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Three applications of graph-theoretic methods
Dmitrii Zhelezov

ABSTRACT

This thesis is based on three papers in different areas of Discrete Mathemat-

ics, namely additive combinatorics, percolation and combinatorial group the-

ory. Although in general these fields are rather distant from each other, graph-

theoretic considerations play a major role in each paper as the name of the thesis

suggests.

Paper I studies arithmetic progressions of maximal length in product sets.

It is proved that for a set of complex numbers B with |B| = n the length of an

arithmetic progression in the product set B.B = {bb′|b, b′ ∈ B} cannot exceed

O( n log2 n
log logn ). The main argument of the paper is based on an inequality which

gives a bound on the sizes of elements of the arithmetic progression, provided

a certain incidence graph contains a cycle of even length. The actual result of

the paper then follows from bounds of extremal graph theory and optimization

of parameters.

In Paper II a variation of the Grimmett random-orientation percolation model

on the square lattice proposed by Hegarty is considered. The crucial difference

between such random-orientation models and classical bond percolation is the

absence of Harris-type correlation inequalities and sharp threshold bounds. It is

shown that both models are to some extent equivalent to the random-orientation

model confined to a quadrant where a phase transition is expected to occur at

exactly one point pc = 1
2 , though it is not if even known if the critical point is

unique. As a corollary, a non-trivial lower bound for pc is obtained, assuming it

exists. The proof is based on a purely topological argument utilising planarity

of the square lattice and rotational symmetry of the model.

In Paper III a family of random finite groups is constructed which we be-

lieve provides a counterexample to a conjecture of Iranmanesh and Jafarzadeh

saying that, if connected, the commuting graph of arbitrary finite group is of

bounded diameter. The construction is based on a uniformly chosen random

bilinear map φ : V × V → H where V and H are linear spaces over F2. With

appropriately chosen dimensions of V and H the commuting graph of the corre-

sponding group is similar to the Erdős–Rényi graph Gn,p with p = n−1+ε and

ε > 0 small. It is known that in this regime the diameter of the Erdős–Rényi
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graph is concentrated on the single value � 1
ε � so presumably the same phe-

nomenon occurs for the random commuting graph in question. However, we

only prove that the diameter of the commuting graph grows unboundedly with

high probability, though it is still not known if the graph stays connected. Thus,

the original conjecture of Iranmanesh-Jafarzadeh is not completely disproved

this way. However, it was disproved by Guidici and Parker by a deterministic

example based on the construction presented in the paper.

Keywords: Product set, arithmetic progression, random orientations, percolation, square

lattice, random group, commuting graph, diameter



Preface

We present three papers:

I. D. Zhelezov, Product sets cannot contain long arithmetic progressions,

(accepted by Acta Arith.).

II. D. Zhelezov, On a Property of Random-Oriented Percolation in a Quad-

rant (to appear in J. Stat. Phys., available online at

DOI:10.1007/s10955-013-0856-z).

III. P. Hegarty and D. Zhelezov, On the diameters of commuting graphs

arising from random skew-symmetric matrices (submitted to Combin.
Probab. Comput.).
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Part I

Extended Summary





1
Introduction

The present thesis consists of three different notes in Discrete Mathematics,

loosely connected by the methods used. The topics covered by the papers (in

the order they appear in the thesis) are additive combinatorics, percolation and

group theory. In what follows we provide a brief introduction to the afore-

mentioned topics, narrowed of course to subjects most relevant to the questions

under consideration.

3



4 INTRODUCTION

1.1 Sets with additive and multiplicative structures

1.1.1 The sum-product phenomenon

One of the central topics of additive combinatorics is the so-called sum-product

phenomenon which arises in many different settings with applications to cryp-

tography, analytic number theory, functional analysis and other seemingly dis-

tant branches of mathematics. The main objects in question are the product set

B.B = {bb′|b, b′ ∈ B} and the sumset B + B = {b+ b′|b, b′ ∈ B} of a set of

real numbers B. A priori, either |B + B| or |B.B| can be as small as O(|B|)
which can be achieved by an arithmetic or geometric progression respectively.

However, by looking at this example it seems intuitively plausible that for both

B + B and B.B to be small, B should be both additively and multiplicatively

structured in some sense. The sum-product phenomenon asserts that the latter

is impossible.

The first quantitative result on the sum-product phenomenon is due to Erdős

and Szemerédi [ES83] who proved that

max(|B.B|, |B +B|) � |B|1+δ,

for some δ > 0. Henceforth we will use the Vinogradov notation ("�", resp.

"�") for big-Ω (resp. big-O), with optional parameters in the subscript indi-

cating which ones the constant may depend on. In the same paper they posed

what is now called the Erdős–Szemerédi conjecture that δ can be taken arbitrar-

ily close to one. Since then this problem has received significant attention but

remains wide open. We mention here some important contributions, but this list

is by no means complete.

1. Solymosi [Sol09] proved that δ can be taken arbitrary close to 1
3 for sets

of real numbers. This is the best exponent up to date.

2. Konyagin and Rudnev [KR13] extended Solymosi’s bound δ ≥ 1
3 − o(1)

to sets of complex numbers

3. Chang [Ch03] and Elekes, Ruzsa [ElRu03] ruled out the cases when ei-

ther |B.B| or |B+B| is comparable to |B|, that is, if B is multiplicatively

or additively small then the Erdős–Szemerédi conjecture holds.
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4. Studies of sum-product estimates in finite fields were pioneered by Bour-

gain, Katz, Tao [BKT04] and later their result was improved by Bourgain,

Glibichuk, Konyagin [BGK06]. It was proven that for a given δ′ > 0 and

a prime p, if B ⊂ Fp with |B| < p1−δ′ , then

max(|B.B|, |B +B|) � |B|1+ε,

for some ε(δ′) > 0.

Additional information on applications of sum-product estimates can also be

found in the survey post of Tao [T07].

1.1.2 Arithmetic progressions in product sets

In Paper I we investigate a different sort of relationship between the additive

and multiplicative properties of a set. In contrast to the sum-product problem

we are concerned with additive structure in an arbitrary product set rather than

with the tradeoff between the sizes of the sum and product sets. Namely, we

want to bound the maximal length of an arithmetic progression in a product set

A.A in terms of the size of the original set A. The result is as follows.

Theorem 1.1.1. Suppose that B is a set of n complex numbers. Then the

longest arithmetic progression in B.B has length O( n log2 n
log logn ).

A lower bound is provided by the following

Theorem 1.1.2. Given a integer n > 0 there is a set B of n natural numbers

such that B.B contains an arithmetic progression of length Ω(n log n).

The proof of Theorem 1.1.1 is divided into two parts, bootstrapping with

the case when B is a subset of the positive integers and then extending it to

the case of complex numbers. However, the methods we use in the integer

and non-integer settings are completely different from each other – the former

case is treated by means of a combination of graph-theoretical and arithmetic

arguments, while the latter argument is more algebraic. We now consider them

in more detail.

Let B be a set of natural numbers of size n such that B.B contains an

arithmetic progression A = {r + id}, i = 0, · · · , N of length much larger
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than n = |B|. Then for every prime p less than N and coprime with d there

exists an element of A divisible by p. On the other hand, if we can prove that

all such prime divisors are evenly spread across A and do not concentrate on

a few elements, then they must come from different elements of B. Then we

can argue that |B| is of order N/ logN by the Prime Number Theorem. Such

a "non-concentration" result is therefore the heart of the proof and this is where

graph-theoretic arguments come into play.

Let G be the incidence graph of A, meaning that its vertex set is identified

with B and for each a ∈ A there is a unique edge (bi, bj) such that bibj = a.

One may choose the smallest pair in the lexicographical order if the are many

such representations. It turns out that by analyzing the structure of G, one can

obtain constraints on A merely by the fact that A is an arithmetic progression

and that every edge is the product of its vertices. In particular, if G contains

an even cycle of length 2k, then every element of the arithmetic progression is

bounded by Nk+1 where N is the length of A. On the other hand, such a bound

guarantees that each element of A can have at most k + 1 prime divisors of

order N , which indeed implies that prime divisors do not concentrate provided

that N/ logN � kn. It then remains to optimize k using known bounds from

extremal graph theory on the number of edges in C2k-free graphs.

It is worth mentioning that Erdős and Pomerance [EP80] asked back in 1980

if it is true that, for a large enough c, every interval of length cn contains a

number divisible by precisely one prime in (n/2, n]? While the question seems

to be still wide open, a positive answer would give an essentially sharp upper

bound O(n log n) for Theorem 1.1.1.

To extend Theorem 1.1.1 to the case of complex numbers an algebraic ap-

proach is used. It turns out that if the incidence graph G contains a cycle, then

algebraic relations between vertices of the cycle force elements of A to be ra-

tional. One can then prove that all elements of B can be made rational, while

preserving the length of the longest arithmetic progression in the product set.

This argument is in some sense in tune with the paper of Vu, Wood and

Wood [VWW11] which says that a set S in a characteristic zero integral do-

main can be mapped to Z/pZ, while preserving all algebraic incidences in S,

for an infinite set of primes p. In the opposite direction, Grosu [G13] proved
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that every sufficiently small subset of Fp can be mapped to C while preserving

polynomial relations of bounded degree and with bounded coefficients. The fact

that the product set contains an arithmetic progression of a certain length can

obviously be encoded as a set of polynomial relations of such type, namely that

consecutive differences of products are equal. We then prove that it is possible

to map such specific relations from C to Z, reducing the problem to the case of

integer numbers1. However, in contrast to the results of Vu et al. and Grosu we

do not pose any size restrictions.

1In our proof we assume that G contains a cycle, but the claim is trivial if G is a forest
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1.2 Non-monotonic models in percolation

1.2.1 The classical model

The first mathematically rigorous model of percolation was given by Broadbent

and Hammersley in 1957 [BH57] to describe the process of soaking of a porous

material, e.g. a stone. Their model can be described as a random process on the

integer lattice Z2 as follows. Fix a parameter 0 ≤ p ≤ 1 and for each edge e

of the lattice (which is usually called a bond) run an independent Bernoulli trial

Xe with success probability p. If Xe = 1 the edge is declared open and closed

otherwise. The state of the edge is understood as whether or not the liquid can

pass through the corresponding part of the stone, which is identified with a large

subgraph of the lattice. The main question of percolation theory is whether the

center of the stone is wet if it is fully immersed in the liquid, or in mathematical

terms, if there is a path from a boundary vertex to the center of the subgraph

which consists solely of open edges (it is called an open path). Of course, for

a finite subgraph the probability that such a path exists is always positive, so

to make the problem meaningful one considers the infinite lattice L = Z2 with

random i.i.d. Bernoulli variables Xe representing the states of the edges as

described above. The central question is then for which p the probability θ(p)

that there exists an infinite open path from (0, 0) to infinity is positive.

Of course, there is a lot of room for generalizing this model – one can con-

sider different lattices, arbitrary graphs or even random plane tilings (Voronoi
percolation, see [BR06]), higher dimensions, models where vertices rather than

edges are declared open or closed (site percolation) and so on. Many impor-

tant results rest on two crucial ideas which we now consider in the classical

setting (and historically they were introduced that way), though they appear to

be general enough to be applicable to most of the models we just mentioned.

The first important idea is to consider the dual graph of the lattice. Let G

be a planar graph. The planar dual graph Gd is constructed as follows. The

vertices are the faces of G and two vertices of Gd are adjacent if and only if the

corresponding faces of G share an edge. It is easy to see that the dual of L is

simply Ld = Z2 + ( 12 ,
1
2 ), so it isomorphic to a translation of its dual. There

is a one-to-one correspondence between the edges of L and Ld provided by the
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fact that for each edge e of L there is exactly one edge ed of Ld which crosses

it and vice versa. Further, for each percolation realization on L one canonically

obtains a realization on Ld by declaring ed open (resp. closed) if e is closed

(resp. open).

This construction already provides a way to prove that Pc(L) < 1 using a

so-called Pierels argument, which amounts to the observation that, if there is

no open path from the origin to infinity, then there must exist an open circuit in

the dual lattice surrounding the origin. Then, by an annuli-counting argument it

can be shown that, for p sufficiently close to 1, the probability that there exists

an open dual annulus is small.

The second, perhaps more important, property is monotonicity, which we

define in the following sense. Let A be an event which is determined by a finite

number of i.i.d. Bernoulli variables Xi, so one can write

IA = f(X1, ..., Xn),

where IA is the indicator function of A and f is a Boolean function defined on

{0, 1}n. Then A (as well as the function f ) is called increasing if

f(X1, ..., Xn) ≤ f(X ′
1, ..., X

′
n)

whenever Xi ≤ X ′
i for all i = 1, · · · , n. A typical example of an increasing

event is the existence of an open path inside a finite region R, say from the

origin to the boundary of the box Bn with corners at (−n,−n), (−n, n), (n, n)

and (n,−n). Indeed, this event is completely determined by the states of the

edges inside Bn and by opening additional edges inside Bn an open path from

the origin to the boundary cannot cease to exist. With this example in mind one

can prove that the percolation probability θ(p) is monotone and thus there is a

critical value pc, i.e. θ(p) = 0 for p < pc and θ(p) > 0 for p > pc.

However, perhaps even stronger consequences follow from the correlation

inequality for increasing events due to Harris.

Theorem 1.2.1. (The Harris Inequality) Let A and B be increasing events.

Then

P(A ∩B) ≥ P(A)P(B).
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The power of this inequality becomes apparent when A and B are events

that certain paths are open. Then the Harris inequality allows one to obtain an

effective bound that both paths are present simultaneously. Using merely this

inequality and multiple ingenious symmetry arguments applied to L and Ld,

Harris [Ha60] was able to prove that pc(L) ≥ 1
2 which was one of the most

important conjectures in the field at that time.

It required twenty years before Kesten [Ke80] managed to settle the original

conjecture in full and prove that pc(L) = 1
2 . It is remarkable that the crucial

step of Kesten’s proof hinges upon another deep property of increasing Boolean

functions. Roughly speaking, he showed that the probability that there is an

open path from the left to the right side of the box Bn, which lies entirely

within, viewed as a function of p, must exhibit a sudden jump around p = 1
2

when n is large.

The exact formulation of this property of an increasing Boolean function

(usually called a sharp threshold phenomenon) is a bit technical, so we refer the

interested reader to an excellent exposition in [BR06] where a modern proof of

the Kesten theorem is presented. We just mention here that, years later, it was

understood (by Kahn, Kalai, Linial, (1988); Bourgain, Katznelson (1992); Tala-

grand (1994); Friedgut, Kalai (1996) and others) that sharp threshold phenom-

ena can be observed under much milder conditions than were initially applied

by Kesten.

1.2.2 The Grimmett conjecture and the H-model

Now we turn to the model that was studied in Paper II which is somewhat dif-

ferent from the classical setting. In the first edition of his book on percola-

tion [Gr89] Grimmett formulated the following problem which remains open

even today. Consider the square lattice L and let each vertical edge be directed

upwards with probability p ∈ [0, 1] and downwards otherwise. Analogously,

each horizontal edge is directed rightwards with probability p and leftwards

otherwise. The percolation probability θG(p) is defined as the probability that

there is an infinite oriented path from the origin. Grimmett conjectured that

θ(p) > 0 whenever p 
= 1
2 . Of course, by an obvious symmetry we have

θG(p) = θG(1− p) so it is sufficient to consider only p > 1
2 .
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Although the Grimmett model has translational symmetry, which, for ex-

ample, gives the uniqueness of the infinite oriented cluster (see [Xia1] for de-

tails), it seems natural to reformulate the problem such that for small p one the

model a.s. does not percolate while for p close enough to one it is supercritical.

Hegarty proposed a model where p controls the orientation bias away from the

origin, such that for small p most of the edges are likely to be oriented towards

the origin so the model is subcritical. The model is defined as follows. For each

edge e of the lattice L assign a direction away from the origin with probability

p, and towards the origin otherwise. We say that a directed edge from x to y

is oriented inwards if ‖x‖ > ‖y‖ (which occurs with probability 1 − p) and

outwards otherwise (which occurs with probability p), with the usual Euclidean

norm. We denote by θH(p) the corresponding probability that there exists an

infinite directed path from the origin and will call this model the H-model.

The Grimmett and Hegarty models are identical when confined to the North-

East quadrant. We will call this specialisation the NE-model and write θNE(p)

for the corresponding percolation probability. By deleting all the edges oriented

towards the origin, one gets a realization of directed or oriented percolation

with parameter p. In this model each edge of the quadrant is oriented away

from the origin at the beginning, and then each edge is retained with probability

p, otherwise it is erased. As before, the model percolates if there is an infinite

oriented path emanating from the origin. This model is well understood, it is

monotone so it has a single critical point �pc. It is proved that �pc < 0.6735,

[BBS94], and believed that �pc ≈ 0.6447. Thus, both θH(p) and θG(p) are

positive for p > �pc. Since it is not known that θH(p) is non-decreasing, let us

denote by pHc− = inf{θH(p) > 0} and pHc+ = sup{θH(p) = 0}2 the "lower"

and "upper" critical points. We then have the bound pHc+ ≤ �pc < 1.

On the other hand, if p is sufficiently close to zero it is not hard to show

that θH(p) = 0 by a path counting argument, therefore pHc+ > 0 so a phase

transition must occur on the interval [pHc−, p
H
c+], perhaps an infinite number of

times. It is not the only complication caused by the absence of monotonicity.

In fact, all textbook proofs of the Kesten theorem (and numerous adaptations

to different models) rely both on the Harris inequality and sharp threshold re-

2We will use similar notation for the NE-model, namely pNE
c− and pNE

c+



12 INTRODUCTION

sults which hold only for increasing events. The only tools that seem to fit to

the random-orientation model as is are self-duality and various symmetry ar-

guments. In Paper II such purely topological considerations give the following

result (Theorem 1).

Theorem 1.2.1. If p is such that θNE(1− p) > 0 then θH(p) = 0.

Although Theorem 1.2.1 is a conditional result, it already gives a non-trivial

lower bound for θH(p).

Corollary 1.2.1. θH(p) = 0 for 0 < p < 1− �pc.

Inserting the upper bound for oriented percolation, we get that θH(p) = 0

for p < 0.3265, which is better than 1
μ2 ≈ 0.15 given by the path-counting

estimate. It is worth noting that the crucial property of the H-model is its 90-

degree rotational symmetry which is absent in the Grimmett model.

Perhaps Theorem 1.2.1 is more meaningful when one conjectures that pNE
c− =

pNE
c+ = 1

2 because then it follows that pHc− = pHc+ = 1
2 together with the

Grimmett conjecture which follows trivially. This explains why the NE-model

seems to be more general.

1.2.3 Monotone reformulation and higher dimensions

Since major techniques developed for percolation require monotonicity and

increasing events, it is thus desirable to reformulate the original model with

random orientations in a monotone setting. Grimmett proposed an extension

where, instead of assigning an orientation for each edge of L, oriented arcs are

placed independently by random processes with parameters ρ, λ and β with

ρ + β + λ < 1 in the following way. Let e be a horizontal lattice edge for

concreteness. Then

1. e is oriented only rightwards with probability ρ.

2. e is oriented only leftwards with probability β.

3. e is oriented leftwards and rightwards with probability λ.

4. e is absent with probability 1− (ρ+ β + λ).
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The same rule applies for vertical edges. The key observation is that the

percolation probability depends only on the marginal probabilities ρ + λ and

β + λ that an edge has a certain orientation. This follows from the cluster-

growing argument sketched next. Assign an arbitrary order to the edgeset E of

the lattice L. Let A = {(0, 0)} be the cluster we are going to grow (viewed as

a subgraph of L). At step n examine the least unexamined edge e between A

and L \A in the predetermined order, and if there is an arc on e with the proper

orientation, add its endpoint to A. Since in this exploration algorithm the state

of the edge currently under examination is always independent of the previously

seen edges, it is only marginal probabilities which determine if the algorithm

stops or not. Thus two processes with the same marginal probabilities have

identical cluster distributions. For a completely rigorous coupling argument we

invite the reader to check the details in [Gr99], pp. 28, 211.

Of course, the same arguments with obvious modifications work for the H-

and NE-models. In particular, by taking ρ = β = 0 and λ = 1
2 we conclude

that all the models are equivalent to the classical bond percolation with p = 1
2

and thus don’t percolate at this point. Write a = ρ+λ and b = ρ+λ. Grimmett

noticed that the process with parameters (a, b) is dual to the one with parameters

(1−a, 1−b) and thus, if a+b = 1, the probability that there is an oriented path

between two opposite sides of an arbitrarily large diamond (a square box rotated

by 45 degrees) is bounded away from zero, so the model is not subcritical.

Theorem 1.2.2. (Grimmett, [Gr00]) Consider the following independent pro-

cess on L with parameters a and b: rightward and leftward (respectively, upward

and downward) arcs are placed independently between each pair of horizontal

(respectively, vertical) neighbors. The probability of each upward or rightward

arc being placed is a and the probability of each downward or leftward arc being

placed is b.

If a + b > 1 then the independent process with parameters a, b contains an

infinite oriented self-avoiding path from 0 with strictly positive probability.

The proof relies on the exponential decay of the cluster size in the sub-

critical regime, which can be proven for a general class of translation-invariant

monotone models, so the proof of Theorem 1.2.2 does not hold for the H-model

or NE-model. This difference becomes more apparent in higher dimensions:
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for d ≥ 3 while pHc−, pHc+ (resp. pNE
c− , pNE

c+ ) remain strictly between zero and

one, it is shown in the second part of Paper II that the Grimmett model already

percolates in any 3-dimensional slab of height at least three.

Theorem 1.2.3. The 3-dimensional Grimmett model confined to the slab Z2 ×
{−1, 0, 1} percolates for any p ∈ [0, 1].

In contrast to this the question of monotonicity of θH(p) and θNE(p) in d ≥
2 remains open so it would be interesting to see if the methods of percolation in

high dimensions are applicable to these models.
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1.3 Commuting graphs of random finite groups

1.3.1 The conjecture of Iranmanesh and Jafarzadeh

In the third paper we present a family of random groups related to the conjecture

of Iranmanesh and Jafarzadeh about commuting graphs of finite groups. Let G

be a non-abelian group. We define the commuting graph of G, denoted by

Γ(G), as the graph whose vertices are the non-central elements of G, and such

that {x, y} is an edge if and only if xy = yx. One can just as well define the

graph to have as its vertices the non-identity cosets of Z(G), with {Zx,Zy}
adjacent if and only if xy = yx and we stick to this definition henceforth. So

the conjecture of Iranmanesh and Jafarzadeh is as follows.

Conjecture 1.3.1. (Iranmanesh and Jafarzadeh, [IJ08]) There is a natural

number b such that if G is a finite, non-abelian group with Γ(G) connected,

then diam(Γ(G)) ≤ b.

The initial motivation of Paper III was to show that Conjecture 1.3.1 is false

by providing a counterexample using probabilistic methods. Some partial re-

sults in favor of Conjecture 1.3.1 (see details in Paper III) were already known

at the moment the work on this paper was initiated. It might seem natural to

guess that for the commuting graph to be of large diameter, the group itself

should be far from being abelian. However, it turns out in many cases the op-

posite holds and the commuting graph is connected and is of small diameter. It

is thus reasonable to look at "more abelian" groups. Guidici and Pope [GPo13]

were first to consider the case of p-groups and provided a few notable results in

support of Conjecture 1.3.1.

Let us recall some basic definitions first. If x, y are two elements of a group

G, then their commutator [x, y] is defined to be the group element x−1y−1xy.

The commutator subgroup of G is the subgroup generated by all the commuta-

tors and is denoted G′. If G′ ⊆ Z(G) one says that G is of nilpotence class 2.

Quite surprisingly, one of the results of Guidici and Pope was that in this case

the center of the group should be of considerable size, otherwise the conjecture

holds.
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Theorem 1.3.1. If G is of nilpotence class 2 and |Z(G)|3 < |G|, then

diam(Γ(G)) = 2.

1.3.2 Commuting graphs of random elementary abelian 2-
groups

Peter’s insightful idea, which he came up with independently of [GPo13], was

that if Conjecture 1.3.1 is false, then it should already fail among groups of

nilpotence class two. Even more, one can take G such that both Z(G) and

G/Z(G) are both elementary abelian 2-groups, that is, additive groups of some

vector spaces over F2. However, instead of constructing an explicit counterex-

ample we are going to introduce randomness in defining commutator relations

in order to study how the commuting graph of a typical group of that kind looks

like. As illustrated by many applications of the probabilistic method pioneered

by Erdős (see [AS] for the full treatment), the behaviour of a random object is

often easer to analyze, so by adjusting parameters it is sometimes possible to

provide an example with desired properties. Unfortunately, we were unable to

disprove the conjecture in full in this way, but were able to produce a group

whose commuting graph is of diameter 10, which became the largest value

achieved by that time.

Before we proceed with the model of random groups, let us describe the sig-

nificant success which took place after the paper was submitted for publication.

In [GPa13], Giudici and Parker provide explicit examples of connected com-

muting graphs of unbounded diameter, thus disproving Conjecture 1.3.1. Their

construction is based on and inspired by the random groups presented here,

though they were able to devise an explicit construction. They have checked

by computer that their model produces examples of commuting graphs of every

diameter between 3 and 15, though it appears to remain open whether every

positive integer diameter is achievable. As a remarkable counterpoint to their

result, Morgan and Parker [MP13] have proven that if G has trivial centre then

every connected component of Γ(G) has diameter at most 10. Note that this

condition specifically excludes nilpotent groups. In contrast to these purely

group-theoretical advances, we are not aware of any further progress having

been made on the analysis of the random groups described below.
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Returning to our random construction, the group is defined as follows. Let

m, r be positive integers and V = Vm and H = Hr be vector spaces over F2

of dimensions m and r respectively. Let φ : V × V → H be a bilinear map.

Set G := V ×H and define a multiplication on G by

(v1, h1) · (v2, h2) := (v1 + v2, h1 + h2 + φ(v1, v2)). (1.1)

Then it is easy to check that

(i) (G, ·) is a group of order 2m+r, with identity element (0, 0).

(ii) Let H := {(0, h) : h ∈ H}. Then H is a subgroup of G and G/H ∼= V ,

as an abelian group.

(iii) G′ ⊆ H ⊆ Z(G).

(iv) G is abelian if and only if φ is symmetric.

(v) The commutator of two elements is given by

[(v1, h1), (v2, h2)] = (0, φ(v1, v2)− φ(v2, v1)) (1.2)

The map φ(·, ·) is taken uniformly at random among all possible bilinear

maps. It is then clear, due to (1.2), that, for two fixed distinct elements of G,

their commutator becomes uniformly distributed on H. Moreover, if we fix

a basis (v1, ..., vm) of V then all the commutator relations are determined by

the skew-symmetric matrix A with Ai,j = φ(vi, vj) − φ(vj , vi). Now we are

going to define the parameters m and r such that the commuting graph Γ(G)

is similar to the Erdős–Rényi graph Gn,p with p = n−1+ε, which is known to

have diameter concentrated at �1/ε� with high probability for small ε > 0.

Let k ≥ 2 be an integer, and δ ∈
(
0, 1

2k(k−1)

)
a real number. There is a

choice of real number δ1 > 0 such that the following holds: for each positive

integer m, if we set

r := �(1− δ1)m�, p := 2−r, n := 2m − 1, (1.3)

then, for all m sufficiently large,

1 + logn p ∈
(
1

k
+ δ,

1

k − 1
− δ

)
. (1.4)



18 INTRODUCTION

The probability that an edge of Γ(G) is present is then p, as this is the

probability that a uniformly chosen random element of H is zero. Thus one can

hope that its diameter is concentrated around k, as it would be if the states of all

edges were independent as in Gn,p.

Unfortunately, it becomes difficult to translate the known methods of Gn,p

to our setting due to large amount of dependence between edges, so we were un-

able to prove this correspondence in full. However, some convincing structural

results appear to be amenable to the second moment method.

Proposition 1.3.1. Let Gm,k be the group defined above with corresponding

parameters m, r and k. Then

(i) As m → ∞, P(G′ = Z(G) = H) → 1.

(ii) There is some δ3 > 0, depending on the choices of δ and δ1, such that, as

m → ∞, Γ(Gm,k) almost surely has a connected component of size at

least n− n1−δ3 . The diameter of Γ(Gm,k) is at least k w.h.p., but might

be infinite if it is not connected.

So in fact to provide a counterexample to Conjecture 1.3.1 it is sufficient to

prove that Γ(Gm,k) remains connected for large m and fixed k. We conjecture

that even a more precise statement holds.

Conjecture 1.3.2. As m → ∞, Γ(Gm,k) is almost surely connected and of

diameter k.
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