the concept of compactification in the context
of field theory see [16].

3.1.2 Generalisation

In the previous section we saw an example of the basic features of compactification:
a space-time with a compact direction gives rise to a theory in one dimension lower
containing new fields. This method is tremendously useful and has been used to
derive a great deal of information about various theories, as well as constructing
new ones. There are some very natural generalisations to this scheme. Firstly we
can let the space-time be curved. This complicates the above discussion but does
not change the basic results of compactification. A more interesting direction is
to let the compact space vary in its geometry as we change position in the lower
dimensional part.

In the above example the whole of space-time was a product of a lower dimen-
sional part and a circle. This means that wherever we are positioned on RD−1 the
circle looks the same. If we relax this property and let the circle vary in its orien-
tation and size we get what is called a fibration. One would then expect that the
geometric data of the circle will somehow be reflected in the compactified, lower
dimensional, theory. This is the topic of the next section where the concept of a
fibre bundle is introduced.

3.2 Fibre bundles

Intuition for fibre bundles comes naturally with a simple example. Consider an ide-
alised hedgehog. It consists of a sphere with spines. The sphere is a two-dimensional
space and the spines are one-dimensional. Mathematically we can describe the
hedgehog by saying that it consists of a sphere with a line segment attached at
every point on the surface. This evokes an interpretation of a hedgehog as a bundle
of fibres.

More generally we start with a manifold M called the base and a manifold F
called the fibre. The intuitive statement that we attach a copy of the fibre to every
point of the base can be made precise with the following definition.

Definition 3.2.1. A fibre bundle E over a manifold M with fibre F is a space that
is locally diffeomorphic to the direct product of an open neighbourhood of M with
F .

In other words if we take an open neighbourhood V ⊂ E there exists an open
neighbourhood U ∈M such that

V = U × F. (3.8)

10



3.2. Fibre bundles

This is illustrated schematically in figure 3.1, where over each point in the neigh-
bourhood U ⊂M we find a copy of the fibre F which in this case is indicated by a
line.

Fig. 3.1: A fibre bundle. Over each point in a neighbourhood U we find a copy of
the fibre F .

3.2.1 Circle fibration

In the special case when the fibre F is a circle, the resulting bundle is called a circle
bundle. This means that at each point in the base M we find a circle. In this work
a manifold that can be described as a circle bundle will be called a circle fibration.
A simple example of a circle fibration is a torus. Here both the base and the fibre
is a circle. The manifolds involved can be summarised neatly with the diagram in
figure 3.2. Here the manifold M6 is a circle fibration with fibre S1. The arrow from
S1 to M6 indicates the embedding of the fibre in M6. The base of the fibration is
M5 and the arrow from M6 to M5 indicates that to each point in M6 there is an
associated point in the base given by a projection π. The last arrow indicates that
locally we can find an isometry to the product space M5 × S1.

S1 M6 M5 × S1

M5

locally

π

Fig. 3.2: A diagramatic description of a circle fibration M6.

3.2.2 Geometry of circle fibrations

So far we have only been talking about the smooth structure of the manifolds in
question. This section will give a brief overview of how the metric information about
a manifold is represented in the special situation of a circle fibration.

On a general six-dimensional Lorentzian manifold M6 there is a semi-definite
metric tensor GMN . If M6 is a circle fibration we have locally that

M6|V ∼= M5|U × S1. (3.9)

11



Chapter 3. Circle fibrations

That is an open neighbourhood of M6 is isometric to a product of an open neigh-
bourhood in M5 and a circle. The metric on the product space on the right is
not necessarily a product metric, i.e. it will in general not have a block diagonal
structure.

Let ϕ be the coordinate in the direction of the circle, and as before we also let
ϕ be the value of the index for this direction. The metric GMN will then have the
structure of equation (3.10).

G = Gµνdxµdxν + 2Gµϕdxµdϕ+Gϕϕdϕdϕ (3.10)

We are however free to parametrise our metric in any way we see fit and the above
choice is not the most convenient one. A better way to keep track of the reparametri-
sation invariance in six dimensions is

G = gµνdxµdxν + r2 (dϕ+ θµdxµ)2 . (3.11)

This is just a renaming of the components in (3.10). It keeps track of reparametri-
sation invariance since

ϕ→ ϕ+ λ(xµ) ⇔ θµ → θµ + ∂µλ. (3.12)

The vector θ transforms as a U(1) gauge field under reparametrisations and the
fact that the six-dimensional theory is reparametrisation invariant means in essence
that the compactified theory can only depend on the gauge invariant field strength
Fµν = ∂µθν − ∂νθµ.

The scalar r also naturally corresponds to the radius of the fibre which can be
seen if we take θµ = 0 thereby making the metric block diagonal and it is clear that
r corresponds to the circle radius.

3.3 (2,0) theory on circle fibrations

We have now reached the point where we can describe the goal of PaperI. Here the
free tensor multiplet is compactified on a six-dimensional space-time that is a circle
fibration. Let us start by reviewing the situation for circle compactifications. Al-
ready in the original paper [2] proposing the existence of (2,0) theory some aspects of
its compactification on R5×S1 were discussed. Actually compactification arguments
played an essential role in deducing its existence through the web of string theory
dualities. By various consideration one can make it very plausible that the theory
compactified on a circle will give rise to five-dimensional super Yang-Mills theory
[17]. The lack of an explicit construction of the theory of course means that there
are no proofs for such claims but only indications. Lately there have been efforts to
show that (2,0) theory can perhaps be completely described by a five-dimensional
theory [18, 19].

The purpose of Paper I is to continue these efforts in the more general setup
that circle fibrations provide.
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3.3. (2,0) theory on circle fibrations

3.3.1 Overview of paper I

The plan is summarised in figure 3.3. The starting point is to regard one free tensor
multiplet of (2,0) theory on a circle fibration. A low energy limit is taken and we find
a five-dimensional supersymmetric theory. This theory is shown to have a unique
extension to an interacting theory which we derive. That the extension is unique
makes it plausible that this is the low energy limit of the interacting (2,0) theory in
six dimensions.

Free (2,0) on M5 × S1 Interacting (2,0)

Free SYM on M5 Non-abelian SYM on M5

low energy

Fig. 3.3: Method of Paper I. Starting from the abelian theory in six dimensions we
take the low energy limit on a circle fibration and extend to an interacting theory.

3.3.2 Abelian compactification

Let M6 be a circle fibration over M5 as described in section 3.2.2. Recall that the
fibration metric is given by

G = gµνdxµdxν + r2 (dϕ+ θµdxµ)2 . (3.13)

It is now a straight forward calculation to show that the scalar equation of
motion§

∇̂M∇̂MΦ− 1
5R̂Φ = 0, (3.14)

reduce in five dimensions to an equation that can be integrated to the action in
(3.15).

Sφ =
∫

d5x
√
−g

(
−1
r
∇µφαβ∇µφαβ − 1

5
1
5Rφαβφ

αβ +K(g,r,θ)φαβφαβ
)

(3.15)

where
K(g,r,θ) = 1

r3∇µr∇µr − 3
5

1
r2∇µ∇µr + 1

20rFµνF
µν (3.16)

contains the geometric information about the circle fibration, i.e. the fibration radius
r and the non dynamical field strength Fµν = ∂µθν − ∂νθµ. Note that in the general
case the geometric data r and F are functions on M5 and so can vary over the
manifold.

For the fermions the computation is also in principle straight forward but is com-
plicated by the somewhat more heavy machinery of spinors in curved backgrounds.
§Here the six-dimensional covariant derivative and scalar curvature are indicated with a hat to

distinguish them from their five-dimensional counterparts.

13



Chapter 3. Circle fibrations

In Paper I we provide a self contained description of this process in full detail. The
result is that the fermion equation of motion

ΓM∇̂MΨ = 0 , (3.17)

reduce in five dimensions to an equation that integrates to an action of the form
(3.18).

Sψ =
∫

d5x
√
−g

(1
r
iψ̄γµ∇µψ −

1
8Fµνψ̄γ

µνψ
)

(3.18)

Both (3.15) and (3.18) have the appearance of five-dimensional super Yang-Mills
but with additional geometric terms stemming from the fibration.

Now we come to the self-dual three-form where the story is more interesting. Let
us delve a bit deeper into the calculations to elucidate some of the features of its
compactification.

On the fibration geometry the three-form H can be written as

H = E + F ∧ dϕ , (3.19)

with E a three-form on M5 and F a two-form on M5. A self-dual three-form in
six dimensions has 10 independent components, which is the same number as for a
three-form and a two-form in five dimensions. One would therefore expect that the
components of F and E are identified and this is precisely what happens. Writing
out the self-duality condition H = ?H we find that

E = −1
r
? F + θ ∧ F. (3.20)

Thus in the end we have a two-form field strength in five dimensions, precisely
what is needed for a standard gauge theory¶.

It is now immediate that the equation of motion dH = 0 implies first that dF = 0
from (3.19) and also that dE = 0 which with the identification in (3.20) gives an
equation of motion for F that can be integrated to the action in (3.21).

SF =
∫
M5

(
−1
r
F ∧ ?F + θ ∧ F ∧ F

)
(3.21)

Here we can observe a feature of the compactification of (2,0) theory that is
very unusual but which has been known from its inception. Even though the above
theory is non interacting we can anticipate the form of the coupling constant from the
factors in the first term. It would seem that we have a coupling constant

√
r which

is the inverse of what would be expected from a standard dimensional reduction
where we integrate out the circle and pick up a factor of r in the nominator, giving
rise to a coupling constant 1√

r
. In the context of compactification on circle fibrations

this comes about very naturally from the geometry of the fibration.
In a similar fashion to the reduction of the equation of motions we find the

five-dimensional supersymmetry transformations in (3.22), (3.23) and (3.25).
¶This can be compared to the example in section 3.1.1 where the potential gives rise to two

new fields.
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3.3. (2,0) theory on circle fibrations

δφαβ = 2ψ[αεβ] − 1
2T

αβψ̄γε
γ , (3.22)

δFµν = −2i∇[µψαγν]ε
α + i

1
r
∇ρrψαγµνρε

α − 2i1
r
∇[µrψαγν]ε

α (3.23)

+ rFµνψαεα + 3
2rF[µ

ρψαγν]ρε
α − 1

4rF
ρσψαγµνρσε

α (3.24)

and

δψα = 1
2Fµνγ

µνεα + 2iMβγ∇µφ
αβγµεγ (3.25)

+ 2i1
r
Mβγφ

αβ∇µrγ
µεγ − rMβγφ

αβFµνγµνεγ . (3.26)

The five-dimensional theory is invariant under these transformations provided
the supersymmetry parameter satisfies the reduced version of the conformal Killing
spinor equation

∇µε
α = 1

2
1
r
∇νrγµγνε

α + i

8rF
ρσγµγρσε

α + i

4rFµ
νγνε

α. (3.27)

3.3.3 Interacting generalisation

In the second part of Paper I we extend the abelian theory in five dimensions to
include interactions. This process is highly constrained by the symmetries of the
theory. It turns out that there is only one possible interacting extension.

Let us list the symmetries of the five-dimensional theory. Apart from five-
dimensional Lorentz symmetry and the R-symmetry we have, if the background
geometry permits, maximal supersymmetry. The introduction of the length scale r
has broken the conformal symmetry but there is still a remnant of it left. To see
this, note that the theory in six dimensions only depend on the conformal class of
the metric. This means that we end up with the same theory in five dimensions if
we instead regard the metric

G′ = e−2σG (3.28)

where σ is a smooth function on M5. In terms of the fibration geometry this means
that the theory is invariant under

gµν → e−2σgµν (3.29)
r → e−σr, (3.30)

which can be deduced from the form of the metric in (3.13).
Any modifications to the theory must respect these symmetries. The plan is

now straight forward, we promote F to be the field strength of a connection of a
non abelian gauge group. We let the scalars and fermions transform in the adjoint
representation of this gauge group. We then proceed to promote all the covariant
derivatives to gauge covariant derivatives. At this point we have a gauge invariant
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Chapter 3. Circle fibrations

but no longer supersymmetric theory. To continue we begin by satisfying the condi-
tion that in the case of a trivial fibration the theory should reduce to supersymmetric
Yang-Mills. To this end we add the standard Yukawa and φ4 terms.

S = Sφ + Sψ + SF +
∫
M5

d5x
√
−g
(

21
r
fabcφaψ̄bψc + 1

r
fabef

cdeφaφbφcφd

)
(3.31)

To preserve the supersymmetry of the action we also modify the supersymmetry
variations according to

δψ = · · ·+ 2fabcφbφcε. (3.32)

With these modifications the theory reduces to five-dimensional super Yang-Mills
in the case of a trivial fibration with product metric.

The main result of Paper I is that these modifications also in the case of a
general fibration geometry constitutes a supersymmetric theory. We also argue that
the above modifications constitute the only possible extension to the abelian theory
respecting all the symmetries present.

3.3.4 Outlook

There have been many interesting developments regarding the compactification of
(2,0) theory in the last few years. In [20] the co-author of Paper I investigated a
particular example of a singular circle fibration and solved the equations of motion
for the gauge field. It was shown that the theory couples to additional degrees of
freedom living on the singularity in the form of a Wess-Zumino-Witten model. The
partition function for (2,0) theory on a circle fibration was computed in [21]. In [22]
the action for five-dimensional super Yang-Mills in general supergravity backgrounds
was computed using similar methods. For a recent discussion on the relation between
five-dimensional super Yang-Mills and (2,0) theory see [23].

Another very interesting direction has been the construction of a large class of
four-dimensional theories through compactification of (2,0) theory on a Riemann
surface [24]. Through their common origin in six dimension there is a whole web
of dualities between these theories extending S-duality of N = 4 SYM in four di-
mensions. This also brings us to the second part of this thesis which is concerned
with the compactification and subsequent twisting of (2,0) theory on precisely a two
manifold.
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Chapter 4:

Topological twisting

This chapter concerns the main technique used in Paper II, topological twisting.
Briefly, it is a method to create topological field theories out of supersymmetric
theories. From another perspective it can be viewed as a method to create super-
symmetric theories on general curved manifolds from theories on flat manifolds. The
technique dates back to the 80s when it was introduced [25].

4.1 Supersymmetry on curved manifolds

Let us start from the perspective of trying to create a globally supersymmetric
theory on a curved manifold. A supersymmetry transformation is parametrised by
a constant spinor ε. On a flat manifold there is no ambiguity in what we mean by
a constant parameter, it simply has no space-time dependence. However when the
theory lives on a curved manifold the situation becomes more tricky. The proper
generalisation to being constant is to be covariantly constant. So to have a good
parameter for supersymmetry we need to find a covariantly constant spinor. This is
in general impossible and imposes severe constraints on the geometry of the manifold
as can be easily seen. Suppose we have a spinor ε that is covariantly constant:

Dµε = 0. (4.1)

The above condition trivially implies [Dµ, Dν ] ε = 0 and using the fact that the
covariant derivatives commutes to the Riemann tensor we find

RµνρσΓρσε = 0. (4.2)

This is an integrability condition for the curvature on the manifold which in general
is not satisfied.

4.2 The twist

Topological twisting solves this problem in a very elegant fashion using the tools of
group theory. The idea is to replace the space-time group by a new one, combining
the space-time symmetries with the R-symmetry. The spinor representation of the
original theory will now be reducible and will, under certain circumstances, contain
a part that does not transform at all under the new space-time group. This means
in particular that this part of the spinor also transforms trivially under the new
space-time holonomy group and thereby can be considered as a rigid supersymmetry
parameter.
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Chapter 4. Topological twisting

4.2.1 Example: N = 2, D = 4 SYM

The details of the technique is best explained by an example. A very instructive
example is that of the original paper introducing the concept, namely the twisting
of N = 2 super Yang-Mills theory on four-dimensional Euclidean space-time. [25].

This theory has an SU(2) R-symmetry and the space-time symmetry group is
Spin(4). The space-time group is isomorphic to SU(2)×SU(2), where the two groups
are often referred to as the left and right part. The supersymmetry parameters ε
are chiral spinors transforming in the two-dimensional representation of SU(2)R.
Let us look at one of these parameters, the one transforming under SU(2)r. Its
transformation properties are summarised in (4.3).

SU(2)l × SU(2)r × SU(2)R
ε ∈ 1 2 2 (4.3)

Let us now define a new SU(2). For concreteness let us denote the generators of
SU(2)l by {T il } and the generators of SU(2)R by {T iR} with i ∈ 1,2,3. We define a
new set of generators T itwist generating a new SU(2) as follows.

T itwist = T ir + T iR (4.4)

The new group is thus what is called the diagonal of SU(2)r × SU(2)R, we rotate in
both factors at the same time.

How will ε transform under this new group? What we have been doing simply
amounts to taking the tensor product of the two representations and the answer is
that

2⊗ 2 = 1⊕ 3. (4.5)
The representation (1,2,2) under SU(2)l× SU(2)r× SU(2)R therefore splits into

(1,1)⊕ (1,3) under SU(2)l × SU(2)twist.

SU(2)l × SU(2)r × SU(2)R
(1,2,2)

twist−→ SU(2)l × SU(2)twist
(1,1)⊕ (1,3) (4.6)

Note that the first term is a singlet under both factors. Thus we find that from
the original 8 supercharges we have constructed one scalar supercharge under the
new Lorentz group. Let this scalar supercharge be called simply Q.

Q ∈ (1,1) (4.7)

This supercharge have many interesting properties. From the supersymmetry alge-
bra {

Qα, Qβ
}

= (γµ)αβ P µ , (4.8)
we see that after the twisting we have a Lorentz scalar in the left hand side but
there is no Lorentz scalar operator available for the right hand side so we must have

Q2 = 0. (4.9)

Here we have an operator that squares to zero. This invokes a strong urge to
immediately look for Q-closed and Q-exact quantities and what their cohomology
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4.3. Twisting (2,0)

looks like. In words the cohomology of this operator means that we are looking at
supersymmetric quantities but we don’t care if they differ by a quantity that is the
supersymmetry transformation of something else.

A first observation is that the expectation value of a Q-exact operator vanishes.

〈δQO〉 =
∫
DΦ δQO e−S[Φ] (4.10)

=
∫
DΦ δQ

(
O e−S[Φ]

)
(4.11)

= 0 (4.12)

In the first step we use that the action is supersymmetric. The second step assumes
that the path integral measure is supersymmetric so that the total supersymmetry
variation can be absorbed by a change of variables in field space.

It also turns out that in this theory the stress tensor is a Q-exact quantity.

T µν = δQλ
µν (4.13)

This has a very interesting consequence. Lets regard the expectation value of a
supersymmetric and metric independent operator O and lets see how it behaves
under a metric pertubation.

δg 〈O〉 =
∫
DΦOδge−S[Φ] (4.14)

By the definition of the stress tensor and the fact that it is Q-exact we now have

δg 〈O〉 =
∫
DΦOδgµνT µνe−S[Φ] (4.15)

=
∫
DΦOδgµνδQλµνe−S[Φ] (4.16)

=
∫
DΦδQ

(
Oδgµνλµνe−S[Φ]

)
(4.17)

= 0 (4.18)

The upshot of all this is that if we restrict our attention to Q-cohomology then
the theory is in fact topological.

4.3 Twisting (2,0)

The existence of the interacting (2,0) theory in six dimensions has, as we have seen
in the previous chapters, provided an explanation of many properties of lower di-
mensional theories. One beautiful example of this is the construction due to Gaiotto
[24]. Here a whole class of four-dimensional supersymmetric gauge theories∗ are con-
structed by compactifying (2,0) on a Riemann surface with possible defects. Their
common origin in the six-dimensional theory induces a web of dualities between
these theories, a kind of S-duality. Closely related to this construction is a recent
∗Usually referred to as class S [26, 27].
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conjecture that there is a correspondence between four-dimensional N = 2 gauge
theories and two-dimensional conformal field theories. This conjecture† is referred
to as the AGT‡ correspondence [28] and states, among other things, that correla-
tion functions in Liouville theory can be computed by the Nekrasov [29] partition
function of a four-dimensional N = 2 super Yang-Mills theory.

One very natural explanation of this was put forward in [30] and also indicated
in [31]. The observation is that if we could somehow compactify (2,0) theory on
the four-dimensional manifold instead we would end up with a conformal theory
on the Riemann surface. The idea would then be to look for quantities that are
protected under both compactifications and this would then hopefully explain the
correspondence.

Again the fact that there is no explicit formulation of (2,0) theory means that
these ideas rests on the assumption of the existence of the theory. Furthermore in [30]
it is assumed that when the compactification on the Riemann surface is performed
and the holonomy on the four manifold is twisted we end up with a topological field
theory on the four manifold. In Paper II we investigate these claims by explicit
calculations in the setting of the abelian theory version of (2,0) theory.

One of the main differences between our treatment and that of [30] is that we
work in Lorentzian signature. There are certain conceptual difficulties when for-
mulating the theory in Euclidean signature. One of them is that the Hodge dual
does not square to one but rather to minus one which implies that we cannot regard
a real self-dual three-form but rather a complex three-form. The situation for the
spinors is also different in the two signatures. To be as explicit as possible and to
avoid any pitfalls with the choice of Euclidean signature we choose to carry out our
investigation in Lorentzian signature.

4.3.1 Overview of paper II

The three main steps of Paper II is summarised in figure 4.1. The starting point
is to regard abelian (2,0) theory on a Lorentzian manifold M1,5 = C ×M4, where
C is a compact two manifold. We choose to work in Lorentzian signature to avoid
the problems associated to formulating (2,0) theory in Euclidean signature. This
choice of signature is not ideal from the perspective of twisting as will be shown
shortly, however we try to stay as close as possible to the proposed construction in
Euclidean signature and see where it leads us.

We start by twisting the holonomy on a flat M4 and identify the scalar super-
charge Q corresponding to the one used in the Euclidean construction. A Q-exact
stress tensor is found implying the possibility of a topological theory. However we
show that it is not possible to find such a Q-exact stress tensor when the theory
is considered on a general curved M4. This seems to imply that the specific twist
considered in the Euclidean case does not produce the claimed topological theory in
four dimensions.

The choice of which groups to twist and how this affects the relevant represen-
tations lies at the heart of Paper II. It will therefore be covered in greater detail
†There is as of yet no formal proof of this correspondence.
‡Alday, Gaiotto and Tachikawa.

20
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Abelian (2,0) theory on M1,5 = C ×M4

Twist M4 holonomy

Compactify on C

Fig. 4.1: Method of Paper II. Abelian (2,0) theory is twisted and compactified on a
Lorentzian manifold of the form C ×M4.

whereas the more straightforward computations of twisted field content and their
dynamics will only be briefly discussed. Finally the situation for the stress tensor
of the twisted theory is regarded and the conclusion that there is no Q-exact stress
tensor is discussed.

4.3.2 Lorentzian twist

In chapter 2 we saw that (2,0) theory has an R-symmetry group Spin(5), in this
section indicated by a subscript R. Thus on a Lorentzian manifold M1,5 the bosonic
part of the symmetry group for the theory is given by

Spin(1,5)× Spin(5)R. (4.19)

We now take the six manifold to be of the form

M1,5 = C ×M4, (4.20)

where C is a compact two manifold with Minkowski signature and M4 is a four
manifold. The space-time symmetry group is broken into two parts and we now
have

Spin(1,1)︸ ︷︷ ︸
C

× Spin(4)︸ ︷︷ ︸
M4

×Spin(5)R. (4.21)

It should here be pointed out that the space-time symmetry group contains a
non-compact part when working in Minkowski signature. Normally to be able to
find a scalar supercharge the whole holonomy group needs to be twisted away which
means that the Lorentz group must be embeddable into the R-symmetry group of
the theory. Since it is not possible to embed a non-compact group into a compact
group we will only perform a partial twist.

Now we make a few observations regarding the structure of the symmetry groups.
The Lorentz group on M4 is Spin(4) which is isomorphic to SU(2) × SU(2). As
before we let a subscript l and r denote the left and the right factor respectively.
For the R-symmetry group we have that Spin(3)× Spin(2) ⊂ Spin(5)R. Using that
Spin(3) ∼= SU(2) we thus have that

SU(2)l × SU(2)r × SU(2)R × U(1)R ⊂ Spin(4)× Spin(5)R. (4.22)
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The supersymmetry parameter ε is a symplectic Majorana-Weyl spinor of neg-
ative chirality. In terms of the Lorentz group on M4 it therefore transforms as
(2,1)⊕ (1,2) under SU(2)l×SU(2)r. It transforms in the 4 of Spin(5)R which under
the subgroup SU(2)R × U(1)R transforms as 2 1

2 ⊕ 2− 1
2 .

Combining this information we have that the supersymmetry parameter trans-
forms under the subgroups in (4.22) as

ε ∈ (1,2,2)± 1
2 ⊕ (2,1,2)± 1

2 . (4.23)

From the results in section 4.2.1 we now see what needs to be done to find a
scalar supercharge. There are two possibilities that are equivalent. We choose to
twist SU(2)r and SU(2)R. Let SU(2)′ = SU(2)r×SU(2)R, then the first term in 4.23
will be twisted according to table 4.1.

SU(2)l × SU(2)r × SU(2)R × U(1)R

(1,2,2)± 1
2

twist−→ SU(2)l × SU(2)′ × U(1)R

(1,1)± 1
2 ⊕ (1,3)± 1

2

Tab. 4.1: Twisting of the supersymmetry parameter representation.

After twisting there are two scalar components on M4 with positive and negative
U(1)R charge. There is now a definite choice of which supercharge to use. To see
this we need to consider the transformation properties under Spin(1,1)C. Let ±
indicate the two one-dimensional representations of Spin(1,1) ∼= R. Here we let the
+ correspond to the representation that in Euclidean signature would have positive
charge under Spin(2) ∼= U(1). Then the full representation of the part of ε in table
4.1 is given by

+(1,2,2)± 1
2

twist−→ +(1,1)± 1
2 ⊕ +(1,3)± 1

2 . (4.24)
The supersymmetry parameter is a spinor of negative chirality which fixes the choice
of Spin(1,1) representation to be + in (4.24).

If the twisting was carried out in Euclidean signature then we would also have
to twist away the dependence on Spin(1,1) by taking the diagonal embedding of
U(1)′ in Spin(2)C × Spin(2)R. The twisted U(1) charge is then simply the sum
of the individual charges. It is then clear that the component of the M4 scalar
representation in (4.24) that would have zero charge under U(1)′ is the one with
negative U(1)R charge.

Therefore we choose to regard the M4 scalar supercharge in (1,1)− 1
2 when per-

forming the calculations in Paper II.

4.3.3 Twisted tensor multiplet

The fields of the tensor multiplet gives rise to a number of fields when the twisting
is performed. With similar arguments as in the previous section one arrives at the
field content in (4.25). Here Eµν is a real self-dual two form, σ a complex scalar,
{ψ, ψ̃} fermionic one forms, {χ, χ̃} fermionic self-dual two forms, {η, η̃} fermionic
scalars, {F−, F+} anti self-dual and self-dual real two forms and finally Aµ a real
one-form.
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Φ twist−→ Eµν , σ̄, σ

Ψ −→ ψµ, ψ̃µ, χµν , χ̃µν , η, η̃

H −→ F−µν , F
+
µν , Aµ

(4.25)

In Paper II the derivation of the twisted field content is performed in detail.
Let us here only confirm the counting. The scalar in six dimensions sits in a five-
dimensional representation corresponding to the three components of the self-dual
two-form and the two components in the complex scalar. The fermionic fields,
counting from left to right, contain 4 + 4 + 3 + 3 + 1 + 1 = 16 real components
corresponding to the 16 real components of the symplectic Majorana-Weyl spinor Ψ.
Similarly the fields arising from the self-dual three-form sums to 10 real components.

The six-dimensional equations of motion and supersymmetry transformations
give rise to corresponding equations and transformations for the twisted fields. This
is also derived in detail in Paper II from the explicit relations between the twisted
and untwisted fields of the tensor multiplet.

4.3.4 Stress tensor

After a compactification on C the equations for the twisted fields will be purely four-
dimensional. We then proceed to determine the stress tensor for the theory defined
on a flat manifold. This is done in two steps. First an ansatz for the stress tensor for
the fields arising from Φ and Ψ is made from the metric variation of the action that
do exists for these fields. For the fields arising from H an ansatz is made starting
from the stress tensor for a general three-form. It is found that this ansatz needs to
be modified for the stress tensor to be supersymmetric. The modified stress tensor
is then shown to be Q-exact. For completeness let us here give the full expression
as it is rather compact.

T µν = δQλ
µν , (4.26)

where

λµν = 1
2

(√
2iψ(µ∂ν)σ + ψ̃(µ∂ρEν)

ρ + ∂ρψ̃
(µEν)

ρ − ∂(µψ̃ρEν)
ρ (4.27)

+ iψ̃(µAν) − i

2 χ̃
(µ
ρF
−ν)ρ − i√

2
gµνψρ∂

ρσ − 1
2g

µνψ̃ρ∂σEρσ −
i

2g
µνψ̃ρA

ρ
)
.

Here Q denotes the scalar supercharge transforming as (1,1)− 1
2 under the twisted

Lorentz group, described in the previous section.
In the final step of Paper II we show that there is no possible extension of

this stress tensor to a general curved M4 that is both Q-exact and Q-closed. When
trying to covariantise the above expression for λµν one meets curvature terms that
are not cancelled when checking supersymmetry. These would need to be cancelled
by new curvature terms in λµν , however from purely dimensional and symmetry
reasons there cannot be any such terms.
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Chapter 4. Topological twisting

4.3.5 Outlook

The results of Paper II indicate that there are some subtleties in twisting (2,0)
theory on a Lorentzian manifold in a way that would be natural from the Euclidean
perspective. It should be pointed out that our twisting is, from the four-dimensional
perspective, very similar to the Donaldson-Witten twist considered in [25]. The
difference is in the slightly different field content of the theories and a different choice
of scalar supercharge. Here we are motivated by trying to perform the twisting as
close as possible to the one which would be performed in the Euclidean scenario.
This difference might be the source of the non-topological nature of our result but
nevertheless indicates that some care is needed when considering the twisted versions
of (2,0) theory.
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1 Introduction

The six-dimensional (2, 0) theory [1, 2] has been a subject of much interest recently,
in particular through its interpretation as the world volume theory of multiple M5-
branes and the progress towards a better understanding of various brane configura-
tions in M -theory. In [3] the connection, through dimensional reduction on a circle,
with supersymmetric Yang-Mills theory in five dimensions is discussed for the case
of a six-dimensional manifold that is a direct product of S1 and five-dimensional
Minkowski space-time. Recent work exploring this connection between (2, 0) theory
and supersymmetric Yang-Mills theory in five dimensions includes [4, 5, 6, 7, 8, 9, 10].
In the present paper we consider, along the lines of [11], the generalization of the
above geometry to a general circle fibration M6 → M5 for the free theory of the
(2, 0) tensor multiplet [12]. We also consider a non-abelian generalization of the
Maxwell theory and construct a candidate for the interacting (2, 0) theory on M5,
which cannot be directly obtained by dimensional reduction.

The self-duality of the tensor three-form field strength makes a Lagrangian de-
scription problematic, but the tensor multiplet possesses a classical description in

2



terms of equations of motion. The low energy effective theory obtained in the dimen-
sional reduction on the S1 fibre is a Maxwell theory on M5 describing an abelian
gauge field, five scalars and four spinors satisfying appropriate reality conditions.
The coupling strength of the gauge theory, given by the square root of the radius of
the S1, is a function on the base manifold of the fibration. Furthermore, the U(1)
subgroup of diffeomorphisms of M6, corresponding to reparametrizations along the
circle, gives rise to an additional non-dynamical abelian gauge field (the connection
on the U(1) bundle M6 over M5) coupled to the gauge theory. In five dimensions it
is possible to integrate the equations of motion to obtain an action describing the
complete gauge theory, which we derive for a generic metric on M6. In particular,
the action contains terms including the U(1) field strength and the gradient of the
radius in addition to the topological term for the gauge fields discussed in [11].

The theory of the (2, 0) tensor multiplet depends only on the conformal structure
of M6, i.e. the equations of motion are covariant under a Weyl rescaling of the metric
and simultaneous rescalings of the fields according to their conformal weight. A
consequence of this conformal symmetry in six dimensions is that the gauge theory
on M5 obtained by the reduction is invariant under the corresponding simultaneous
conformal rescalings of the five-dimensional metric, the dynamical fields and the
(varying) coupling strength parameter.

When the manifold M6 admits conformal Killing spinors the theory in six di-
mensions is also supersymmetric at the level of the equations of motion. (That
is, the set of solutions to the equations of motion is closed under supersymmetry
transformations.) In this case the same is true also for the five-dimensional theory.
Furthermore, the action on M5 is invariant under the same supersymmetry trans-
formations as the equations of motion. In principle (if not in practice) this is a
non-trivial feature since it extends the supersymmetry from its stationary points to
the full action functional. Of course, the conformal symmetry of the tensor multiplet
theory persists regardless of the existence of non-trivial conformal Killing spinors
on M6. We will, as previously mentioned, consider the reduction on arbitrary cir-
cle fibration, which implies that generically the six-dimensional theory will not be
supersymmetric.

It is possible to generalize the abelian theory on M5 to a non-abelian gauge
theory by covariantizing the action and adding interaction terms. Including the
ordinary Yukawa coupling and quartic scalar self-interaction of ordinary supersym-
metric Yang-Mills theory produces a theory on M5 that is invariant under the same
generalized conformal symmetry as in the abelian case. Furthermore, when the or-
dinary non-linear term in the fermionic supersymmetry variation is included, the
non-abelian gauge theory is supersymmetric whenever M5 admits non-trivial solu-
tions to the dimensionally reduced conformal Killing spinor equation, providing a
non-trivial check of the construction.

The paper is organized as follows: In section 2 we consider the properties, in
particular the superconformal symmetry, of the (2, 0) tensor multiplet theory in
six dimensions. As is well known, the self-dual three form field does not admit a
Lagrangian description (without the introduction of auxiliary fields [13, 14]) and
we will thus only consider H at the level of equations of motion. The scalar and
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spinor of the tensor multiplet, however, can be described using action functionals.
In section 3 we discuss the details of the spatial circle fibration and give explicit
expressions for various geometrical quantities. We also describe how the Clifford
algebra and spinors in six dimensions are decomposed with respect to the fibration.
Subsequently, in section 4 we perform the dimensional reduction and obtain Maxwell
theory as the low energy effective theory in five dimensions. We also construct an
action corresponding to the equations of motion of this theory and consider its
properties under conformal rescalings and supersymmetry transformations in five
dimensions. Finally, in section 5, we consider extending the supersymmetric Maxwell
theory to a non-abelian supersymmetric Yang-Mills theory by adding interaction
terms.

2 Abelian (2, 0) theory in six dimensions

In this section we review some aspects of the starting point for our consideration:
The free tensor multiplet of (2, 0) theory on a six-dimensional manifold M6 with
local coordinates yM , where M = 0, 1 . . . , 5. The abelian (2, 0) theory depends only
on the conformal structure on M6, i.e. on the conformal class of the metric GMN

defined by the equivalence relation

GMN(y) ∼ e−2σ(y)GMN(y) (2.1)

for some arbitrary function σ(y), the coordinate dependence of which will be left
implicit below. The invariance of the theory under GMN → e−2σGMN require suit-
able rescalings of the fields of the abelian multiplet which are discussed below. In
addition to the conformal rescaling symmetry, there is a global R-symmetry group1

R ∼= USp(4) ∼= Spin(5) . (2.2)

Associated to the fundamental representation 4 of this group there is a symplectic
metric Mαβ, where α and β are spinor indices in the 4 representation. Details on
this symplectic structure are provided in the appendix.

The manifold M6 will generically have non-vanishing curvature and in order to
describe spinor fields we will therefore need to introduce the vielbein EA

M , defining
locally an orthonormal frame. Here, A = 0, 1, . . . , 5 are flat indices, raised and
lowered using the Minkowski metric ηAB, on which local Lorentz transformations
act. The vielbein and its inverse EM

A satisfy the relations

EA
MENA = GMN , EM

A EMB = ηAB , (2.3)

which imply that under conformal transformations of the metric, the vielbein trans-
forms as EA

M → e−σEA
M .

1Here, USp(4) is the compact real form of the Symplectic group Sp(4,C) with Lie algebra C2.
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2.1 The tensor multiplet

The field content of the abelian theory is a real three-form tensor field H, a scalar
Φαβ and a positive chirality space-time spinor field Ψα. The spinor and scalar fields
transform respectively in the fundamental 4 representation and the 5 vector repre-
sentation of the USp(4) R-symmetry. We will use the description of the fundamental
representation as a spinor of Spin(5) and the vector representation as an antisym-
metric bispinor which is traceless with respect to Mαβ. Further details regarding
the symplectic transformation and reality properties of the fields are given in the
appendix, where we also describe our conventions for Lorentz spinors in both 4 + 1
and 5 + 1 dimensions.

The tensor field transforms trivially under R-symmetry and is closed and self-
dual, i.e. it satisfies the equations of motion

dH = 0 , H = ∗GH , (2.4)

where the subscript G on the Hodge dual indicates the six-dimensional metric. Both
equations are conformally invariant by virtue of the metric independence of dH = 0
and the determinant factor

√
−G in the definition of the Hodge dual. The condition

that H be closed can be viewed as a consequence of it being the field strength of a
two-form abelian gauge field B. However, for the purpose of the considerations of
the present paper it is sufficient to consider only the three-form H, in which case
dH = 0 is considered as an equation of motion2. As mentioned in the introduction
there is no Lagrangian description of the self-dual tensor field in six dimensions.

The scalar Φαβ satisfies the symplectic reality condition (Φαβ)∗ = Φαβ and the
equation of motion

GMN∇̂M∇̂NΦαβ + cR̂Φαβ = 0 , (2.5)

where R̂ is the curvature scalar of the metric GMN and ∇̂M is the covariant derivative
on M6. In d dimensions, this equation transforms covariantly under a conformal
rescaling of the metric and a simultaneous transformation Φαβ → e2σΦαβ of the
scalar field, provided that

c = −1

4

(d− 2)

(d− 1)
= −1

5
, (2.6)

where in the last step we have inserted d = 6. In contrast to the three-form, there
is a Lagrangian description for the scalar; the equations of motion follow from the
action

SΦ =

∫
d6y
√
−G

(
−∇̂MΦαβ∇̂MΦαβ + cR̂ΦαβΦαβ

)
, (2.7)

which is real and invariant under Lorentz transformations, symplectic transforma-
tions and conformal rescalings.

Finally, as mentioned above, the fermionic degrees of freedom of the tensor mul-
tiplet are contained in a positive chirality spinor Ψα of the local Lorentz group. The
spinor also satisfies a symplectic Majorana condition

(Ψα)∗ = MαβB(6)Ψ
β , (2.8)

2Of course, dH = 0 implies that H = dB at least locally.
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where B(6) is related to the charge conjugation matrix in six dimensions. The equa-
tion of motion for the spinor is the ordinary Dirac equation

ΓM∇̂MΨα = 0 , (2.9)

where the curved space-time index Γ-matrices ΓM = ΓAEM
A are obtained using the

vielbein as usual and the covariant derivative acting on the spinor Ψα is given by

∇̂MΨα = ∂MΨα +
1

4
ΩAB
M ΓABΨα . (2.10)

Here, ΩAB
M is the spin connection, i.e. the gauge field of local Lorentz transfor-

mations, of the six-dimensional manifold M6. The Dirac equation is conformally
covariant requiring that the spinor is rescaled as Ψα → e

5
2
σΨα, and may be obtained

as the stationary point of the action

SΨ =

∫
d6y
√
−G iΨαΓM∇̂MΨα . (2.11)

Using the reality properties of symplectic Majorana bilinears given in the appendix
one verifies the hermiticity of this conformally invariant action functional, which is
also a Lorentz and USp(4) scalar. Finally, we note that Ψα describes eight fermionic
on-shell degrees of freedom, matching the number of bosonic ones (five for the scalar
Φαβ and three for the tensor field H) as required for supersymmetry.

It should be emphasized that the absence of a Lagrangian formulation implies
that our treatment of the tensor multiplet through its equations of motion is strictly
classical. (It is possible to construct a Lagrangian for the self-dual tensor field
through the introduction of an auxiliary scalar field [13, 14]. However, a path
integral quantization using such a Lagrangian appears to be problematic and we
will refrain from considering the quantum theory in this paper.)

2.2 Supersymmetry of the tensor multiplet

We now turn our attention to the supersymmetry variations of the (2, 0) tensor
multiplet fields, given by

δHMNP = 3∇̂[M

(
ΨαΓNP ]Eα

)
, (2.12)

δΦαβ = 2Ψ[αEβ] − 1

2
TαβΨγEγ (2.13)

and

δΨα =
i

12
HMNPΓMNPEα + 2iMβγ∇̂MΦαβΓMEγ +

4i

3
MβγΦ

αβΓM∇̂MEγ , (2.14)

where the parameter Eα is a symplectic Majorana spinor of negative chirality in the
4 of USp(4). The variations δHMNP , δΦαβ and δΨα satisfy the same equations of
motion as the original fields if (2.4), (2.5) and (2.9) are imposed and the parameter
Eα satisfies the conformal Killing spinor equation

PMEα = ∇̂MEα −
1

d
ΓMΓN∇̂NEα = 0 , (2.15)
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which is conformally covariant in any dimension d provided a rescaling of the param-
eter according to E → e−

1
2
σE . The existence of non-vanishing E satisfying the (2.15)

imposes a non-trivial condition on the geometry of the manifold M6. In order to
have (2, 0) supersymmetry we must consequently restrict our attention to manifolds
for which the kernel of the operator PM is non-trivial.

3 Spatial circle fibrations

We now proceed to consider the case where M6 is a fibration of S1 over some five-
dimensional base manifold M5 of Lorentzian signature. Thus the curved vector index
in six dimensions is split according to M = (µ, ϕ), where µ = 0, . . . , 4. We will allow
ourselves to abuse the notation slightly by introducing xµ = yµ and ϕ = yϕ. Here,
ϕ is the local coordinate along the S1 fibre, while xµ parametrize the base manifold
M5. We will adopt the convention that the range of the periodic S1 coordinate is
0 ≤ ϕ < 2π. In the following section we will consider the dimensional reduction of
the theory of the (2, 0) tensor multiplet on the S1 to a (supersymmetric) Maxwell
theory on M5. The present section sets the stage for this reduction by investigating
the various consequences of the specialization to a geometry in six dimensions that
is a circle fibration.

3.1 Geometry of the fibration

The most general form of the metric on M6 with the above decomposition is

ds2 = gµνdx
µdxν + r2 (dϕ+ θµdx

µ)2 . (3.1)

The fact that M6 can be described as a U(1)-bundle over M5 implies the existence
of an isometry along the S1 and consequently the coefficient functions of (3.1) are
all independent of the coordinate ϕ. Thus, gµν(x) can be interpreted as the metric
on M5, r(x) as the radius of the S1 fibre and the vector θµ(x) as an angular pa-
rameter. The special case when ∂µr = 0 and θµ = 0 is referred to as the product
metric. For generic r(x) and θµ(x) we can read of the component expressions for
the decomposition of the metric

Gµν = gµν + r2θµθν , Gµϕ = r2θµ , Gϕϕ = r2 (3.2)

and its inverse

Gµν = gµν , Gµϕ = −θµ , Gϕϕ =
1

r2
+ gµνθµθν . (3.3)

In analogy with the curved index M , the flat vector index is split according to
A = (a, 5) with a = 0, . . . , 4. By a local Lorentz transformation the components of
the vielbein EA

M and its inverse can be cast in the form

Ea
µ = eaµ , E5

µ = rθµ , Ea
ϕ = 0 , E5

ϕ = r (3.4)

and

Eµ
a = eµa , Eµ

5 = 0 , Eϕ
a = −θµeµa , Eϕ

5 =
1

r
, (3.5)
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where eaµ is the vielbein on M5, which satisfies the conditions (2.3). From their
definition in terms of the vielbein it is now straightforward to compute the expres-
sions for the non-vanishing components of the Levi-Civita connection Γ̂PMN and spin
connection ΩAB

M and obtain

Γ̂ρµν = Γρµν − r2Fρ(µθν) − r∇ρrθµθν

Γ̂ϕµν = ∇(µθν) + r2θρFρ(µθν) + rθρ∇ρrθµθν + 2
1

r
∇(µrθν)

Γ̂ρµϕ =
1

2
r2Fµρ − rθµ∇ρr

Γ̂ϕµϕ = −1

2
r2Fµρθρ + rθµθρ∇ρr +

1

r
∇µr

Γ̂ρϕϕ = −r∇ρr

Γ̂ϕϕϕ = rθρ∇ρr (3.6)

and

Ωab
µ = ωabµ −

1

2
r2θµe

a
ρe
b
σFρσ , Ωa5

µ =
1

2
reaνFµν − θµeaν∇νr

Ωab
ϕ = −1

2
r2eaρe

b
σFρσ , Ωa5

ϕ = −eaν∇νr , (3.7)

where Γρµν , ω
ab
µ and ∇µ are respectively the Levi-Civita connection, the spin connec-

tion and the covariant derivative on the five-dimensional base manifold M5. Finally,
we can also compute an expression for the curvature scalar R̂ appearing in the action
(and equation of motion) for the scalar field in six dimensions. Using the expressions
in (3.6) we obtain

R̂ = R− 1

4
r2FµνFµν − 2

1

r
∇µ∇µr , (3.8)

where R denotes the curvature scalar of the metric gµν on M5.
In the expressions above we have introduced the quantity

Fµν = ∂µθν − ∂νθµ , (3.9)

which from the point of view of the dimensionally reduced theory on M5 can be
interpreted as the field strength of the non-dynamical U(1) gauge field θµ(x) corre-
sponding to reparametrization invariance along the S1 of the six-dimensional theory.
Consequently, all physical five-dimensional quantities must be invariant under a U(1)
gauge transformation θµ → θµ + ∂µλ, corresponding to coordinate transformation
ϕ→ ϕ+λ(x) in six dimensions, which generically implies that they can only depend
on the gauge invariant field strength Fµν .

3.2 Decomposition of spinors

The dimensional reduction of the (2, 0) theory will involve the decomposition of
spinors and Γ-matrices in six dimensions in terms their five-dimensional counter-
parts. Since the dimension 2[d/2] of a Dirac spinor is different in five and six dimen-
sions this decomposition involves, in addition to the split of vector indices described
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above, a corresponding split of the Lorentz spinor index. We choose a representation
of the six-dimensional Clifford algebra in terms of the tensor products involving the
five-dimensional γ-matrices as {

Γa = γa ⊗ ρ1

Γ5 = 1l ⊗ ρ2
, (3.10)

where ρ1 and ρ2 are the first two Pauli matrices. These satisfy ρ2
i = 1l, ρ†i = ρi

and {ρi, ρj} = 2δij, for i, j = 1, 2, and consequently furnish a representation of the
two-dimensional Euclidean Clifford algebra. We define the chirality operator in two
Euclidean dimensions to be

ρ = −iρ1ρ2 , (3.11)

where the overall sign is a matter of convention and the particular choice above will
prove convenient in what follows. As a basis of two-dimensional spinors we may
take the two eigenvectors η± of ρ, satisfying ρη± = ±η±, which can be chosen to be
real and orthonormal. The action of the ρi on these basis vectors is given by

ρ1η+ = η− , ρ2η+ = iη−
ρ1η− = η+ , ρ2η− = −iη+ . (3.12)

The charge conjugation matrix C(6) and the B(6) matrix are also decomposed as

B(6) = B(5) ⊗ 1l , C(6) = C(5) ⊗ ρ1 , (3.13)

which together with the decomposition (3.10) is consistent with the conventions for
Γ-matrices in 5 + 1 and 4 + 1 dimensions.

In the dimensional reduction from six to five dimensions the spinors decompose
into tensor products in the same way as the Γ-matrices. Since the spinors Ψα and Eα
relevant for the tensor multiplet and its supersymmetry are symplectic Majorana-
Weyl, we will restrict considerations to a spinor Λα in the 4 representation of USp(4)
which satisfies the symplectic Majorana condition (2.8) and has a definite chirality
ΓΛα = ±Λα. With the conventions described in the appendix the chirality operator
in six dimensions is Γ = 1l⊗ ρ. Consequently, the decomposition of Λα is given by

Λα = λα ⊗ η± (3.14)

according to its chirality. Note that we assume the symplectic spinor index α to
be carried by the (Lorentz) spinor λα, which is consistent with the fact that the
R-symmetry is unchanged by the dimensional reduction, so that λα is also in the 4
of USp(4). Furthermore, it is consistent with the five-dimensional spinors satisfying
the symplectic Majorana condition

(λα)∗ = MαβB(5)λ
β , (3.15)

analogous to (2.8), with the above decomposition of the charge conjugation matrix.
Thus, (3.14) produces five-dimensional Lorentz spinors with the correct properties
under symplectic transformations and complex conjugation.
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4 Maxwell theory in five dimensions

We are now ready to consider the procedure at the heart of the present paper; the
dimensional reduction on the S1 fibre. In this section we consider the reduction of
the theory of the free tensor multiplet. It is well known (see e.g. [3]) that for a direct
product of S1 with five-dimensional Minkowski space, equipped with the product
metric, this produces the ordinary maximally supersymmetric N = 4 Maxwell the-
ory in five dimensions at energies that are small compared to the fibre radius. In
particular, the coupling is related to the (constant) radius of the S1 fibre as g̃ =

√
r.

The R-symmetry of the Maxwell theory is the same as for the (2, 0) theory and the
field content is a gauge field Aµ with field strength Fµν , a scalar φαβ and a symplec-
tic Majorana spinor ψα, the latter two transforming in the 5 and 4 representations
of USp(4) respectively. The generalization to an arbitrary circle fibration should
therefore in the low energy limit produce Maxwell theory with varying coupling
strength, additional couplings to the non-dynamical U(1) gauge field θµ and terms
depending on the gradient of the radius r(x). In the case when M6 allows non-trivial
solutions to PMEα = 0 there are unbroken supersymmetries of the (2, 0) theory and
the five-dimensional theory should therefore be supersymmetric as well.

Before deriving the complete action of the dimensionally reduced theory we re-
view a consequence of the fact that M6 is a fibration of S1 over M5 and the existence
of local coordinates (xµ, ϕ) where ϕ is a periodic coordinate along S1. Collectively
denoting the dynamical fields of the (2, 0) theory by Ξ, we can perform a Fourier
expansion in ϕ

Ξ(x, ϕ) =
∑
p∈Z

Ξp(x)eipϕ , (4.1)

where p is the momentum along S1. The different Fourier modes constitute the
Kaluza-Klein tower obtained in the reduction. All modes in the tower except the
zero mode Ξ0 acquire a mass, corresponding to the momentum along S1. As we
will see explicitly below, the curvature of M6 will in fact introduce mass terms3

also for the zero momentum Fourier modes. However, we will assume that the zero
mode masses are negligible compared to the ones generated by non-zero momentum.
Consequently, at sufficiently low energies in the reduced theory, the p 6= 0 modes
cannot be excited and therefore do not contribute to the low energy effective theory
on M5. The only remaining mode is thus the zero mode and the Fourier series is
truncated Ξ(x, ϕ) = Ξ0(x). In particular, the fields are therefore independent of the
fibre coordinate in the low energy limit that we are concerned with here. In what
follows the dependence on the coordinates xµ on M5 is left implicit.

The condition ∂ϕΞ = 0 is not covariant in six dimensions, which is not surprising
since the Fourier expansion assumes explicitly the specific choice of local coordinates
yM = (xµ, ϕ). In order to obtain fields on M5 that are suitably normalized it is also
possible to rescale the Fourier modes with an arbitrary function of xµ. We will use
this freedom below when we consider the reduction of the (2, 0) multiplet in the low
energy limit.

3The masses will be functions on M5 rather than constants. However, they are uniquely deter-
mined by the conformal class of the metric on M6.
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4.1 The Maxwell action on M5

We consider first the scalar field Φαβ of the tensor multiplet. In this case there is an
action in six dimensions which can be dimensionally reduced directly to produce the
action in five dimensions. Using the freedom to introduce a relative scaling between
the fields in five and six dimensions we let

Φαβ =
1

r
√

2π
φαβ , (4.2)

which implies that φαβ satisfies the same symplectic reality condition (φαβ)∗ = φαβ
as the six-dimensional scalar. Upon insertion in (2.7) and integration along the fibre
coordinate (4.2) yields

Sφ =

∫
d5x
√
−g
(
−1

r
∇µφαβ∇µφαβ − 1

5

1

r
Rφαβφ

αβ +K(g, r, θ)φαβφ
αβ

)
(4.3)

where we have introduced the quantity

K(g, r, θ) =
1

r3
∇µr∇µr − 3

5

1

r2
∇µ∇µr +

1

20
rFµνFµν , (4.4)

which contains information about the geometry, and in particular the curvature,
of the manifold M6. The equation of motion for φαβ that follow from the action
(4.3) by construction agrees with the one obtained from dimensional reduction of
the equations of motion (2.5) in six dimensions as required.

Moving on to the spinors of the (2, 0) tensor multiplet we use the decomposition
discussed in the previous section to write

Ψα =
1

r
√

2π
ψα ⊗ η+ , (4.5)

which implies that ψα satisfies the symplectic Majorana reality condition

(ψα)∗ = MαβB(5)ψ
β . (4.6)

Once again we have introduced a rescaling to get canonically normalized spinors in
five dimensions. The action (2.11) then yields

Sψ =

∫
d5x
√
−g
(

1

r
iψαγ

µ∇µψ
α − 1

8
Fµνψαγµνψα

)
(4.7)

when integration over S1 is performed, which entails the same equations of motion
as obtained by dimensional reduction of the corresponding equations (2.9) in six
dimensions.

In the case of the tensor HMNP the absence of an action implies that we must
consider the equations of motion directly. The three-form H can be decomposed as

H = E + F ∧ dϕ =
1

3!
Eµνρdx

µ ∧ dxν ∧ dxρ +
1

2!
Fµνdx

µ ∧ dxν ∧ dϕ . (4.8)
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In the low energy limit we have ∂ϕHMNP = 0 which in particular implies that the
coefficients of Eµνρ and Fµν are independent of ϕ, so that E ∈ Ω3(M5) and F ∈
Ω2(M5). Dimensional reduction of the equations of motion dH = 0 and H = ∗GH
in six dimensions then yields

dE = 0 , dF = 0 (4.9)

and

E = −1

r
∗g F + θ ∧ F , (4.10)

where ∗g denotes the Hodge dual in five dimensions with respect to the metric g
and we have taken the liberty to denote the exterior derivative on Ω∗(M5) by the
same symbol as its six-dimensional counterpart. Using (4.10) we can eliminate4 E
from the theory on M5, in which case dE = 0 gives an equation of motion for F .
The dimensional reduction of H thus amounts to a two-form field strength F on M5

satisfying dF = 0 and the equation of motion

d

(
1

r
∗g F

)
−F ∧ F = 0 . (4.11)

This equation of motion can, in contrast to that of H, be integrated to an action
functional for the vector potential A of which F = dA is the field strength:

SF =

∫ (
−1

r
F ∧ ∗gF + θ ∧ F ∧ F

)
. (4.12)

The complete Maxwell theory on M5 obtained by dimensional reduction is thus
described by the action

S = SF + Sψ + Sφ . (4.13)

Introducing g̃ =
√
r(x), in analogy with the case of a direct product manifold

M6, we see that (4.13) describes a Maxwell theory with a coupling strength that is
a function on M5 as expected. The second part of the SF action is equivalent to the
topological term given in equation (5.2) of [11] in the sense that their variations are
identical up to boundary terms. Furthermore, the complete action in five dimensions
contains mass terms of geometrical origin, as mentioned in the beginning of this
section. We see that requiring R, ∂µr and Fµν to be sufficiently small ensures the
consistency of the truncation of the Kaluza-Klein modes. Although the generic
features of S were previously known, the precise form of the action has to the best
of our knowledge not been computed before.

4.2 Conformal invariance

In conventional Maxwell theory with a constant coupling in five dimensions, the fact
that g̃ is dimensionful implies that the theory is not conformally invariant. From the

4This elimination is possible since the number of independent components are equal for a
two-form F and a three-form E in five dimensions, and the same as the number of independent
components of the self-dual three-form H = ∗GH in six dimensions.
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point of view of the reduction on S1 the constant radius of the circle introduces a
length scale that explicitly breaks the scale invariance of the six-dimensional theory.
However, in the case of a general circle fibration we are currently considering, the
coupling parameter is not restricted to be constant and consequently the conformal
symmetry of the (2, 0) theory survives the reduction. From the decomposition (3.1)
of the metric we find that the geometric quantities scale according to

gµν → e−2σgµν , r → e−σr , θµ → θµ (4.14)

under a conformal transformation in six dimensions. Here, we restrict considerations
to a parameter σ that depends only on the coordinates on M5 in order to obtain
a conformal rescaling of the five-dimensional metric. This rescaling constitutes a
generalized conformal symmetry of the Maxwell theory provided that the scalar and
spinor fields are correspondingly rescaled according to (4.2) and (4.5) as

φαβ → eσφαβ , ψα → e
3
2
σψα . (4.15)

From the point of view of the gauge theory on M5 we must thus treat r and gµν on
equal footing, and consequently rescale not only the dynamical fields of the theory
but also the coupling strength parameter g̃.

The Maxwell theory obtained in the reduction of the tensor multiplet is of course
uniquely determined by the theory in six dimensions, but for the purpose of the con-
siderations in the final section of this paper it is nevertheless interesting to consider
the restrictions on an arbitrary gauge theory imposed by requiring the existence of
generalized conformal invariance on M5. In particular, given the canonically nor-
malized kinetic term for the scalar φαβ it restricts the terms involving the gradient of
the fibre radius and the five-dimensional curvature scalar, since these transform in-
homogeneously under rescalings. (The inhomogeneous term produced by the kinetic
term for the spinors ψα is proportional to ψαγ

µψα which vanishes by symmetry.)
However, terms involving Fµν or Fµν are invariant under conformal rescalings and
therefore not restricted by this symmetry.

4.3 Supersymmetry of the action

We can now restrict our attention to the case when the theory of the (2, 0) tensor
multiplet in six dimensions is supersymmetric. As we saw above this amounts to
requiring that the manifold M6 admits non-trivial conformal Killing spinors Eα sat-
isfying (2.15). Just as the dynamical fields of the Maxwell theory can be expanded
in the periodic ϕ coordinate we can expand Eα in a Fourier series as

Eα(xµ, ϕ) =
∑
p∈Z

Eαp (x)eipϕ . (4.16)

There is however a significant difference: Being the parameter of supersymmetry
transformations Eα is not a dynamical field and we can not simply integrate out the
modes with non-zero momentum along S1. However, acting on a dynamical field
with a supersymmetry transformation involving any mode other than the zero mode
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Eα0 changes its mode number. In order to restrict considerations to supersymmetry
transformations of the low energy effective theory we must therefore truncate the
Fourier series of Eα and consider only the zero-mode Eα0 . In this way we obtain
the spinor parameter of supersymmetry of the low energy effective theory, which
satisfies ∂ϕEα = 0. Using the decomposition of spinors described in the previous
section we then have

Eα = εα ⊗ η− , (4.17)

where ∂ϕε
α = 0 and according to (3.15)

(εα)∗ = MαβB(5)ε
β . (4.18)

Dimensional reduction of the conformal Killing spinor equation (2.15) in addition
yields the condition

∇µε
α =

1

2

1

r
∇νrγµγνε

α +
i

8
rFρσγµγρσεα +

i

4
rFµνγνεα (4.19)

on the five-dimensional spinor parameter εα.
The supersymmetry transformation of the dynamical fields of the Maxwell theory

on M5 are obtained by dimensional reduction of the transformations (2.12), (2.13)
and (2.14) in six dimensions, yielding

δφαβ = 2ψ[αεβ] − 1

2
Tαβψ̄γε

γ , (4.20)

δFµν = −2i∇[µψαγν]ε
α + i

1

r
∇ρrψαγµνρε

α − 2i
1

r
∇[µrψαγν]ε

α

+rFµνψαεα +
3

2
rF[µ

ρψαγν]ρε
α − 1

4
rFρσψαγµνρσεα (4.21)

and

δψα =
1

2
Fµνγ

µνεα + 2iMβγ∇µφ
αβγµεγ

+ 2i
1

r
Mβγφ

αβ∇µrγ
µεγ − rMβγφ

αβFµνγµνεγ . (4.22)

We note that F and ∇µr enter in the supersymmetry variation of Fµν and ψα

through the covariant derivative of εα and the relation (4.19). It is a straightforward
but somewhat laborious task to verify that the complete action (4.13) is invariant
under the transformations (4.20), (4.21) and (4.22) provided that the supersymmetry
parameter εα satisfies (4.19). (Supersymmetry at the level of the equations of motion
in five dimensions is an immediate consequence of supersymmetry in six dimensions.)
In analogy to the case for the (2, 0) tensor multiplet, supersymmetry of the action
thus imposes a non-trivial geometrical condition on the manifold M5, namely the
existence of non-trivial solutions to (4.19).
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4.4 The product metric

In order to verify that the results derived in the present section reproduces the
known result for M6 = M5 × S1 with the product metric, we will now consider the
case θµ(x) = 0 and ∂µr(x) = 0. In this case we expect to recover ordinary Maxwell
theory on M5, which we still allow to be arbitrary. From (4.3), (4.7) and (4.12) we
find that the action for the case of the product metric reduces to

S =
1

g̃2

∫
d5x
√
−g
(
−1

2
FµνF

µν + iψαγ
µ∇µψ

α −∇µφαβ∇µφαβ + cRφαβφ
αβ

)
(4.23)

where we have identified the Maxwell coupling constant as g̃ =
√
r, which has the

appropriate dimension in five dimensions (and in this case is a proper constant).
The equations of motion obtained from this action are

∇µF
µν = 0 , γµ∇µψ

α = 0 , ∇µ∇µφαβ + cRφαβ = 0 . (4.24)

The appearance of terms proportional to R is a consequence of the conformal sym-
metry in six dimensions. Note, however, that as discussed above, the radius r
explicitly breaks the scale invariance of the theory on M5 as long as we consider it
to be constant, since this condition eliminates the possibility of rescaling the cou-
pling to compensate for the inhomogeneous transformation of S under simultaneous
rescalings (4.14) and (4.15).

As a next step we consider requiring the existence of supersymmetry in the (2, 0)
theory with product metric on M6 →M5. The expressions (4.20), (4.21) and (4.22)
reduce to the familiar variations of supersymmetric Maxwell theory. Furthermore,
the supersymmetry parameter must satisfy (4.19), which for the product metric
reduces to

∇µε
α = 0 . (4.25)

Taking another covariant derivative and antisymmetrizing one obtains ∇[µ∇ν]ε
α = 0

which implies R = 0, so that the action (and the corresponding equations of motion)
reduces to that of ordinary supersymmetric Maxwell theory on M5.

5 The non-abelian generalization

In the previous sections of this paper we have considered exclusively the free tensor
multiplet of (2, 0) theory and the low energy Maxwell theory obtained by its reduc-
tion on the S1 fibre of M6. We would now like to extend our scope to consider also
the Ar,Dr and Er series of (2, 0) [1] in the circle fibration geometry. However, a
direct derivation of the low energy theory on M5 by dimensional reduction is not
possible in this case because, unlike the free tensor multiplet, the ADE type (2, 0)
theories have no classical field theory description in terms of equations of motion5.

However, we have some information regarding the low energy theory on M5

obtained by reduction of the (2, 0) theory associated to a simply laced group G.

5In [11] this is explained in terms of the absence of a classical notion of a gerbe with non-abelian
structure group of which H is the curvature.
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Conformal invariance in six dimensions entails generalized conformal invariance,
discussed above for the free tensor multiplet, and if M6 admits non-trivial conformal
Killing spinors parametrizing supersymmetry transformations the theory on M5 will
also be supersymmetric. Furthermore, the theory on M5 should be a theory of gauge
fields with gauge group G. In particular, for the case M6 = M5×S1 with a product
metric (i.e. θµ = 0 and ∂µr = 0) the theory on M5 is supersymmetric Yang-Mills
theory with gauge group G6. For a generic metric on M6 it should be coupled to the
background U(1) gauge field on M5, corresponding to reparametrization invariance
of the fibre.

The generalization of the theory described by the action (4.13) thus involves
promoting A to the connection of a principal G-bundle over M5 and φαβ and ψα to
sections of associated adjoint bundles. The dynamical fields of the theory are conse-
quently Aaµ, φαβa and ψαa where we denote by a the index in the adjoint representation
of the Lie algebra g of G. (Since we will not use local Lorentz vector indices on M5

explicitly in this section this notational overlap will hopefully not cause any confu-
sion.) With anti-hermitian Lie algebra generators we have the standard expressions
for the gauge field strength and the covariant derivative of a field χa in the adjoint
representation, given by

F a
µν = ∇µA

a
ν −∇νA

a
µ + fabcA

b
µA

c
ν (5.1)

and
Dµχ

a = ∇µχ
a + fabcA

b
µχ

c , (5.2)

where fabc are the structure constants of g. As in the previous sections, the deriva-
tive ∇µ is covariant w.r.t. both general coordinate transformations and local Lorentz
transformations. We can then make the action (4.13) gauge invariant by letting all
fields transform in the adjoint representation of g, replacing the field strength and
derivatives with gauge covariant ones and taking the trace in the adjoint represen-
tation, giving

Sφ =

∫
d5x
√
−g
(
−1

r
Dµφ

a
αβD

µφαβa −
1

5

1

r
Rφaαβφ

αβ
a +K(g, r, θ)φaαβφ

αβ
a

)
, (5.3)

Sψ =

∫
d5x
√
−g
(

1

r
iψaαγ

µDµψ
α
a −

1

8
Fµνψaαγµνψαa

)
(5.4)

and

SF =

∫
tr

(
−1

r
F ∧ ∗gF + θ ∧ F ∧ F

)
. (5.5)

In the same way we also obtain gauge covariant supersymmetry variations

δφαβa = 2ψ[α
a ε

β] − 1

2
Tαβψ̄γaε

γ , (5.6)

δF a
µν = −2iD[µψ

a
αγν]ε

α + i
1

r
Dρrψaαγµνρε

α − 2i
1

r
D[µrψ

a
αγν]ε

α

6In the special case where M5 is Minkowski the Yang-Mills theory is maximally supersymmetric.
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+rFµνψaαεα +
3

2
rF[µ

ρψaαγν]ρε
α − 1

4
rFρσψaαγµνρσεα (5.7)

and

δψαa =
1

2
Faµνγ

µνεα + 2iMβγDµφ
αβ
a γµεγ

+ 2i
1

r
Mβγφ

αβ
a Dµrγ

µεγ − rMβγφ
αβ
a Fµνγµνεγ . (5.8)

The condition (4.19) receives no modification since the conformal Killing spinor
equation on M6 is satisfied by the supersymmetry parameter also for non-abelian
(2, 0) theory. This is consistent, since εα and the parameters r and θµ are all invariant
under G gauge transformations.

In order to recover ordinary supersymmetric Yang-Mills theory in the case where
M6 = M5 × S1 with product metric we must add a Yukawa term and a φ4 term to
the action to obtain

SYM = . . .+

∫
d5x
√
−g
(

2
1

r
fabcMαγMβδφ

αβ
a ψγbψ

δ
c

+
1

r
fabef

cdeMσαMβγMδλMτρφ
αβ
a φγδb φ

λτ
c φ

ρσ
d

)
, (5.9)

and modify the supersymmetry variation of the fermionic field with a non-linear
term according to

(δψαa )YM = . . .+ 2fa
bcMβγMδλφ

αβ
b φγδc ε

λ . (5.10)

The above action and supersymmetry variations transform correctly under gener-
alized conformal rescalings and satisfy the appropriate reality conditions. By a
straightforward computation (involving some rather lengthy R-symmetry manipu-
lations) one verifies that when M5 admits non-trivial solutions to (4.19) the action
(5.9) is invariant under the modified supersymmetry transformations. Thus, the
model described by (5.9) and (5.10) constitutes a generalization of the Maxwell the-
ory, obtained for the free tensor multiplet in the case of a general fibration of S1 over
M5, to a non-abelian Yang-Mills theory with varying coupling strength, coupled to
a background U(1) gauge field.

Just as in the case of the Maxwell theory, the non-vanishing right hand side
of (4.19), which from a five-dimensional point of view depends on the gradient
of the coupling strength and the non-dynamical background gauge field, implies
that the presence of the terms in (5.10) that depend on θµ and ∂µr is required for
supersymmetry of the Yang-Mills theory. For φαβ and ψα, the terms in the action
depending on ∂µr and Fµν , required for invariance under generalized conformal
rescalings, are quadratic and consequently introduce no novel interactions. (The
topological θ-term, however, is quadratic in the non-linear field strength (5.1) and
does represent an interaction related to the fibration geometry.) In this sense, the
model constitutes the minimal non-abelian extension of the Maxwell theory obtained
for the tensor multiplet.
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Since we have no field theory description of (2, 0) theory of type ADE it is not
possible to verify that (5.9) and (5.10) gives the correct theory on M5 by explicit
computation of the reduction. However, it appears to be difficult to construct other
non-abelian gauge theories with all the required properties due to the strong restric-
tions imposed by generalized conformal symmetry and supersymmetry on M5.

6 Summary and conclusion

In this paper we first considered the dimensional reduction of the theory of a free
(2, 0) tensor multiplet on a circle fibration M6 → M5 in detail. The low energy
effective theory obtained on M5 is a Maxwell theory describing an abelian gauge
field Aµ with field strength Fµν , a scalar φαβ and a spinor ψα, where the latter fields
transform respectively in the 5 and 4 of the USp(4) R-symmetry. For a generic
metric on M6 the coupling strength of the Maxwell theory is a function on M5 given
by the square root of the fibre radius r(x). Furthermore, the Lagrangian contains
quadratic terms for the scalar and spinor fields and a topological θ-term for the
gauge field, related to the local geometry of the fibration M6. (In a path integral
quantization of the gauge theory on M5, the overall normalization of the action
is determined by the requirement that the factor in the integrand containing the
exponentiation of the topological θ-term be well defined.) The terms are explicitly
derived and the result given in (4.3), (4.7) and (4.12).

The equations of motion of the full theory on M5 can (in contrast to those of
the (2, 0) theory on M6) be integrated to an action functional. The action is in-
variant under generalized conformal rescalings of the metric, dynamical fields and
the coupling strength. Furthermore, it is invariant under the supersymmetry trans-
formations (4.20), (4.21) and (4.22), obtained by reduction of the corresponding
variations in six dimensions, when M5 admits non-trivial solutions to (4.19).

We also considered a non-abelian generalization of the Maxwell gauge theory in
order to find the description of the dimensional reduction of ADE type (2, 0) the-
ory on the S1 fibre of M6. We find that gauge covariantizing the abelian theory
and including Yukawa and φ4 interaction terms produces a theory with the required
invariance under generalized conformal rescalings on M5. As a further consistency
check we find that with a quadratic modification of the fermionic supersymmetry
transformations the theory is supersymmetric if M5 admits solutions to (4.19). Fi-
nally, in the case of a product metric on M6, corresponding to θµ = 0 and ∂µr = 0
for the coupling strength and background gauge field in the five dimensional per-
spective, the generalization reduces to ordinary supersymmetric Yang-Mills theory.
We emphasize that the gauge theory on M5 is not directly derived from (2, 0) theory
on M6 but constitutes the minimal (in the sense described above) candidate for its
reduction on S1.

As discussed above, supersymmetry of the (2, 0) theory requires the existence of
conformal Killing spinors, i.e. non-trivial solutions to (2.15) which in the special case
of a circle fibration reduces to (4.19) on the base M5. The classification of manifolds
of Lorentzian signature admitting conformal Killing spinors has been extensively
studied (see e.g. [15] and references therein). It would be interesting to investigate
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which of these classes contain circle fibrations.
An interesting example of a manifold that does admit conformal Killing spinors

(in particular covariantly constant spinors) is discussed in [11]: Let M6 = R1,1×TN ,
where TN is the Taub-NUT hyper-Kähler space which admits a U(1) action that
preserves its hyper-Kähler structure. However, the U(1) action has a fix-point at the
origin of the R3 underlying the TN and consequently the description of M6 as a U(1)-
fibration becomes singular onW = R1,1×{0}. OverM5\W the description ofM6 as a
U(1) bundle is valid and the results of the present paper are applicable, but on W the
curvature F has a singularity. In particular, this implies that the topological term,
which can equivalently be expressed in terms of the Chern-Simons form, transforms
anomalously under gauge transformations requiring the introduction of a WZW
model localized on W to cancel the anomaly. A natural extension of the present
work would be to consider manifolds M6 with codimension 4 singularities as in the
example above and investigate the coupling of the WZW model to the gauge theory
on M5. We intend to pursue this direction in future work.

During the final preparation of this manuscript [16] appeared, which treats in
detail the case of a single M5 brane on M6 = R1,2 × S3 and the reduction on the
Hopf fibration. Related results concerning instantons in the five-dimensional gauge
theory are presented in [17].

The authors gratefully acknowledge Måns Henningson for suggesting the problem
and for many illuminating discussions and valuable advice. We have also benefitted
from discussions with Bengt E.W. Nilsson, Ulf Gran and Martin Cederwall. This
research was supported by grants from the Swedish Research Council and the Göran
Gustafsson Foundation.

19



A Conventions

A.1 Symplectic transformation properties

We first consider the symplectic transformation properties of the scalar and spinor
fields, which fall in non-trivial representations of theR-symmetry group USp(4). We
let α = 1, 2, 3, 4 be the spinor index of the fundamental 4 representation of USp(4)
and denote the symplectic structure by Mαβ (we refrain from using the conventional
notation Ω for the symplectic structure to avoid confusion with the spin connection).

We further denote by V4 and V4̄ the dual modules of the 4 representation and
its conjugate representation 4̄, and let the vertical position of the index indicate the
representation according to vα ∈ V4 and wα ∈ V4̄. The fundamental representation
and its conjugate are related under complex conjugation so we can infer that

(va)∗ ∈ V4̄ , (wa)
∗ ∈ V4 . (A.1)

While the two representations 4 and 4̄ are unitarily equivalent, it is convenient to
distinguish between them when considering reality conditions for the various fields
of the (2, 0) theory. We will therefore distinguish upper and lower indices and utilize
the fact that complex conjugation interchanges these two types of indices according
to the relation above.

The symplectic form is non-degenerate and antisymmetric, Mαβ = −Mβα, and
thus constitutes a metric on V4 providing an isomorphism M : V4 → V4̄ between
the vector space V4 and its dual. Similarly, its inverse Tαβ defines an isomorphism
T : V4̄ → V4. The isomorphisms are given by

vα = Mαβv
β , wα = Tαβwβ , (A.2)

and because T = M−1 they satisfy the relations

TαβMβγ = δαγ , MαβT
βγ = δ̄ γ

α , (A.3)

where δαβ and δ̄ β
α are the identity operators on V4 and V4̄ respectively. Using the

metric and its inverse we can thus raise and lower USp(4) spinor indices. Finally,
the complex conjugate of the symplectic metric is given by (Mαβ)∗ = Mαβ = −Tαβ
and similarly for Tαβ.

The spinor field of the tensor multiplet transforms in the fundamental represen-
tation of USp(4) and consequently has a single USp(4) spinor index Ψα. The scalar
field of the multiplet, on the other hand, transforms in the vector representation 5,
which is obtained from the antisymmetric part of the tensor product

4⊗ 4 = 1⊕ 5⊕ 10 (A.4)

by imposing the vanishing of the antisymmetric trace constituting the singlet. The
scalar thus is an antisymmetric bispinor Φαβ = −Φβα satisfying the tracelessness
condition MαβΦαβ = 0. Furthermore, the properties of Mαβ allows us to impose a
consistent symplectic reality condition on Φαβ, given by

(Φαβ)∗ = Φαβ = MαγMβδΦ
γδ . (A.5)
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We also note that this condition is consistent with complex conjugation relating the
4 and 4̄ representations. In the next subsection we will consider a symplectic reality
condition for the spinor field Ψα as well.

A.2 Spinors in 4 + 1 and 5 + 1 dimensions

Next, we consider the spinor representations of the Lorentz group in the dimensions
relevant for the considerations of the present paper. We work in Lorentzian signature
and use conventions where the flat Minkowski metric is η = diag(−1, 1, . . . , 1). The
Clifford algebra in 5+1 and 4+1 dimensions is {γa, γb} = 2ηab and {ΓA,ΓB} = 2ηAB

respectively7. The hermiticity properties of the Γ-matrices are given by

(γa)† = γ0γaγ0

(ΓA)† = Γ0ΓAΓ0 . (A.6)

The charge conjugation matrix in the respective dimensions is uniquely determined
(up to a complex phase) by the relations

CT
(5) = −C(5) , (γa)T = C(5)γ

aC−1
(5)

CT
(6) = −C(6) , (ΓA)T = C(6)Γ

AC−1
(6) , (A.7)

giving the symmetry properties of the Γ-matrices. Similarly, complex conjugation
of the Γ-matrices is given by

(γa)∗ = −B(5)γ
aB−1

(5)

(ΓA)∗ = −B(6)Γ
AB−1

(6) , (A.8)

where we define the matrices B(5) = C(5)γ
0 and B(6) = C(6)Γ

0, satisfying BB∗ = −1l.
We will next consider spinors Λα, in either five or six dimensions, that carry an

additional USp(4) spinor index in agreement with the application to (2, 0) theory.
The conjugate spinor is defined as

Λα = (Λα)TC (A.9)

and the charge conjugate spinor as

(Λα)C = B−1(Λα)∗ . (A.10)

(With our conventions the Dirac conjugate is given by (Λα)C .) It is not possible in
neither 4+1 nor 5+1 dimensions to define ordinary Majorana spinors due to the fact
that BB∗ = −1l. It is, however, possible to make use of the symplectic structure Mαβ

(described in detail in the previous subsection) to impose a consistent symplectic
Majorana reality condition according to

(Λα)∗ = MαβBΛβ . (A.11)

7Here, as before, a and A are flat vector indices in five and six dimensions respectively.
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All the spinors we consider will satisfy this condition which implies that we have

(Λα)C = MαβΛβ = Λα , (Λα)C = MαβΛβ = Λα (A.12)

for the charge conjugate spinors.
In the action functionals the spinors appear exclusively as USp(4) invariant bi-

linears. The symmetry and reality properties of such bilinears can be derived from
the defining relations for the charge conjugation matrix and the properties of the
symplectic metric Mαβ. For our purposes the relevant relations are

ψαλ
α = −λαψα , ψαγ

aλα = −λαγaψα , ψαγ
abλα = λαγ

abψα (A.13)

(ψαλ
α)∗ = ψαλ

α , (ψαγ
aλα)∗ = −ψαγaλα , (ψαγ

abλα)∗ = ψαγ
abλα (A.14)

for spinors λα and ψα in 4 + 1 dimensions and similarly

ΨαΛα = −ΛαΨα , ΨαΓAΛα = −ΛαΓAΨα , ΨαΓABΛα = ΛαΓABΨα (A.15)

(ΨαΛα)∗ = ΨαΛα , (ΨαΓAΛα)∗ = −ΨαΓAΛα , (ΨαΓABΛα)∗ = ΨαΓABΛα (A.16)

for spinors Λα and Ψα in 5 + 1 dimensions.
In six dimensions the Dirac spinor representation is decomposed according to

the eigenvalue of the chirality operator Γ, which we define to be

Γ = Γ0Γ1 . . .Γ5 . (A.17)

so that we can consider Weyl spinors of definite chirality

ΓΛα = ±Λα . (A.18)

The chirality condition is compatible with (A.11) in six dimensions, admitting sym-
plectic Majorana-Weyl spinors. Finally, we consider the matrices γ0, . . . , γ3 which
generate the Clifford algebra in 3 + 1 dimensions. Here we can define a chirality
operator similar to the one in six dimensions, which provides the final generator

γ4 = γ = iγ0γ1 . . . γ3 (A.19)

of the Clifford algebra in 4 + 1 dimensions.

22



References

[1] E. Witten, Some comments on string dynamics, in Future perspectives in string
theory, I. Bars et. al. eds., World Scientific (1996), arXiv:hep-th/9507121.

[2] E. Witten, Conformal field theory in four and six dimensions, in Topology,
geometry and quantum field theory, U. Tillman, ed., Cambridge University Press
(2004) 405 arXiv:0712.0157 [math.RT].

[3] N. Seiberg, Notes on theories with 16 supercharges, Nucl.Phys.Proc.Suppl. 67
(1998) 158, arXiv:hep-th/9705117.

[4] N. Lambert and C. Papageorgakis, Nonabelian (2, 0) tensor multiplets and 3-
algebras, JHEP 1008 (2010) 083, arXiv:1007.2982 [hep-th].

[5] N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes,
D4-Branes and quantum 5D super-Yang-Mills, JHEP 1101 (2011) 083,
arXiv:1012.2882 [hep-th].

[6] M. R. Douglas, On D=5 super Yang-Mills theory and (2, 0) theory, JHEP 1102
(2011) 011, arXiv:1012.2880 [hep-th].

[7] N. Lambert and P. Richmond, (2, 0) supersymmetry and the light-cone descrip-
tion of M5-branes, arXiv:1109.6454 [hep-th].

[8] Y. Tachikawa, On S-duality of 5d super Yang-Mills on S1, JHEP 1111 (2011)
123, arXiv:1110.0531 [hep-th].

[9] H.-C. Kim, S. Kim, E. Koh, K. Lee and S. Lee, On instantons as Kaluza-Klein
modes of M5-branes, JHEP 1112 (2011) 031, arXiv:1110.2175 [hep-th].

[10] H. Singh, Super-Yang-Mills and M5-branes, JHEP 1108 (2011) 136,
arXiv:1107.3408 [hep-th].

[11] E. Witten, Geometric Langlands from six dimensions, arXiv:0905.2720

[hep-th].
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Abstract

We consider a twisted version of the abelian (2,0) theory placed
upon a Lorenzian six-manifold with a product structure,M6 = C×M4.
This is done by an investigation of the free tensor multiplet on the level
of equations of motion, where the problem of its formulation in Eu-
clidean signature is circumvented by letting the time-like direction lie
in the two-manifold C and performing a topological twist along M4
alone. A compactification on C is shown to be necessary to enable
the possibility of finding a topological field theory. The hypothetical
twist along a Euclidean C is argued to amount to the correct choice
of linear combination of the two supercharges scalar on M4. It may
be slightly surprising that this is not the same linear combination as
in the well known Donaldson-Witten twist. A more surprising fact
however, is that this twisted theory contains no Q-exact and covari-
antly conserved stress tensor unless M4 has vanishing curvature. This
is to our knowledge a phenomenon which has not been observed be-
fore in topological field theories. In the literature, the setup of the
twisting used here has been suggested as the origin of the conjectured
AGT-correspondence, and our hope is that this work may somehow
contribute to the understanding of it.
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1 Introduction
This work is an investigation of the topological twisting of the (2,0) theory
which has been suggested to be relevant in the explanation of the origin of
the AGT-conjecture. Herein, the simpler model of the free tensor multiplet
is considered, and we find that the resulting twisted theory exhibits some
curious, undesirable properties. The most severe of these is the lack of any
satisfactory formulation of a stress tensor. This surprising result will be clear
eventually, but let us first start at the very beginning.

The theory known as (2,0) theory [1, 2] is a six-dimensional supercon-
formal theory that continue to resist attempts at unraveling its mysteries.
One way to obtain information about the theory is to look at its different
compactifications. For example, when compactified on a circle it gives rise to
five-dimensional maximally supersymmetric Yang-Mills theory [3]. Recently
a whole class of four-dimensional gauge theories have been constructed in
this way by compactifying (2,0) theory on a two-dimensional Riemann sur-
face with possible defects [4–6]. This class of theories is sometimes referred
to as “class S” in the literature [7, 8]. The way these theories are obtained
through compactification has led to a conjecture about the relation of cer-
tain objects in four-dimensional- and two-dimensional theories, the so-called
AGT correspondence [9].

More specifically, this correspondence states that the correlation functions
in two-dimensional Liouville theory are related to the Nekrasov partition
function [10, 11] of certain N = 2 superconformal gauge theories in four
dimensions. One natural way to derive it [9, 12, 13] would be to link it to a
certain geometric setup in (2,0) theory, where the spacetime is taken to be
a product of a two-dimensional- and a four-dimensional manifold. In such a
setting, compactifications could either be carried out on the two- or on the
four-manifold, after which one could search for protected quantities which
have survived the compactification. A relation should then exist between the
protected quantities of both compactifications.

However, one is here faced with the great challenge of a lack of any satis-
factory definition of (2,0) theory that would permit such detailed calculations.
While this is indeed true for the full, interacting (2,0) theory, this is not the
whole story for the abelian version. Here, a classical formulation in terms of
equations of motion exists.

Moreover, it is important to notice that for a general background all
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supersymmetry will be broken and such a situation cannot be expected to
shed any light on the AGT-correspondence. In order to preserve some su-
persymmetry, one must first perform a topological twisting [14]. In a case
where the six-manifold has the product structure mentioned previously, i.e.
M6 = C ×M4, and M6 is of Euclidean signature, (thus the holonomy groups
of both C and M4 are compact), such a theory admits a unique twisting,
which has been claimed [12] to be analogous to the Donaldson-Witten twist
of four-dimensional N = 2 Yang-Mills theory [14]. We however find that
there are some small differences, which will be further explained throughout
this work. In the literature (see for example [12, 15]), it has been stated
that the twisting described above would result in a theory which would be
topological along M4 and holomorphic along C [16]. Herein, the behaviour
of the Lorenzian theory (especially along the four-manifold), is investigated
explicitly by computing a stress tensor.

However, the elusive side of (2,0) theory once again comes back to bite
us here, since not even the abelian version of this theory has a satisfactory
description on a Euclidean six-manifold, but rather only on a six-manifold
with Minkowski signature. In such a situation, the holonomy group would be
non-compact, and a topological twisting that results in a scalar supercharge
cannot be performed. If the light-like direction is taken to lie in C, one may
still obtain supercharges that are scalars on M4 by a twisting procedure.
One of these charges has properties that would make it scalar along C as
well, were we in the Euclidean scenario. In this work, this is the supercharge
we will consider, and the behaviour of the theory under it is the subject of
investigation. The final conclusion is that, on a general M4, the stress tensor
of the theory cannot be both Q-exact and conserved, and the theory is thus
not topological in the traditional sense.

The outline of this work is as follows: In section 2 we describe the twist-
ing procedure giving rise to the supercharge that is scalar on M4 and give a
detailed description of the field content in this new, twisted theory. Section
3 deals with the equations of motion as well as the supersymmetry transfor-
mations of the twisted theory. In section 4, a stress tensor is computed in the
flat case which is shown to have all desired properties. An attempt at gener-
alising this to a general M4 is made, and any Q-exact stress tensor is shown
to not be covariantly conserved. It is also shown that no modifications to
either equations of motion or supersymmetry variations may be done which
would rectify these obstructions when M4 is curved.
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2 The Twisting
We consider the free tensor multiplet of the (2,0) theory on a flat six-manifold
M6 , endowed with a product metric such that M6 = C ×M4, with C some
two-manifold and M4 some four-manifold. Throughout this work, light-cone
coordinates {+,−} on C, and indices µ, ν ∈ {1,2,3,4} denoting directions
along M4, will be used. When needed, M,N ∈ {0,1,2,3,4,5} will denote
indices in six dimensions.

The tensor multiplet [17] contains a symplectic Majorana-Weyl spinor Ψ
transforming in the 4 of the R-symmetry group Spin(5)R, a scalar Φ in the 5
of Spin(5)R and a self-dual three-form HMNP . This section will deal with the
decomposition of these representations under the twist, and the next section
will provide a detailed dictionary for reinterpreting these in terms of the field
content of the twisted theory.

If M6 is of Euclidean signature, as previously mentioned, the theory ad-
mits a unique topological twisting. This since the R-symmetry group Spin(5)
contains a subgroup SU(2)R×U(1)R, which also may be found as subgroups
of the Lorentz group of C × M4: U(1) × SU(2)l × SU(2)r. The twisting
procedure is carried out by defining SU(2)′ to be the diagonal subgroup of
SU(2)r × SU(2)R and U(1)′ as the same in U(1) × U(1)R. By considering
the theory under the group U(1)′ × SU(2)l × SU(2)′, one finds a single su-
percharge which is scalar hereunder, and thus the possibility of a topological
field theory exists.

However, the lack of a satisfactory formulation of the free tensor multiplet
of (2,0) theory in Euclidean signature forces us to work in a situation where
C is of Minkowski signature instead, with the correspondingly non-compact
Lorentz group Spin(1,1). There will thus be no way to embed this into
U(1)R, and hence it is not possible to perform a twisting along the two-
manifold C as in the above case. M4 is however still of Euclidean signature,
hence the twisting along these directions will not have been affected. This
will be described in greater detail below.

In table 1 and 2, the representations of the fields and supersymmetry
parameters before and after twisting along M4 are shown. A more detailed
explanation on how the six-dimensional field content should be translated to
the fields of the twisted theory will as mentioned follow in the next section.

The superscripts indicate the charge under U(1)R. For clarity, it should
here be pointed out that the representations for the fermions and for the
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SU(2)l × SU(2)r × SU(2)R × U(1)R
Φ (1,1,3)0 ⊕ (1,1,1)±1

Ψ (2,1,2)±1/2 ⊕ (1,2,2)±1/2

H (3,1,1)0 ⊕ (1,3,1)0 ⊕ (2,2,1)0

ε (2,1,2)±1/2 ⊕ (1,2,2)±1/2

Table 1: Representations before twisting.

SU(2)l × SU(2)′ × U(1)R Twisted fields
Φ (1,3)0 ⊕ (1,1)±1 Eµν , σ̄, σ

Ψ (2,2)±1/2 ⊕ (1,3, )±1/2 ⊕ (1,1)±1/2 ψµ, ψ̃µ, χµν ,χ̃µν , η, η̃
H (3,1)0 ⊕ (1,3)0 ⊕ (2,2)0 F−µν , F

+
µν , Aµ

ε (2,2)±1/2 ⊕ (1,3)±1/2 ⊕ (1,1)±1/2 . . . , (ε̄), ε

Table 2: Representations after twisting.

supersymmetry parameters differ in their chirality on C (which is not shown
in table 1 and 2).

If we were in Euclidean signature, all of these new fields would also
have charges under the U(1) which would then be the Lorentz group of
C. In the second step of the twisting procedure previously described, these
charges would combine with the charges under U(1)R. The charge under
the new diagonal subgroup U(1)′ would then be given by the sum of these
two charges. Hence the supercharge that would become scalar under such a
twist would be the one with U(1)R-charge of −1/2 whose parameter shall be
denoted by ε. The other supersymmetry scalar on M4, with U(1)R-charge
of +1/2, is denoted by ε̄. That ε is the parameter of interest can be seen
by studying table 3 where the representations after the four-twist in the
Euclidean scenario is written down. The superscript here denotes the charge
under the U(1)R whereas the subscripts denote the charges under the U(1)
Lorentz group of C.

One may choose some chiral, constant spinors e± to generate the two
spinor representations for the fermions which are scalar on M4, namely
(1,1)±1/2

−1/2. (Again, the subscript denotes the charge under a hypothetical
U(1) Lorentz group of C, and is what distinguishes the two fermionic sin-
glet representations on M4 from the ones of the supersymmetries.) In some
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U(1)× SU(2)l × SU(2)′ × U(1)R
Φ (1,3)0

0 ⊕ (1,1)±1
0

ψ (2,2)±1/2
1/2 ⊕ (1,3)±1/2

−1/2 ⊕ (1,1)±1/2
−1/2

H (3,1)0
0 ⊕ (1,3)0

0 ⊕ (2,2)0
0

ε (2,2)±1/2
−1/2 ⊕ (1,3)±1/2

1/2 ⊕ (1,1)±1/2
1/2

Table 3: Hypothetical Euclidean twist.

cases, it is convenient to think of these two new base-spinors as complex lin-
ear combinations of constant symplectic Majorana-Weyl spinors, e1 and e2,
such that e± = e1 ± ie2.

The two spinors e± will as mentioned need to be chiral in the six-dimensional
sense to generate the fermionic representations. Γ+e

± are then anti-chiral,
constant spinors, which generate the (1,1)±1/2

+1/2 where the supersymmetry-
charges that are of interest to us live.

This allows for a parametrisation of the two supercharges which are scalar
on M4 in terms of some Grassmann parameters u and v, together with a Γ-
matrix along C to account for the six-dimensional chirality. These relations
are given by:

ε = vΓ+e
− , ε̄ = uΓ+e

+, (1)

where as repeatedly mentioned, the supersymmetry parameter that would
become scalar on C as well after a hypothetical further twist is ε.

2.1 Details of reinterpreting the fields
The next order of business is to create a dictionary, translating the original
field content of the six-dimensional free tensor multiplet (table 1) to the field
content of the twisted theory (table 2).

Bosonic scalar

Let the indices i, j ∈ {1,2,3}. One can then quite easily see that the self-
dual two-form Eµν of the twisted theory can be related to the first three
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components of the six-dimensional scalar field Φ as follows:

E4i =− Φi (2)
Eij =εijkΦk.

Furthermore, the two last components of the six-dimensional scalar Φ are
after twisting combined into a complex scalar σ:

σ = 1√
2

(Φ4 − iΦ5). (3)

Bosonic three-form

Reinterpreting the six-dimensional bosonic three-form in terms of the new,
twisted fields is only slightly more complicated than the case of the scalars
above. By using the fact that HMNP is self-dual, (with respect to the ori-
entation and Riemannian structure on M6), one may show that H+µν is a
self-dual two-form in four dimensions, and H−µν likewise is an anti-self-dual
two-form on M4 (all with respect to the orientation and Riemannian struc-
ture on M4). This gives us a natural interpretation of the components of H
in terms of the twisted two-form F as:

H+µν =1
2εµν

ρσH+ρσ = F+
µν (4)

H−µν =− 1
2εµν

ρσH−ρσ = F−µν ,

where F±µν denotes the self-dual and anti-self-dual parts respectively.
Moreover, one may in a similar fashion interpret Hµνρ and H+−σ in terms

of the twisted one-form Aσ and its dual as:

Hµνρ = εµνρσH
σ
+− = εµνρσA

σ. (5)

Fermionic fields

Ψ may be expanded in terms of the twisted fields η, ψ, . . . as follows:

Ψ = (η + Γ+Γµψµ + 1
4ΓµΓνχµν)e+ + (η̃ + Γ+Γµψ̃µ + 1

4ΓµΓνχ̃µν)e−. (6)

The terms in the above decomposition are precisely the twisted field content
of the spinor field as given in table 2. By using how e± are related to sym-
plectic Majorana-Weyl spinors, one can show that Ψ indeed is a symplectic
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Majorana-Weyl spinor as well under the condition that the fields with- and
without twiddles are related by complex conjugation. This also is consistent
with the U(1)R-charges of these different fields.

However, in the case we wish to consider, namely the theory invariant
under only the one supercharge that would become scalar in a Euclidean sce-
nario, we must loosen these requirements on Ψ, since there is no such notion
as a spinor being Majorana-Weyl on a six-dimensional Euclidean manifold.
This means that the fields with- and without the twiddles will need to be
considered as independent of one another non the less.

2.2 Some useful relations
To perform further calculations, we must first find ways to handle the Γ-
matrices which arise both in (6) when reinterpreting the fermionic spinor
field in terms of the new, twisted ones, as well as in the expression for how
the relevant supersymmetry parameter is written down in terms of our base
spinors (1). In this section, some useful formulas for handling these are
presented.

The first, and maybe most important relation comes from the knowledge
that our constant base spinors are singlets under all of the SU(2)’s after
twisting, which gives us the relations

1
2(Γ4i −

1
2εijkΓ

jk)e± = 0 (7)
1
2(Γ4i + 1

2εijkΓ
jk)e± + 1

2εijkΓ
jk
R e
± = 0.

Here Γ denotes the Γ-matrices of the Lorentz group, whereas ΓR denotes the
gamma matrices of the R-symmetry group. Again, the indices {i,j,k} take
values in {1,2,3}. The top one of the above equations enforces that the e± are
singlets under SU(2)l, and the lower one reflects the same behaviour under
SU(2)′.

Furthermore, the charge under the U(1)R is known for the two spinors,
and it is thus known how the generator of this group acts on them:

iΓ4
RΓ5

Re
± = ±e±. (8)

A short calculation also shows that the action of one of these, say Γ4
R,

corresponds to flipping the U(1)R-charge and thus:

Γ4
Re
± = e∓. (9)
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Now we move on to relations involving the Γ-matrices of the Lorentz
group. The spinors are chiral in a six-dimensional manner, thus

Γ0Γ1Γ2Γ3Γ4Γ5e
± = e±. (10)

This may be reduced to chirality along C and M4 individually by study-
ing how these representations decompose under the twisting procedure. If
we let the six-dimensional indices be divided such that {0,1} ∈ C and
{2,3,4,5} ∈M4 for the moment, this may be expressed as:

Γ2Γ3Γ4Γ5e
± = −e± Γ0Γ1e

± = −e±. (11)

From the above relations, all information necessary to perform our desired
calculations may be deduced.

It is convenient to define

Γ± = 1√
2

(Γ1 ± Γ0) , Γ± = Γ∓, (12)

since we as previously mentioned wish to use light-cone coordinates on the
two-manifold, and to consider the action of these on the spinors instead. This
may be derived in a straight-forward manner using (12) together with (11),
leading to the expressions:

Γ+e
± = 1√

2
(Γ1 + Γ0)e± =

√
2Γ1e

± , Γ−e± = 1√
2

(Γ1 − Γ0)e± = 0.

(13)

The most favourable way to express these relations is not however in the
form in which they are given now, but rather in terms of the relations for
some spinor bilinears which they lead to. Below, the most commonly used
ones of these are listed:

ē∓Γ−e± = 1
ē∓Γ+e± = 0
ē±Γ±e± = 0

ē∓ΓµΓνΓ+e
± = δµν

ē∓ΓµΓνΓρΓσΓ+e
± = δµνδρσ − δµρδνσ + δµσδνρ − εµνρσ

ē∓Γ+Γ−Γ+e
± = 2.

(14)
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2.3 Compactifying on C

In the construction of the class S theories [4], C is a Riemann surface of
genus g with punctures. The N = 2 Yang-Mills theory arise in the IR limit
of (2,0) theory compactified on this surface. When considering the theory on
a flat C, this simply means that we take all derivatives in these directions
to vanish. This seems to be necessary if we want the theory on M4 to be
topological since terms of this type spoil all the interesting properties of the
theory: Q invariance and exactness of T µν and the nilpotency of Q.

However, it may be interesting to point out that there are two super-
charges that are Lorentz scalars on M4, described by parameters ε and ε̄.
We have herein chosen to only consider the observables which live in Q-
cohomology, but one may likewise consider a linear combination of Q and Q̄,
and choose to consider states which lie in the cohomology of this new oper-
ator (as done in the Donaldson-Witten twist of N = 2 Yang-Mills [14]). In
this work, we are however interested in only the specific linear combination
which would become scalar if the signature of C was Euclidean and we thus
could twist along that direction too. Hence the choice to consider only the
theory invariant under ε and observables in Q-cohomology.

3 The theory after twisting
After having worked out the field content in the previous section we now turn
to the formulation of the theory after the twist. Here we will use the known
equations of motion and supersymmetry variations for the abelian tensor
multiplet to derive the corresponding expressions for the twisted fields. With
the explicit correspondences given in section 2.1 this is almost immediate.

3.1 Equations of motion
In the six dimensional formalism, the scalar fields fulfil the Klein-Gordon
equation, and the self-dual bosonic three-form satisfies dH = 0. Furthermore,
the fermionic field satisfies the Dirac equation.
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DMDMΦ = 0 (15)
dH = 0 (16)

ΓMDMΨ = 0 (17)

Translated into the language of the twisted theory, the bosonic two-form
and the complex scalar also satisfies the Klein-Gordon equation. Since any
derivatives in the first two directions will vanish identically due to the com-
pactification, what remains is the Klein-Gordon equation along M4, that is:

∂ρ∂
ρEµν = 0 (18)

∂ρ∂
ρσ = 0. (19)

Moreover, we may split the six-dimensional equation of motion for the
bosonic three-form according to the number of indices along M4. The six-
dimensional equation of motion are then easily reinterpreted in terms of the
twisted fields as:

2∂[µAν] = 0 (20)
∂[µF

±
νρ] = 0

∂µA
µ = 0.

Likewise, the equations of motion for the twisted fermionic fields may,
after some calculations, be written as:

∂µψ̃
µ = 0 (21)

∂µη̃ − ∂νχ̃µν = 0
(∂µψ̃ν)+ = 0,

and equivalently for the fields without twiddles. The notation (∂µψ̃ν)+ refers
to the self-dual part of ∂[µψ̃ν]. Furthermore, since all components of the six-
dimensional fermions satisfy the Klein-Gordon equation, one can show that
the same applies to all components of our twisted fermionic fields (and, as
for the scalars, particularly along M4).
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3.2 Supersymmetry
After the twisting procedure we are left with two supercharges which are
Lorentz scalars on M4, and as explained in section 2, the one with positive
U(1)R charge is the one which we focus on herein. We now derive the com-
ponent expressions for this supercharge acting on the twisted fields starting
from the six-dimensional expressions. In a flat space-time, these supersym-
metry variations for the free tensor multiplet are given by:

δHMNP = 3∂[M
(
Ψ̄αΓNP ]ε

α
)

(22)
δΦK = 2(ΓRK)αβΨ̄αεβ (23)

δΨα = i

12HMNPΓMNP εα + iMβγ∂M(ΓRK)αβΦKΓMεγ. (24)

Where K denotes an index in the vector representation of the R-symmetry
group Spin(5). Using the twisted field content of definitions (2)-(6) together
with the supersymmetry parameter ε of (1) , these variations induce the
following variations of the twisted fields:

δσ =
√

2η̃v
δσ̄ = 0

δEµν = iχµνv

δF+
µν = 0

δF−µν = −4∂[µψν]v

δAµ = ∂µηv

δη = 0
δψν = −vi

√
2∂ν σ̄

δχµν = 0
δη̃ = 0
δψ̃ν = ivAν − v∂µEνµ
δχ̃µν = 2ivF+

µν

(25)

These can be verified to square to zero, which is equivalent to the supercharge
Q considered here indeed being nilpotent. Furthermore, these variations can
be shown to induce an isomorphism on the space of solutions to the equations
of motions presented in equations (18), (19), (20) and (21).

4 Stress tensor
A first step towards computing the stress tensor for the theory in a general
background it is to first perform the calculations in the special case whenM4
has vanishing curvature. This is the subject of this section, and is something
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that will greatly facilitate the investigation of the general case (performed in
section 5).

4.1 Actions
Since the main objective of this paper is to obtain an explicit expression for
the stress tensor of the twisted theory, it would be highly convenient if we
could formulate an action for it. The derivation of the desired stress tensor
would in principle then be straight forward, and could be carried out by a
standard metric variation of this action. However, as previously mentioned
on repeated occasions, there are some well-known problems with giving a
satisfactory formulation of (2,0) theory in general, and using a Lagrangian
formalism in particular, and we cannot hope to do this here either. However,
there is a well-defined action for both the fermionic fields as well as the scalar
fields of the abelian (2,0) theory, and by writing these down we may find an
Ansatz for the contributions to the stress tensor which arise from these fields.

Scalars

The action for the scalar field in six dimensions is given by the standard
expression

Lscalars = −∂MΦK∂MΦK . (26)

By exploiting the fact that all derivatives in the ±-directions vanish,
together with the relations:

ΦiΦi = 1
4EµνE

µν (27)

Φ4Φ4 + Φ5Φ5 = 2σσ̄,

the action for the scalar fields in the twisted theory may be written as:

Lscalars = −1
4∂ρEµν∂

ρEµν − 2∂ρσ∂ρσ̄. (28)

Fermions

In six dimensions, the fermionic part of the action may be written on the
well-known form

L = i

2Ψ̄ΓMDMΨ. (29)
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Recall that these six-dimensional fields may be reinterpreted in terms of the
twisted ones according to equation (6), which states:

Ψ = (η + Γ+Γµψµ + 1
4Γµνχµν)e+ + (η̃ + Γ+Γµψ̃µ + 1

4Γµνχ̃µν)e−, (30)

where e+ and e− as previously are constant spinors which span the two
chiral spinor representations that are Lorentz scalars on M4. From this, an
expression for Ψ̄ may be obtained as:

Ψ̄ = ē+(η − Γ+Γµψµ −
1
4Γµνχµν) + ē−(η̃ − Γ+Γµψ̃µ −

1
4Γµνχ̃µν). (31)

By using the properties (14) derived for the Γ-matrices, integration by
parts and the fact that all derivatives along C vanish, the six-dimensional
fermionic action may be written in terms of the twisted fields as:

LFermions = −i ( η∂µψ̃µ + ψµ∂µη̃ − ψµ∂νχ̃µν + χµν∂µψ̃
ν
)
. (32)

4.2 Ansatz and modifications
The stress tensor in the flat case is obtained by computing the individual
contributions originating from the six-dimensional bosonic three-form, the
bosonic scalar and the fermions separately, whereupon the relative coeffi-
cients are fixed by requiring supersymmetry invariance. However, which to
us was somewhat unintuitive, some modifications to the terms containing
the bosonic self-dual two-forms are required in order to obtain an expression
which is both conserved and Q-closed. This final expression of T µν may then
be shown to also be Q-exact as desired.

Another important feature is that since the theory has no other definition
than in terms of the equations of motion, the stress tensor will only be
considered on-shell.

For the fields where an action exists, an Ansatz of the stress tensor may
be computed in a standard way, namely by using

T µν = 1
2g

µνL+ ∂L
∂gµν

. (33)

For the part arising from the bosonic three-form however, we are forced to
take a slightly different approach. We may regard the action for a non-chiral
3-form in six dimensions, taking the familiar expression

L = HMNPH
MNP , (34)
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which may be used to compute a stress tensor by the recipe stated in equation
(33). After this is done, the condition that H is self-dual in six dimensions is
imposed, and thus the first term in equation (33) will vanish. The remaining
terms on M4 will, in the language of the twisted fields, be given by

T µνH = −4A(µAν) − 2F+µ
ρF
−ρν − 2F−µρF+ρν + 2gµνAρAρ. (35)

For the scalars and the fermions, one arrives at the following expressions
respectively

T µνΦ = −gµν∂ρσ∂ρσ̄ + 2∂(µσ∂ν)σ̄ + 1
4∂

(µEρσ∂
ν)Eρσ − 1

8g
µν∂λEρσ∂

λEρσ,

(36)

T µνΨ = i

2g
µν

(
∂ρηψ̃

ρ + ∂ρη̃ψ
ρ
)
− i

(
∂(µηψ̃ν) + ∂(µη̃ψν)

)
(37)

− i

4g
µν

(
χ̃ρσ∂[ρψσ] + χρσ∂[ρψ̃σ]

)
+ i

2
(
χσ(µ∂σψ̃

ν) + χ̃σ(µ∂σψ
ν) − χσ(µ∂ν)ψ̃σ − χ̃σ(µ∂ν)ψσ

)
.

It should be noted here that since we have self-dual fields, the variation
of the metric is not as straight-forward as it would appear to be in equation
(33). This is because the condition of self-duality contains an implicit metric
dependence, and thus a variation of the metric must be accompanied by a
variation of all self-dual fields present. A term consisting of such a self-dual
field, χµν , with indices contracted with some other rank-2 tensor, Xµν , will
under a metric variation take the form:

Xµνδgχµν = −1
4δgµνg

µνXκλχ
κλ + δgµνX

[µσ]χνσ. (38)

The three pieces in (35), (36) and (37) are each conserved individually,
which may be shown by straight-forward, but yet tedious calculations that
are omitted here. In order to stand a chance of fulfilling supersymmetry
invariance under the transformations listed in equation (25), the relative
coefficients amongst the different contributions are fixed. The stress tensor
one then finds is given by:
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T µν = 1
2

(
− gµν∂ρσ∂ρσ̄ + 2∂(µσ∂ν)σ̄ + 1

4∂
(µEρσ∂

ν)Eρσ − 1
8g

µν∂λEρσ∂
λEρσ

)
(39)

+ 1
8

(
−4A(µAν) − 2F+µ

ρF
−ρν − 2F−µρF+ρν + 2gµνAρAρ

)
+ i

2g
µν

(
∂ρηψ̃

ρ + ∂ρη̃ψ
ρ
)
− i

(
∂(µηψ̃ν) + ∂(µη̃ψν)

)
− i

4g
µν

(
χ̃ρσ∂[ρψσ] + χρσ∂[ρψ̃σ]

)
+ i

2
(
χσ(µ∂σψ̃

ν) + χ̃σ(µ∂σψ
ν) − χσ(µ∂ν)ψ̃σ − χ̃σ(µ∂ν)ψσ

)
.

However, some problematic terms still exist which prevents the above ex-
pression from being Q-closed. By a long and quite intricate calculation, one
may show that this obstruction is solved if the part of the stress tensor con-
taining the self-dual two-form which arose from the six-dimensional scalars,
namely terms containing Eµν , is altered to:

T µνEE-terms = 1
4g

µν∂κEρκ∂σE
ρσ − 1

2∂
ρ
(
∂κE(µ

κE
ν)
ρ

)
+ 1

2∂
(µ∂κE

ρκEν)
ρ. (40)

Also this part is conserved on its own, and so this alteration preserves the
conservation of T µν . This may be shown by a slightly more complicated
calculation than for any of the other terms, which requires the repeated use
of the self-duality of Eµν .

That this problem of supersymmetry invariance is solved by altering the
terms containing the fields originating from the scalars, for which we had
an action from which to derive a stress tensor, may seem quite unintuitive.
However, we must bear in mind that even though we have an action for some
fields in the theory, there is no action for the entire theory. Hence we do not
have a supersymmetric quantity from which we may derive a supersymmetric
stress tensor, and though using the actions presented in equations (32) and
(28) provides us with a good Ansatz for a stress tensor for the entire theory,
we should not expect this approach to give us a supersymmetric result.

The complete stress tensor for this theory when placed on a flat back-
ground may then finally be written down explicitly as
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T µν = 1
2

(
− gµν∂ρσ∂ρσ̄ + 2∂(µσ∂ν)σ̄

)
(41)

+ 1
8

(
−4A(µAν) − 2F+µ

ρF
−ρν − 2F−µρF+ρν + 2gµνAρAρ

)
+ i

2g
µν

(
∂ρηψ̃

ρ + ∂ρη̃ψ
ρ
)
− i

(
∂(µηψ̃ν) + ∂(µη̃ψν)

)
− i

4g
µν

(
χ̃ρσ∂[ρψσ] + χρσ∂[ρψ̃σ]

)
+ i

2
(
χσ(µ∂σψ̃

ν) + χ̃σ(µ∂σψ
ν) − χσ(µ∂ν)ψ̃σ − χ̃σ(µ∂ν)ψσ

)
+ 1

4g
µν∂κEρκ∂σE

ρσ − 1
2∂

ρ
(
∂κE(µ

κE
ν)
ρ

)
+ 1

2∂
(µ∂κE

ρκEν)
ρ,

where the last line above is the manually altered terms that are needed to
make the stress tensor invariant under the supersymmetry transformations
in equation (25).

4.3 Q-exactness
The stress tensor presented above in (41) is after an examination found to
be Q-exact and may be written as

T µν =
{
Q, λµν

}
, (42)

where

λµν = 1
2

(√
2iψ(µ∂ν)σ + ψ̃(µ∂ρEν)

ρ + ∂ρψ̃
(µEν)

ρ − ∂(µψ̃ρEν)
ρ (43)

+ iψ̃(µAν) − i

2 χ̃
(µ
ρF
−ν)ρ − i√

2
gµνψρ∂

ρσ − 1
2g

µνψ̃ρ∂σEρσ −
i

2g
µνψ̃ρA

ρ
)
.

To find λµν , an Ansatz was used in which all possible allowed, terms were
included. These are however not as many as one may think, since there are
constraints due to dimensionality and U(1)-charge. These constraints forces
us to restrict ourselves to terms of dimensionality 11/2 and U(1) charge of
−1/2, (which all of the above terms clearly satisfy). In table 4, the dimen-
sionality and U(1)-charge of the different fields, as well as the supersymmetry
parameter and stress tensor, are listed.
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dimensionality U(1)R-charge
η, ψµ, χµν 5/2 +1/2
η̃, ψ̃µ, χ̃µν 5/2 −1/2

σ̄ 2 +1
σ 2 −1
Eµν 2 0

Aµ, Fµν 3 0
Tµν 6 0
ε −1/2 −1/2

Table 4: Mass dimension and U(1)R charges of the fields, parameters and
curvature tensors.

5 The case when M4 is curved
In the previous section, an expression for the stress tensor when M4 has
vanishing curvature is obtained and shown to indeed be Q-exact. This was
done by explicitly finding a λµν such that T µν = {Q, λµν}. Now we are faced
with the question: How does this change in the case when M4 is curved?

A simple starting point here would instead be to ask the question “How
may λµν change when M4 becomes curved?”. The restrictions imposed upon
λµν by dimensionality may be used here as well. Since λµν is of fractional
dimension, an odd number of fermionic fields must be included. Also, since
we wish to add terms related to curvature, the Riemann-, Ricci-tensor or
curvature scalar must be included in these, each of which is of dimension 2.
The remaining part of these terms must be of dimension 1, which means that
our only option is to incorporate a derivative. Terms like these are however
not bilinears in the fields, and thus make no sense at all.

By the reasoning above, there are no terms which may possibly be added
to λµν in the case when M4 is curved. Thus, the stress tensor even in this
case will still be given by the expression {Q, λµν}.

It should be noted that there are two more places that could be modified
in the curved case: the scalar equations of motion and the fermion super-
symmetry variations.

The scalar equations of motion could be modified to replace the right hand
side of the Klein-Gordon equation in both (18) and (19) with a multiple of
the curvature scalar multiplying the fields. However, such a modification in
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(19) would ruin the conservation properties of the part of the stress tensor
containing the bosonic scalars and is thus not allowed. The same modification
in (18),

DρD
ρEµν = aREµν , (44)

may be carried out, where a is some constant. However, this will not be
enough to rectify the problems arising when M4 is curved, something which
is further discussed in section 5.1.

The fermionic supersymmetry variations for the six-dimensional free ten-
sor multiplet in a curved background may contain an extra term of the form

δΨ = · · ·+ ΦΓMDMε. (45)
This term will not contribute to the twisted supersymmetry transformations
since the whole point of the twisting is to manufacture a covariantly constant
supercharge.

Thus, in the curved case, the stress tensor cannot be subject to any
modifications and will still be given by

{
Q, λµν

}
, where all partial derivatives

in λµν are now replaced by covariant ones. This gives us T µν as in equation
(41) but again, with partial derivatives replaced by covariant ones. The
generalisation to a curved M4 is thus:

T µν = 1
2

(
− gµνDρσD

ρσ̄ + 2D(µσDν)σ̄
)

(46)

+ 1
8

(
−4A(µAν) − 2F+µ

ρF
−ρν − 2F−µρF+ρν + 2gµνAρAρ

)
+ i

2g
µν

(
Dρηψ̃

ρ +Dρη̃ψ
ρ
)
− i

(
D(µηψ̃ν) +D(µη̃ψν)

)
− i

4g
µν

(
χ̃ρσD[ρψσ] + χρσD[ρψ̃σ]

)
+ i

2
(
χσ(µDσψ̃

ν) + χ̃σ(µDσψ
ν) − χσ(µDν)ψ̃σ − χ̃σ(µDν)ψσ

)
+ 1

4g
µνDκEρκDσE

ρσ − 1
2D

ρ
(
DκE(µ

κE
ν)
ρ

)
+ 1

2D
(µDκE

ρκEν)
ρ.

That this stress tensor is still Q-exact is obvious, but it is not completely
clear that it still fulfils the criteria of being covariantly conserved. Rather
surprisingly, it would seem that it does not. Again, the complications lie
in the part containing the self-dual bosonic two-forms. By considering the
covariant derivative of these terms, the complications arising here for a curved
M4 will be apparent.
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5.1 Covariant conservation of T µν in the curved case
Consider the covariant divergence of the terms containing the bosonic self-
dual two-forms:

DµT curved EE-terms
µν = + 1

2gµνD
µDκEρκDσE

ρσ − 1
2D

[µDρ]
(
DκE(µ

κEν)ρ

)
(47)

− 1
2D

(µDρ)
(
DκE(µ

κEν)ρ

)
+ 1

2D
µ

(
D(µDκE

ρκEν)ρ

)
.

This can, as previously mentioned, be shown to vanish when M4 is flat,
but in the curved case, there are additional terms arising from commutating
the derivatives which may yet cause problems. A few of the above terms
will give rise to terms containing derivatives on the curvature tensors, which
must cancel on their own for any chance to maintain conservation of T µν .
Such terms will arise from terms containing three derivatives acting on the
same field, that is from the two last terms in the expression above.

Let us start by considering terms of this kind. By using two forms of the
Bianchi identity, together with a basis expansion of the self-dual two-forms
according to Eµν = EiT

i
µν , (where i ∈ {1,2,3} and the T i’s form a basis on

the space of self-dual two-forms) in the cases where the two bosonic fields
are contracted, one may in a straight-forward manner show that all terms
containing the derivatives on the curvature tensors may be written as:

− 1
4DτRρκE

τκEν
ρ + 1

8DνRµκρτE
τκEµρ + 1− 2a

4 DνREiE
i. (48)

To obtain this expression, the most general form of the equations of motions
for Eµν on a curved background were used, as given in (44).

This is in general non-zero, which may be easily shown by introducing
a concrete example in which this quantity does not vanish. An example
of such a configuration is M4 = R ×M3, where index value 1 denotes the
coordinate along R, and M3 is of non-vanishing curvature. Consider (48) in
the case where ν = 1. In such a case, the two last terms vanish, where as the
first one in general does not. We have thus shown that the unique, Q-exact
stress tensor of the theory is not conserved when the theory is placed upon
a general four-manifold M4.
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6 Conclusion and outlook
Herein, we have shown that there is no possible covariantly conserved, Q-
exact stress tensor when this twisted form of the theory is placed in a general
background. The twisting in question is taken to be the one described, for
example, in [12] where the free tensor multiplet of (2,0) theory is placed on
M6 = C × M4 with Minkowski signature. Compactification along C and
twisting along M4 as described in section 2 is then done. Furthermore, the
theory is only considered under the supercharge that would become scalar on
C if it were of Euclidean signature and further twistings could be performed.
This must however remain an “if ”, because of the problems surrounding the
formulation of (2,0) theory, especially in Euclidean signature. Because of
these problems, all of our investigations were kept on the level of equations
of motion.

This result is to us a surprising one, but it may be more logical than it
appears at first glance. It is a well-known fact that (2,0)-theory compactified
on a two-manifold C results in N = 2 Super Yang-Mills theory [4–6, 18],
and another well-known result that this theory admits a unique topological
twisting in four dimensions [14]. Herein, a slightly different linear combina-
tion of the supersymmetry charges is considered than the one used in the
Donaldson-Witten twist. This is because the supersymmetry charge of in-
terest herein is the one that would become scalar on the two-manifold C as
well, if that were of Euclidean signature and the twisting thereon could be
performed. It is thus logical in some sense that the twisting we consider
fails to give rise to a theory which is topological on the four-manifold. It
should however be pointed out that this twist, from the viewpoint of the
four-manifold is not, as previously has been claimed on some occasions, the
Donaldson-Witten twist, but something which differs slightly from this. We
believe this to be the cause of the unexpected behaviour.

One could then ask if this situation finds its remedy in the hypothetical
twisting along C. This will however not be the case since this twisting would
only result in different U(1)-charges of the fields, and all arguments done here
for possible curvature corrections etc are not dependent on this, but rather
on dimensionality which remains unchanged.

Another possible resolution of these difficulties may be found in a hy-
pothetical formulation of the free (2,0) tensor multiplet in a Euclidean sig-
nature, which is problematic for obvious reasons. If one requires that this
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hypothetical theory should indeed give rise to a topological field theory under
the twisting described herein, this investigation of the difficulties presented
for its Minkowski analog may shed some light on desired properties of the
Euclidean theory.
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