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Metabolic and protein interaction
sub-networks controlling the proliferation
rate of cancer cells and their impact on
patient survival
Amir Feizi & Sergio Bordel

Department of Chemical and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE412 96 Gothenburg,
Sweden.

Cancer cells can have a broad scope of proliferation rates. Here we aim to identify the molecular mechanisms
that allow some cancer cell lines to grow up to 4 times faster than other cell lines. The correlation of gene
expression profiles with the growth rate in 60 different cell lines has been analyzed using several
genome-scale biological networks and new algorithms. New possible regulatory feedback loops have been
suggested and the known roles of several cell cycle related transcription factors have been confirmed. Over
100 growth-correlated metabolic sub-networks have been identified, suggesting a key role of simultaneous
lipid synthesis and degradation in the energy supply of the cancer cells growth. Many metabolic
sub-networks involved in cell line proliferation appeared also to correlate negatively with the survival
expectancy of colon cancer patients.

C
ancer metabolism has been the object of a substantial amount of interest during the last years1,2. However,
most of the attention is focused on a small set of metabolic features, such as the well-known Warburg
effect3, the catabolism of glutamine4, the synthesis of fatty acids5,6 or the correlation of glycine uptake with

cell growth rate7. Some cancer associated metabolic features are at the basis of anticancer therapies; polyamine
metabolism8,9, biosynthesis of geranylgeranyl diphosphate10 and biosynthesis of prostaglandin E211, are some
relevant examples.

Genome-scale metabolic models12 are promising tools for the identification of new metabolic drug targets13,14.
The recently published consensus human metabolic model Recon215, and the last version of the HMR database16,
are comprehensive high quality models of human metabolism. Recon2 contains 7440 reactions (including
transport steps) and 1789 metabolic genes. The HMR database contains 8100 reactions and 3668 metabolic
genes. Among those genes, 1647 are shared between both models, 147 are unique to Recon2 and 2021 are unique
to HMR. Protein interaction networks, are also available17 to be used as tools for the contextualized analysis of
high throughput experimental data.

This paper is aimed at identifying metabolic sub-networks, as well as regulatory mechanisms and protein
interaction sub-networks that control the growth rate of cancer cells. A previous study7 showed that both the
glycine uptake rate and the expression level of the gene SHMT2, involved in glycine synthesis from serine, are
positively correlated with the growth rate across the NCI-60 cell panel18. This suggested that SHMT2 is a suitable
target for decreasing the proliferation rate of cancer cells. This hypothesis was proven by silencing SHMT2 in
HeLa cells, which led to a strong increase of the cell doubling time and the associated decrease in proliferation rate.
Our work is based on the same assumption as Jain and co-workers7, namely that genes whose expression shows a
significant positive correlation with cell growth (across the NCI-60 panel) are potential targets against cell
proliferation (even in cell lines not belonging to the NCI-60 panel such as HeLa cells).

Genome-scale metabolic networks or protein interaction networks can be used for a contextualized data
analysis. For example if the expression levels of several metabolic genes linked to reactions that are stoichiome-
tricaly coupled between each other (for example reactions in a linear metabolic pathway), are positively correlated
with the growth rate, it is likely that the activity of the pathway has a causal relationship with the cell growth rate.
This is not the case if only a single gene linked to this pathway shows a significant correlation.
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Another advantage of using genome-scale biological networks is
the fact that instead of single genes it allows identifying sub-net-
works. This helps to choose combinations of targets that would dis-
able the function of one or several of the relevant sub-networks and
lead to a synergistic effect against cancer proliferation, this phenom-
enon is known as synthetic lethality1,13. In this way it will be possible
to design combinatorial drug treatments, which can be tested experi-
mentally. The NCI-60 panel has been used to test the effects of
thousands of different drugs18, however, testing all the possible com-
binations of several drugs, would result in a combinatorial explosion.
Computational approaches based on the mechanistic information
contained in genome-scale biological networks are necessary in order
to focus the experimental efforts on a smaller set of promising com-
binatorial treatments.

A new algorithm to identify metabolic sub-networks showing
a correlated activity with the growth rate has been developed.
Contrarily to protein interaction networks, metabolic networks are
topologically Petri nets and not graphs. The proximity between two
reactions cannot be just defined by the existence of shared metabo-
lites. If two reactions are stoichiometrically coupled (e.g. their fluxes
are fully correlated) they should be considered as neighbours even if
they do not share metabolites. A new algorithm taking account of this
fact has been developed. The details of the algorithm are presented in
the supplementary material. The number and complexity of the
metabolic sub-networks identified by the new algorithm, reveals that
cancer metabolism goes well beyond the few features that are norm-
ally the main object of attention in the literature2.

There is an underlying assumption in using correlations observed
in the NCI-60 panel to extract general conclusions about cancer
metabolism. This assumption is that although cancer cells are het-
erogeneous even within the same tumor19, the fact that all the cancer
cells need to overcome certain constraints in order to proliferate gives
them certain common hallmarks20. In order to test the suitability of
the mentioned extrapolation, we used a study comparing the gene
expression of 145 colon cancer patients who survived more than 5
years and 85 patients who died within 5 years21. These data were

accessed through the G-DOC database (https://gdoc.georgetown.
edu). This study was chosen based on the high number of patients,
which allows increasing the statistical power of the test used to
identify differentially expressed genes. The newly developed algo-
rithm was used to identify metabolic sub-networks showing higher
activity in the group of patients who died in the first 5 years. The
results evidenced that many of the metabolic processes involved in
the faster proliferation of cancer cell lines are also involved in higher
mortality of colon cancer patients. This confirms the suitability of
targeting these metabolic processes.

Results
We present here the main results and conclusions of several forms of
integrated analysis of gene-expression data. Our main focus is cell
metabolism and the integrated analysis of gene expression patterns
within the context of genome-scale metabolic networks; however, in
order to put our results in the context of the regulatory mechanisms
triggering cell growth, we start by identifying transcription factors
and protein interaction sub-networks that show an increased activity
in cells with higher proliferation rates.

Correlation of gene expression with cell line growth. The norma-
lized HG-U133 Plus 2.0 and the HG-U95 microarrays available at
Cell-Miner (http://discover.nci.nih.gov) were used as input data to
our analysis. We started computing a Spearman correlation coeffi-
cient with the cell growth rate for each probe in the mentioned
microarrays. The histograms of correlation coefficients and p-
values for the HG-U133 Plus 2.0 microarray are shown in figure 1,
together with the p-values and correlation coefficients of some of the
most correlated metabolic genes. Using the obtained p-values (see
supplementary material for the detailed method) we selected a set of
positively correlated probes with a false discovery rate of 0.05 for each
of the arrays. There were 318 genes (identified by their Entrez ids)
that appeared to have a significant positive correlation with the
growth rate in both arrays (with a 0.05 false discovery rate). The
Entrez ids were mapped into 288 Ensembl ids. We also identified

Figure 1 | Panel a shows the Spearman correlation coefficients and associated p-values of some of the metabolic genes that show the most significant
correlations. The panels b and c show the distributions of Spearman correlation coefficients and p-values. The higher frequency of low p-values shows

that there are more growth correlated genes than those that could be expected as an artifact of multiple testing (which would correspond to a flat

distribution of p-values).
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128 genes showing significant negative correlation with the growth
rate (supplementary dataset S1). These gene sets were used to identify
enriched transcription factor binding motifs. Among the genes
positively correlated with the growth rate there are 10 genes
(supplementary dataset S1) that had been previously identified
(using gene silencing) as highly essential for proliferation in a
broad set of cancer cell lines22. Some of them are NDUFAB1,
which codes a sub unit of the NADH dehydrogenase transforming
ubiquinone into ubiquinol; KARS, which codes a lysyl-tRNA
synthetase; RPL6, coding a ribosomal protein; HNRNPM, coding
a heterogeneous nuclear ribonucleoprotein involved in mRNA
preprocessing etc. Among the 288 genes showing the most signi-
ficant correlation with the growth rate, 72 were metabolic genes
included in the HMR database16. Only 35 of them were present in
Recon223, which has lower gene coverage than the HMR database.

Transcription factors controlling cancer growth rate. In order to
identify the mechanisms controlling the proliferation rate of cancer
cell lines at the transcriptional level, the set of genes showing
significant positive correlation with the growth rate (with a 0.05
false discovery rate) in both microarrays, was used to identify
enriched transcription factor binding motifs. We used Pscan24 to
identify the motifs. Pscan identified 6 position specific weight
matrixes with p-values lower than 1e210, 4 of them from the
JASPAR database25 and 2 from the TRANSFAC database26. In
order to check for consistency, we repeated the analysis using gene
sets with false discovery rates of 0.03 and 0.01 respectively. The p-
values decreased with the number of tested genes but the same 6
motifs were always the most significantly enriched (figure 2).

The identified binding motifs from JASPAR corresponded to
ELK1, ELK4, GABPA and E2F1. The two TRANSFAC motifs were
E2F_02 and E2F_03. These motifs are potential targets of the E2F
family of transcription factors. The lists of regulated genes and the
position of the binding motifs in their promoters are reported in the
supplementary dataset S2.

The same kind of analysis was performed for the set of genes
that showed significant negative correlations with the growth rate
(with 0.05 false discovery rate) in both microarrays. This led to the
identification of Egr1 and SP1 with p-values of 2.7e-9 and 2.5e-8
respectively.

Identification of growth correlated protein interaction sub-
networks. Among the 288 genes that showed significant positive
correlation with the growth rate (with 0.05 false discovery rate) in
both microarray platforms, 124 showed at least one protein

interaction with another of the genes. Among those genes, 109
formed a connected sub-network (figure 3). This network is charac-
terized by two clear clusters of proteins tightly connected between
each other. The smaller cluster corresponds to mitochondrial
ribosomal proteins, while the bigger cluster includes mostly cytop-
lasmic ribosomal proteins and heterogeneous ribonucleoprotein
particles (hnRNPs), which are involved in the splicing and

Figure 2 | Enrichment p-values for several transcription factor binding motifs in the JASPAR and TRANSFAC databases. The p-values have been

computed for 3 different sets of top correlated genes (defined by false discovery rates of 0.01, 0.03 and 0.05).

Figure 3 | Protein interaction graph corresponding to the growth
correlated genes. The numbers in each node correspond to the identifiers

in supplementary file S1. The yellow nodes correspond to proteins

involved in regulatory feedbacks such as SKP2 (node 62) and p130 (node

73). We can see that p130 interacts with 17 other growth correlated

proteins, which correspond to cytoplasmic ribosomal proteins and

heterogeneous ribonucleoprotein particles (hnRNPs). The whole list of

genes in the network can be found in the supplementary file S1. The orange

nodes correspond to the most connected hubs of the main cluster. They are

ribosomal proteins such as RPS9, RPS6, RPL4 or RPL13A. The green nodes

correspond to proteins that also have a metabolic activity and the purple

nodes are the most connected hubs in the second cluster, which correspond

to mitochondrial ribosomal proteins.

www.nature.com/scientificreports
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preprocessing of RNAs. It is well known that many ribosomal
proteins belonging to both ribosomal subunits are overexpressed
in cancer cell lines and tumors27, which also leads to morpho-
logical changes in the nucleolus28. Higher expression of the protein
translational machinery, including the preprocessing of mRNAs, has
a very straightforward quantitative relationship with higher prolife-
ration rates. However there are also qualitative features of cancer that
can be explained by higher expression of these components. In
particular hnRNPA1, whose expression level is controlled by E2F1
and positively correlated with the growth rate, is involved in the
alternative splicing of PKM (pyruvate kinase)29. The increased
activity of hnRNPA1 results in the formation of the splicing
variant PKM2 instead of PKM1. This is believed to be the cause of
the Warburg effect29.

Metabolic sub-networks controlling cell growth rate. We have
developed a new algorithm for the integration of gene-expression
data with genome-scale metabolic networks. Metabolic networks are
topologically Petri nets and transforming them into graphs (in which
the adjacency between two reactions is defined by sharing
metabolites) results necessarily in a loss of information and a misre-
presentation of their structure. Here we define a measurement of the
functional similarity between metabolic reactions. This measure-
ment is based on projecting the vector representing each reaction
into the kernel of the stoichiometric matrix of the metabolic network
and computing the angles between the projections of different
reactions. In this way, reactions that are fully stoichiometrically
coupled (even if they do not share any metabolite) have a zero
angle between them (a detailed description of the methodology is
presented in the supplementary material). This measurement of
similarity between reactions combined with the statistical signifi-
cance associated to each reaction (what we call h-value; see supple-
mentary methods), allows identifying reaction clusters showing
significant positive correlation with the growth rate. In a second
step, all the remaining reactions stoichiometrically coupled to each
sub-set are added in order to provide a connected network as
an output. We used both the Recon2 genome-scale metabolic
model and the HMR database. There is a substantial overlap
between the metabolic processes identified using both models, but
the sub-networks identified with the HMR database include more
reactions, due to the fact that HMR has a more comprehensive gene
annotation. The top 100 sub-networks (by number of reactions)
obtained using HMR and the top 50 using Recon2 are presented in
the supplementary datasets S3, S4, S5 and S6. These files contain the
stoichiometry of each of the reactions in the identified networks
(with the metabolites named the same way as in HMR and Recon2
respectively) followed by the list of genes associated to each reaction.

Some of the sub-networks identified by the algorithm involve
the synthesis and degradation of keratan sulfate I, the synthesis of
keratan sulfate II and the synthesis of heparan sulfate proteoglycan.
For example the biosynthesis of keratan sulfate I consists on a
linear pathway of 37 reactions among which 25 show correlation
with the growth rate at the expression level. Keratan sulfate and
heparan sulfate are known to play a key role in cell proliferation
and metastasis30.

A very interesting sub-network (network 13 in the supplementary
files S3 and S4) involves the biosynthesis of SAICAR (figure 4), which
has been recently reported to stimulate the activity of PKM2 pro-
moting cancer survival in glucose-limited conditions31.

The vast majority of the identified sub-networks are related to
lipid metabolism, which is consistent with previous knowledge.
The higher expression in cancer cells of the FAS I complex (fatty
acid synthase) is well known, however the function of the identified
sub-networks seems to go well beyond the synthesis of lipids as
biomass building blocks. The sub-network analysis identified the
synthesis of several acyl-ACPs (catalyzed by the complex FAS II)

such as octanoyl-ACP (figure 4), which is required for mitochondrial
protein lipoylation. In particular, lipoylation of the E2 subunit of
PDH is required for the conversion of pyruvate to acetyl-CoA32,
which leads to a positive feedback in the de novo synthesis of fatty
acids. The synthesis of octanoyl-ACP is known to occur in the mito-
chondria; however the HMR database presents it in the cytosol. The
mentioned mistake should be corrected in future versions of this
human genome-scale metabolic model.

Several sub-networks indicate not only an increased rate of fatty
acid synthesis but also an increased degradation of very diverse fatty
acids. This is in agreement with previous observations33, which sug-
gested the coexistence of high levels of fatty acid synthesis and degra-
dation in some cancer cells. Many of the identified sub-networks
consist on the cytosolic modification of fatty acids by acyl-CoA
synthetases followed by the mitochondrial b-oxidation or the perox-
ysomal b-oxidation. The peroxysomal b-oxidation is undergone by
long and branched fatty acids such as (2R,6R,10R)-trimethyl-hende-
canoyl-CoA (network 6 in the supplementary files S3 and S4).
In particular, the enzyme a-methylacyl CoA racemase (AMACR),
which catalyzes the racemization of a-methyl and carboxylic
branched chain acyl-CoA thioesters (network 6 in S3 and S4) pre-
paring them for catabolism in peroxisomes and mitochondria, has
been already observed to be overexpressed in many cancers34. The
transport of fatty acids from the cytosol to the mitochondrion
involves the carnitine shuttle, catalyzed by the enzymes CPT-I and
II. The limiting substrate of this process has been reported to be
carnitine35. Our analysis shows also that the de novo synthesis of
carnitine (network 41 in S3 and S4) is positively correlated with
the cell growth rate (figure 4), which confirms the key role of mito-
chondrial fatty acid degradation.

The largest sub-network (network 2 in S3 and S4) groups sets of
reactions that have the common characteristic of producing hydro-
gen peroxide or other compounds inducing oxidative stress and
inflammation, which is a very well-known feature of cancer. It is
believed that the increased oxidative stress of cancer is associated
to an abnormal function of the respiratory chain36, however network
2 as well as other sub-networks such as 24 and 25, point to important
cytosolic and peroxisomal sources of hydrogen peroxide and other
oxidant compounds. This sub-network also includes the transforma-
tion of arachidonic acid into several forms of HETE (hydroxyeico-
satetraenoic acid), which has been shown to have a strong
antiapoptotic effect and promote mitogenesis37.

Impact of metabolism on the survival of colon cancer patients. In
order to assess to which extent the identified sub-networks can be
extrapolated from a panel of cancer cell lines to in-vivo tumors; we
have performed a differential expression analysis of 145 colon cancer
patients who survived more than 5 years and 85 patients who died
within 5 years21. The mentioned study was chosen among those
contained in the GDOC database (https://gdoc.georgetown.edu)
because it contains the highest number of patients and it allows
obtaining the highest statistical confidence for the differential expres-
sion of genes between both groups of patients.

A t-test between the two groups of patients was performed and the
p-values obtained were used to carry out the same analysis as in the
case of growth correlated genes in the NCI-60 panel. In general the
statistical significance of differential expression between the patient
groups is much lower than the significance of correlation across the
NCI-60 panel. Only 8 genes passed a threshold of 0.05 false discovery
rate compared with 288 in the previous analysis. However, the meta-
bolic sub-network analysis is still possible because it is not based on a
stringent significance cut-off (see supplementary material for a
detailed description of the algorithm). The analysis was performed
using the HMR database due to its more comprehensive gene
annotation.

www.nature.com/scientificreports
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The identified metabolic sub-networks are presented in the sup-
plementary files S7 and S8. Interestingly 24 out of the larger 50
sub-networks overlap with some the sub-networks identified in the
previous analysis (supplementary files S3 and S4). This suggests that

many of the metabolic processes controlling the growth rate of cancer
cell lines are also playing the same role in colon cancer and have an
impact on the survival expectancy of the patients. Lipid metabolism is
strongly predominant among the identified metabolic sub-networks.

Figure 4 | Examples of 4 growth correlated sub-networks. The reactions marked in red show positive transcriptional correlation with the growth rate.

The three sub-networks involved in lipid biosynthesis and degradation re-appear among the metabolic sub-networks found in the patient mortality

analysis.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 3041 | DOI: 10.1038/srep03041 5



A good way to compare the results of the two types of analysis is to
assess the degree of overlap between the metabolites unique to the
top 100 sub-networks identified in each case. In the growth rate
correlated sub-networks there are 852 metabolites that appear only
within these sub-networks. In the case of the mortality correlated
sub-networks there are 332 exclusive metabolites, 162 of these meta-
bolites are in the intersection of both metabolite sets. The total num-
ber of metabolites in the model is 5552 and the probability of finding
such an overlap randomly is virtually zero (see supplementary mater-
ial). This suggests that the same metabolic mechanisms responsible
for a higher in-vitro growth rate of the cell lines are also responsible
for higher growth rate of colon tumors in vivo and the associated
higher patient mortality.

The list of overlapping metabolites is provided in the supplement-
ary file S9. Particularly interesting are those metabolites that, after
blocking the reactions in which they are involved, result in the
degrees of freedom of their sub-networks dropping to zero (in both
the growth related and the mortality related sub-networks). The
predominant compounds are lipids, but there are also some interest-
ing exceptions such as fructose-2,6-biphosphate. This compound is
an allosteric activator of PFK-1. Its role in cancer has been recently
reviewed38 and the action of the anticancer drug N-bromoacetileta-
nolamine is based on targeting the enzyme PFK-2, involved in the
synthesis and degradation of fructose-2,6-biphosphate.

Discussion
The transcription factors of the E2F family are known to be key
regulators of the cell cycle and are involved in tumorigenesis39.
E2F1 is active in the late G1 phase and the S phases of the cell cycle
and its overexpression is able to drive cells out of quiescence and also
confers transforming potential to primary cells39. Its oncogenic activ-
ity is restricted by the binding of pRB and E2F1 mutants that cannot
bind to pRB are potentially responsible for cancer development.
E2F1 has been found to be elevated in colon cancers40 and the
expression levels of genes with the E2F_03 binding motif from
TRANSFAC has been shown to be negatively correlated with the
survival time of breast cancer patients41.

E2F4 binds to the same sequence motifs than E2F1 but acts as a
repressor instead of an activator39. In cells in a quiescent state, the
promoters regulated by the E2F family are occupied by a complex
containing E2F4 and p130 among other proteins. This complex is
displaced by E2F1 in the mid G1 phase39.

ELK1 and ELK4 belong to the ETS family of transcription factors,
which are involved in the response to the activation of growth factor
receptors via the MAPK signaling pathway. These transcription
factors are known to be involved in cancer by promoting not
only growth but also invasion and metastasis42. Many of the genes
positively correlated with the growth rate have binding motifs
for both the E2F family and ELK1 or ELK4. This shows the exis-
tence of redundancy in the regulatory mechanisms triggering cell
proliferation.

GABPA, also known as Nrf2, is a transcription factor involved in
adaptation to hypoxia, which is known to have an increased activity
in several cancer types43.

A literature survey revealed that SP1 is involved in the expression
of p21, which arrests cell proliferation by interacting with cyclin-
CDK complexes44. It is therefore possible that most of the genes
showing a negative correlation with the growth rate are just reporting
a lower activity of SP1 that results in a lower expression of p21 and
lower inhibition of the cell cycle progression.

In order to gain more insights into the regulatory mechanisms, we
used a genome-scale protein interaction network17, to identify pos-
sible interactions between the transcription factors identified using
Pscan, and the products of genes showing significant positive corre-
lations with the growth rate. Only two interactions were revealed, the
first one occurs between E2F1 and SKP2. The expression level of

SKP2 is regulated by E2F1 and shows a positive correlation with
the growth rate. The existence of a positive feedback loop involving
E2F1 mediated transcription of SKP2 and enhanced transcriptional
activity of E2F1 by SKP2 has been experimentally shown in lung
tumors45. Our analyses suggest that it is a more general feature of
fast proliferating cancer cells. The second observed interaction
occurs between the transcriptional repressor E2F4 and p130, which
is coded by the gene NOLC1. These two proteins are known to be
involved in a complex that blocks the binding sites of E2F1 keeping
the cells in a quiescent state39. NOLC1 is itself transcriptionally regu-
lated by E2F1, which suggests a negative feedback mechanism that
moderates the excessive activity of E2F1. The transcriptional level of
NOLC1 shows a positive correlation with the growth rate but this
higher expression does not seem to be sufficient to arrest the growth
rate of the studied cancer cell lines. This could be explained by a lack
of activity of the protein p130, which belongs to the retinoblastoma
family and is known to be inactivated by phosphorylation.

Both of the proteins that we found to be involved in positive and
negative regulatory loops appear also in this connected sub-network.
SKP2 interacts only with CDT1, which is a protein involved in DNA
replication. SKP2 is involved in the ubiquitination and subsequent
degradation of CDT146. It might seem counterintuitive that SKP2 is
involved in the degradation of a protein necessary for DNA replica-
tion and have a positive correlation with the growth rate. However,
the degradation of the protein CDT1 is necessary for the cell to move
from the S phase to the G2 phase of the cell cycle. Therefore its faster
degradation helps the cell to transit faster from S to G2, while its
higher expression level (the expression level of CDT1 is also posi-
tively correlated with the growth rate) allows the cell to go faster
through the S phase. In contrast, p130 interacts with 17 other pro-
teins, including the most connected hubs of the network. These hubs
include the heterogeneous nuclear ribonucleoproteins M (hnRNPM)
and also hnRNPA1 (involved in the alternative splicing of PKM).
Also ribosomal proteins such as RPS9, RPS6, RPL4 or RPL13A inter-
act with p130. The density of interactions that p130 shows with
elements of the RNA processing and the protein translational
machinery suggests that it could be interfering with their function
and acting as a growth inhibitor also at this level and not only by
cooperating with E2F4 to repress gene transcription. This potential
growth inhibitory function seems to be unpaired at the protein level
in the studied cancer cells despite the fact that the transcription level
of p130 shows a significant positive correlation with the growth rate.

The fact that the oxidation of fatty acids, in particular through the
mitochondrial b-oxidation, clearly correlates in activity with the
growth rate of cancer cells, suggests that lipid oxidation is their main
ATP source and not glucose lactic fermentation, known as the
Warburg effect. In order to check this hypothesis we computed the
Spearman correlation coefficient between the growth rate and the
lactate secretion rate reported by Jain and co-workers7 for the NCI-
60 cell panel. The correlation between growth rate and lactic acid
production was slightly negative, with a Spearman correlation coef-
ficient of 20.241 and an associated p-value 0.008, which shows that
there is actually a rather significant negative correlation between
lactic fermentation and cell growth rate and not a positive correla-
tion, as it would be expected if the glycolysis was the main source of
ATP fueling growth. This means that the main source of ATP in
cancer cells is still the respiratory chain and according to the results
from the integration of gene expression with genome-scale metabolic
models, b-oxidation of fatty acids seems to be an important energy
source controlling the cell proliferation rate. Another piece of evid-
ence in this direction is the fact that the correlation of the expression
level of citrate synthase with the growth rate was positive, with a
Spearman correlation coefficient of 0.503 and a p-value of 4.95e-5
(figure 5). A higher expression level of a single gene does not neces-
sary imply a higher metabolic flux, but in this case the positive
correlation of L-carnitine biosynthesis as well as fatty acid synthesis

www.nature.com/scientificreports
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and degradation come together to strengthen the hypothesis of a
cycle involving simultaneous fatty acid synthesis and degradation
(figure 6).

In order to assess if the apparently futile cycle formed by the
simultaneous fatty acid synthesis and degradation can constitute
an energy source for the cell, we have calculated the global stoichi-
ometric balance of a cycle involving the synthesis of acyl-CoAs from
cytosolic acetyl-CoA, the transport of acyl-CoAs to the mitochondria
via the carnitine shuttle, the mitochondrial b-oxidation, the trans-
formation of the resulting mitochondrial acetyl-CoA into citrate, the
transport of citrate to the cytosol via the citrate-malate antiporter and
finally the cytosolic conversion of citrate into acetyl-CoA. The whole
cycle consumes two molecules of ATP per unit of cycled acetyl-CoA
and results in the consumption of two molecules of cytosolic
NADPH and the production of one mitochondrial NADH and one
mitochondrial FADH2. Also one unit of NADH is consumed in the
cytosol and another one is produced in the mitochondria. Therefore
the complete cycle results in the reduction of three mitochondrial
redox cofactors at the expenses of the oxidation of three cytosolic

redox cofactors. The respiratory chain could produce up to 8 ATP
molecules from two NADH molecules and one FADH2 molecule
(assuming a P/O ratio of 3). For a more realistic P/O ratio of 1.5 it
could be possible to obtain 4 ATP molecules per cycle, which is still
enough to compensate for the loss of 2 ATP molecules necessary to
drive the cycle.

The mentioned hypothesis is supported by the fact that the drug
etomoxir, an inhibitor of b-oxidation, shows anti-cancer effects47

and that expression of carnitine palmitoyltransferase 1C (CPT1C)
involved in the carnitine shuttle, promotes cell survival and tumor
growth48. In a recently published paper49 it has been observed a
strong cytotoxic effect and high cytosolic lipid accumulation of on
Burkitt’s lymphoma cells when they are treated with ST1326, an
inhibitor of carnitine-palmitoyl transferase 1A (CPT1A).It has also
has been shown that pharmacologic inhibition of fatty acid oxidation
sensitizes human leukemia cells to apoptosis induction50. Other
observation pointing in the same direction is the fact that besides
lactate, citrate and malate are two of the compounds secreted by all
the cells in the NCI-60 panel in higher amounts7. This is consistent
with high cytosolic concentrations of both compounds, necessary to
drive the cytosolic synthesis of acetyl-CoA and the citrate-malate
antiporter.

The impact of fatty acid oxidation on patient survival has been
previously shown in breast cancer51. It was also shown that fatty acid
oxidation is triggered by a higher activity of the regulator PML.

The growth correlated metabolic sub-networks can be used for
the identification of suitable anti-cancer drug targets. A common
method for drug design is based on mimicking the chemical structure
of a metabolite in order to use competitive inhibition of metabolic
enzymes to decrease the metabolic flux in a particular pathway. The
structure of the growth-correlated sub-networks can be used as a
guide for the design of new drugs. First of all it is possible to identify
metabolites that are present only in the growth correlated metabolic
sub-networks, in order to avoid interferences with other metabolic
pathways. Figure 7 shows the histogram of the number of unique
metabolites in each sub-network, for the growth correlated sub-net-
works and for the colon cancer mortality associated sub-networks
respectively.

Figure 5 | Correlation of cell growth rate with lactate production and
gene expression of citrate synthase. The correlation with lactate

production is actually negative, which contradicts the hypothesis of

glycolysis being the main source of ATP for cancer cells.

Figure 6 | Schematic representation of the hypothesized cycle combining simultaneous fatty acid synthesis and degradation.
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Each of the metabolites unique to a sub-network, if it is assumed to
be in steady state, can be used to define a mass balance equation that
relates the fluxes of the reactions producing the metabolite and the
fluxes of the reactions consuming it. The number degrees of freedom
of the system of equations that results for each sub-network can be
used as a measurement of its robustness. For example, a sub-network
formed by a set of reactions in series has a robustness of 1 while a sub-
network formed by a set of reactions operating in parallel would have
as many degrees of freedom as reactions. Disabling a single reaction,
in the first case would stop the flux through the whole pathway, while
in the second case it would only have a minor impact. This can be a
criterion to decide what metabolic sub-networks are more fragile and
therefore constitute better targets for drugs. Figure 7 shows the
robustness histogram for the growth correlated sub-networks and
for the colon cancer mortality associated sub-networks respectively.

Finally, it is also possible to compute the degrees of freedom of a
sub-network after blocking all the reactions consuming and pro-
ducing a particular metabolite (which mimics the effects of a drug
showing competitive inhibition against the enzymes processing the
metabolite). If the remaining degrees of freedom are zero, the meta-
bolite can be considered to be essential for the network operation and
a possible scaffold for drug design.

As a conclusion we can say that in this paper we show how human
genome-scale biological networks, and in particular genome-scale
metabolic networks, can be used as analysis scaffoldss of gene-
expression data, in order to provide deeper insights into the molecu-
lar mechanisms associated to cancer cell proliferation. This kind of
analysis has been made possible thanks to the recent availability of
high quality genome-scale metabolic networks with comprehensive
gene annotations. In particular the HMR database contains 3668
metabolic genes, allowing an almost full mapping of transcriptional
changes of genes into metabolic reactions.

This has led to the identification of possible regulatory mechan-
isms controlling cancer proliferation. We also identified over 100
growth related metabolic sub-networks, which can be seen as an atlas
of metabolic pathways whose complexity goes well beyond the meta-
bolic features typically associated to cancer1,2.

Several of the identified metabolic processes had been already
shown to be relevant in particular cancers. Our analysis allows put-
ting these processes in a broader perspective and reveals interactions
between them, such as the simultaneous synthesis and degradation of
fatty acids and the synthesis of carnitine.

Based on the analysis of gene expression and observations of the
secretion pattern of the NCI-60 cell panel7, we have hypothesized
that an important source of ATP in proliferating cancer cells is
obtained from the shuttling of reducing power contained in the
cytosolic NADPH, to the mitochondrion. This involves an appar-
ently futile cycle of fatty acid biosynthesis and degradation and
implies a key role of L-carnitine and the CPT1C transporter.

A very important question is the extrapolability of the results
obtained from the contextualized analysis of the gene expression
patterns of the NCI-60 panel, to in vivo tumors. In order to address
this point we have used the differentially expressed genes between
two groups of colon cancer patients to identify metabolic sub-net-
works whose activity has a negative impact on patient survival. The
analysis revealed a substantial overlap between the sub-networks
identified in both analyses, which suggests that the same metabolic
sub-networks involved in sustaining higher proliferation rates in-
vitro are also more active in more aggressive in-vivo tumors.
Comparing the sub-networks at a metabolite level we obtain a very
statistically significant overlap.

We also suggested some criteria to identify suitable drug targets
against cancer proliferation, which are based in the topological struc-
ture of the metabolic sub-networks, which determines their robust-
ness.

Methods
The normalized HG-U133 Plus 2.0 and the HG-U95 microarrays were obtained from
Cell-Miner (http://discover.nci.nih.gov). The specific growth rates of each cell line are
calculated from the doubling times reported at Cell-Miner and they are reported in
the supplementary file S10. The mapping between different gene IDs has been don
using Clone/Gene ID converter52. The transcription factor enrichment analysis was
done using Pscan24. The algorithms to identify metabolic sub-networks have been
implemented as MATLAB functions and are available upon request. The data ana-
lysis and computational methods are described in detail in the supplementary
methods (supplementary methods file).
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