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Abstract

Electromagnetics is a fundamental part of biomedical engineering and mod-
ern healthcare due to the electromagnetic nature of several important pro-
cesses in the human body and the interactions of electromagnetic fields with
the human body. As a consequence, electromagnetics is exploited for diag-
nostic and therapeutic purposes by a multitude of medical devices.

The biomedical engineering society strives to develop and design new
methods, as well as, to improve existing methods for diagnosis and ther-
apy. In addition, electromagnetic compatibility of both electromagnetic and
non-electromagnetic medical devices must be assessed. These tasks can be
complicated since electromagnetic measurements in the human body can be
difficult and in some cases harmful to the patient. Furthermore, the human
body is highly heterogeneous, which makes predictions of its interaction with
electromagnetic fields demanding.

In this thesis, these problems are mitigated by means of accurate, unbi-
ased, and automatized electromagnetic modeling that feature a number of
disciplines: (i) detailed electromagnetic modeling based on Maxwell’s equa-
tions; (ii) mathematics with particular emphasis on numerical analysis and
optimization; and (iii) large-scale parallel computations on computer clus-
ters. Progress in these three areas enables larger and more difficult problems
to be addressed.

In particular, this methodology is applied to three biomedical problems in
this thesis. First, the electromagnetics of pacemaker lead heating in MRI is
modeled with emphasis on the multi-scale characteristic of the problem. The
results show the resonant nature of the problem and that detailed modeling
is essential to accurately describe this phenomenon. Second, a method for
optimization of sensor positions in magnetic tracking systems is proposed.
The method uses powerful mathematics to alleviate the difficulties and com-
putational burden associated with experimental or computational trial-and-
error procedures. Third, the estimation procedure in EEG-based source lo-
calization is facilitated by exploiting electromagnetic reciprocity during the
modeling. This reduces the demands for tailored estimation procedures and
removes one obstacle for real-time source localization.

Keywords: Convex optimization, design of experiments, helical conductors,
inverse problems, magnetic resonance imaging, magnetic tracking, multi-
scale, optimal measurements, optimal sensor placement, MR safety, pace-
makers, thin-wire approximation.
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Göteborg, Sweden, 2011.

• O. Talcoth, “Electromagnetic modeling and design of medical im-
plants and devices”, Licentiate thesis R016/2011, ISSN 1403-266X,
Dept. of Signals and Systems, Chalmers University of Technology,
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Chapter 1
Introduction

1.1 Biomedical engineering

Biomedical engineering is a field of science that positions itself between en-
gineering and medicine and tries to link these two together with the aim
of providing improved healthcare. Biomedical engineering is defined as fol-
lows by J.D. Bronzino in the introduction and preface of his book on the
fundamentals of biomedical engineering [1]:

“Biomedical engineers [.] apply electrical, mechanical, chemical,
optical, and other engineering principles to understand, modify,
or control biologic (i.e., human and animal) systems, as well as
design and manufacture products that can monitor physiologic
functions and assist in the diagnosis and treatment of patients.”

Many products and techniques have been produced by and are developed
within the biomedical engineering community. A few examples are given in
the (non-exhaustive) list below.

• Artificial body parts and organs, e.g., heart-lung bypass machines, ar-
tificial heart valves, dialysis machines, respirators, hearing aids.

• Implantable devices such as pacemakers, deep brain stimulators (DBS),
and drug delivery systems.

• Artificial limbs and prostheses.

• Medical imaging techniques for diagnostics. For example, X-rays, ul-
trasound, and magnetic resonance imaging (MRI).

• Linear accelerators for radiotherapy of cancer tumors.

3



Chapter 1. Introduction

• Electrocardiograms (ECG/EKG) for heart function assessment.

• New biocompatible materials that can be used in the body.

• Computer programs for decision support, information handling etc.

• Tools for robotic surgery, laparoscopic surgery, ablation etc.

1.2 Electromagnetics in biomedical engineer-

ing

Electromagnetics can serve to describe several processes in the human body,
for example ion transport through cell membranes, conduction of nerve sig-
nals, detection of light that impinges on the retina, and muscle stimulation.
As a consequence, passive measurements of electromagnetic quantities are ex-
ploited. These measurements are performed at low frequencies (kHz and be-
low) since the measured quantities are generated by displacement of ions. For
example, the brain is studied by electroencephalography (EEG) and magne-
toencephalography (MEG), electrocardiography (ECG/EKG) measures the
electrical activity of the heart, and signals in individual nerves can be mea-
sured with microneurography.

Furthermore, human body tissue interacts with external electromagnetic
fields, which is exploited for imaging purposes. Electromagnetic properties
of the tissue can be imaged at low frequencies by impedance tomography and
at radio frequencies (RF) by microwave tomography. Static, low frequency,
and RF fields are exploited in MRI to image the single proton (1H) density
in the body. As these protons mainly are found as part of water molecules,
contrast in MRI images is related to differences in water content, which makes
MRI the preferred imaging modality for imaging of soft tissue. At the high
end of the frequency scale, X-rays are used to create both projection and
tomographic images (computed tomography, CT) of the electron density in
the body. Historically, X-rays found its first application in imaging of the
skeleton. With the introduction of contrast agents and refinement of X-ray
techniques, the applications of X-ray have been extended to also include, for
example, soft tissue imaging and imaging of veins and arteries (angiography).

Tissues of the human body do not only interact with electromagnetic
fields but they are also affected by the fields, which is exploited in thera-
peutic applications. Neurostimulators employ low frequency electric fields
(pacemakers, implantable defibrillators, deep brain stimulators) or magnetic
fields (transcranial magnetic stimulation) in order to affect the nervous sys-
tem. Radio frequency fields deposit power in body tissues which is used for
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1.3 Overview of the thesis

destruction of tissue by so-called RF ablation. Furthermore, the outcomes
of radio- and chemotherapy of cancer can be improved by heating of the tis-
sue (hyperthermia), which can be microwave-based. Yet higher in frequency,
lasers are exploited for numerous purposes including eye surgery. At the high
end of the frequency scale, the radiation is able of ionizing atoms. This mech-
anism forms the foundation of radiotherapy of cancer tumors where cancer
cells are destroyed by ionizing radiation.

It should also be noted that techniques exist which, in contrast to the
techniques mentioned above, rely on the absence of interaction between hu-
man body tissues and applied external fields. For example, static and low
frequency magnetic fields are exploited in magnetic tracking where these
fields are used for positioning of objects in and around the human body.

In conclusion, electromagnetics has a central role in biomedical engineer-
ing and thus in modern healthcare.

1.3 Overview of the thesis

This thesis demonstrates the usefulness and importance of accurate, un-
biased, and automatized electromagnetic modeling by means of numerical
methods. More specifically, this type of modeling is exploited for biomedical
problems.

The thesis consists of two parts. The second part includes the appended
publications that form the backbone of this work whereas the first part gives
an introduction to the work and the publications.

The first part is divided into four chapters where the first chapter intro-
duces biomedical engineering and the role of electromagnetics in biomedical
engineering. In chapter 2, a brief summary of electromagnetic theory is given.
Furthermore, computational electromagnetics is introduced and its applica-
tions to parameter studies, sensitivity analysis, optimization, and inverse
problems are discussed. The theory and methods presented in chapter 2 are
then applied to three different biomedical problems: (i) modeling of pace-
maker lead heating in MRI; (ii) optimization of sensor positions in magnetic
tracking; and (iii) EEG-based source localization. These studies are found
among the publications and a summary is given in chapter 3. Finally, the
first part ends with chapter 4 where the work is concluded.
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Chapter 2
Electromagnetic modeling and design

Mathematical modeling, or simply modeling, is the process of describing a
physical situation in terms of mathematical concepts, notation, and language.
This description is referred to as a model. Models are fundamental to science
as they help scientists to understand, analyse and predict the world around
us. Physical laws are models that, in general, have been formulated from
and validated against observations, experiments and measurements.

This work is dedicated to electromagnetics. Therefore, an introduction
to electromagnetic theory and Maxwell’s equations is given in section 2.1
below. Solutions to Maxwell’s equations can be found by analytical methods
only in certain canonical situations, for example, where the problem geom-
etry features symmetries. Problems that cannot be solved analytically can
be addressed with computational methods as introduced in section 2.2 be-
low. The popularity and usefulness of computational techniques is steadily
increasing due to the development and improvement of the techniques in
themselves, and also due to the, so far, continuous growth in available com-
puting power. As a consequence, computational techniques have come to
replace experiments and measurement campaigns in many situations. In ad-
dition, computational techniques can provide information on situations where
measurements are considered impossible or intractable. For example, mea-
surements of electromagnetic fields in the human body are often avoided due
to the associated risk for the subject’s health and simulations are exploited
instead.

Computational electromagnetics can be exploited for parameter studies,
sensitivity analysis, and optimization as introduced in section 2.3 below.
Moreover, section 2.4 is devoted to inverse electromagnetic problems for the
solution of which computational techniques constitute a valuable tool.

7



Chapter 2. Electromagnetic modeling and design

2.1 Electromagnetic theory

Electromagnetic phenomena on a macroscopic scale are described by
Maxwell’s equations [2]

∇ × E = −∂B

∂t
(Faraday’s law) (2.1a)

∇ × H =
∂D

∂t
+ J (Ampère’s law) (2.1b)

∇ · D = ρ (Gauss’ law) (2.1c)

∇ · B = 0 (Absence of magnetic charges) (2.1d)

where E is the electric field, B is the magnetic flux density, H is the magnetic
field, and D is the electric displacement. Further, J is the electric current
density, ρ is the electric charge density, and t denotes the time.

Moreover, electric charge is conserved

∇ · J = −∂ρ

∂t
(2.2)

and additional relations between the field quantities are given by the consti-
tutive relations which take the form

D = εE (2.3)

B = µH (2.4)

in the special case of linear, isotropic, and non-dispersive media. Here, ε is
the electric permittivity and µ is the magnetic permeability. The relative
permittivity εr and the relative permeability µr are given by ε = εrε0 and
µ = µrµ0 where the constants ε0 and µ0 are given in table 2.1. Furthermore,
in conductive media with conductivity σ, the eddy current density is related
to the electric field by Jeddy = σE which gives

J = σE + Jext (2.5)

where Jext are impressed currents.
The following boundary conditions can be derived from Maxwell’s equa-

tions

n̂2 × (E1 − E2) = 0 (2.6a)

n̂2 · (D1 − D2) = ρs (2.6b)

n̂2 × (H1 − H2) = Js (2.6c)

n̂2 · (B1 − B2) = 0 (2.6d)

8



2.1 Electromagnetic theory

Quantity Value
Speed of light c0 = 299 792 458 m/s
Permeability µ0 = 4π · 10−7 Vs/Am
Permittivity ε0 = 1/(c2

0µ0) ≈ 8.854 · 10−12 As/Vm

Table 2.1: Constants for free space

where the subscripts refer to medium 1 and 2 that are on opposite sides
of the boundary, n̂2 is the outward directed normal of medium 2, and ρs

and Js denote the surface charge density and surface current density on the
boundary, respectively.

The scalar and vector potentials ϕ and A are defined by

B = ∇ × A (2.7)

E = −∇ϕ − ∂A

∂t
. (2.8)

Inserting the potentials into Ampère’s law (2.1b) and Gauss’ law (2.1c),
assuming free space conditions (ε = ε0, µ = µ0, σ = 0) and a time dependence
of exp(jωt) where ω is the angular frequency, and exploiting the Lorentz
gauge

∇ · A = −jωε0µ0ϕ (2.9)

leads to the vector Helmholtz equation

−
(

∇2 +
ω2

c2
0

)
A = µ0J. (2.10)

and to the scalar Helmholtz equation

−
(

∇2 +
ω2

c2
0

)
ϕ =

ρ

ε0

, (2.11)

respectively.

Maxwell’s equations can be solved analytically for certain problems by, for
example, separation of variables. Two such problem are the fields in vacuum
near (i) a conducting edge, and (ii) the tip of a conducting circular cone,
which are treated in appendix A and references [2–4]. These examples are
solved with analytical techniques (if we neglect the eigenvalue-type problem
in equation (A.5)). However, in many real-life situations, analytical solutions
are not available and computational methods must be used instead.

9



Chapter 2. Electromagnetic modeling and design

2.2 Computational electromagnetics

Computational electromagnetics include several numerical methods that are
based on different approximations. These approximations provide different
advantages and drawbacks. Thus, no method is superior to the others for all
types of problems. However, one method is almost always better suited than
the others for a specific problem. Therefore, the choice of computational
method is an important part of the modeling process.

Three popular techniques are discussed below. The finite element method
(FEM) and the finite-difference time-domain (FDTD) method are treated
in section 2.2.1 whereas the method of moments (MoM) is treated in sec-
tion 2.2.2. A more thorough introduction to these methods is given in the
textbook [3].

The FEM is exploited in Paper VI and FDTD is applied in Paper V.
The MoM is used in Paper I and Paper II as well as in Paper III and
Paper IV, where a simplified version is exploited.

2.2.1 Volume discretizing schemes

In this section, we present the finite element method and the finite-difference
time-domain method. Both these methods rely on a discretization of the
computational volume.

The FEM is a computational technique that is widely used within the
engineering disciplines for solving linear partial differential equations (PDE)
numerically.

Consider the linear PDE

L[u] = s (2.12)

where L is a linear differential operator, s is a known source term, and u ∈ V
is the unknown function that is to be computed on a domain Ω where V is
an appropriate function space, for example a Sobolev space that ensures the
integrability of the function and a specified number of its derivatives. (In
the following we will use the Lebesque space L2 as V for brevity.) This PDE
together with suitable boundary conditions on the boundary Γ = ∂Ω form a
boundary value problem. Three common types of boundary conditions are:

Dirichlet The solution u is specified on the boundary Γ.

Neumann The derivatives of u are specified on Γ.

Robin A combination of u and its derivatives are specified on Γ.

10



2.2 Computational electromagnetics

The FEM consists of the following steps. The computational domain Ω is
divided in smaller parts, or elements, of simple geometrical shape, for exam-
ple triangles or quadrilaterals in 2D. The ensemble of elements are referred
to as a mesh. The solution u ∈ V is approximated with a linear combination
of basis functions {φi}n

i=1 as

u ≈ uh =
n∑

i=1

uiφi ∈ Vh (2.13)

where {ui}n
i=1 are unknown coefficients and Vh is a finite dimensional subspace

of V . Typically, the basis functions are local. For example, a common choice
of basis functions is piece-wise linear polynomials. One such basis function is
associated with every node in the mesh where it takes the value one whereas
it takes the value zero at all other nodes. The approximate solution uh can of
course not be expected to be correct everywhere in Ω since it does not lie in
the same function space as u. The FEM computes the approximate solution
uh as the orthogonal projection of u onto Vh. This can also be formulated as
putting the residual r = L[uh] − s to zero in a weighted average (or weak)
sense. That is,

< wj, r >=

∫

Ω

wjrdΩ =

∫

Ω

wj (L[uh] − s) dΩ = 0 (2.14)

for a set of test function {wj}n
j=1 ∈ Vh. Here, < ·, · > denotes an inner prod-

uct in V which is exemplified with the inner product of L2. In the commonly
used Galerkin’s method, the test functions are chosen to be the functions
{wj}n

j=1 = {φi}n
i=1 that approximate the solution in equation (2.13). In-

serting the expansions of uh and wj in equation (2.14) leads to a system of
linear equations Ku = b that can be solved for the unknown coefficients
u = [u1, u2, . . . , ui, . . . , un]T . If the basis and test functions are local, as in
this example, the system matrix K is sparse. It can be shown that uh con-
verges to u as the number of elements n grows for a correctly constructed
FEM, that is the subspace Vh tends to V .

For electromagnetic computations where vector quantities are sought, so-
called curl-conforming and divergence-conforming basis function are used [5].
Curl-conforming basis functions feature a continuous tangential component
over element edges whereas their normal component is allowed to be discon-
tinuous. This ensures that the curl of the basis function is square integrable.
In contrast, divergence-conforming basis function feature a continuous nor-
mal component over element edges and the tangential component is allowed
to be discontinuous. As a consequence, the divergence of the basis function is

11



Chapter 2. Electromagnetic modeling and design

square integrable. Furthermore, both curl- and divergence-conforming basis
functions are associated with edges/faces instead of nodes in the mesh.

The FEM applied to Maxwell’s equations on differential form can han-
dle the presence of inhomogeneous media well since it discretizes the vol-
ume of the computational domain. Furthermore, curved boundaries can be
well-approximated by the unstructured grids exploited by the method. In
addition, this grid type allows for adaptive refinement of the computational
domain. Drawbacks of the method include the computational cost associated
with solving the (large) system of linear equations. In addition, the FEM
exploits implicit time-stepping, in general, if a time domain computation
is considered. This is also relatively costly but has the advantage of being
unconditionally stable (that is, the method is stable for all choices of step
lengths in time).

The FDTD method also exploits Maxwell’s equations on differential form.
The computational volume is discretized with a Cartesian grid. Thus, dif-
ferent media can be handled well but curved boundaries are represented by
“stair-cases”. The differential operators are approximated with finite differ-
ences in space and a leap-frog scheme in time. This is in contrast to the FEM
where the differential operators are left untouched and the solution is approx-
imated instead. As a consequence of discretizing the differential operators,
staggered grids are exploited in both time and space. The stability of the
method is governed by the Courant-Friedrichs-Lewy (CFL) condition [6, 7]
that limits the time step ∆t according to

∆t ≤ 1

c
√

1
(∆x)2

+ 1
(∆y)2

+ 1
(∆z)2

(2.15)

where the size of the grid is denoted by ∆x, ∆y, ∆z in the x-, y-, and z-
directions respectively. The CFL condition ensures that a wave in the nu-
merical model can travel at least as quickly as a wave in the physical world.
For problems that require a fine spatial discretization, the number of time
steps needed can become prohibitively large. The low computational cost
in terms of both operations and memory usage, and its ease of implemen-
tation, make the FDTD method popular and well-suited for implementation
on graphics processing units (GPU).

It should be noted that the FDTD is a special case of the FEM in time
domain. If the computational domain is discretized with cubes and Galerkin’s
method is exploited with edge elements, mass lumping can be achieved by
trapezoidal integration. Then, the mass matrix involved in the FEM becomes
diagonal which results in the FDTD method [8, 9].

More information on the FEM can be found in references [10, 11] whereas
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2.2 Computational electromagnetics

the FDTD method is treated in more detail in references [12, 13].

2.2.2 Method of moments

The boundary element method is usually referred to as the method of mo-
ments (MoM) when applied to electromagnetics. The MoM is based on the
integral representations of Maxwell’s equations which are usually formulated
in frequency domain.

Consider a known electric field Einc that is incident on a perfectly con-
ducting object Ωc. The incident field yields induced currents Js on the surface
of the conductor. These currents radiate a scattered electric field Escat. The
boundary condition in equation (2.6a) implies that

n̂ × (Einc + Escat) = 0 (2.16)

on the boundary ∂Ωc of the object with normal n̂. The boundary condition is
exploited in the MoM to formulate the electric field integral equation (EFIE)
that is solved for the induced surface currents Js.

The vector and scalar potentials can now be formed by superposition as

A(r) =

∫

∂Ωc

GJ(r, r′)Js(r
′)dS ′ (2.17)

ϕ(r) =

∫

∂Ωc

Gρ(r, r
′)ρs(r

′)dS′ (2.18)

where the Green’s functions GJ(r, r′) and Gρ(r, r
′) give the vector/scalar

potentials at a point r generated by a “point current”/point charge at r′,
respectively. The Green’s functions are given by

GJ(r, r′) =
µ0

4π

exp (−jkR)

R
(2.19)

and

Gρ(r, r
′) =

1

4πε0

exp (−jkR)

R
(2.20)

where R = |r − r′| and k = 2π
λ

.
By inserting (2.17) and (2.18) into equation (2.8) and imposing the bound-

ary condition (2.16), the EFIE is obtained as

Einc
tan =

jωµ0

4π

∫

∂Ωc

exp (−jkR)

R
Js(r

′)dS ′
∣∣∣∣
tan

+
j

4πε0ω
∇
∫

∂Ωc

exp (−jkR)

R
∇′ · Js(r

′)dS ′
∣∣∣∣
tan

(2.21)
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Chapter 2. Electromagnetic modeling and design

where ∇′ acts on primed (source) coordinates and ·|tan indicates tangen-
tial component. A FEM approach with divergence-conforming Rao-Wilton-
Glisson (RWG) basis functions [14] is applied to the EFIE. The surface cur-
rents Js are approximated by a linear combination of the basis functions
{si(r)}N

i=1 as Js ≈ ∑N
i=1 aisi(r). An integration by parts of the second term

of the right hand side of (2.21) together with Galerkin’s method lead to a
system of linear equation Zi = eincident that can be solved for the expansion
coefficients of the surface currents i = [a1, a2, . . . , aN ]T . Here, the (i, j):th
element of the matrix Z is given by

Zi,j = − jωµ0

4π

∫

∂Ωc

si(r) ·
∫

∂Ωc

sj(r
′)

exp(−jkR)

R
dS ′ dS

+
j

4πε0ω

∫

∂Ωc

∇ · si(r)

∫

∂Ωc

∇′ · sj(r
′)

exp(−jkR)

R
dS′ dS

(2.22)

and the i:th element of Eincident is given by

einc
i = −

∫

∂Ωc

si · Einc
tandS. (2.23)

Note that, during the assembly of Z, the 1/R singularity from the Green’s
function can be extracted and integrated analytically leaving a non-singular
part for standard numerical integration [15].

In order to avoid problems with internal resonances associated with closed
surfaces, the magnetic field integral equation (MFIE) and its linear combina-
tion with EFIE, i.e. the combined field integral equation (CFIE), are usually
exploited. See the references [3, 10] for more information on these methods.

A widely used approximation is the thin-wire approximation. Consider a
perfectly conducting wire of radius a which is thin, i.e. ka ≪ 1 and introduce
a local coordinate system (ξ, Ψ) where ξ describes the position along the wire
and Ψ denotes the angle around the circumference of the wire. Furthermore,
assume

(i) that currents flowing in the circumferential direction can be neglected,
and

(ii) that the surface current density flowing along the wire is independent
of Ψ.

The surface current density on the wire can now be approximated with
a total current Jt.w.(ξ) = Jt.w.(ξ)ξ̂ flowing along the wire as Js(ξ, Ψ) ≈
(2πa)−1Jt.w.(ξ)ξ̂. This leads to a reduced number of unknowns and sim-
plifications in the assembly procedure when computing Zi,j in (2.22). Fur-
ther approximations can be employed but simplifications that remove the
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2.2 Computational electromagnetics

singularity from the Green’s function should be avoided since this leads to
spurious solutions [3]. Instead, the singularity should be treated by singular-
ity extraction or numerical integration schemes that are suitable for treating
logarithmic singularities.

Since only boundaries between different media are discretized in the MoM,
the number of unknowns can be substantially reduced as compared with vol-
ume discretizing methods if there are few different media. It should also
be stressed that radiating boundary conditions are already included in the
formulation of the MoM. The price to pay, as compared with volume dis-
cretizing methods, is that the system matrix Z is dense which implies that
its inversion comes at a higher computational cost than for a sparse matrix
of equal size. In some physical situations, the off-diagonal terms in Z that
describe the interaction between currents represented by different basis func-
tions can be neglected which leads to a much simpler problem. For example,
this is exploited in Paper III and Paper IV where mutual coupling between
sensing coils in a quasi-magnetostatic problem is neglected.

2.2.3 Errors and validation

Modeling and numerical computations inherently introduce errors in the com-
puted solution. A fundamental part of the modeling process is to identify
the error contributions from different contributing factors and balance them
such that the error is minimized for a certain computational cost. Errors can
be classified in the categories below [10].

Modeling errors When a real-life situation is described in mathematical
terms, many factors are neglected. For example, an antenna that is to
be studied might be considered to be surrounded by nothing else than
free space although such a situation never occurs in reality.

The mathematical model usually consists of a continuum representation of
the problem at hand. The continuum problem is, in general, impossible to
solve with analytical methods and numerical methods are exploited instead,
which comes at the price of:

Approximation errors Approximations and simplifications such as, for
example, the thin-wire approximation described in section 2.2.2, intro-
duce errors. The size of these errors can be estimated by a comparison
with computational results that do not exploit the approximation (if
they are feasible) as in Paper II, or with analytical solutions as in
Paper VI.
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Chapter 2. Electromagnetic modeling and design

Discretization errors Computational modeling is based on discrete rep-
resentations of continuous real-world situations. The translation from
a continuous to a discrete representation, which is referred to as dis-
cretization, introduces errors. Fortunately, these errors depend on the
cell size in a predictable way for correctly working computational meth-
ods. The size of the errors can therefore be assessed by means of a con-
vergence study that exploits successively finer discretizations, provided
that sufficient resources are available for solving the problem with a
finer discretization. Furthermore, this allows for extrapolation of the
computed result to zero cell size.

An introduction to convergence studies and extrapolation is given in
the monograph by Rylander et al. [3] and Paper I includes an example
of such a study.

Numerical errors Numerical errors are due to the finite precision of com-
puters. These errors are primarily taken into consideration during the
design of a computational method. In general, numerical errors con-
tribute less to the total error than the other errors described above as
long as the problem is not excessively ill-conditioned.

Thus, the size of errors associated with the solution of continuum problems
by computational means can, and should, be assessed.

Assessment of the remaining error type, the modeling errors, is often
performed by comparing computational results with measurements of the
same physical situation. Since measurements take all influencing factors in
account, the measured data is often used as ground truth and the computa-
tional model is concluded to be responsible for differences between computed
and measured results. However, it is important not to forget that the mea-
sured result can be affected by unwanted factors should the measurement
setup not be properly designed. Also, great care must be taken to ensure
that the same situation is modeled and measured. Differences in modeled
and real-life dimensions, positions, material properties etc. can cause a per-
fectly accurate model to be rejected solely because the measured and modeled
situations are not identical.

A computational model with assessed error levels provides the possibil-
ity to perform parameter studies, sensitivity analyses, and optimization as
described in the following section.
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2.3 Parameter studies, sensitivity analysis and optimization

2.3 Parameter studies, sensitivity analysis

and optimization

A computational model includes several parameters, e.g. positions, dimen-
sions, and material properties, that affect the solution of the modeled prob-
lem. By varying these parameters in a systematic way, their influence on the
solution can be understood and assessed. How to vary the parameters is a
research branch of its own which is referred to as design of experiments. See
for example the textbook [16] for an introduction to the field.

Consider a model that computes the value V (p) as a non-linear and non-
trivial function of the parameters in p ∈ Ωp. If the number of parameters
is small, the computations are relatively cheap, and the parameter space Ωp

is small in some sense, a study that attempts to exhaustively evaluate the
function V for p ∈ Ωp can be endeavoured. This can be done in a structured
or unstructured way by, for example, sampling on a Cartesian grid or at
randomly chosen positions in Ωp, respectively.

However, in many real-life situations an exhaustive study is not possible
due to a large number of parameters, expensive computations, and/or a
large parameter space. As a consequence, the influence of p on V can only
be investigated in specific parts of the parameter space. Both these types of
studies are referred to as parameter studies, examples of which are given in
Paper I and Paper II.

In some situations, the influence of p on V , the sensitivity, in and around
a certain point p0 ∈ Ωp is of interest. The function V is approximated by a
linear function by means of a Taylor expansion around p0 given by

V (p0 + δp) ≈ V (p0) + ∇pV (p)|p=p0
δp + H.O.T. (2.24)

where δp is the deviation from p0 and H.O.T. signifies higher-order terms
that are neglected. The linear approximation of V is thus, in general, valid
only in a neighbourhood around p0, i.e. where the higher-order terms are
small in comparison with the constant and linear term.

Derivatives and sensitivities can be computed by means of differentia-
tion of closed-form expressions as demonstrated in Paper III and Paper
IV, finite differences, or solving the adjoint problem as in Paper V. They
can also be exploited for sensitivity/robustness analyses where the impact
of different parameters is assessed and compared, for automated optimiza-
tion of electromagnetic systems (Paper III and Paper IV) and for solving
inverse problems which is the considered application in Paper III, Paper
IV, Paper V, and Paper VI.

17



Chapter 2. Electromagnetic modeling and design

2.4 Inverse problems

2.4.1 Definition and properties

A direct or forward problem is a problem where all problem-describing equa-
tions and parameters are known. For example, computing the field scattered
by a metal sphere with known position and radius in free space that is illu-
minated by a plane wave with known direction of propagation and frequency.

In contrast, an inverse problem consists of estimating one or several
problem-describing equations or parameters from (partial) knowledge of the
solution to the problem. For the example above, this could consist of esti-
mating the position of the sphere from measurements of the total field at a
few specific locations and a limited frequency band.

Frequently encountered inverse electromagnetic problems include the fol-
lowing types:

Source reconstruction/localization Source reconstruction aims at infer-
ring the source position and characteristics from measurements of the
electromagnetic fields produced by the source. Source localization is
a sub-class of source reconstruction where the characteristics of the
source are known and only the position is to be determined. Exam-
ples of the latter include magnetic tracking where the position of a
transmitter is determined from measurements of the magnetic fields it
generates, as discussed in Paper III and Paper IV, and localization
of brain activities from EEG measurements as treated in Paper VI.

Reconstruction of constitutive parameters This type of inverse prob-
lem consists of determining the permittivity, permeability and con-
ductivity in a bounded region from measurements on its boundary.
Electric impedance tomography considers the static and quasi-static
electric case. It has been studied for various medical and industrial
applications [17] such as, for example, detection of blood clots in the
human lungs [18], and detection of twist in wood [19]. The electrody-
namic case includes applications like breast-cancer detection [20] and
Paper V, as well as monitoring of industrial processes [21].

It should be noted that there are more types of inverse problems, for exam-
ple reconstruction of initial or boundary values, shape reconstruction, and
identification of governing equations (system identification).
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Inverse problems are, in general, difficult to solve. This is due to their ill-
posedness. An ill-posed problem violates one or several of the three criteria
for a well-posed problem:

(i) There exists a solution to the problem.

(ii) The solution is unique.

(iii) The solution depends continuously on the data.

For example, violation of the third criterion leads to a problem where a small
amount of measurement noise yields to a dramatic change in the obtained
solution. This type of ill-posed continuous problem yields an ill-conditioned
problem when it is discretized. To overcome the ill-posedness of inverse prob-
lems, more a priori information can be added, which is called regularization.
For example, constitutive parameters that are reconstructed can be restricted
to slow spatial variations. Inverse problems are discussed in, for example,
the textbook [22].

A common way of formulating and solving an inverse problem is as follows.
Consider an inverse problem that aims to determine the problem-describing
parameters p of the forward problem. Establish a model V model(p) of the
measurement system and solve the optimization, or estimation, problem

minimize
p

J [Vmeas,Vmodel(p)] (2.25)

for the estimate p̂ where the misfit between the measured data V meas and
the modeled data V model is quantified by the cost function(-al) J . A popular
choice of cost function is different norms such as Lp-norms and the L2-norm
in particular. Scaling of the data with a weighted norm can be beneficial
if, for example, different entries in V meas have different noise characteristics.
Another type of scaling is proposed and evaluated in Paper V.

Solving an inverse problem is, in general, a complicated task. For exam-
ple:

• The system model must accurately model the physical system.

• The measurement system must be well-designed due to inverse prob-
lems being sensitive to measurement noise.

• The optimization problem must be pertinently defined and efficiently
solved.
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Chapter 2. Electromagnetic modeling and design

Especially, these factors influence each other. For example, a very accurate
system model might come with a prohibitively large computational cost, etc.

In this work, we address these challenges for different applications. In
Paper VI, the influence of modeling errors is examined. In addition, the
accuracy of several models are compared and their appropriateness for solving
the considered problem is investigated. The sensitivity to noise is assessed in
Paper VI and exploited as a design criterion to be minimized in Paper III
and Paper IV. The two latter papers also propose a method to improve the
system design of the measurement system by optimizing its sensor positions.
Furthermore, how to formulate the cost function is investigated in Paper V.

2.4.2 Assessment of parameter estimation perfor-
mance

Assessment of the parameter estimation performance is crucial for improve-
ment of a measurement system and comparison between measurement sys-
tems. The system model V model is often non-linear in the parameters p ∈ Rp

that are to be estimated, which complicates the performance assessment.
Below, we present two performance assessment approaches that are com-

monly used: (i) linearization; and (ii) full system simulation including non-
linearities. These methods are local for a non-linear problem, i.e. they are
valid only for a specific parameter value p0. Therefore, we also discuss dif-
ferent ways of extending local metrics to non-local metrics.

Consider a measurement system that produces N r measurements
{V meas

k }Nr

k=1. Assume that the measurements consist of a true signal Vk that
is corrupted by additive Gaussian measurement noise and that these noise
terms are independent and identically distributed. That is,

V meas
k (p0) = Vk(p0) + nk, nk ∼ N (0, σ2) (2.26)

where N (µ, σ2) denotes the Gaussian distribution with mean µ and variance
σ2.

With these assumptions, the covariance of the estimated parameters is
bounded from below by the so-called Cramér-Rao bound [23]

cov p̂ ≽ M−1 (2.27)

for all unbiased estimators. Here, A ≽ B signifies that A − B is positive
semi-definite and M ∈ Rp×p is the so-called Fisher information matrix [24]
given by

M(p0) =
Nr∑

k=1

Mk(p0) =
Nr∑

k=1

[∇pVk(p0)] [∇pVk(p0)]
T

σ2
. (2.28)
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It should be noted that the Cramér-Rao bound can be attained. For exam-
ple, the bound is attained asymptotically by the maximum-likelihood esti-
mator [23].

In equation (2.28), we see the close connection between the Fisher in-
formation matrix and the sensitivities, i.e. the gradient of V with respect
to the parameters in p. Large sensitivities are usually aimed for since they
signify that small variations in p yield large variations in the measured sig-
nal V . Equivalently, large sensitivities make the measurement system more
robust to noise since large variations in V yield small variations in p̂. Zero
sensitivity corresponds to an unchanged measured signal for an infinitesimal
change in the underlying parameter. This corresponds to an unidentifiable
parameter in the special case with one parameter and one measurement. In
the general case, p is not identifiable if M is rank-deficient. Since M is a
sum of N r rank-one matrices,

N r ≥ p (2.29)

is a necessary but not sufficient condition for p to be identifiable.
The solutions q ∈ Rp to the equation qTM(p0)q ≤ c describe a confidence

ellipsoid in the parameter space centered at p0 for a certain confidence level
described by the constant c. Optimization of a measurement system can aim
at minimizing the confidence ellipsoid in some sense. It is convenient, and
often necessary [25], to have a scalar metric of performance that is exploited
for comparisons between candidate system designs. Therefore, a real-valued
criterion function J(M) is usually exploited. Criterion functions are often
convex/concave and can be interpreted geometrically. For example, the so-
called D-optimality (Determinant-optimal) criterion

JD(M) = − log det(M) (2.30)

is convex on the domain of symmetric positive-definite matrices [26] and it
is related to the volume of the confidence ellipsoid. Numerous criteria are
available, see for example references [25, 27, 28]. The D-optimality criterion
is exploited in Paper III and Paper IV.

An alternative to the approach based on linearization described above, is
to perform a series of full system simulations (or experiments) with random
noise for a known p0. By comparing the estimated p̂ with the known p0,
statistics can be established that quantify the performance of the parameter
estimation. This approach is exploited in Paper VI.

The linearization-based method is valid for all unbiased estimators and
comes with a low computational cost. However, non-linearities are neglected.
In contrast, the method based on full system simulations includes the com-
plete non-linear behaviour of the measurement system. The drawbacks of

21



Chapter 2. Electromagnetic modeling and design

this method are that the results are valid only for a specific estimator and
that a large number of simulations and estimations must be performed.

Both methods described above are local for a non-linear problem, i.e. they
are valid only for a specific p0. However, the performance is usually sought
to be assessed in a measurement domain Ωp ⊆ Rp. Let the local metric be
described by the criterion function J(M(p)). This metric can be extended to
cover the measurement domain in several ways. A straight-forward approach
consists of evaluating J at a number of pertinently chosen locations in Ωp and
build statistics of the results. Below, we consider extensions in an average-
and minimax-sense in more detail.

Assume that a prior probability distribution πp(p) for p that incorporates
information about Ωp is known. The average, or expected, performance can
be computed as

JEX = E
p
{J(M(p))} =

∫

Rp

J(M(p))πp(p)dp (2.31)

which can be a computationally very expensive task depending on the size
of Ωp and characteristics of the underlying measurements.

For certain applications, the worst-case performance may be of interest.
For example, it might be desired to be able to guarantee a certain level
of performance everywhere in the measurement domain. The worst-case
performance is quantified by the criterion

JMMX = max
p∈Ωp

{J(M(p))} (2.32)

which in itself constitutes an optimization problem that needs to be solved.
It should be noted that extensions of local linear criteria are not truly

global since they do not consider the potential presence of local minima in the
estimation problem nor do they consider if the parameters can be uniquely
estimated everywhere in the measurement domain. More details on these
identifiability and estimability issues are given in [27] and an example of a
suggested remedy is given in reference [29].

2.4.3 Optimization of system design

Optimization of a measurement system’s design can be formulated as the
optimization problem

minimize
Ξ

J(Ξ)

subject to p ∈ Ωp

(2.33)

where J is a performance metric, such as the ones discussed in the previous
section, and Ωp is the measurement domain for which we wish to optimize
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the measurements. The design of the measurement system, or the experiment
design, is denoted by Ξ.

Problems of this type are discussed in the textbooks [23, 27] and from a
more mathematical viewpoint in reference [30]. Furthermore, Paper III and
Paper IV are devoted to the optimization of a generic magnetic tracking
system by formulating and solving problems of the type in equation (2.33).
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Chapter 3
Results

3.1 Pacemaker lead heating during MRI

3.1.1 Background

Three different electromagnetic fields that interact with the human body and
objects are exploited in MRI (see reference [31] for more details):

Static field The static, or B0 field, takes high values, e.g. 1.5 T or 3 T, and
constitutes the main characteristic of an MRI system. Objects in the
static field will be subject to forces and torques. As a consequence,
objects risk getting stuck to the MRI system [32] and can be turned
into potentially lethal projectiles [33, 34].

Gradient fields The gradient fields are found in the kHz-range and can
therefore lead to unwanted nerve stimulation. Metal implants can
concentrate the fields and lead to a higher risk of nerve stimulation.
Furthermore, these fields can cause metal objects, e.g. wire loops, to
vibrate, which can result in strong acoustic noise.

RF field The RF field operates at γ/(2π)B0 MHz where γ is the gyromag-
netic ratio. For protons γ/(2π) = 42.58 MHz/T which leads to an RF
frequency of 63.87 MHz for a 1.5 T-system. The RF field causes tissue
heating. Therefore, regulatory constraints limit the absorbed power
which is measured in W/kg by the specific absorption rate (SAR)

SAR =
1

2

σ|E|2
ρ

(3.1)

averaged in space over a certain mass of tissue (1 g, 10 g, whole body,
etc.). Here, ρ is the density of the tissue. Conducting implants can lead
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to strong electric fields, in particular near sharp edges and corners, that
cause important heating. Elongated implants, such as pacemaker and
DBS leads, are especially prone to cause severe heating.

Pacemakers and implantable cardioverter-defibrillators (ICDs) as well as
MRI are integral parts of modern healthcare. For example, approximately
0.6 % of the population had a implanted pacemaker/ICD [35] and 41 MRI
examinations per 1000 inhabitants were performed1 [36] in Sweden in 2012.
Similar data led representatives from Medtronic, one of the largest manufac-
turers of implantable cardiac devices in the world, to estimate a 50 − 75 %
probability of a patient with such a device being indicated for an MRI ex-
amination during the life span of the implanted device [37]. Unfortunately,
patients with these devices are not allowed to be examined with MRI due to
the interactions of the electromagnetic fields with the implanted device.

Although at least 17 deaths of pacemaker patients related to MRI up
to 2007 are reported in reference [38], more than 1400 MRI examinations
of pacemaker patients have been performed without any consequences [39],
which has led to a debate if specifically designed MR safe pacemakers are
needed (see references [40, 41] for a summary). Claims that MRI exami-
nations with necessary precautions and monitoring is safe are opposed by
reports of unexpected potentially life-threatening events occurring despite
these precautions [42]. Nevertheless, there are currently conditionally MR
safe pacemaker systems approved for use in 1.5 T MRI, in the U.S. from one
manufacturer and for use in Europe from four manufacturers [40].

It should be stressed that the debate on safe scanning of pacemaker pa-
tients with standard devices and the appearance of MR conditional pace-
maker systems on the market do not abolish the need for further investiga-
tions within this area for at least two reasons: (i) as shown by the aforemen-
tioned debate, the behavior of pacemakers in MRI is still hard to predict;
and, as a consequence, (ii) the validity of a safety evaluation of a pacemaker
system is difficult to assess.

Heating near the electrodes of pacemaker leads is a problematic aspect of
the electromagnetic interactions in MRI from a safety perspective [43]. The
RF field induces currents in the lead. This yields highly localized electric
fields with high field strengths near the tip and ring electrodes, which causes
heating by losses in the tissue.

1This figure is based on data from 14 of Sweden’s 18+2 county councils and re-
gions where the county councils/regions comprising the largest hospitals are not included.
Therefore, the actual figure is probably higher.
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3.1 Pacemaker lead heating during MRI

Pacemaker lead heating is difficult to predict due to its dependence on
several factors including [44–48]:

• RF frequency and field strength

• Imaging system (coil design, open or closed bore)

• Type and duration of the imaging sequence

• Lead design and length

• Device position and lead configuration within the body

• Type of device (pacemaker, ICD)

• Lead abandoned of attached to a device

• Patient position in the RF coil

• Patient characteristics such as size, body composition, etc.

A summary of the heating impact of different lead design parameters is given
in reference [49].

3.1.2 Modeling

In the 1950s, Sensiper [50, 51] exploited analytical techniques to investi-
gate electromagnetic wave propagation on an infinitely long helical conduc-
tor. More specifically, the helix is approximated by a cylindrical sheet with
anisotropic conductivity. An overview of more recent studies that extend
and refine Sensiper’s work is presented in reference [52].

Modeling of the lead heating phenomenon by means of computational
techniques is difficult due to three main modeling challenges:

(i) Variations between examinations in terms of the almost endless com-
binations of the items listed in the previous section.

(ii) The heterogeneous nature of the human body with important differ-
ences in dielectric properties.

(iii) The multi-scale geometry which in 1.5 T MRI encompasses length scales
from a couple of λ (the human body) to roughly λ/1000 (small geo-
metrical details of implanted leads).
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3.1 Pacemaker lead heating during MRI

Previous modeling is summarized in table 3.1 and has for example addressed
inter-examination variations and the heterogeneity of the human body [58]
as well as comparison with measurements [55]. However, no modeling in the
literature has successfully resolved the small geometrical lead details which
have been shown experimentally to have important influence on the heat-
ing [46, 59]. Therefore, we exploit the frequency domain MoM to model a
heating experiment similar to the one described by the test standard ASTM
F2182-09 [60]. Special attention is devoted to the multi-scale aspects of the
problem during the modeling. The model includes (i) a generic 16-rung bird-
cage coil, (ii) a homogeneous body phantom shaped as a rectangular block,
and (iii) a highly detailed model of an implanted pacemaker system consist-
ing of a pacemaker unit and a bipolar pacemaker lead with passive fixation.
The thin-wire approximation is exploited to model the two conductors of
the lead. The model is described in more detail in Paper I and Paper II.
Further, an overview of the modeled geometry is given in figure 3.1.

3.1.3 Results and conclusions

The thin-wire approximation (see section 2.2.2) is exploited for modeling
of the conducting wires in the pacemaker lead. The associated discretiza-
tion and approximation errors (as described in section 2.2.3) are assessed as
follows.

In Paper I, we propose and evaluate a meshing scheme for helices dis-
cretized with straight wire segments where the cross section area is indepen-
dent of the number of wire segments per helix turn. A convergence study is
performed for a single and a double helix illuminated by a plane wave in free
space as well as in the MRI setting with birdcage coil and phantom. The
study shows that the proposed meshing scheme is superior to a conventional
meshing scheme in both convergence order and number of segments per turn
that are needed to achieve a certain discretization error.

In Paper II, the approximation error of the thin-wire approximation is
evaluated by comparing the induced currents on two coaxial helices in free
space illuminated by a plane wave for two types of discretization: (i) straight
thin-wire segments; and (ii) standard surface discretization with triangular
elements. Several helix geometries are studied and bounds are found for the
geometry-defining parameters that ensure valid thin-wire results in a quali-
tative sense. In addition, the discretization scheme from Paper I improves
the results substantially also in this study. Furthermore, the same setup is
exploited to find mesh parameters which ensure that the discretization error
caused by the insulation is smaller than the approximation error associated
with the thin-wire approximation.
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Chapter 3. Results

Figure 3.1: a: Overview of model geometry with birdcage coil, phantom and
implanted pacemaker system. b: Distal part of the lead with
tip and ring electrodes (opaque surfaces), inner (blue helix ) and
outer (black helix ) conductors, and insulation (wireframe).
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3.1 Pacemaker lead heating during MRI

Having assessed these approximation and discretization errors, the com-
plete model is exploited for an extensive parameter study comprising 425
parameter combinations. For each parameter setting, the induced currents
on the conductors as well as the currents flowing into the tip and ring elec-
trodes are evaluated at 53 different frequencies in the range 32 − 128 MHz.
The studied parameters are:

• Dielectric properties of the phantom material

• Lead length

• Lead termination including the possible presence of a pacemaker

• Presence of inner and outer conductor

• Conductor characteristics (pitch height, diameter of inner conductor,
number of filars, winding direction)

• Lead configuration

• Insulation permittivity and diameter

The results of the parameter study are summarized in Paper II and an
example is presented in figure 3.2 where the currents induced on the con-
ductors are shown together with the current flowing into the tip and ring
electrodes for a straight lead with different lengths. The results clearly show
the resonant nature of pacemaker lead heating. Moreover, the resonances
change substantially with the following parameters: (i) conductor winding
scheme; (ii) conductor length; (iii) conductor inter-turn and inter-conductor
distances; (iv) insulation permittivity; (v) lead configuration; and (vi) lead
termination including attachment to a pacemaker unit. In particular, the
lead heating’s dependence on these parameters becomes more chaotic as the
conductors are more densely wound. The overall conclusion of Paper II is
that the small geometrical details of pacemaker leads must be considered if
accurate and predictive modeling results are expected.
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Figure 3.2: Induced inner (a-c) and outer (d-f) conductor currents as well
as tip currents (g) and ring currents (h) for different lengths L.
The standard implant setup from Paper II is exploited with
counter-wound conductors. Here, ξ is a normalized coordinate
along the conductor.
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3.2 Optimization of sensor positions in magnetic tracking

3.2 Optimization of sensor positions in mag-

netic tracking

3.2.1 Background

Human body tissue is transparent to static and low-frequency magnetic fields.
This is exploited for positioning purposes in and around the human body
by so-called magnetic tracking systems that determine the position of an
object by means of its interaction with the fields mentioned above. Here,
we consider a system consisting of an object with unknown position and
orientation that transmits a magnetic field and a multitude of sensors or
receivers that measures the transmitted field. The position of the transmitter
is found as the solution to an inverse source localization problem as discussed
in section 2.4.1.

Applications of magnetic tracking include catheter tracking [61, 62], di-
agnosis of Ménière’s disease by eye tracking [63], real-time organ-positioning
during radiotherapy of cancer tumors [64], tracking of wireless capsule endo-
scopes in the gastro-intestinal tract [65], tracking of tongue movements [66,
67], monitoring of heart valve prostheses [68], estimation of lung segment
movements [69], and positioning of bone-embedded implants [70]. Further-
more, magnetic tracking has also been applied for non-medical purposes,
such as tracking of the pilot’s head in military aircraft for helmet-mounted
sights [71], augmented and virtual reality [72], guidance for underground
drilling [73], and tracking of an American football on the pitch [74].

A system model is needed for solving the positioning problem in equa-
tion (2.25). A quasi-static approximation of the low-frequency fields is usu-
ally exploited. The transmitting and receiving coils can be modeled by mag-
netic dipoles [68, 71, 75], which is an accurate model at distances that are
large in terms of the coil size. A more accurate alternative is offered by mod-
els based on the Biot-Savart law such as the one proposed in [63]. Another
approach is to construct surrogate models from measurement data instead
of modeling the physics, as demonstrated by Iustin et al. [64].

The sensor positions of a magnetic tracking system have substantial im-
pact on the tracking accuracy. Previously, Shafrir et al. [76] optimized the
sensor positions of a magnetic tracking system by a two-step evolutionary
algorithm. Their performance metric is based on a local metric that is com-
puted as a statistic from large numbers of full system simulations. More
specifically, the local metric is the root-mean-square value of the error be-
tween the true and estimated transmitter positions. The local metric is then
considered in a minimax sense over the measurement domain. As a conse-
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quence, the computational cost is large and the metric has the drawback of
being valid only for a specific positioning algorithm. In contrast, we propose
a method that is valid for all unbiased estimators and that does not demand
large computations, cf. section 2.4.2.

3.2.2 Convex optimization based on sensor selection

We model a generic quasi-magnetostatic magnetic tracking system in free
space that operates at the frequency ω. The coils are modeled as identical
magnetic dipoles. The transmitting coil’s position rt and orientation of the
magnetic dipole moment m̂t are unknown, i.e., we assume that ||mt|| is
known. Here, unit vectors are denoted with a hat. In contrast, the positions
rr

k and orientations m̂r
k of the N r sensing coils are known. Together with

Faraday’s law (2.1a), this leads to a closed-form expression for the induced
voltage in sensor k given by

Vk = −jω
α

V0

µ0

4π

(
3(m̂t · Rk)(m̂

r
k · Rk)

R5
k

− m̂t · m̂r
k

R3
k

)
(3.2)

where Rk = rr
k −rt is the vector from the transmitter to receiving coil k, and

Rk = ||Rk||. Furthermore, V0 denotes a reference voltage that renders Vk

dimension-less and α is a known parameter that models coil characteristics,
such as number of turns, diameter, and current flowing in the transmitting
coil.

Derivatives of the closed-form expression in equation (3.2) with respect to
the transmitter coordinates and orientation-describing parameters in p can
be computed analytically. Thus, the Fisher information matrix (2.28) can
also be obtained in closed form. The local D-optimality criterion (2.30) is
considered and extended to non-local designs in an average sense

JELD(Ξ) = −E
p
{log detM(p, Ξ)} = −

∫

Rp

log detM(p, Ξ)πp(p)dp (3.3)

and in a worst-case sense

JMMLD(Ξ) = max
p∈Ωp

{− log detM(p, Ξ)} . (3.4)

Furthermore, we consider bounded measurement domains Ωp and a uniform
prior distribution πp(p) in Ωp. The integral in equation (3.3) is approximated
by quadrature at the points of the discrete set Ωlin = {pi}Nlin

i=1 ⊆ Ωp with
non-negative weights qi. Trapezoidal quadrature is exploited for the three
dimensions of p that correspond to the transmitter position rt. Moreover,
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3.2 Optimization of sensor positions in magnetic tracking

a FEM-inspired quadrature with linear basis functions is used for the two
dimensions of p that correspond to the transmitter orientation m̂t. (A more
detailed description of the quadrature scheme is given in Paper IV.) The
same set of quadrature points Ωlin is exploited for approximating JMMLD as

JMMLD(Ξ) ≈ max
pi∈Ωlin

{− log detM(pi, Ξ)} . (3.5)

It should be noted that JELD, JMMLD, and their approximations above are
convex on the domain of symmetric positive-definite matrices (see Paper
IV).

The optimization problem in equation (2.33) with either of the cost func-
tions JELD and JMMLD and an experiment design Ξ consisting of sensor po-
sitions is solved by a sensor selection approach based on reference [77], as
follows. Instead of optimizing the positions of N r sensors, the sensor selec-
tion aims at finding the best set of N r sensors among K candidate sensors.
This can be formulated as

minimize
wk

J

(
1

N r

K∑

k=1

wkMk(p)

)

subject to p ∈ Ωp

wk ∈ {0, 1}, k = 1, . . . , K

K∑

k=1

wk = N r

(3.6)

where the weight wk takes the value one if sensor k is used. As this is a
combinatorial problem with

(
K
Nr

)
combinations, exhaustive search is tractable

only for small problems.
The difficulties of the combinatorial problem are avoided by modifying

the problem slightly. Let each sensor perform Nk measurements and let
Ntot be the total number of measurements. Introduce the rational number
λk = Nk/Ntot. If Ntot is large, λk can be approximated with a real number,
which yields

minimize
λk

J

(
K∑

k=1

λkMk(p)

)

subject to p ∈ Ωp

0 ≤ λk ≤ 1/p, k = 1, . . . , K

K∑

k=1

λk = 1

(3.7)
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where the upper bound on λk has been introduced to ensure that the condi-
tion (2.29) is fulfilled.

If the cost function J is convex on the domain of symmetric positive def-
inite matrices, the optimization problem (3.7) is convex [77], which is the
case for JD, JELD, and JMMLD. Thus, the problem (3.7) has only one lo-
cal minimum and the possible multi-modality, i.e. the possible presence of
several local minima, is avoided. This is beneficial since multi-modality is a
frequently encountered difficulty for this type of problems [25]. Another com-
mon difficulty, which is associated with the assumption of uncorrelated noise,
is sensor clusterization [25]. Sensor clusterization is manifested by optimized
solutions where several sensors are located at the same position or very close
to each other. A method that merges adjacent sensors is proposed in Paper
IV to mitigate this problem. As a consequence, the number of sensors in a
sensor selection-based solution to the optimization problem (3.7) cannot be
imposed beforehand. This is in contrast with the original formulation of the
problem.

The sensor selection method is exploited for local designs in Paper III
and non-local designs in Paper IV.

3.2.3 Results and conclusion

Planar sensor arrays are easy to handle due to their limited size which makes
this array geometry popular [63, 64]. Therefore, we limit this study to planar
sensor arrays although it should be emphasized that the sensor selection
method can handle any type of geometry, where sensors could be placed on
arbitrary curved surfaces as an example.

First, the sensor selection method is validated against a global optimiza-
tion method, namely a gradient-based multi-start method. For the consid-
ered measurement scenarios, the results in Paper IV show that the sensor
selection method finds results that are nearly optimal in terms of cost func-
tion value and very similar in terms of sensor positions while consuming
orders of magnitude smaller computational time.

In Paper III, local designs are reported for different p0. For one par-
ticular p0 where symmetries can be exploited, the problem is also solved
by exhaustive search. Showing a relative error of approximately 0.04%, the
sensor selection results are in excellent agreement with the results from the
exhaustive search.

Non-local designs are investigated in Paper IV. The worst performance
of the measurement system is obtained for tracking of the transmitting coil
in the regions of the measurement domain that are furthest away from the
sensor array. This is explained by the strong distance dependence of the
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Figure 3.3: Arrays optimized for average optimality (left) and minimax opti-
mality (right). Selected sensors are represented by circular mark-
ers, where the size is proportional to the weight λk of the sensor.
Sensor array boundaries are indicated with dashed lines.

measured signal (3.2) and its derivatives. As a consequence, sensor arrays
that are optimized with the minimax cost function JMMLD are larger than
sensor arrays that are optimized with the average cost function JELD. For
example, this can be seen in figure 3.3, where sensor arrays optimized for
the average and minimax cost functions are shown. Here, the measurement
domain is given by

Ωp = { (xt, yt, zt, m̂t) |
xt ∈ [−0.25, 0.25],

yt ∈ [−0.25, 0.25],

zt ∈ [0.5, 1],

m̂t ∈ S3}. (3.8)

where the sensor array lies in the plane z = 0, m̂r = ẑ, and S3 denotes the
unit sphere in R3.

In essence, optimized arrays, such as the ones in figure 3.3 and in Paper
IV, are a compromise of two competing desirable features. First, the distance
dependence favors sensors that are close to the transmitter and therefore
forces the sensors towards the closest position to the measurement domain.
Second, the determinant in the cost functions favors sensor arrays where the
contributions from the sensors show great diversity. This forces the sensors
away from each other.
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Chapter 3. Results

3.3 A finite-element reciprocity method for

EEG source localization

3.3.1 Background

There are several techniques for non-invasive brain activity measurements.
For example, functional magnetic resonance imaging (fMRI) measures
changes in blood flow that can be related to the activity level of adjacent
neurons. Another example is source localization via electroencephalography
(EEG). Ion flows associated with nerve signaling create differences in electric
potential at the skull surface that can be measured with electrodes. With
proper processing of the measured signals, the associated inverse problem can
be solved for the source location(s) and/or size. As compared with fMRI,
EEG source localization has the advantage of higher temporal resolution.

The EEG source localization problem is similar to magnetic tracking,
as discussed previously in section 3.2.1, in that they both can be classified
as inverse problems of source localization type (see section 2.4.1). Further-
more, sources are often modeled as dipoles in both cases. However, magnetic
tracking is associated with quasi-magnetostatics whereas the EEG source
localization problem is a quasi-electrostatic problem. Together with the di-
electric properties of human body tissue, this implies that the anatomy of
the subject’s body must be taken into consideration in EEG source localiza-
tion. (Remember that the human body is approximated with free space in
the magnetic tracking case.)

EEG source localization can serve to identify the location of brain tissue
responsible for epileptic seizures, which can be exploited in pre-surgical plan-
ning of tissue resection. This is the application in mind for the EEG source
localization method that is discussed below and in Paper VI.

3.3.2 Modeling

The aim of the forward model is to compute the electric potentials measured
by surface electrodes on the scalp due to nerve signals at the position x0

inside the brain.
The low frequency nature of nerve signals (kHz and below) permits a

quasi-static approximation of Maxwell’s equations [78]. Let the computa-
tional domain be Ω and let J = Js + σE, where Js is the so-called source
current. Also, it should be noted that some tissues in the human head are
better described by an anisotropic conductivity. If this is taken into account
in the model, the conductivity is a tensor instead of a scalar. We limit the
discussion below to the isotropic case.
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3.3 A finite-element reciprocity method for EEG source localization

By taking the divergence of equation (2.1b) and noting that the diver-
gence of the curl of a vector field is zero, we obtain Poisson’s equation for
steady currents

∇ · (σ∇ϕ) = ∇ · Js in Ω (3.9)

that is solved for the electric potential. We assume that no charge can leave
Ω, which is described by the boundary condition

n̂ · (σ∇ϕ) = 0 on ∂Ω (3.10)

where n̂ is a unit vector that is normal to the boundary. Further, we pick a
reference value for the electric potential

ϕ(xref) = 0 (3.11)

for a specified point xref in the computational domain.
Since the skull model is obtained from MRI or CT images, we discretize

the domain with cubical elements or voxels and apply a finite-element ap-
proach with piecewise linear nodal basis functions {φj}N

j=1. We expand the

potential as ϕ(x) ≈∑N
j=1 ujφj(x) and obtain a system of linear equations

Ku = b (3.12)

where K ∈ RN×N is a sparse symmetric positive definite stiffness matrix with
(i, j):th entry

Ki,j =

∫

Ω

σ∇φi · ∇φj dV, (3.13)

u ∈ RN is the vector with expansion coefficients of the electric potential, and
b ∈ RN is the right hand side vector given by

bj = −
∫

Ω

φj∇ · Js dV. (3.14)

The reference value for the electric potential in equation (3.11) is incorpo-
rated as

ϕ(xref) = uref = 0. (3.15)

The electrodes on ∂Ω (the skull surface) are assumed to measure the potential
at a specific node. Usually, the reference value in (3.15) is assigned to one of
the electrodes which is referred to as ground.

The source can be modeled as a dipole with dipole moment P at x0 as

Js
dipole(x) = Pδ3(x − x0) (3.16)
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where δ is the Dirac delta function and P is measured in [Am]. This source
model has a singularity at x0 and is therefore ill-suited for standard FEM.
As a consequence, different source modeling methods have been proposed.
Here, three of these methods are exploited for modeling of the dipole source:

Direct method The dipole is modeled as a closely spaced current source
and current sink with a large current flowing between them [79, 80].
This can be expressed as

∇ · Js(x) =
P

d

[
δ3

(
x − x0 − d

2
d̂

)
− δ3

(
x − x0 +

d

2
d̂

)]
(3.17)

where d = dd̂ is the vector from sink to source, P = P d̂ = I0dd̂ is the
dipole moment, and I0 is the current associated with the source and
sink. Inserting this in equation (3.14) yields

bdir
j = −P

d

[
φj(x0 +

d

2
d̂) − φj(x0 − d

2
d̂)

]

= −P

d

[
∇φj(x0) · dd̂ + H.O.T.

]
(3.18)

where a Taylor expansion around x0 is exploited and H.O.T signifies
higher order terms. Assuming that d is much smaller than the cell
size2, the higher order terms can be neglected and the right hand side
is given by

bdir
j = −P · ∇φj(x0). (3.19)

Thus, the right hand side contains non-zero entries for the nodes of the
element where the source is located.

Subtraction method In the subtraction method [81, 82], the singularity is
extracted from the finite element problem by dividing the potential in
two parts,

ϕ = ϕ∞ + ϕcorr. (3.20)

Here, ϕcorr is the so-called correction potential and ϕ∞ is the poten-
tial that solves (3.9) for the dipole source in (3.16) in an unbounded
homogeneous domain with conductivity σ∞. That is

∆ϕ∞ =
∇ · Js

σ∞ in R3 (3.21)

2This can also be expressed as letting d → 0 as in references [79, 80]. However, it should

be noted that, in this case, the dipole moment can no longer be expressed as P = I0dd̂
since this also tends to zero as d → 0.
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3.3 A finite-element reciprocity method for EEG source localization

which permits a closed form expression for ϕ∞,

ϕ∞ =
1

4πσ∞
P · (x − x0)

|x − x0|3
. (3.22)

Subtracting (3.21) from (3.9) yields the equation

∇ · (σ∇ϕcorr) = −∇ · ([σ − σ∞]∇ϕ∞) in Ω (3.23)

together with the conditions

n̂ · (σ∇ϕcorr) = −n̂ · (σ∇ϕ∞) on ∂Ω (3.24)

ϕ(xref) = 0 (3.25)

that can be solved for ϕcorr with the FEM. The system of linear equa-
tions

Kucorr = bsub (3.26)

features the stiffness matrix given by (3.13) and the right hand side

bsub
i = −

∫

Ω

∇φi · ([σ − σ∞]∇ϕ∞) dV −
∫

∂Ω

n̂ · (φiσ
∞∇ϕ∞) dS ≈

≈ −
∫

Ω

∇φi · ([σ − σ∞]∇ϕ∞) dV

(3.27)

where it is assumed that the source is sufficiently far away from the
boundary so that the boundary term can be neglected due to the strong
distance dependence of ∇ϕ∞. Thus, there is no singularity left in the
right hand side provided that σ → σ∞ when x → x0 as ||x − x0||α
where α > 0.

In equation (3.27), it can be seen that bsub
i ̸= 0 when σ ̸= σ∞, which

leads to a dense right hand side bsub. To reduce the number of non-zero
entries in bsub, a cut-off function can be exploited that divides the com-
putational domain in two parts such that (i) the subtraction method
is exploited around the source, and (ii) the original problem (3.9) is
considered in the rest of the domain [83].

Reciprocity-based method Reciprocity is a well-known electromagnetic
property in linear time-invariant media with symmetric material prop-
erty tensors (σ, ϵ, µ). For the situation studied here, a proof is given in
reference [84]. The principle of reciprocity states that the difference in
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potential Vαβ between two surface electrodes at xα and xβ caused by a
dipole source with dipole moment P at x0 can also be computed as

Vαβ =
P · E(x0)

Iαβ

(3.28)

where E is the electric field caused by injecting the current Iαβ at elec-
trode α and withdrawing the same current from electrode β. This can
be beneficial if a large number of source positions is studied since it suf-
fices to solve the costly model only once for every electrode other than
ground with the reciprocity-based method. This should be compared
with solving the costly model once for every source position with, e.g.,
the direct and subtraction methods.

It can also be noted that, as a consequence of reciprocity, the roles of
transmitter and receiver can be interchanged in the model (3.2) for the
magnetic tracking system studied previously.

3.3.3 Results and conclusion

In Paper VI, the reciprocity-based method is compared to the direct and
subtraction methods in terms of accuracy and computational speed. Fur-
thermore, the robustness of the reciprocity-based method to noise in the
measured signals as well as to modeling errors in the form of electrode mis-
placement is investigated.

For the assessment of accuracy, a head model consisting of a four-layer
sphere was exploited where the layers represent brain tissue, cerebrospinal
fluid (CSF), skull, and skin, respectively. Analytical solutions are available
for the measured potentials [85]. A comparison of numerical and analytical
values is presented in Paper VI for dipole sources with tangential and ra-
dial orientation as a function of eccentricity, i.e. the distance from the source
to the centre of the sphere divided with the radius of the brain-representing
sphere. The three source-modeling methods (direct, subtraction, reciprocity-
based) yield total errors of similar magnitude. It should be noted that sev-
eral factors contribute to the total error: (i) source-modeling errors; (ii)
discretization errors associated with the discretization of the solution; and
(iii) discretization errors associated with the discretization of the geometry,
i.e. stair-casing.

Regarding the computational complexity, measurements of the computa-
tional time needed for the different parts of the estimation algorithm show
that the reciprocity-based method solves the inverse problem in approxi-
mately 10−4 s. This is roughly four orders of magnitude quicker than the
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3.3 A finite-element reciprocity method for EEG source localization

direct method and six orders of magnitude quicker than the subtraction
method. These differences are mainly due to differences in assembly time
of the right hand side vector b, which is, in particular, not needed in the
reciprocity-based method.

For the assessment of the reciprocity-based method’s robustness to noise,
a realistic head model with five tissue types (gray matter, white matter, CSF,
skull, scalp) is created by segmentation of MR images. A specific source po-
sition is chosen and two orientations (radial and tangential) are considered.
Synthetic measurement data created with the subtraction method is cor-
rupted by random noise and the inverse problem is subsequently solved by
exhaustive search. For each noise setting, the results are averaged over 500
noise realisations.

Realistic levels of measurement noise (signal to noise ratio between 5 and
10) cause an average localization error of 4.3 mm and 6.3 mm for tangential
and radial orientations, respectively.

The importance of minimizing discrepancies between the physical situ-
ation that is modeled and the physical situation where measurements are
performed is discussed in section 2.2.3. Here, the influence of differences in
modeled and measured electrode positions is investigated. For an electrode
misplacement of 10 mm, mean localization errors of 4.8 mm and 6.4 mm are
obtained for tangential and radial source orientations, respectively.

The localization errors given above are in par with results in the literature
and should be compared to the discretization error of 2 mm associated with
the computational model.
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Chapter 4
Conclusions

Electromagnetics has a central role in biomedical engineering and modern
healthcare due to (i) the electromagnetic nature of several important pro-
cesses in the human body, (ii) the interaction of electromagnetic fields with
the human body, and (iii) its usefulness for diagnostic and therapeutic pur-
poses.

In order to address challenging electromagnetic problems within the field
of biomedical engineering, this thesis features a powerful methodology that
combines (i) detailed electromagnetic modeling by means of Maxwell’s equa-
tions, (ii) mathematics (e.g. numerical analysis and optimization), and (iii)
large-scale parallel computations on computer clusters. Progress in these
three areas and, especially, the rapid increase in available computing power
continuously enables larger and more difficult problems to be addressed. In
this thesis, this methodology is exploited for three important and challenging
biomedical problems.

First, the electromagnetics of pacemaker lead heating in MRI is modeled
with emphasis on the multi-scale characteristic of the problem. Here, the
MoM is exploited and conducting wires are modeled using the thin-wire ap-
proximation. A meshing scheme for helical conductors discretized by straight
thin-wire segments is proposed and shown to be superior to the conventional
approach in terms of both convergence order and error levels. Further, the
validity of the thin-wire approximation for closely distanced helical conduc-
tors is assessed. A parameter study of the lead heating phenomenon shows
the resonant nature of the problem and that detailed modeling is essential
to accurately describe this situation.

Second, a method for optimization of sensor positions in magnetic track-
ing systems is proposed that uses a sensor selection approach and convex op-
timization to alleviate the difficulties and computational burden associated
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with experimental or computational trial-and-error procedures. A compari-
son with a global optimization method shows that, for the considered mea-
surement scenarios, the proposed method achieves nearly optimal results in
terms of cost function value and similar sensor positions in orders of magni-
tude shorter computational time. Furthermore, important characteristics of
the measurement problem are identified and optimized sensor positions are
computed for realistic measurement scenarios.

Third, the estimation procedure in EEG-based source localization is facil-
itated by exploiting electromagnetic reciprocity during the modeling, which
reduces the demands for tailored estimation procedures and removes one ob-
stacle for real-time source localization. The proposed modeling approach
reduces the computational time of the estimation procedure by several or-
ders of magnitude without sacrificing accuracy as compared with the refer-
ence method. Moreover, the sensitivity to measurement noise and sensor
misplacement is examined.

In conclusion, this thesis demonstrates that accurate, unbiased, and au-
tomatized electromagnetic modeling by means of numerical methods is useful
and important for the development of medical devices and advancement of
modern healthcare. Fueled by the rapid progress in the constituent areas,
this methodology’s usefulness, importance, and influence on healthcare will
undoubtedly increase in the future.
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Appendix A
Fields near sharp edges and tips

Consider the fields in vacuum near: (i) a conducting edge, and (ii) the tip
of a conducting circular cone. At distances to the edge/tip that are small
compared to the wavelength, the time-dependent problem can be treated as
a static one.

First, consider the conducting edge. The problem is treated in 2D where
the edge is infinitely long in the z-direction. In the xy-plane, the edge sub-
tends an angle α and, as a consequence, the vacuum region subtends an angle
β = 2π − α. The geometry is shown in figure A.1(a). The electric potential
ϕ fulfils the Laplace equation with boundary conditions

1

ρ

∂

∂ρ
ρ
∂ϕ

∂ρ
+

1

ρ2

∂2ϕ

∂θ2
= 0, 0 < θ < β

ϕ = V, θ ∈ {0, β} (A.1)

where (ρ, θ) are polar coordinates in the xy-plane and V is a known potential.
Separation of variables and determination of constants with the boundary
conditions leads to the general solution

ϕ(ρ, θ) = V +
∞∑

m=1

amρmπ/β sin

(
mπθ

β

)
(A.2)

where the coefficients am depend on the potential far away from the edge.
Close to the edge, i.e. when ρ is close to 0, the potential can be approximated
with only the first term in the sum, that is

ϕ(ρ, θ) ≈ V + a1ρ
π/β sin

(
πθ

β

)
(A.3)

from where it can be shown that the components of the electric field as well
as the surface charge density at θ = 0 and θ = β vary as ρπ/β−1. Thus, these
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Figure A.1: Two-dimensional edge (left) and circular cone (right).

quantities are singular for β > π as ρ → 0. The most severe singularity
occurs when β = 2π, i.e. at the end of a thin sheet, where the fields and
charge distribution are proportional to ρ−1/2 when ρ → 0. If the end of a thin
sheet with thickness d is rounded, the field strength is proportional to d−1/2

at the surface. Details on this derivation are given in the textbooks [2, 3].
Next, consider a conducting cone with circular cross-section that is axially

symmetric around the z-axis as shown in figure A.1(b). Let the region defined
by 0 ≤ θ < β, where (r, θ, φ) are standard spherical coordinates, be occupied
by vacuum. In this region, the electric potential fulfils the Laplace equa-
tion. Stating the equation in spherical coordinates, employing separation
of variables and the axial symmetry, and exploiting the boundary condition
ϕ = 0 when θ = β gives

ϕ(r, θ) =
∞∑

k=1

Akr
νkPνk

(cos θ) (A.4)

where Ak are constants, Pν is the Legendre function of the first kind of order
ν, and νk, k = 1, 2, 3, . . . are the solutions to the eigenvalue-type equation

Pν(cos β) = 0 (A.5)

sorted in ascending order. As in the previous example, the sum in equa-
tion (A.4) is approximated with its first term for small r, i.e.

ϕ(r, θ) ≈ A1r
ν1Pν1(cos θ) (A.6)
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Figure A.2: Smallest root ν1 of equation (A.5) as a function of β. Values
from [4] (circles, solid) and the approximation in (A.7) (dashed).

from where it can be deducted that the components of the electric field as
well as the surface charge density on the cone vary as rν1−1 when r → 0. For
β close to π, ν1 can be approximated as

ν1 ≈
[
2 log

(
2

π − β

)]−1

(A.7)

which is plotted in figure A.2 as a function of β together with values for ν1

from reference [4] that have been computed as solutions to equation (A.5).
For a more detailed derivation of the above, we refer to the textbook [2].

The behaviour of the fields close to the edge and tip described above can
be compared to that of the fields close to a line charge, where the fields decay
as ρ−1, and close to a point charge, where the fields decay as r−2.
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