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A toroidal, quasi-linear model is proposed to study the penetration dynamics of the resonant

magnetic perturbation (RMP) field into the plasma. The model couples the linear, fluid plasma

response to a toroidal momentum balance equation, which includes torques induced by both fluid

electromagnetic force and by (kinetic) neoclassical toroidal viscous (NTV) force. The numerical

results for a test toroidal equilibrium quantify the effects of various physical parameters on the

field penetration and on the plasma rotation braking. The neoclassical toroidal viscous torque plays

a dominant role in certain region of the plasma, for the RMP penetration problem considered in

this work. [http://dx.doi.org/10.1063/1.4799535]

I. INTRODUCTION

It is expected that large scale, low frequency type-I edge

localized modes (ELMs) may not be tolerable for the plasma

facing components in ITER, due to the large heat load.1

Extensive experimental results from recent years, on several

existing tokamak devices,2–5 have demonstrated that the exter-

nally applied resonant magnetic perturbation (RMP) fields can

significantly affect the behavior of ELMs. It appears that the

ELM mitigation/suppression and the accompanying density

pump-out effect observed in experiments require detailed

investigations due to complex physics.

One particularly important aspect is the RMP field pene-

tration through the plasma. From the macroscopic point of

view, this is a non-linear dynamic process involving at least

two key effects. One is the plasma response to the applied

external field. The plasma flow has been shown to play a crit-

ical role in screening the RMP field.6–10 The other effect is

the rotation braking, due to the plasma response to the exter-

nal field. Both fluid (electromagnetic) and kinetic effects can

induce torques damping the plasma flow, in the presence of

external non-axisymmetric fields.

In this work, we present a fluid-based toroidal, quasi-

linear model, describing the RMP penetration process on the

macroscopic scale. The model couples the plasma response

to a toroidal momentum balance equation, which includes

source, sink, and diffusion terms. The sink is provided by the

fluid j� b torque and the neoclassical toroidal viscous

(NTV) torque. A quasi-linear version (called MARS-Q) of

the MARS-F code11 is developed and tested. Modeling is

carried out for a test toroidal equilibrium, with mid-plane

RMP coils in the n¼ 1 configuration (n is the toroidal mode

number).

Section II describes the quasi-linear model, the numerical

implementation, and the benchmark results. Section III reports

the modeling results for the test toroidal equilibrium, where a

parametric study is also carried out, in order to clarify the

influence of certain physics parameters on the RMP penetra-

tion dynamics. Section IV summarizes the results.

II. TOROIDAL RMP FIELD PENETRATION MODEL

The model that we propose here couples the linear

plasma response to the toroidal momentum balance of the

plasma. Within the single n assumption, the plasma response

remains essentially linear. The only non-linear terms come

from the interaction between modes with the same n number,

resulting in the n¼ 0 correction to the plasma equilibrium

and to the toroidal flow speed. We neglect the plasma equi-

librium correction,12 assuming that the amplitude of the

applied RMP field is sufficiently small. The effect of the

RMP field on the toroidal flow, however, can be significant

due to momentum damping. The damped flow in turn

changes the plasma response to the RMP field. This non-

linear coupling is maintained in our model, which we shall

call the quasi-linear RMP penetration model. In what fol-

lows, we describe both components of the model: the plasma

response and the toroidal momentum balance.

A. Plasma response model

For the plasma response to the RMP fields, we consider

a resistive, single fluid plasma model, with arbitrary toroidal

flow and flow shear.10 Detailed plasma response computa-

tions have been performed for both MAST and ITER plas-

mas13 using this model.
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þ ðv � rXÞR/̂� � qjkjkkvth;ij
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(3)
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�
p ¼ �v � rP� CPr � v; (4)

j ¼ r� b; (5)

where R is the plasma major radius, /̂ is the unit vector

along the geometric toroidal angle / of the torus, Ẑ is the

unit vector in the vertical direction in the poloidal plane, and

n is the toroidal harmonic number. The plasma resistivity is

denoted by g. The variables v, b, j, p, and n represent the

perturbed velocity, magnetic field, current, pressure, and

plasma displacement, respectively. The equilibrium plasma

density, field, current, and pressure are denoted by q, B, J,

and P, respectively. C ¼ 5=3 is the ratio of specific heats.

We assume that the plasma equilibrium flow V0 has the

toroidal component only, V0 ¼ RX/̂, with X being the angu-

lar frequency of the toroidal rotation. A parallel sound wave

damping term in added to the momentum Eq. (2), with j
being a numerical coefficient determining the damping

“strength.” kk ¼ ðn� m=qÞ=R is the parallel wave number,

with m being the poloidal harmonic number and q being the

safety factor. vth;i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ti=Mi

p
is the thermal ion velocity,

with Ti;Mi being the thermal ion temperature and mass,

respectively. The parallel component of the perturbed veloc-

ity is taken along the equilibrium field line. The validity of

this damping model, for the RMP field response computa-

tions, is discussed in Ref. 10.

For the purpose of the RMP response modeling, the

vacuum field equations outside the plasma, the thin resis-

tive wall equation (when applicable), and the coil equations

(Ampere’s law) are solved together with the MHD equa-

tions for the plasma. The RMP field response modeling

requires solving a linear antenna problem, where the source

term is specified as the current flowing in the magnetic

perturbation coils. Since this is a linear problem, for axi-

symmetric equilibria, we only need to consider a single

toroidal mode number n at one time. Therefore, the source

current is assumed to have an expðin/Þ dependence along

the toroidal angle /.

B. Toroidal momentum balance model

The toroidal momentum equation is derived from the

force balance equation

q
@V

@t
¼ J� B�rP�r � pþ S: (6)

where V is the plasma flow velocity, p the viscous tensor,

and S denoting the source term for the force.

Following Ref. 14, the flux surface averaged toroidal

moment L ¼ qhR2iX satisfies

@L

@t
¼ DðLÞ þ TNTVðxEÞ þ Tj�b þ Tsource; (7)

where xE is the toroidal E�B drift frequency. The toroidal

torque, due to the generalized viscous force r � p, is split

into three terms: the momentum diffusion and pinch term D,

the toroidal component of the neoclassical toroidal viscosity

(NTV) torque TNTV, and the fluid electromagnetic torque

Tj�b. The first term can be written as15

D ¼ G

s

@

@s

s

G
vMhjrsj2i @L

@s
þ VpinchhjrsjiL

� �
;

G � Fh1=R2i;

where s labels the radial coordinate, F is the equilibrium

poloidal current flux function, vM is the (anomalous) toroidal

momentum diffusion coefficient, and Vpinch is the pinch

velocity.

The torque Tsource from Eq. (7) comes from the source

force term S in Eq. (6), denoting, for instance, the momen-

tum input due to the neutral beam injection.

The surface averaged, toroidal electromagnetic j� b tor-

que density is computed as

Tj�b ¼
þ

Rj� b � /̂dS=

þ
dS;

where R is the major radius, j and b are the (total) perturbed

plasma current and magnetic field, respectively. S denotes

the flux surface. It should be pointed out that the total toroi-

dal torque, acting on the plasma column, can be either com-

puted by integrating the torque density defined in the above

equation across the whole plasma minor radius or by direct

evaluation of a surface integral, at an arbitrary surface in the

vacuum region between the plasma boundary and the first

conducting structure. The integrand of the surface integral is

the product of the perturbed radial and toroidal field compo-

nents only.16 These two equivalent methods provide an inter-

nal check of the numerical implementation for the j�b

torque density calculation. This internal check has been suc-

cessfully performed in the MARS-Q code.

The NTV torque is computed here using formulas from

Ref. 14, where various regimes (the so-called � �
ffiffiffi
�
p

and

1=� regimes, as well as the superbanana and superbanana pla-

teau regimes) are smoothly connected. We point out that these

formulas do not treat the exact pitch angle scattering operator,

nor the particle resonance effects associated with the bounce

frequency.18 Despite this, the approximate formulas from

Ref. 14 are reasonably well verified by numerical results.17

Comparison of this NTV theory with experimental data in

JET19 and DIII-D20 shows better than the order of magnitude

agreement, as long as the plasma response is properly taken

into account in computing the torque.

If we assume that a momentum balance has been achieved

before applying the RMP field, with ðX0; L0;x0
EÞ satisfying

DðL0Þ þ Tsource ¼ 0:

After applying the RMP field (without changing other equi-

librium conditions), we define

XðtÞ ¼ X0 þ DXðtÞ; LðtÞ ¼ L0 þ DLðtÞ;
xE ¼ x0

E þ DxE ¼ x0
E þ DX;

and obtain the following momentum balance equation in the

presence of RMPs:

042503-2 Liu, Kirk, and Sun Phys. Plasmas 20, 042503 (2013)



@DL

@t
¼ DðDLÞ þ TNTVðx0

E þ DXÞ þ Tj�b; (8)

which is solved in MARS-Q, together with the linear MHD

equations describing the plasma response to the RMP field.

In the presence of the diffusion operator, Eq. (8) requires

two boundary conditions, at the plasma center and edge,

respectively. We use a Neumann type of boundary condition

@DL=@s ¼ 0 at the plasma center. At the plasma edge, we

assume a homogeneous Dirichlet boundary condition for DL.

For tokamak plasmas, this is a reasonable approximation of

the more generic Robin boundary condition, as demonstrated

in Ref. 21, by considering a thin scrape-off layer surrounding

the plasma.

It is now the proper time to discuss the validity of the

above proposed quasi-linear model for the RMP field penetra-

tion computations. Obviously, this is essentially a single fluid

model, especially for the plasma response part. Inclusion of

two fluid effects,9,22,23 as well as kinetic effects7,24 into the

plasma response, remains our future work. In this work, we

try to understand the MHD aspects of the RMP field penetra-

tion by including the NTV torque into the momentum balance

and considering a full toroidal geometry.

The other question is the validity of the model in terms

of the time scale. Both experimental evidence and modeling

results,24 including those to be shown in this work, seem to

suggest that the RMP penetration occurs at the time scale of

several milliseconds, which is much slower than the

Alfv�enic time, but faster than the plasma resistive diffusion

time. Therefore, at this time scale, we argue that the linear

resistive response of the plasma, without inclusion of the fi-

nite island width effect, is appropriate. This is essentially the

thin-island approximation, which is invalid for fully recon-

nected, large magnetic islands. Such islands form after the

full penetration of the RMP field into the plasma.

On the other hand, we do not need to model the details

of the Alfv�en wave dynamics, which can be avoided by

choosing a fully implicit time-stepping scheme for the full

MHD equations. This time-stepping scheme is described in

Subsection II C.

C. Time-stepping scheme for solving quasi-linear
equations

The coupled MHD-momentum balance equations can be

symbolically written as

B
@X

@t
¼ A1X þ YA2X þ X0;

C
@Y

@t
¼ DY þ TðYÞX2;

where the first equation is the full linearized MHD equation,

with X denoting the full set of the existing MARS-F solution

variables, Y � DX being the modification of the toroidal

rotation frequency due to various torques, A1 denoting the

MHD operator that also contains the initial rotation X0, and

X0 denoting the source term, i.e., the RMP current.

The second equation above is the momentum balance

equation for Y. The first term from the right hand side

denotes the linear momentum diffusion-pinch term. The sec-

ond term from the right hand side denotes all the torque

terms, with the coefficient T being generally a non-linear

function of Y. The quadratic dependence of torques on the

MHD perturbation variable X reflects the fact that the prod-

uct of two n 6¼ 0 perturbations (the plasma current and the

magnetic field) results in the n¼ 0 torque.

MARS-Q uses the following time stepping scheme

based on a staggered grid in time:

B
Xkþ1 � Xk

Dt
¼ ð1� a2ÞA1Xk þ a2A1Xkþ1

þ ð1� a3ÞYkþ1=2A2Xk

þ a3Ykþ1=2A2Xkþ1 þ X0;

C
Ykþ1=2 � Yk�1=2

Dt
¼ ð1� a6ÞDYk�1=2 þ a6DYkþ1=2

þ TðYk�1=2ÞðXkþ1Þ2:

where ai; i ¼ 1;…; 6, are coefficients determining the nu-

merical scheme of time stepping. We shall consider the RMP

field penetration process (ms time scale) that is much faster

than the Alfv�en time sA � R0
ffiffiffiffiffiffiffiffiffiffi
l0q0

p
=B0 (R0; q0; and B0 are

the major radius, the plasma density, and the toroidal mag-

netic field at the plasma center, respectively), which is nor-

mally in the ls scale. This allows us to neglect the detailed

dynamics of fast Alfv�en waves that can be achieved by

choosing a fully implicit time-stepping scheme for the MHD

operators, i.e., a2 ¼ a3 ¼ 1, and by choosing the time step Dt
larger than 1. Our numerical computations for the test toroi-

dal equilibrium show that Dt can be as large as 10sA, without

compromising numerical accuracy for the time trace, as will

be shown later. Normally for time-stepping the momentum

equation, we also choose the fully implicit scheme a6 ¼ 1

for the linear operators.

We also designed a simple adaptive time-stepping scheme

for solving the fully coupled equations, in which the time step

depends on the iteration Dt ¼ Dtk. During the time-stepping,

the code computes a quantity d, characterizing the relative

change of the solution (e.g., the n 6¼ 0 plasma response field

and displacement) between two consecutive time steps. If d is

larger than a prescribed parameter dmax, the next time step is

reduced by a factor a7 < 1, i.e., Dtkþ1 ¼ a7Dtk. If d is smaller

than a prescribed parameter dmin, the next time step is

increased by the factor 1=a7. For the modeling results shown

in Sec. III, where the time adaptivity is applied, we choose

dmax ¼ 10%; dmin ¼ 2%, and a7 ¼ 0:8.

D. Benchmarking the momentum solver

The final momentum Eq. (8) is solved using a finite ele-

ment method (FEM) along the radial grid. For simplicity, we

assume homogeneous Neumann boundary conditions for DL
at both the plasma center and edge in this analytic bench-

mark. [We note, though, that for physical problems to be

solved in Sec. III, we assume the Dirichlet boundary condi-

tion at the plasma edge.] With a given source term T which

does not depend on time t and the solution y, Eq. (8) has a

general form of

042503-3 Liu, Kirk, and Sun Phys. Plasmas 20, 042503 (2013)



c
@y

@t
¼ 1

a

@

@s
a b

@y

@s
þ dy

� �
þ T; (9)

which allows an analytic steady state solution (which gener-

ally exists except some trivial cases)

yðsÞjt!1 ¼
ðs

0

eaðtÞ�aðsÞ

ab

�
a0d0y0 �

ðt

0

aTdu

�
dtþ y0e�aðsÞ;

y0 ¼ a1d1a0d0

ð1

0

eaðtÞ�að1Þ

ab
dtþ a1d1e�að1Þ � a0d0

� ��1

� a1d1

ð1

0

eaðtÞ�að1Þ

ab
dt

ðt

0

aTdu�
ð1

0

aTdt

� �
;

aðsÞ �
ðs

0

d

b
dt;

This analytic solution is used to test the FEM momentum

solver in MARS-Q. A special case is considered, with

aðsÞ ¼ a0ebs; b ¼ b0; d ¼ d0;
d0

b0

¼ a; T ¼ T0ecs;

and the steady state solution

yðsÞ ¼ y0

ae�bs � be�as

a� b
� T0

d0

a
bþ c

� ecs � e�as

aþ c
� e�bs � e�as

a� b

� �
; (10)

y0 ¼
T0

d0

a� b
bðbþ cÞ

a
aþ c

� a
a� b

þ c
aþ c

ec � e�b

e�a � e�b

� �
: (11)

Figure 1 shows an example of the MARS-Q computed time

evolution of Eq. (9), with the coefficient c¼ 1, the time

step Dt ¼ 10, and the implicity parameter a6 ¼ 0:6. The nu-

merical solution converges to the analytic steady state

solution. The convergence speed depends on the choice of

parameter a6. At a given Dt, larger a6 (i.e., more “implicit”

scheme) usually gives faster convergence. Note that,

since Eq. (9) represents a pure mathematical model, no

specific physical units are associated with all the quantities

here.

III. NUMERICAL RESULTS FOR A TEST TOROIDAL
EQUILIBRIUM

A. Equilibrium and RMP field configuration

The MARS-Q code allows quasi-linear simulations of

the RMP field penetration dynamics and the plasma toroidal

momentum damping, by coupling the n 6¼ 0 perturbed, full

MHD equations with the n¼ 0 toroidal momentum balance

equation. The modeling is performed for full toroidal geome-

try. The NTV torque is included into the momentum balance

equation. Only toroidal plasma flow is considered. These are

the major difference from a previous work,9 based on a four-

field reduced MHD model and cylindrical geometry.

We consider an analytic specification of the radial profiles

for a toroidal equilibrium,10 in which the equilibrium current

and pressure profiles, as well as the plasma boundary shape is

specified analytically. The key radial profiles are shown in

Fig. 2. The plasma major radius of R0 ¼ 3 m, the vacuum toroi-

dal magnetic field B0¼ 1.5 Tesla, and the aspect ratio

R0=a ¼ 3. The plasma boundary has an elongation j ¼ 1:6
and triangularity d ¼ 0:3. The equilibrium current and pressure

are chosen to have q0 ¼ 1:17; q95 ¼ 3:94; and qa ¼ 4:90, and

the normalized pressure bN ¼ 1:56. This plasma is far below

the no-wall limit for the n¼ 1 ideal external kink instability.

The total plasma current is 1.37 MA.

For test computations, we consider the RMP field pro-

duced by a set of 4 coils located at (R, Z)¼ (4.98, 1) m and

(4.98, �1) m. These coils are uniformly distributed along the

toroidal angle, each covering 90� toroidal angle. The coils

are outside a resistive wall located at the minor radius of

1.23a, resembling the error field correction coils (EFCCs) in

JET. The polarity of the coil currents are arranged to produce

a predominantly n¼ 1 RMP field.

B. Numerical results for the base case

In order to investigate the effect of various physical and

numerical parameters on the dynamics of the field penetra-

tion and the rotation damping, we first define a base case as

follows. We consider a resistive plasma with the magnetic

Lundquist number S ¼ 108 at the magnetic axis. The radial

profile of the plasma resistivity scales as T�3=2
e , where Te is

the equilibrium thermal electron temperature. This leads to

the S-value of about 106 near the plasma edge. We choose an

amplitude of the anomalous toroidal momentum diffusion

FIG. 1. Test of the MARS-Q momentum

solver against analytic solution (10), for

a case with a0 ¼ 2; d0 ¼ 3; T0 ¼ 3:2;
a ¼ 1:5;b ¼ 2:3; and c ¼ 1:7. Shown are

(a) the convergence of the numerical profiles

(dashed) to the analytic profile (solid), and

(b) the convergence of the relative error of

the solution, in L2 norm, to the steady state

analytic solution. The convergence of the ra-

dial profiles, shown in (a), comes from both

sides of the dashed line, in an oscillating

manner. The time step is chosen Dt ¼ 10,

with the implicity parameter a6 ¼ 0:6.

042503-4 Liu, Kirk, and Sun Phys. Plasmas 20, 042503 (2013)



coefficient v0
M ¼ 3� 10�7R0vA ’ 5 m2=s, similar to the

value in a typical JET plasma.25 The radial profile of the mo-

mentum diffusion coefficient varies between two somewhat

extreme examples. In the first example, which is used for the

base case, vMðwpÞ ¼ v0
Mw�=2

p . This gives a larger momentum

diffusion in the plasma core than in the edge. The other

example, to be used later in this work, is vMðwpÞ ¼ v0
M

½TeðwpÞ=Teð0Þ��3=2
, which gives a larger momentum diffu-

sion in the edge than in the core. The pinch velocity is

neglected in this work. For the base case, both the j� b and

NTV torques are included in the momentum equation.

Finally, we assume that each of the RMP coils carries a

20 kAt current.

The direct consequence of the non-linear interaction

between the plasma response (to the RMP fields) and the

plasma flow is the flow damping, which is the primary effect

that we report in this work. Figure 3 shows the evolution of

the radial profile of the toroidal rotation frequency during this

non-linear interaction, for the plasma and coil configurations

as described for the base case. We obtain generally a full brak-

ing of the plasma flow near the edge region (beyond the q¼ 3

surface). A full penetration of the RMP field, into the plasma

edge region, is expected as the rotation vanishes in that region.

At full penetration, large magnetic islands form, which in turn

invalidates the thin-island assumption used in the MARS-Q

model. Therefore, generally speaking, our numerical results

are valid only for the time interval before the full braking of

the toroidal flow. We also note that, at the moment of the full

rotation braking beyond the q¼ 3 surface, the core plasma

rotation is still well maintained.

For this base case, as well as for other cases presented in

this work, further time stepping does not yield a steady state

solution. One possible reason is the violation of the quasi-

linear assumption in the model, as discussed above. The

other possibility is the development of (non-linear) MHD

instabilities near the plasma edge region, where both the

rotation and rotation shear exhibit rapid changes. Allowing

even further time evolution, the simulation produces numeri-

cally incorrect results. Therefore, for cases where no steady

state solutions are reached, the physically meaningful solu-

tion is the time evolution before the full braking of the edge

rotation of the plasma. This is also the physically interesting

solution since it represents the dynamic process of the RMP

field penetration. We mention that for certain plasmas,

steady state solutions can be obtained by the MARS-Q

quasi-linear model. Examples can be found from Ref. 20.

The observed rotation braking is caused by the electro-

magnetic and the NTV torques, whose radial profile evolu-

tion is shown in Fig. 4. Note that the j� b torque, though

mainly occurring near rational surfaces, is nevertheless dis-

tributed along the minor radius, with non-trivial profiles.

This is partially due to the continuum resonance induced

splitting effect as discussed in Ref. 26. The NTV torque, for

the case considered here, is mainly localized between the

q¼ 3 and 4 rational surfaces. This is in fact the major factor

braking the plasma rotation between the q¼ 3 and 4 rational

surfaces, as will be shown later (Fig. 9). However, we point

out that this type of the NTV torque distribution, observed in

most of the computations for the plasma studied in this

work, should not be regarded as a ubiquitous feature valid

for any plasma equilibria. The NTV torque is generally a

rather non-linear function of the plasma E�B flow. In

addition, the torque distribution also depends on the radial

profile of the plasma collisionality, the drift kinetic reso-

nance between the plasma response and plasma thermal par-

ticles, and finally on the spacial distribution of the perturbed

3D field amplitude jdBj. All these factors can potentially

affect the eventual radial profile of the NTV torque density.

FIG. 2. The radial profiles of the safety factor q, the equilibrium pressure

(normalized by B2
0=l0), the normalized plasma density (to unity at the mag-

netic axis), and the plasma toroidal rotation frequency X, for a test toroidal

equilibrium.

FIG. 3. Evolution of the simulated radial

profiles of (a) DXðwp; tÞ � Xðwp; tÞ
�Xðwp; t ¼ 0Þ and (b) Xðwp; tÞ for the

base case, where X is the toroidal rota-

tion frequency, wp is the normalized

equilibrium poloidal flux, and t is the

time. Shown are only profiles with a time

span of 0.1 ms, and after 10 ms of simula-

tion. The arrow indicates the time flow.

The vertical dashed lines indicate radial

locations of the q¼ 2, 3, 4 rational surfa-

ces, respectively.
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Figure 5 shows one example of the flux surface averaged

jdBj, normalized by the vacuum toroidal field at the mag-

netic axis, computed for the plasma response with the initial

flow speed. The field amplitude predominantly comes from

the Lagrangian variation (i.e., the field variation on the dis-

torted flux surface). The computed field strength is of order

of 10�3 of the vacuum field in the major part of the plasma

column, but is larger near the plasma boundary, due to the

larger plasma displacement towards the edge. More toroidal

examples (and discussions of the above factors) are found in

Ref. 20. For the case considered here, we note that the ampli-

tude of the NTV torque density is roughly about 5 times

larger than that of the electromagnetic torque.

The time traces of the net (integrated over the plasma

minor radius) electromagnetic and NTV torques are com-

pared in Fig. 6, together with the time traces of the toroidal

rotation frequencies at rational surfaces, for the base case.

The net NTV torque is larger than the net j�b torque. But

during the first� 10 ms of the time interval, the amplitudes

of both torques are too small to cause appreciable damping

of the flow (Fig. 6(b)). After about 10 ms of simulation, the

amplitudes of both torques rapidly increase, and the toroidal

rotation quickly slows down in the region between the q¼ 3

rational surface and the plasma edge. The full time of the

rotational damping (and hence the RMP penetration) is about

14 ms for the base case.

C. Verification of time stepping scheme

For numerical efficiency, we wish to choose as large a

time step as possible. Obviously, the time step cannot be

chosen too large, in order not to affect the field penetration

dynamics. A good criterion is that different choices of the

time step should result in the same time evolution of the nu-

merical solution. For the base case, we use an adaptive time

stepping strategy as described in Sec. II B. The initial time

step (at t¼ 0) is set to be 10sA. The time stepping history is

shown in Fig. 7 as solid lines. For this case, the length of the

time step steadily increases during the non-linear evolution.

There are also cases where the length of the time step varies

non-monotonically. For comparison, we run the same case,

but with a fixed time step of 20sA (dashed lines). The adapt-

ive time stepping scheme requires much less number of steps

to reach the same total simulation time. More importantly,

the numerical solutions, as functions of time, agree well

FIG. 5. The radial profile of the flux surface averaged magnetic field

strength including the plasma response, at the initial toroidal flow speed.

FIG. 4. Evolution of the simulated radial

profiles of (a) the electromagnetic torque

density and (b) the NTV torque density

for the base case. Shown are only profiles

with a time span of 0.1 ms, and after

10 ms of simulation. The vertical dashed

lines indicate radial locations of the q¼ 2,

3, and 4 rational surfaces, respectively.

FIG. 6. Simulated time traces of (a) the

net toroidal electromagnetic and NTV

torques (with reversed sign) acting on the

plasma column, and (b) the toroidal rota-

tion frequencies at the q¼ 2, 3, and 4

rational surfaces, for the base case.
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between two time stepping schemes, as shown in Fig. 8. This

demonstrates the validity of our adaptive scheme.

D. Numerical results from parametric studies

Figure 6 shows that the NTV torque is generally the

dominant momentum sink due to the interaction between the

plasma response with the RMP field, for our plasma and coil

configurations. It is, therefore, interesting to consider a case

without inclusion of the NTV torque. The results are shown

in Figs. 9 and 10, where only the electromagnetic torque is

included in the toroidal momentum balance equation as the

sink term. Compared to the base case, the only significant

difference is that the flow velocity is much less damped

between the q¼ 3 and 4 rational surfaces in the absence of

the NTV torque. As a results, the full rotation braking (and

hence the RMP penetration) occurs near the very edge of the

plasma, mainly outside the q¼ 4 rational surface. In particu-

lar, the rotation velocity is still fully damped at the q¼ 4 sur-

face, by the j� b torque alone. However, the full damping

occurs slightly later (see Fig. 10(b)) than the base case,

where both the electromagnetic and the NTV torques have

been included into the momentum equation.

The plasma rotation braking, observed in this work, is

not very sensitive to the radial profile of the toroidal momen-

tum diffusion coefficient vMðwpÞ. In the simulation presented

by Figs. 11 and 12, we chose a completely different radial

profile for vM; vMðwpÞ ¼ v0
M½TeðwpÞ=Teð0Þ��3=2

, compared

to the base case, yet the non-linear solutions do not signifi-

cantly differ, apart from two observations. (i) Less flow

damping is obtained near the plasma edge as shown in Fig.

11(b). This is because a large momentum diffusion near the

plasma edge leads to a stronger coupling of the rotation ve-

locity to the edge boundary condition, which is chosen to be

fixed at a small but finite value. (ii) At all rational surfaces,

the rotational braking occurs slower than the base case, as

shown in Fig. 12. We note that the plasma core rotation is

hardly affected by the RMP field, with both (extreme) types

of the toroidal momentum diffusion profiles.

Finally, we also varied the amplitude of the RMP coil

current. For this plasma equilibrium, it appears that even a

FIG. 7. Comparison of the simulation history between the adaptive (solid

lines) and fixed (dashed) time stepping schemes, for the base case: (a) the

time step Dt versus the total simulation time t; (b) the total simulation time t
versus the number of time stepping.

FIG. 9. Evolution of the simulated radial

profiles of (a) DXðwp; tÞ � Xðwp; tÞ
�Xðwp; t ¼ 0Þ and (b) Xðwp; tÞ for the

case without the NTV torque, where X is

the toroidal rotation frequency, wp is the

normalized equilibrium poloidal flux, and

t is the time. Shown are only profiles with

a time span of 0.1 ms, and after 10 ms of

simulation. The arrow indicates the time

flow. The vertical dashed lines indicate

radial locations of the q¼ 2, 3, and 4

rational surfaces, respectively.

FIG. 8. Simulated time traces of (a) the

net toroidal electromagnetic and NTV tor-

ques (with reversed sign) acting on the

plasma column, and (b) the toroidal rota-

tion frequencies at the q¼ 2, 3, and 4

rational surfaces, for the base case with

adaptive (solid lines) and fixed (dashed

lines) time stepping schemes.
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FIG. 10. Simulated time traces of (a) the

net toroidal electromagnetic and NTV tor-

ques (with reversed sign) acting on the

plasma column, and (b) the toroidal rota-

tion frequencies at the q¼ 2, 3, and 4

rational surfaces, for the base case (solid

lines) and the case without the NTV torque

(dashed lines).

FIG. 11. Evolution of the simulated ra-

dial profiles of (a) DXðwp; tÞ � Xðwp; tÞ
�Xðwp; t ¼ 0Þ and (b) Xðwp; tÞ for the

case with a radially increasing momen-

tum diffusion, where X is the toroidal

rotation frequency, wp is the normalized

equilibrium poloidal flux, and t is the

time. Shown are only profiles with a time

span of 0.1 ms, and after 10 ms of simula-

tion. The arrow indicates the time flow.

The vertical dashed lines indicate radial

locations of the q¼ 2, 3, and 4 rational

surfaces, respectively.

FIG. 13. Evolution of the simulated ra-

dial profiles of (a) DXðwp; tÞ � Xðwp; tÞ
�Xðwp; t ¼ 0Þ and (b) Xðwp; tÞ for the

case with 10 kAt coil current, where X is

the toroidal rotation frequency, wp is the

normalized equilibrium poloidal flux, and

t is the time. Shown are only profiles

with a time span of 0.1 ms, and after

10 ms of simulation. The arrow indicates

the time flow. The vertical dashed lines

indicate radial locations of the q¼ 2, 3,

and 4 rational surfaces, respectively.

FIG. 12. Simulated time traces of (a) the

net toroidal electromagnetic and NTV tor-

ques (with reversed sign) acting on the

plasma column, and (b) the toroidal rota-

tion frequencies at the q¼ 2, 3, and 4

rational surfaces, for the base case (solid

lines) and the case with a radially increas-

ing momentum diffusion (dashed lines).
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small amount of the n¼ 1 RMP field can eventually break

the toroidal flow near the plasma edge. This may be due to

the fact that a very low n field is applied to the plasma.

Generally though, as expected, a lower current amplitude

leads to weaker electromagnetic and NTV torques, and to a

later braking of the rotation. One such example is shown in

Figs. 13 and 14, where only half of the RMP current (i.e.,

10 kAt) is applied to the plasma, and the simulation results

are compared with the 20 kAt case (the base case).

IV. SUMMARY AND DISCUSSION

A quasi-linear model is developed to study the RMP

field penetration and the rotation braking in full toroidal ge-

ometry. The key physics, captured by this model, is the non-

linear interplay between the damping of the plasma toroidal

rotation by an external RMP field, and the screening of the

RMP field due to the plasma rotation, as a result of the

plasma response to the RMP field. Two toroidal torques—

the electromagnetic j�b torque (fluid effect), and the NTV

torque (kinetic effect)—are included in the toroidal momen-

tum balance equation. An adaptive time stepping scheme is

envisaged to speed up the non-linear simulations, which

involves a fully implicit procedure for solving the MHD

equations.

For a test toroidal equilibrium with H-mode plasma, we

find that a n¼ 1 RMP field does not significantly change the

plasma core rotation, before fully braking the rotation near

the plasma edge region, most often outside the q¼ 3 rational

surface. This observation does not exclude the core rotation

damping in a longer time scale. However, our (thin island)

model breaks down after the full damping the edge flow.

The toroidal computations quantify several factors

affecting the dynamics of the RMP field penetration. (i) The

plasma response to RMP fields induces a larger net NTV tor-

que, than the j� b torque. This is not a ubiquitous observa-

tion, but does occur for the equilibrium considered in this

work. Moreover, the NTV torque provides predominant flow

damping between the q¼ 3 and 4 rational surfaces. (ii) Not

surprisingly, we find that a larger RMP amplitude leads to

stronger rotational damping and faster field penetration. The

penetration time is generally in the order of ten milliseconds

for our example. (iii) The radial profile of the momentum

diffusion coefficient, which is an uncertain factor in our

simulations, does not play a significant role for the flow

damping observed in this study.

For the cases considered in this work, no steady state

solution is found, although steady solutions are found by

MARS-Q for other plasmas.20 The boundary condition,

assumed for the momentum balance equation at the plasma

boundary, also affects the achievement of the steady state so-

lution. For instance, by assuming a Neumann type of bound-

ary condition, MARS-Q simulation can lead to steady state

solutions. But these solutions are physically less relevant.

Even though the results presented in the paper mainly

demonstrate the rotational braking effect due to the applied

RMP field, it is worthwhile to further discuss some key

aspects of the RMP field penetration itself, in particularly the

penetration mechanism. In our model, the field penetration

process is dictated by the strong non-linear interplay between

the resistive plasma response and the toroidal flow damping.

Therefore, the penetration time is eventually associated,

from one side, with the resistive decay of the current sheets,

formed near rational surfaces that tend to prevent the pene-

tration of resonant field components, and from the other side,

with the diffusion of the toroidal momentum. The scaling of

the penetration time versus basic plasma and coil parameters,

which has not been established in this initial work but will

be systematically investigated in the future, is associated

with these physics. For instance, we mention that a linear

scaling of the penetration time, versus the magnetic

Lundquist number, has been established in a cylindrical sim-

ulation.8 No scaling has been established with respect to the

plasma initial flow speed, though a qualitative understanding

is possible relying on the following two arguments: (i) a

slower initial flow (before applying the RMP field) normally

yields less screening of the resonant field perturbations, and

hence should facilitate the field penetration; (ii) at suffi-

ciently slow rotation, the E�B flow frequency can be in res-

onance with the precessional drift frequency of trapped

thermal particles, resulting in enhanced (resonant) NTV tor-

que, which in turn can lead to a faster damping of the flow

and hence the field penetration.

Another interesting question is whether the penetration

time is associated with the Alfv�en time, expected for estab-

lishing a magnetic equilibrium. It appears that both experi-

mental evidence20 and the numerical results shown in this

work, as well as other theoretical work,8,24 indicate that the

resonant component of the applied magnetic field penetrates

FIG. 14. Simulated time traces of (a) the

net toroidal electromagnetic and NTV tor-

ques (with reversed sign) acting on the

plasma column, and (b) the toroidal rota-

tion frequencies at the q¼ 2, 3, and 4

rational surfaces, for the base case

(20 kAt, solid lines) and the case with

half of the coil current (10 kAt, dashed

lines).
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into the plasma in the milliseconds time scale, much slower

than the Alfv�en time.

We point out that the present study is based on a single

fluid plasma model. It can be argued that the electron

response may be important in the RMP field shielding.

Therefore, a two-fluid model or even a full kinetic model24

may be necessary to better describe the plasma behavior in

the presence of RMP fields. The possible field line stochasti-

sation can induce an additional plasma radial current,27 and

consequently field screening. These effects have not been

taken into account in our present quasi-linear model.
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