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ABSTRACT

This study focuses on the modeling of a plasma arc heat source in the context of
electric arc welding. The model was implemented in the open source CFD software
OpenFOAM-1.6.x, coupling thermal fluid mechanics in three dimensions with electro-
magnetics. Four different approaches were considered for modeling the electromag-
netic fields: i) the three-dimensional approach, ii) the two-dimensional axi-symmetric
approach, iii) the electric potential formulation, and iv) the magnetic field formulation
as described by Ramírez et al. [1]. The underlying assumptions and the differences
between these models are described in detail. Models i) to iii) reduce to the same quasi
one-dimensional limit for an axi-symmetric configuration with negligible radial current
density, contrary to model iv). Models ii) to iv) do not represent the same physics when
the radial current density is significant, such as or an electrode with a conical tip. Mod-
els i) to iii) were retained for the numerical simulations. The corresponding results were
validated against the analytic solution of an infinite electric rod. Perfect agreement was
obtained for all the models tested. The results from the coupled solver (thermal fluid
mechanics coupled with electromagnetics) were compared with experimental measure-
ments for Gas Tungsten Arc Welding (GTAW). The shielding gas was argon, the arc was
short (2mm), the electrode tip was conical, and the configuration was axi-symmetric.
The boundary conditions were specified at the anode and cathode surfaces. Models
i) and ii) lead to the same results, but not the model iii). Model iii) neglects the radial
current density component, resulting in a poor estimation of the magnetic field, and in
turn of the arc fluid velocity. The limitations of the coupled solver were investigated
changing the gas composition, and using different boundary conditions. The boundary
conditions, difficult to measure and to estimate a priori, significantly affect the simulation
results.

Keywords: electric arc welding, thermal plasma, short arc, electromagnetic model,
electric potential formulation, magnetic field formulation, GTAW.

1 INTRODUCTION

The first man made electric arc was produced in 1800
by Sir Humphry Davy using carbon electrodes. Elec-
tric arc welding as a method of assembling metal
parts through fusion was however initiated much later,

at the end of the 19’s century, when C.L. Coffin in-
troduced the metal electrode and the metal transfer
across an arc. Thanks to intense developments in the
early 1900’s, such as the first coated electrode devel-
oped by A.P. Strohmenger and O. Kjellberg, electric
arc welding started being utilized in production in the
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1920’s, and then in large scale production from the
1930’s.

This manufacturing process, although used since
many decades, is still under intensive development,
in order to further improve different aspects such as
process productivity, process control, and weld qual-
ity. Such improvements are beneficial both from eco-
nomical and environmental sustainability.

Electric arc welding is interdisciplinary in nature, and
complex to master as it involves very large tempera-
ture gradients, and a number of parameters that do
interact in a non-linear way. Its investigation was
long based on experimental studies. Today, thanks
to recent and significant progress done in the field
of welding simulation, experiments can be comple-
mented with numerical modeling to reach a deeper
process understanding. As an illustration, the change
in microstructure can be simulated for a given thermal
history within the heat affected zone of the base metal,
as shown in [2]. Numerical calculations of the resid-
ual stresses, to investigate fatigue and distortion, can
now be coupled with the weld pool as in [3], calibrating
functional approximations of volume and surface heat
flux transferred from the electric arc.

Electric arcs used in welding are generally coupling
an electric discharge between an anode and a cath-
ode, with a shielding gas flow. The main goal is to
form a shielding gas flow with a temperature large
enough to melt the materials to be welded, i.e. a ther-
mal plasma flow. The numerical modeling of thermal
plasma flow is thus a key element for characterizing
the thermal history of an electric arc welding process.
It determines the thermal energy provided to the par-
ent metal, its spatial distribution, and also the pressure
force applied by the arc on the weld pool.

A thermal plasma is basically modeled coupling ther-
mal fluid mechanics (governing mass, momentum and
energy or enthalpy) with electromagnetics (govern-
ing the electric field, the magnetic field, and the cur-
rent density). Different thermal plasma models can
be found in the literature in the context of electric
arc simulation. The first model coupling thermal fluid
mechanics and electromagnetics to simulate an axi-
symmetric high-intensity free burning arc was devel-
oped by Hsu et al. in 1983, and applied to a 10 mm
long arc [4]. Since then many developments have
been done to address in more detail various aspects
of the electric arc heat source. Within the frame of axi-

symmetric configurations, Tanaka et al. accounted for
chemical non-equilibrium [5]. Yamamoto et al. investi-
gated the influence of metal vapor on the properties of
a plasma arc [6]. Wendelstorf coupled arc, anode and
cathode including the plasma sheath [7]. Tanaka et al.
and Hu et al. coupled arc and weld pool acounting for
melting [8], [9]. Some of these models have also been
extended to three space-dimensions by Xu et al. for
instance [10]. These studies are based on the same
thermal fluid model (up to the space dimension) for de-
scribing the core of the plasma arc. However, various
models are used for determining the electromagnetic
fields. Among them are the three-dimensional formu-
lation with magnetic potential, Gonzales et al. [11], or
with magnetic field, Xu et al. [10]. In the context of axi-
symmetric applications few authors use the magnetic
field formulation introduced by McKelliget and Szekely
[14]. Few authors, such as Lago et al. [12], Bini et
al. [13], use instead a two-dimensional axi-symmetric
model (combining the magnetic field formulation with a
Poisson equation for governing the electric potential).
The electric potential formulation introduced by Hsu et
al. [4] is retained by many authors. The electric po-
tential formulation and the magnetic field formulation,
developed for two-dimensional axi-symmetric configu-
rations, were initially applied to rather long arcs with-
out accounting for the geometry of the electrode tip.
These formulations have been compared by Ramírez
et al. [1] for arc lengths of 6.3 and 10 mm. It is often
considered that these formulations do represent the
same physics. When tested numerically, it is however
observed that they do lead to results presenting some
differences. These differences are usually considered
to be due to mathematical and numerical issues, as
underlined by Ramirez et al., [1].

The aim of the present study is to develop a simu-
lation tool for thermal plasma arc applied to electric
arc welding, and thus to short arcs. The implemen-
tation was done in the open source CFD software
OpenFOAM-1.6.x (www.openfoam.com), considering
three space dimensions. OpenFOAM was distributed
as OpenSource in 2004. This simulation software is
a C++ library of object-oriented classes that can be
used for implementing solvers for continuum mechan-
ics. It includes a number of solvers for different con-
tinuum mechanical problems. Due to the availability
of the source code, its libraries can be used to imple-
ment new solvers for other applications. The current



Doc. 212-1189-11 3

implementation is based on the buoyantSimpleFoam
solver, which is a steady-state solver for buoyant, tur-
bulent flow of compressible fluids. The partial differ-
ential equations of this solver are discretized using the
finite volume method.
The thermal plasma simulation model implemented in
teh present work is described in section 2. It couples
a system of thermal Navier-Stokes equations in three
space-dimensions (section 2.1) with a simplified sys-
tem of Maxwell equations (section 2.2). Different sim-
plifications were considered for modeling the electro-
magnetic fields:

i) the three-dimensional approach,

ii) the two-dimensional axi-symmetric approach,

iii) the quasi one-dimensional approach,

iv) the electric potential formulation, and

v) the magnetic field formulation.

The underlying assumptions and the differences be-
tween these models are detailed in section 2.2.

Models i), ii) and iv) were retained for doing numeri-
cal tests. The electromagnetic part of the solver was
tested against the analytic solution of an infinite elec-
tric rod. The test case and the results are presented
in section 3.1.
The coupled solver was tested against experimental
measurements for Gas Tungsten Arc Welding (GTAW)
done by Haddad and Farmer [15]. That case was also
used by Tsai and Sindo Kou [16] for modeling and sim-
ulating welding arcs produced by sharpened and flat
electrodes. The shielding of the test case gas is ar-
gon, the experimental configuration is axi-symmetric,
and the arc length (2 mm) is not long compared to the
electrode tip radius (0.5 mm). The anode and cath-
ode were treated as boundary conditions in the simu-
lations, accounting for the geometry of the electrode
tip. This second test case, and the related simulation
results, are presented in section 3.2. For each test
case the approaches i), ii) and iv) were used for calcu-
lating the magnetic field, and their validity discussed.
The limitations of the coupled solver were also investi-
gated changing the gas composition, and testing vari-
ous boundary conditions on the anode and cathode to
evaluate their influence on the plasma arc. The cor-
responding simulation results are presented and dis-
cussed in sections 3.3 and 3.4. The main results and
conclusions are summarized in section 4.

2 MODEL

The model described in the present work was retained
as first step in the development of a simulation tool
for thermal plasma arc applied to electric arc weld-
ing. The implementation was done in the continuation
of the work done by Sass-Tisovskaya [17]. The im-
plementation was done in the open source CFD soft-
ware OpenFOAM-1.6.x (www.openfoam.com), cou-
pling thermal fluid mechanics with electromagnetics.
The fluid and electromagnetic models are tightly cou-
pled. The Lorentz force, or magnetic pinch force, re-
sulting from the induced magnetic field indeed acts
as the main cause of plasma flow acceleration. The
Joule heating due to the electric field is the largest
heat source governing the plasma energy (and thus
temperature). On the other hand the system of equa-
tions governing electromagnetics is temperature de-
pendent, via the electric conductivity. The main details
of the implemented thermal fluid and electromagnetic
models are described in the following sections.

2.1 Thermal fluid model

The thermal fluid part of the model was derived by
Choquet and Lucquin-Desreux [18] from a system of
Boltzmann type transport equations using kinetic the-
ory. A viscous hydrodynamic/diffusion limit was ob-
tained in two stages doing a Hilbert expansion and
using the Chapman-Enskog method. The resultant
viscous fluid model is characterized by two temper-
atures, and non equilibrium ionization. It applies to
the arc plasma core and the ionization zone of the arc
plasma sheath. The model implemented here is a sim-
plified version of that model neglecting the arc plasma
sheath. The thermal fluid component of the model ap-
plies to a Newtonian and thermally expansible fluid,
assuming:

- a one-fluid model,

- in local thermal equilibrium,

- mechanically incompressible,
because of the small Mach number, and

- a steady-state and laminar flow.

The model is thus suited to the plasma core. In this
framework the continuity equation is written as

O·
[
ρ(T ) ~u

]
= 0 , (1)
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where ρ denotes the fluid density, ~u the fluid velocity,
and O· the divergence operator. The density ρ = ρ(T )
depends here on the temperature T , as illustrated for
argon plasma in Fig. 1.

Figure 1: Argon plasma density as a function of
temperature.

The momentum conservation equation is expressed
as

O·
[
ρ(T ) ~u ⊗ ~u

]
− ~u O·

[
ρ(T ) ~u

]
−O·

[
µ(T )

(
O~u + (O~u)T

)
− 2

3 µ(T ) (O·~u) I
]

= −OP + ~J × ~B ,

(2)

where µ the viscosity, I is the identity tensor, P the
pressure, ~B the magnetic flux density (simply called
magnetic field in the sequel), ~J the current density, O
denotes the gradient operator, ⊗ and × the tensorial
and vectorial product, respectively. The last term on
the right hand side of Eq. (2) is the Lorentz force.
The enthalpy conservation equation is

O·
[
ρ(T )~u h

]
− h O ·

[
ρ(T ) ~u

]
− O·

[
α(T ) Oh

]
= O· (~u P) − P O·~u + ~J· ~E

−Qrad + O·
[ 5 kB ~J
2 e Cp(T )

h
]
,

(3)

where h is the specific enthalpy, α is the thermal dif-
fusivity, ~E the electric field, Qrad the radiation heat
loss [19], kB the Boltzmann constant, e the elementary
charge, and Cp the specific heat at constant pressure.

The third term on the right hand side of Eq. (3) is the
Joule heating, and the last term the transport of elec-
tron enthalpy. The temperature, T , is derived from the
specific enthalpy via the definition of the specific heat,

Cp(T ) =
( dh
dT

)
P
, (4)

which is plotted in Fig. 2 for Ar and CO2 plasma.

Figure 2: Specific heat as a function of temperature for
Ar (solid line) and CO2 (dotted line).

The thermodynamic and transport properties are lin-
early interpolated from tabulated data implemented on
a temperature range from 200 to 30 000 K, with a
temperature increment of 100 K. These data tables
were derived for argon plasma [20], and carbon diox-
ide plasma [21], using kinetic theory.

2.2 Electromagnetic models

As mentioned in the introduction, different approaches
can be found in the literature devoted to the simula-
tion of electric arcs for calculating the electromagnetic
source terms of Eqs. (2)-(3): the three-dimensional
approach, the two-dimensional axi-symmetric ap-
proach, the electric potential formulation, and the
magnetic field formulation (we here refer to the version
described by Ramírez et al. [1]). These approaches
and formulations are recalled below, as well as the
quasi 1-dimensional case, in order to discuss the un-
derlying assumptions. All of them are derived from the
following set of Maxwell equations:
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Gauss’ law for magnetism

O· ~B = 0 , (5)

Gauss’ law

O· ~E = ε−1
o qtot , (6)

Faraday’s law

∂~B
∂t

= −O × ~E , (7)

and, Ampère’s law

εo µo
∂~E
∂t

= O × ~B − µo ~J , (8)

where qtot is the total electric charge per unit volume,
εo the permittivity of vacuum, µo the permeability of
vacuum, and O× denotes the rotational operator.
The Maxwell equations are supplemented by the
equation governing charge conservation

∂qtot

∂t
+ O· ~J = 0 , (9)

and the generalized Ohm law

~J = ~Jdrift + ~Jind + ~JHall + ~Jdiff + ~Jther , (10)

where ~Jdrift = σ~E denotes the conduction current due
to electron drift, σ the electric conductivity, ~Jind the in-
duction current due to the induced magnetic field ~B,
~JHall the Hall current resulting from the electric field
induced by ~B, ~Jdiff the diffusion current due to elec-
tron pressure gradients, and ~Jther the thermodiffusion
current due to gradients in electron temperature. The
electric conductivity σ = σ(T ) is here temperature de-
pendent, as illustrated in Fig. 3 for an argon plasma.
In the frame of electric arcs applied to welding,
and when considering the plasma core (and not the
plasma sheaths), it can be assumed that

A1- The Debye length λD is much smaller than the
characteristic length of the welding arc, so that local
electro-neutrality is verified, qtot = 0, and the diffu-
sion and thermodiffusion currents due to electrons are
small compared to the drift current.

A2- The characteristic time and length of the welding
arc allow neglecting the displacement current µ0∂~E/∂t

compared to the current density ~J in Ampère’s law, re-
sulting in quasi-steady electromagnetic phenomena,
∂~E/∂t = 0, and ∂~B/∂t = 0.

A3- The Larmor frequency is much smaller than the
average collision frequency of electrons, implying a
negligible Hall current compared to the drift current.

A4- The magnetic Reynolds number is much smaller
than unity, leading to a negligible induction current
compared to the drift current.

Figure 3: Argon plasma electric conductivity as a
function of temperature.

Based on these assumptions, Eqs. (5)-(10) do re-
spectively reduce to

O· ~B = 0 , (11)

O· ~E = 0 , (12)

O × ~E = ~0 , (13)

O × ~B = µo ~J , (14)

O· ~J = 0 , (15)

and

~J = σ(T ) ~E . (16)
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The set of equations (11)-(16) are usually combined
in the following more convenient form. As the elec-
tric field ~E is irrotational (from Eq. (13)), as the mag-
netic field ~B is of constant zero divergence (from Eq.
(11)), and electromagnetic phenomena can be as-
sumed quasi-steady (assumption A2), there exist a
scalar electric potential V and a vector magnetic po-
tential ~A defined up to a constant such that,

~E = −OV , (17)

and

~B = O × ~A . (18)

Using these properties, Eqs. (15) and (16) lead to the
Poisson scalar equation governing the electric poten-
tial

O· [σ(T ) OV] = 0 . (19)

The remaining equation (14) leads to the vector equa-
tion governing the magnetic potential,

O × O × ~A = O·
(
O~A

)
− 4~A = µo ~J , (20)

where 4 denotes the Laplace operator.
An additional condition then needs to be imposed in
order to uniquely define ~A and V. This condition is
given here by the Lorentz gauge, O~A = 0. Then, using
Eqs. (16) and (17), the equation governing the mag-
netic potential ~A reduces to the Poisson vector equa-
tion

4~A = µo σ(T ) OV . (21)

2.2.1 Three-dimensional approach

When considering a three-dimensional approach the
electromagnetic model for a welding arc plasma core
uses Eqs. (19) and (21). The electric field ~E, the
electric current ~J and the magnetic field ~B entering the
source terms of the fluid set of equations (section 2.1)
are derived from V and ~A through Eqs. (17), (16), and
(18), respectively.
It should be noticed that the model used by Xu et al.
[10] is the same, although these authors did not intro-
duce explicitly the magnetic potential.

2.2.2 Two-dimensional axi-symmetric approach

Here, the particular case of an axi-symmetric con-
figuration is considered, such as water cooled cath-
ode TIG welding. A cylindrical coordinate system
(r, θ, z) is then introduced. Additional simplifications
can now be done thanks to the invariance by rota-
tion about the symmetry axis. It results in no gra-
dient along the azimuthal direction θ, a current den-
sity ~J(r, z) =

(
Jr(r, z), 0, Jz(r, z)

)
with a constant zero

angular component Jθ = 0, and a magnetic field
~B(r, z) = (0, Bθ(r, z), 0) along the azimuthal direction.
Then the electromagnetic model of section 2.2.1 sim-
plifies to the Poisson equation governing the electric
potential V(r, z)

1
r
∂

∂r

(
r σ(T )

∂V
∂r

)
+
∂

∂z

(
σ(T )

∂V
∂z

)
= 0 , (22)

and two scalar Poisson equations governing the mag-
netic potential ~A(r, z) = (Ar(r, z), 0, Az(r, z))

1
r
∂

∂r

(
r
∂Ar

∂r

)
+
∂2Ar

∂z2 −
Ar

r2 = µo σ(T )
∂V
∂r

, (23)

and

1
r
∂

∂r

(
r
∂Az

∂r

)
+
∂2Az

∂z2 = µo σ(T )
∂V
∂z

. (24)

Using the Lorentz gauge

1
r
∂(rAr)
∂r

+
∂Az

∂z
= 0 , (25)

and the definition of the magnetic potential, Eq. (18),
we can easily see that Eqs. (23)-(24) also write

∂Bθ
∂z

= µo σ(T )
∂V
∂r

= −µo Jr , (26)

and

1
r
∂(rBθ)
∂r

= −µo σ(T )
∂V
∂z

= µo Jz , (27)

which is the Gauss law in cylindrical coordinates and
in the particular case of an axi-symmetric problem.
Eqs. (26)-(27) can be condensed into a single re-
lation, for which two options are possible. The first
option leads to a partial differential equation and the
second to an integral relation defining Bθ. The partial
differential formulation

∂

∂r

( 1
σr

∂(rBθ)
∂r

)
+
∂

∂z

( 1
σ

∂Bθ
∂z

)
= 0 , (28)
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is easily derived from Eqs. (26)-(27) as ∂2V/(∂r∂z) =

∂2V/(∂z∂r). It should be noticed that Eq. (28) is the
induction diffusion equation involved in the magnetic
field formulation.
The integral formulation is also derived from Eqs.
(26)-(27), using now the fact that ∂2Bθ/(∂r∂z) =

∂2Bθ/(∂z∂r), so that

1
r
∂Bθ
∂z

= µo

(
∂Jr

∂r
+
∂Jz

∂z

)
, (29)

and thus

Bθ(r, z) − Bθ(r, zo)

= r µo

∫ l=z

l=zo

(∂Jz

∂z
+
∂Jr

∂r

)
(r, l) dl .

(30)

This integral relation defining the azimuthal compo-
nent of the magnetic field can be further simplified to

Bθ(r, z) = −µo

∫ l=z

l=zo

Jr(r, l) dl + Bθ(r, zo) , (31)

using the Poission equation (22) and the relations

Jr(r, z) = σ(T ) Er(r, z) = −σ(T )
∂V
∂r

, (32)

and

Jz(r, z) = σ(T ) Ez(r, z) = −σ(T )
∂V
∂z

, (33)

resulting from Eqs. (16) and (17).

To summarize, when considering a two-dimensional
axi-symmetric approach the electromagnetic model
for a welding arc plasma core is made of three scalar
equations or less depending on the formulation re-
tained for deriving the magnetic field. These equations
include:

- the scalar Poisson equation, Eq. (22), governing the
electric potential V, supplemented by the Eqs. (32)
and (33) for deriving the electric field and the current
density, and

- either B1, B2 or B3 for deriving the azimuthal com-
ponent of the magnetic field:

B1 - The two scalar Poisson equations, Eqs. (23)-(24),
governing the non-zero components of the magnetic
potential ~A, supplemented by Eq. (18) yielding

Bθ(r, z) =
∂Ar

∂z
−
∂Az

∂r
. (34)

B2- The scalar induction diffusion equation, Eq. (28).

B3- The integral relation, Eq. (31).

B1 to B3 are based on the same assumptions. Formu-
lation B3 seems to be the simplest one, with only one
integral relation and no additional partial differential
equation to solve. However it requires setting the ref-
erence value for the magnetic field, Bθ(r, zo) at some
well chosen location zo, which is a difficulty. Also, in-
tegrating the current along the axial direction may re-
quire a careful implementation work when accounting
for electrode tip angle (the cells of the mesh may not
be everywhere aligned along the axial direction). B2
may thus be easier to implement if the interior of the
anode and cathode is included in the computational
domain, since then the magnetic field can easily be
set on the boundaries of the computational domain.
However if, as in the present study, only the surface
of the anode and cathode is accounted for (as bound-
ary of the computational domain), the specification of
the magnetic field on the boundaries may turn out to
be difficult too. In that case formulation B1 based on
the magnetic potential is indeed more convenient, and
thus retained for the simulation tests of section 3. No-
tice that formulation B1 was also used by Lago et al.
[12] and Bini et al. [13] for instance.

2.2.3 Quasi one-dimensional approach

Here a simpler axi-symmetric case is considered, as-
suming in addition a negligible radial current density.
The current density vector is thus aligned with the di-
rection of the symmetry axis, ~J(r) = (0, 0, Jz(r)), and
the magnetic field is azimuthal with ~B(r) = (0, Bθ(r), 0).
The scalar Poisson equation governing the electric po-
tential, Eq. (22), now further simplifies to

∂

∂z

(
σ(T )

∂V
∂z

)
= 0 , (35)

with the remaining vector component

Jz = σ(T ) Ez = −σ(T )
∂V
∂z

. (36)

Eqs. (26)-(27) reduce to

1
r
∂ (r Bθ)
∂r

= µo Jz , (37)
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so that the magnetic field can be defined by the follow-
ing well-known integral relation

Bθ(r) =
µo

r

∫ l=r

l=ro

l Jz(l) dl + Bθ(ro) . (38)

The reference value Bθ(ro) can easily be set to zero
taking the symmetry axis as reference location (ro =

0).
The electric potential formulation and the magnetic
field formulation, which are more commonly used than
the axi-symmetric approach of section 2.2.2 and the
quasi one-dimensional approach of section 2.2.3, are
recalled below. Each of these formulations is a simpli-
fied version of the axi-symmetric approach. The sim-
plifications have the advantage of further reducing the
electromagnetic model down to a single partial differ-
ential equation.

2.2.4 The electric potential formulation

The electric potential formulation, detailed in [4], com-
bines two different levels of modeling:

- a two-dimensional axi-symmetric approach for defin-
ing the electric potential, Eq. (22), the current density
and the electric field, Eqs. (32)-(33), with

- a quasi one-dimensional approach for defining the
magnetic field, Eq. (38).

It should be noticed that in the limit of a negligible ra-
dial current density compared to the axial current den-
sity, the electric potential formulation reduces to the
quasi one-dimensional formulation (section 2.2.3).

The electric potential formulation was initially applied
to long arcs, i.e. arcs with a distance between anode
and cathode rather large compared to the electrode
radius. In addition it was applied, such as in the work
by Hsu et al. [4] and Ramirez et al. [1], considering the
domain below the electrode and not next to it. Also the
boundary conditions set were those of an infinite elec-
tric rod. In this framework the radial current density
component is less than the axial current density com-
ponent, so that the quasi one-dimensional approach
for the magnetic field is a good approximation.
The electric potential formulation is known to be ac-
curate for predicting the arc temperature for axi-
symmetric configurations [1]. This is indeed due to
the fact that the axi-symmetric formulation (section
2.2.2) and the electric potential formulation are based

on the same assumptions for defining the electric po-
tential. However, the electric potential formulation is
also known to be less accurate for calculating the arc
velocity [1]. This is due to the simplification done when
evaluating the magnetic field. This lower accuracy,
almost negligible for long arcs, is thus expected to
be more significant when two-dimensional effects be-
come more important, i.e. for short arcs, and/or when
considering the geometry of the electrode tip (such as
a tip angle).

2.2.5 The magnetic field formulation

The magnetic field formulation, introduced by McK-
elliget and Szekely [14], is derived from the axi-
symmetric approach alone. As underlined by Ramirez
et al. [1], an advantage of this formulation is to allow
deriving the current density from the azimuthal com-
ponent of the magnetic field without the need to solve
the electric potential or the electric field. This formula-
tion is indeed made of

- the induction diffusion equation, Eq. (28), for defining
the magnetic field, from which the current density is
directly derived using Eqs. (26)-(27).

Contrary to the electric potential formulation, the mag-
netic formulation is known to be accurate for predict-
ing the arc velocity, but less accurate for calculating
the arc temperature since the determination of the ax-
ial current density from the azimuthal magnetic field,
Eq. (27), introduces a non-physical singularity on the
symmetry axis [1].

It should be noticed that in the limit of a negligible ra-
dial current density compared to the axial current den-
sity, this formulation does not reduce to the quasi one-
dimensional formulation of section 2.2.3. It reduces
only to Eqs. (37) and (38), which are the same. In
this limit it indeed defines Bθ from Jz , and at the
same time Jz from Bθ. This implies that the quasi
one-dimensional limit of the magnetic field formula-
tion is not closed. Also, as detailed in section 2.2.2,
the induction diffusion equation, Eq. (28), is derived
from Eqs. (26)-(27), themselves derived from Gauss’
law for magnetism and Ampère’s law. The magnetic
field formulation is thus a non-closed version of the
axi-symmetric model since it does not account for the
charge conservation equation. On the contrary, the
electric potential formulation is closed, using the quasi
one-dimensional closure relation, Eq. (38).
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3 TEST CASES

Two test cases were investigated, see section 3.1
and 3.2, to study the influence of the two-dimensional
phenomena in connection with the electromagnetic
model. For this reason, the quasi one-dimensional
approach of section 2.2.3 was not retained. The elec-
tromagnetic models used in these simulation tests are
the remaining closed models:

i) the three-dimensional approach,

ii) the two-dimensional axi-symmetric approach
with the formulation B1, and

iii) the electric potential formulation.

The first test case, an infinite and electrically conduct-
ing rod, was retained since it has an analytic solution
allowing testing the electromagnetic models. The sec-
ond is the short arc (2 mm) of the water cooled GTAW
test case described by Tsai and Kou [16]. It was in-
vestigated experimentally by Haddad and Farmer [15],
and used in the literature as reference for testing arc
heat source simulation models.

3.1 Infinite rod

The magnetic field induced in and around an infinite
rod of radius ro with constant electric conductivity, and
constant current density Jz parallel to the rod axis, re-
duces to an azimuthal component Bθ. Bθ has the fol-
lowing analytic expression:

Bθ(r) =
µoJz r

2
if r < ro ,

Bθ(r) =
µoJz r2

o

2 r
if r ≥ ro ,

(39)

where Jz = I/(π ro) denotes the current density along
the rod axis, and I the current intensity.
A long rod of radius ro = 1 mm with the large
and uniform electric conductivity σrod = 2700A/(Vm),
surrounded by a poor conducting region of radius
rext = 16 mm, and uniform electric conductivity σsur =

10−5A/(Vm), was simulated. The conductivity σrod

and σsur correspond to argon plasma at 10600 and
300 K, respectively.
The electric potential difference applied on the rod
was set to 707 V, as indicated in Fig. 4, corresponding
to a current intensity of 600 A. The electric potential
gradient along the direction normal to the boundary
was set to zero on all the other boundaries.

Figure 4: Schematic representation of the
computational domain.

Figure 5: Angular component of the magnetic field
along the radial direction (ro = 1 × 10−3m).

The magnetic field was calculated using i) the three-
dimensional approach of section 2.2.1, ii) the two-
dimensional and axi-symmetric approach B1 based
on the magnetic potential, section 2.2.2, and iii) the
electric potential formulation of section 2.2.4. In the
three- and two-dimensional approaches, the magnetic
potential ~A was set to zero at r = rext, and its gradient
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along the direction normal to the boundary was set to
zero on all the other boundaries.
All the numerical simulations were done using the
same mesh, so that they only differ in the expression
used for calculating the magnetic field. The simulation
results, plotted in Fig. 5 for the azimuthal component
Bθ of the magnetic field, are all in perfect agreement
with the analytic solution, as expected when the cur-
rent density is aligned with the symmetry axis.

3.2 Water cooled GTAW with Ar shielding gas

The 2 mm long and 200 A argon arc studied by Tsai
and Kou [16], based on the experimental measure-
ments of Haddad and Farmer [15] reported in Fig. 6,
is now considered.

Figure 6: Temperature measurements of [15], courtesy
of A.J.D. Farmer.

The configuration is sketched in Fig. 7. The elec-
trode, of radius 1.6 mm, has a conical tip of angle 60◦

truncated at a tip radius of 0.5 mm. The electrode is
mounted inside a ceramic nozzle of internal and exter-
nal radius 5 mm and 8.2 mm, respectively. The pure
argon shielding gas enters the nozzle at room temper-
ature and at an average mass flow rate of 1.66 × 10−4

m3/s.
The temperature and the current density set on the
cathode boundary are explicitly given [16]. The anode
surface temperature was also set as proposed by Tsai
and Kou [16], extrapolating the experimental results
[15]. Looking at the experimental results, Fig. 6, it can
be noticed that the measured temperature is rather dif-
ficult to extrapolate up to the anode. The boundary
conditions set on the cathode also suffer from a lack
of accuracy, as experimental measurements could not
be done in the very close vicinity of the anode and
cathode. These difficulties may explain the variety of

Figure 7: Schematic representation of the GTAW test
case

boundary conditions used in the literature for simulat-
ing this test case.
The electromagnetic fields were calculated using i)
the three-dimensional approach of section 2.2.1, ii)
the two-dimensional and axi-symmetric approach B1
based on the magnetic potential, section 2.2.2, and
iii) the electric potential formulation of section 2.2.4.
Also, all the numerical simulations were done using
the same mesh, so that they only differ in the expres-
sion used for calculating the magnetic field. The simu-
lation results presented here were calculated using 25
uniform cells along the 0.5 mm tip radius, 100 uniform
cells between the electrode and parent metal along
the symmetry axis, and a total number of 136250 cells.
A mesh sensitivity study has been done [22], conclud-
ing that the present mesh is sufficiently fine.
The numerical results from the i) three-dimensional
approach and ii) two-dimensional axi-symmetric ap-
proach B1 are the same, which is expected as both
approaches are based on the same physical assump-
tions. However, the results obtained with the electric
potential formulation significantly differ, as shown in
Fig. 8. Agreement is only observed at a distance be-
low the cathode tip, where the radial component of
the current density is negligible compared to the axial
component (see Fig. 9). The electric potential formu-
lation indeed defines Bθ neglecting the radial current
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density component. The three-dimensional calcula-
tion, Fig. 9, shows that the radial component of the
current density is not everywhere negligible, in par-
ticular next to the electrode tip, where the largest in-
duced magnetic field is observed. So for the short
arc studied here, neglecting the radial component of
the current density results in a poor estimation of the
magnetic pinch forces, and in turn of the arc veloc-
ity, as well as the pressure force the arc exerts on the
base metal. Consequently, the electric potential for-
mulation was not retained for simulating this short arc
configuration.

Figure 8: Magnetic field magnitude calculated with the
electric potential formulation (left) and the

three-dimensional approach (right).

Figure 9: Current density vector calculated with the
three-dimensional approach.

The next simulation results were all obtained with the
three-dimensional approach, which is here more natu-
ral to use as OpenFOAM is a three-dimensional simu-
lation software. Notice that the radial direction is now
denoted y instead of r, and the axial direction x instead
of z.

Figure 10: Temperature along the radial direction,
1 mm above the anode.

The calculated temperature is plotted along the radial
direction 1 mm above the anode in Fig. 10, and along
the symmetry axis in Fig. 11 (solid line). The experi-
mental data [15], shown in Fig. 6, are used for com-
parison with the numerical results along the radial di-
rection, in Fig. 10. A good agreement is obtained. The
comparison along the symmetry axis is difficult to per-
form, as the isotherms represented in Fig. 6 are not
plotted in this area. We can however observe that the
maximum temperature obtained numerically seems to
underestimate the experimental one by about 10%.
This could be due to the boundary conditions set on
the anode and cathode. Other boundary conditions
also used in the literature are investigated in section
3.4.
The test cases of the next section were investigated as
a preliminary study for future extension of the model
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to active gas welding. They should be considered as
academic, for various reasons detailed below.

3.3 Ar-x%CO2 shielding gas

Plasma arc simulations for the test case of section
3.2 were also done changing the shielding gas com-
position to Ar-x %CO2, and the four following cases:
pure argon (x = 0), pure carbon dioxide (x = 100), and
mixtures of these two gases with x = 1% and 10% in
mole. In each case the thermodynamic and transport
properties were tabulated as function of the temper-
ature up to 30 000K. The tables were implemented
in OpenFOAM-1.6.x as described in section 2.1. For
pure argon and pure carbon dioxide the data tables re-
sult from derivations done by Rat et al. [20] and André
et al. [21] using kinetic theory. For the other mixtures
(with 0< x<1) the data tables were prepared doing an
additional calculation step, based on the data for pure
argon, pure carbon dioxide, and standard mixing laws.
The mixing laws for calculating the specific heat and
the enthalpy of a mixture use mass concentration as
weighting factor [23]. When applied to the calculation
of the viscosity, the thermal conductivity and the elec-
tric conductivity of a mixture, the molar concentration
is instead used as weighting factor [24].
Because of lack of experimental data, the bound-
ary conditions set on the electrode and the base
metal are the same as in section 3.2. These ap-
proximate boundary conditions are most probably too
rough when the shielding gas contains a significant
amount of CO2. Also, the difficulty met in setting ap-
propriate boundary conditions on the anode and cath-
ode raises the future need of extending the simulation
model coupling cathode and anode simulation to the
thermal plasma arc.
The shielding gas containing x=1% in mole of CO2
should be close to the maximum amount of CO2 al-
lowing producing a stable electric arc with a tungsten
electrode and water cooled base metal. Experiments
are being prepared for characterizing this case. For a
larger amount of CO2 in the shielding gas, significant
electrode oxidation is expected, leading to arc insta-
bility. A solution for making experiments feasible with
a tungsten electrode could consist in shielding locally
the electrode tip with an inert gas such as argon. Such
a local shielding is not included in the present simula-
tions.

Figure 11: Temperature along the symmetry axis.

Figure 12: Temperature along the radial direction,
1 mm above the anode.
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Figure 13: Velocity along the symmetry axis.

Figure 14: Velocity along the radial direction, 1 mm
above the anode.

The present aim is to evaluate qualitatively the influ-
ence of the amount of active gas on the plasma arc
temperature and velocity for given boundary condi-
tions. The calculated temperature is plotted along the
symmetry axis in Fig. 11, and along the radial direc-
tion 1 mm above the anode in Fig. 12. In a similar
way, the calculated velocity is plotted along the sym-
metry axis in Fig. 13, and along the radial direction 1
mm above the anode in Fig. 14.
The simulation results clearly show that the presence
of carbon dioxide results in an increased arc temper-
ature (Figs. 11, 12), and a constriction of the tem-
perature field above the base metal (Fig. 12). It also
results in a significant increase of the plasma arc ve-
locity (Figs. 13, 14), which in turn increases the pres-
sure force applied on the base metal, but no signifi-
cant change concerning the extent of the plasma jet
just above the base metal (Fig. 14).

3.4 Boundary conditions

As underlined above, the available experimental mea-
surements need to be extrapolated for estimating a
priori the boundary conditions. The extrapolation is
somewhat uncertain, which may explain the variety of
boundary conditions used in the literature.
Three test cases (a, b, and c) that differ only by the
boundary conditions set on the electrode and the an-
ode were calculated to evaluate the influence of these
boundary conditions on the plasma arc. In case a
(treated above using the boundary conditions defined
by Tsai and Kou [16]), the current density is uniform
on the 0.5 mm radius cathode tip, and it decreases lin-
early down to zero as the radius tip increases. In case
b all the current density (also uniform) goes through
the 0.5 mm radius cathode tip. The boundary condi-
tions on the anode are the same in case a and b. In
case c the boundary conditions on the cathode are the
same as in case b. Case c is associated with an ex-
treme thermal condition on the anode for testing the
model: its anode does not conduct heat. In all cases,
argon is used as shielding gas.
The temperature and the velocity calculated for each
case are plotted along the symmetry axis in Fig. 15
and Fig. 16, respectively. The pressure on the base
metal is plotted in Fig. 17. It can be observed in Fig.
15 that there is a large influence of the cathode cur-
rent density distribution on the cathode on the maxi-
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mum arc temperature. Also, compared to case a, the
maximum temperature of case b is much closer to the
maximum temperature observed experimentally. The
thermal boundary condition on the anode has almost
no influence on the maximum arc temperature. How-
ever, it can significantly affect the heat transferred to
the anode base metal, as it significantly changes the
temperature close to the anode.
Finally, Fig. 16 and 17 show that the velocity along
the symmetry axis and the pressure force on the
base metal are significantly changed for each varia-
tion tested on the anode and cathode boundary con-
ditions.

Figure 15: Influence of the anode and cathode
boundary conditions on the temperature along the

symmetry axis.

Figure 16: Influence of the anode and cathode
boundary conditions on the velocity along the

symmetry axis.

Figure 17: Influence of the anode and cathode
boundary conditions on the pressure on the base

metal.
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4 CONCLUSION

This study focused on the modeling and simulation of
an electric arc heat source, coupling thermal fluid me-
chanics with electromagnetics. The model, valid for
the plasma core, was implemented in the open source
software OpenFOAM. Different approaches were con-
sidered for modeling the electromagnetic fields:

i) the three-dimensional approach,

ii) the two-dimensional axi-symmetric approach,

iii) the electric potential formulation, and

iv) the magnetic field formulation as described by
Ramírez et al. [1].

Models i) to iii) reduce to the same quasi one-
dimensional limit for an axi-symmetric configuration
with negligible radial current density, contrary to model
iv). Model iv) is a non-closed version of the axi-
symmetric model. It does not account for the charge
conservation equation. On the contrary, the elec-
tric potential formulation is closed with a quasi one-
dimensional closure relation. Models ii) to iv) cannot
represent the same physics when the radial current
density is significant, such as for a short arc or an
electrode tip with a conical shape.

The electromagnetic solver was tested against the an-
alytic solution of an infinite electric rod using models i)
to iii). The solutions are in perfect agreement.
The coupled solver was tested against experimental
measurements for GTAW with argon shielding gas and
a short arc (2 mm). The numerical solution for the az-
imuthal component of the magnetic field then signifi-
cantly differs when applying the electric potential for-
mulation iii). This approach indeed neglects the radial
current density component. For axi-symmetric con-
figurations with non-negligible radial effects, such as
short arcs, this simplification is not everywhere justi-
fied. The numerical results obtained using models i)
and ii) show a good agreement with the experimental
data when such comparisons can be made.

Difficulty were met in setting appropriate boundary
conditions, either because of lack of experimental
data, or because of a too large freedom for extrapolat-
ing available experimental data up to the anode and
cathode surface. In addition different possible con-
ditions significantly affect the simulation results, such
as the plasma arc temperature and velocity. The tem-
perature and current density distribution on the elec-

trode surface should thus be calculated rather than
set, to enhance the predictive capability of the sim-
ulation model. The solution of the temperature and
electromagnetic fields inside the anode and cathode,
and the modeling of the plasma arc sheath doing the
coupling with the plasma core, will thus be included in
the forthcoming development of the simulation model.
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